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Resilient tube-based MPC for
Cyber-Physical Systems Under DoS
Attacks'!

B. Aubouin—Pairault * A. Perodou* C. Combastel *
A. Zolghadri*

* Univ. Bordeauz, CNRS, IMS, UMR 5218, 33405 Talence, France

Abstract: This paper proposes a resilient and robust model predictive control (MPC) scheme
for a class of Cyber-Physical Systems (CPS) subject to state and input constraints, unknown but
bounded disturbances and Denial of Service (DoS) attacks. The attacker blocks the controller
to actuator communication and the attacks are assumed to be time-limited. The control is
designed by extending a robust tube-based MPC, where a new type of invariant set, namely
u-step Robust Positively Invariant (u-RPI) set, is introduced to deal with resilience. A set-based
method is then developed for the control scheme to ensure both resilience to DoS attacks while
preserving robustness to bounded disturbances. A computational algorithm is derived and a
numerical example is provided to illustrate the potential of the proposed approach.

Keywords: Cyber-Physical Systems (CPS), Denial of Service (DoS) attack, Resilience,
Robustness, Model Predictive Control (MPC), Set-membership, Zonotopes.

1. INTRODUCTION

Cyber-Physical Systems (CPSs) are next-generation en-
gineered systems with deep integration of computation,
communication and networking, physical processes, and
control systems (Lee (2015), Poovendran et al. (2011),
Allgower et al. (2019)). Varying widely in complexity and
scale, CPSs concern many technological areas, including
aerospace, automotive, energy, chemical industry, trans-
portation, or healthcare. While safety and security have
been traditionally addressed separately, some integrated
approaches have been recently reported (see for instance
Ji et al. (2021) and the references therein).

In this perspective, this paper focuses on mitigating the
impact of denial of services (DoS) attacks on systems
evolving in an uncertain environment. In the literature,
one can find many investigations for mitigation of DoS
attacks. Among others, in Gupta et al. (2016) a method is
proposed based on game theory where both attacker and
controller are modeled as players of a game. De Persis and
Tesi (2015) used event-triggered control, and the approach
reported in Amin et al. (2009) takes advantage of opti-
mal control. Nevertheless few of them deal with systems
subject to state and input constraints. Sun et al. (2019)
proposed a resilient MPC to address DoS attacks for a
constrained system but without taking disturbances into
account. In this paper, a similar resilient MPC is extended
to disturbed systems with the aim of ensuring a joint
resilience and robustness goal. By resilience, it is meant
the system’s ability to contain the maximal impact of
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anomalies, such as attacks, and to recover to an acceptable
performance level.

In order to characterize the impact of uncertainties, a
set-membership approach is used. This deterministic ap-
proach has been used in various ways when dealing with
systems subject to unknown but bounded uncertainties.
For instance, state bounding observation through Zono-
topic Kalman Filters (ZKF) is considered in Combastel
(2015). In Mayne et al. (2006) a robust model predictive
controller is proposed, and in Le et al. (2011) a zonotopic
tube-based approach is used to control a system subject
to disturbances and measurement noise. In the last two
papers, a particular class of invariant sets, the Robust
Positively Invariant (RPI) set, is defined to ensure the
robust convergence of the control scheme in the presence
of bounded uncertainties. Franze et al. (2021) also studied
set membership theory and MPC to control constrained
and disturbed linear systems subject to different possible
attacks. The resilient approach we propose mainly relies
on zonotopic rather than ellipsoidal sets. It ensures that
the state trajectory comes back within some set after a
DoS attack sequence, as in Franze et al. (2021). Moreover,
an explicit bound for the state trajectory during attacks
is also considered.

In this paper, a new kind of sets, namely p-step Robust
Positively Invariant (u-RPI) sets, is introduced to address
the resilience issue, that is, ensuring that an exit from
nominal operation induced by the possibly repeated occur-
rence of attacks remains limited in time and/or magnitude.
Then, a resilient tube-based model predictive control for
uncertain linear discrete-time systems subject to DoS at-
tack and bounded disturbances is proposed. The resulting
MPC scheme relies on the off-line computation of such an



1-RPI set for which an algorithmic solution is provided,
taking into account all design constraints.

The paper is organized as follows. After some preliminaries
given in Section 2, the problem is stated in Section 3.
Section 4 describes the proposed control scheme and
Section 5 presents a method to compute the required
u-RPI set. Finally an illustrative example is provided
in Section 6, and Section 7 provides some concluding
remarks.

2. PRELIMINARIES

Notations: The symbols R,N and NT represent respec-
tively the sets of real numbers, natural numbers, and pos-
itive integers. [k1, k2] denotes the set of integers between,
and including, k; and ky. The operators & and © denote
the Minkowski sum and difference. Given the sequence of

sets {S;, C R"}2__, the notation @?:a Si=S,®.. DSy is
used. P > 0 (resp. P > 0) denote a positive definite (resp.
semi-definite) matrix. p(A) denotes the spectral radius
of the matrix A i.e. the largest eigenvalue in absolute
value. Given a vector z € R™ and P >~ 0, ' denotes
the transpose of the vector and the P-weighted norm is
l|z|]|[p = V& T Pz. The notations xy, |, and uy, |, are used
to describe state and control input predicted for time &y
and calculated at time k.

A zonotope (¢, R) C R™ with center ¢ € R"™ and generator
matrix R € R"*P is a polytopic set defined as the
affine image of the unit hypercube [—1,+1]? C RP by
R: (¢,R) = {c+ Rs, ||s||lcc < 1}. The Minkowski sum
of two zonotopes (c1, R1) and (c2, Rs) is the zonotope
(c1, R1) ® (ca, Ra) = (c1 + ¢2,[R1, Rz]). The linear image
of (¢, R) by L is the zonotope L ® (¢, R) = (Lc, LR). The
interval/box hull of (¢, R) is the interval ¢ £ |R|1 where
¢+ r denotes the interval [¢ — 7, ¢+ r], |.| is the element-
by-element absolute value operator, and 1 is a column of
ones with appropriate size, Combastel (2003).

3. PROBLEM STATEMENT
3.1 System Dynamics

A linear dynamic subject to bounded disturbances is first
considered:

Tp+1 = Az + Buy + Dwy, (1)
where 2, € R”, u;, € R™, and w;, € R! are respectively
the system state, the control input and the disturbances
evaluated at time k. It is assumed that the disturbances
are bounded: wy € W and the system state and control
input satisfy constraints x; € X and uy, € U, where X and
U are compact sets containing the origin as an interior
point.

Assumption 1. There exists a state-feedback gain K such
that A 4+ BK is stable, that is p(A + BK) < 1.

3.2 Attack Model

The equation (1) is modelling the attack-free dynamic of
a CPS where actuator and controller are spatially sepa-
rated (e.g. remote control) while being connected through
communication channel. In this paper, the case of a DoS

attack occurring on this channel is considered. More pre-
cisely, the scenario considered here is time limited attacks
which block the controller-actuator (C-A) communication
channel. The indicator variable v,k € N, is defined as
follows:

(2)

- 1 while there is no attack,
* 710 when an attack occurs.

Then, the applied input is up = viuj where uf is the
control input computed by the controller.
Assumption 2. Yk; € N, the constraint on the occurrence
of attacks is the following:
k‘]‘ +N-—-1

> (1-w)<M<N, (3)

k=k;
where M denotes the maximal number of sample attack
instances on the time interval from k; to k; + N — 1.

This assumption could model power-limited attacks where
the attacker can launch a maximal occurrence of attacks
over a time period. M consecutive attacks are not nec-
essarily the worst-case scenario, the assumption considers
all the possible scenarios with at most M attacks over
N sample times. Indeed, under assumption 2, distinct
consecutive DoS attack sequences are possible within the
considered time horizon, as illustrated in Fig. 3. In this
paper, the number N matches with the time-horizon of
the MPC scheme that will be introduced in next section.

3.3 Resilient sets and problem statement

In order to deal with the resilience property for a system
subject to disturbances and attacks, a new kind of invari-
ant set is proposed in this subsection. First, the definition
of a Robust Positively Invariant (RPI) set is recalled:

Definition 1. (RPI set, Rakovic et al. (2005)). Given a dy-
namic system zpi1 = f(xg,wy), the set S is said to be
Robust Positively Invariant (RPI), if f(z,w) € S for all
x €S and all w e W.

A resilient and robust invariant set, that both generalizes
the usual RPI set and the p-step invariant set originally
proposed in Sun et al. (2019), is now introduced:

Definition 2. (u-RPI set). Given a system X modelled as
i1 = f(zg,wr), if Ju € NT such that the implication
(4) is satisfied, then the set S is said to be u-step Robust
Positively Invariant (u-RPI set) for X,

((zo €S)A (Vk €N, wy, € W) = Vk €N, 2,45, €S. (4)

Given the system (1) subject to a DoS attack modeled by
(2), the problem addressed is that of finding a resilient and
robust model predictive control scheme for which an p-RPI
set exists, and compute this set. By this way, the purpose is
to obtain a provenly stable control scheme which is jointly
resilient to attacks as described in the paragraph 3.2 and
robust to any arbitrary bounded disturbances w; € W.

4. A ROBUST AND RESILIENT MPC SCHEME
In this section, a standard robust tube-based MPC is first

briefly recalled. Then, a recent proposition of MPC scheme
providing resilience to a non-disturbed LTI system under



DoS attacks is reviewed. Finally, an original MPC scheme
combining both robustness and resilience is proposed.

4.1 Tube-based MPC

In standard robust tube-based MPC, the objective is to
control the system (1) such that its states remain in a tube
centered on a nominal trajectory. Consider the following
nominal model:

Tpr1 = ATy + Bly. (5)

Then, the general idea is to ensure that the disturbed
system state xj stays close to Tp, for any arbitrary
disturbances belonging to W. To achieve this goal, the
nominal system is controlled using MPC with tightened
constraints and the control law (6) is applied to the
disturbed system:

Up = ﬁk—kK(xk —i‘k). (6)
If K is chosen such that (A+ BK) is stable, the difference
x, — T can be bounded in a Robust Positively Invariant
(RPI) set and thus creates a tube around the nominal state
trajectory that encloses the disturbed state trajectories as
described in Rawlings and Mayne (2009). Note that this is
a simple version of the tube-based MPC where the nominal
system is completely independent of the state trajectory

and that improved versions of this control method exist
(see Rawlings and Mayne (2009)).

4.2 Resilient MPC

This paragraph is intended to provide a short synopsis of
the resilient MPC for non-disturbed systems as proposed
in Sun et al. (2019). In a classical MPC scheme, at each
step time, the optimal sequence of control inputs uj is
computed over the whole N samples prediction horizon
and only the first term u,’;‘k is applied to the system.
In order to mitigate the impact of DoS attacks, Sun
et al. (2019) made the assumption that the actuator
side is able to store data and the computed control
sequence {u,’;‘k, “Z+1\k’ v UZ+N—1|k} is sent to the actuator
at each sample time. Thus, when a DoS attack impedes
the reception of the optimal control at some time k, the
actuator can still apply the next control stored in the
previously received control sequence. Denoting k; the last
sample time before an attack occurs, the control applied to
the disturbed system is UZI K which leads to the dynamic:

Tpr1 = Ay + BUZch- (7)

In Sun et al. (2019), the stability of (7) is proved under
assumption 2 and for a region of attraction X3 . The
later differs from that of a classical MPC by taking into
account the case of an attack happening at a time when
no control sequence is stored in the actuator side (just
after the initialization of the controller, for instance). This
set is such that for all zp € X}, there exists a control
sequence u™ = {0,..,0,ups, .., un—_1} satisfying zn € X;
—— ———

M N—M
under the constraints w; € U, Vi € [M,N — 1] and
z; € X, Vi € [1, N — 1], where Xy denotes the terminal
set of the MPC problem.

4.8 Toward a robust and resilient control law

To provide both resilience and robustness, a new control
law combining the previous tube-based MPC (§4.1) and
resilient MPC (§4.2) is proposed. First, the constrained
optimization problem which is solved to control the nom-
inal system (5) is introduced:

The cost function is given by:
N-1
Vv @k, W) = [1Zgnel 3+ D WZsanlld + @ik
i=0
where 0 = {ﬂk|kvak+1|k,~-7'L_Lk+N—1\k}~ and Q,R,S = 0.
The constraints applied to the state and the control input
of the nominal system are X = XOZT and U=Uo KZ™,
where ZT denotes a set bounding the difference 2z, = x, —
Z. Those tightened constraints applied to the nominal
system ensure that the disturbed system (1) meets the
specification xj € X and uy € U.

MPC optimization:

In order to ensure the stability and feasibility of the con-
sidered MPC problem, a terminal set Xy is also introduced
(see Rawlings and Mayne (2009) for details). The terminal
cost ||..||s and the terminal set X are chosen consistently
according to assumption 3:

Assumption 3. There exists a state-feedback gain K such
that, for the system Ty, = (A + BK)Ty:

e There exists a terminal set Xy C X also satisfying
(A+ BK)XJ" C Xy and KXy C T,
o I(A+BE)zllg +1zell) + Kzl < |23

Then, the MPC constrained optimization is given by:

1_12 =min VN(fk, l_lk)
ay,
s.t. i‘k\k = i‘/@,
Tryivie = ATpqix + Blggijk, 8)
ﬂ;ﬁ.“k (S @ for i € [[0 N — 1]],
Tptin € X for i € [1: N —1],
Tienk € Xy
Resilience:  Since attacks can occur, the robust control

(6) may not be received by the actuators at some time
steps. Similarly to Sun et al. (2019) and Franze et al.
(2021), it is assumed that the actuator side is able to
store data. Then, since only past measured states are
available at each sample time k, the sequence {ﬂj;‘k +
K(xzp — Z), Uy p» - Ujy y_q )} 1S sent to the actuator
at each sample time k. Denoting k; the last sample time

before an attack occurs and using vy as defined in (2), the
control applied to the disturbed system is:

Up = ﬂ;;\kj + VkK(xk - i‘k)

For the sake of simplicity, xj is assumed available. Oth-
erwise, an observer should be used. Then, the robust-
ness to the related observation error should be properly
handled. Moreover, in a similar fashion to (Amin et al.
(2009)), the communication protocol is assumed to be
acknowledgment-based like e.g. the TCP protocol (Kumar
and Rai (2012)). Then, the controller has access to k; and
the nominal system can be controlled using u; = ﬂzlkj.

With this control, the nominal system follows the dynamic



(7) already studied by Sun et al. (2019). The controlled
nominal system is thus stable for a region of attraction
XX This region of attraction X! is the same as in subsec-
tion 4.2, except that that the constraints on the states and

the control inputs are given by the tightened constraints
Xf,U and X.

Robustness and Resilience:  The proposed approach re-
lies on a dedicated management of the state error be-
tween the disturbed (1) and nominal (5) system models,
Zkx = Tk — T, which follows the dynamics:

Zk+1 = (A + I/kBK)Zk + Dwy, (9)
This is the subject of the main results developed in the
next section.

5. MAIN RESULTS

In this section, an algorithmic solution is provided to test
if a given RPI set for the dynamic (10),

zk+1 = (A + BK)z, + Dwy, (10)
is also an N —RPI set for the dynamic (9) under attack sce-
narios characterized by the pair (M, N). As a byproduct,
it will thus be possible to determine the maximal value
of M < N ensuring a resilient MPC control. Moreover, a
solution for computing a set Z* bounding the trajectories
of the state error zj is proposed. Z*1 is represented as
an intersection of halfspaces and characterizes the worst-
case impact of the specified disturbances and attacks with
respect to the nominal state trajectory.

5.1 Testing if an RPI set is also an N-RPI set

In this section, P denotes an RPI set for the system (10).
It can be computed as an approximation of the minimal
RPI set of (10), as proposed in Rakovic et al. (2005).

The aim of this paragraph 5.1 is to test if P is also an
N-RPI set for system (9). Indeed, since the condition (3)
applies to sequences of N steps, a solution to ensure the
resilience to repeating sequences of any length consists in
focusing on pu-RPI sets with y < N (thus, on N-RP1I sets),
as illustrated in Fig. 1.

attack
X sequence

X A

N 2N 3N 4N step

Fig. 1. Hlustration of the usage of the N-RPI

To achieve this, the proposed method consists in testing
if, for each considered attack scenario, the trajectory
gets back into P in a maximum of N steps. Instead
of testing all the possible attack scenarios, a sufficient
subset is introduced in the sequel. In addition to reduce
the algorithmic complexity, there is no loss of generality
to prove, or disprove, that P is an N-RPI set when
testing only this subset. This relevant subset is obtained
as follows:

P Z,Z:cP

1taall:x——> [ [ [ [ | |

0 step=2 N
7t L3

]
2l [ | [ | [ |
0 step=3 N-1

2 ZicP 72
Zl 4IC sICP
3" callf K= 1|

0 N-2

B
| | 4

Fig. 2. Hllustration of Algorithm 1

e Only the scenarios where the first attack happens
at the first of N consecutive samples is tested. This
is a direct consequence of Assumption 2, where the
considered class of attacks satisfies (3) for time-
horizon N.

e If, for 7 sample attack instances with the last attack
happening at step k,, the system gets back to the RPI
set in a total of k; steps, then, to test a scenario with
i+ 1 attack instances where the first i attacks are the
same, testing only the scenarios where the last attack
happens between k, + 1 and k, — 1 is sufficient.

Using the above rules, a sufficient subset of scenarios to be
tested can be constructed. First, starting from an RPI set
P at k = 0 and with one sample attack happening at this
time, a minimal number k;, of steps (up to N) required
for the system trajectories to provenly get back to P is
determined. Then, the expression of the reachable set is
computed as follows:

75 =P,
Z}., = AZ;, & DW, if v, =0,
Z}., = (A+ BK)Z; ® DW, otherwise.

Where Zj is the set reached during the k™" step for a
scenario j. To test the scenarios with two sample attack
instances, the initial set is given by Z2 = Z1 and the
scenarios considered are the ones where an attack occurs at
time k with k € [0, k, — 2]. The number of sample attacks
is then incremented until it reaches M which is necessary
for the test to succeed unless a set-inclusion test fails.

(11)

Algorithm 1 is a recursive function that tests if an RPI set
P is also an N-RPI set for attack scenarios described by the
integers (M, N). Each call of the recursive function tests
all the required scenarios, starting from the set Zy with an
attack happening between step 0 and step ngsep — 1, where
Nstep 1S @ number of steps passed as input argument (with
initial value one) when calling the iSNRPI function. For
a scenario with an attack happening at time k., and the
trajectories entering in the RPI set in less than IV steps,
in kp steps for instance. The recursive function is recalled
to test new scenarios starting from the set S = Zy_ 41 and
it tests that the trajectories will come back in the RPI set
in less than N — k, — 1 steps with an attack happening
between the steps 0 and kj, —2 — k,. The function stops if a
trajectory does not enter in the RPI before the maximum
allowed step number or if there is no more attack to test
i.e. the last scenarios tested already include the cases with
M sample attacks.



For the sake of illustration, the operation of Algorithm 1
is exemplified in Fig. 2 where:

e During the first call, a scenario starting from P
with an attack at the first step is considered. The
trajectories get back to P in 2 steps.

e The function is recalled and a scenario starting from
Zi with an attack at the first step is considered. The
trajectories get back to P in 3 steps.

e During the third call of the function, two scenarios are
studied. Both start from the set Z# and one contains
an attack at the first step and the other one an attack
at the second step. The two trajectories from the
scenarios come back in P in less than N — 2 steps
which is the limit for those trajectories.

Algorithm 1 Test if a RPI P is a N-RPI for a given
number M of sample attacks over the horizon N

1: function [test,b] = isNRPI(M, N, P, Zg, ngiep, b)

2: if (Zo, nstep, b) is undefined then > Initialization
3: Zo + P > where P has to be a RPI set
4: Ngtep < 1 > First attack happens at time k=0
5: b= (—o00)1 > col. vector with —oo elements
6: end if

7. if (M =0) then © Stop criterion for recursive calls
8: test < T'rue

9: else

10: ko <0 > Sample attack time-step

11: Condy <+ True

12: while Cond; do

13: i+ 0 > Time-step index

14: 7+ T

15: Condy < True

16: while Condy do

17: if (i = k,) then > Set reached under attack

18: 7 +— AZ & DW

19: S+ 7Z > Save set after attack

20: else > Set reached without attack

21: Z+ (A+ BK)Z ® DW

22: end if ~

23: b + UpdateBound(H,b,Z) > Update Z*

24: 14—1+1

25: Condy + (i < N)A—=(Z CP)

26: end while

27: ky <1

28: if (Z C P) then

29: > When back to P in less than N steps, then

30: > recursive call with one less sample attack

31: > and k, less steps to get back to P starting

32: > from S:

33: (test,b) < isNRPI(M — 1, N —k, —1, P,
S, ky —1—kq, 1)

34: else

35: test < False

36: end if

37 ko < kg +1

38: Condy < (kg < Nstep) N (test)

39: end while

40: end if

41: return test,b

The implementation of Algorithm 1 makes use of zono-
topes to represent the RPI set and the sets reachable by the
trajectories. This representation is well-suited in this case

since it is closed for the Minkowski sum and affine image
operators which can be easily computed (see §2). To test
the containment of zonotopes at step 25 of Algorithm 1,
the algorithm presented in Kulmburg and Althoff (2021)
and implemented in the CORA 2021 toolbox is used. Note
also that the step 23 in Algorithm 1 is used to compute
a set bounding all the trajectories as further described in
the next paragraph 5.2.

5.2 Bound of trajectories

The aim of this paragraph is to compute an outer approx-
imation ZT of the set Z* bounding the trajectory error
with respect to the nominal model, under both bounded
disturbances and the specified attacks. Following (9) with
2o € P, where P is N-RPI as tested by Algorithm 1, Z* is

given by (12):
nz
7t =z, (12)
i=1

where Z;, i € [1,nz] denotes the collection of the sets
Z computed at steps 18 and 21 during all the iterations
within Algorithm 1 i.e. during the recursive exploration of
the required scenarios. Since zonotopes are not closed for
union, Z* is not a zonotope. To compute an outer approx-
imation Z* of Z", a polytope in H-representation (i.e. in-
tersection of half-spaces) can be used, Z* = {z | Hz < b},
and efficiently updated (see step 23 in Algorithm 1, and
Algorithm 2). The half-space directions are predefined in
a constant matrix H € R¥*"™ whose rows are made of d
unitary vectors uniformly distributed on an n-dimensional
unit hypersphere e.g. as in Marsaglia (1972). If needed,
H can be appended with other specific directions such as
those related to the canonical basis, for instance.

Then, Z* D Z7* is obtained by the iterative update called
at step 23 in Algorithm 1. The iteration itself is described
in Algorithm 2. For each computed zonotope Z (like Z;
in (12)), it consists in computing a tight inflation of the
bounding vector b so that Z C Z% is satisfied. This is
basically achieved using the support point and interval hull
properties of zonotopes, as expressed in vector form in the
body of Algorithm 2.

Algorithm 2 Tight update of half-space bounds of poly-
tope ZT = {2z | Hz < b} to include the zonotope Z = (¢, R)
1: function b = UpdateBound(H, b, (¢, R))
2: b <+ max(b,Hc+ |HR1) > 1 is a col. vec. of ones
3: return b

Finally, once the test implemented in Algorithm 1 success-
fully terminates, the iterative calls of Algorithm 2 result
in an intersection of halfspaces, i.e. a polytope, bounding
all the trajectories starting from the N-RPI set P. Note
that, by definition 2, all these trajectories also get back to
P in at most IV steps, no matter how the specified attacks
and the bounded disturbances change in time.

5.8 Robust and Resilient MPC

For the implementation of the robust and resilient control
scheme introduced in Section 4, the objective is to find
a sufficiently small N-RPI to ensure that the difference
between the system dynamic (1) and the nominal model



(5) meets an acceptable control accuracy (i.e. the required
level of precision during normal operation). Moreover, the
smaller the N-RPI is, the smaller the trajectory bounding
set Z* will be, so leading to less restrictive tightened
constraints X = X © Z* and U = U© KZ* for the MPC
control of the nominal model. Also, the larger the N-RPI
set is, the larger will be the allowable disturbance bounds
and/or the maximum number M of sample attacks as in
(3). Thus, for a given scenario, the parameterized (by «)
family of sets Fp = {alP | @ > 1} is considered and the
objective is then to find the smallest a such that the set
alP is N-RPI for the considered system and scenarios. Fp
is considered because any linear inflation of an RPI set by
a scalar factor greater than one is also an RPI set. As a
result, the proposed Resilient and Robust MPC can be set
as follows:

a) Compute a stable K (e.g. as an LQ solution),

b) Compute P as described in Rakovic et al. (2005),

) Find as.t. o is N-RPI (§5.1) and compute Z* (§5.2),
) Compute X and U (polytopic tightened constraints),
) Compute S as a solution of the Lyapunov equation:

(A+BK)'S(A+BK)—-S=—(Q+K'"RK), (13)
f) Compute S s.t. the terminal set X; = {z €
R? | ||z||% < B} satisfies Xy € X and KXy C U.

Note that Algorithm 1 can be called within a dichotomy
search to minimize « at step c¢). Also, e) and f) are focused
on the approach concretely used in section 6 to obtain a
final weight and terminal set satisfying the requirements
of Assumption 3, where the invariance of Xy as in f) is
ensured by (13).

6. NUMERICAL EXAMPLE

Consider a second order system modelling the attack-free
dynamic of a CPS as given by (1) and as explained in
section 3 with:

[1.05 0.5 n 1
A= [—0.6 1.1] , B= H , D= [0.5]

With the state constraint X = {z € R? | ||z||o < 20}, the
control input constraint U = {u € R | |Jullc < 7}, and
the disturbance set W = {w € R | ||w||s < 0.1}. For the
MPC problem, @ is the identity matrix, R = 0.1, and the
prediction horizon is set to N = 10. Then, K is calculated
as a solution of the LQ problem with the previous costs.

=
. . ~|—0.6359

This results in K = [—0.6740}
With those parameters, an e-approximation of the minimal
RPI set P is first obtained using the formula :

s—1

P(s,7) = (1—7)" (A + BK)'DW,

i=0
as proposed in Rakovic et al. (2005), with v = 0.01 and
s = 9. Then, the approach proposed in Section 5 ensures
that the set Z = 3P (a = 3) is N-RPI with a maximal
number M = 4 of attacks over an N = 10 steps horizon.
Algorithm 1 runs in 0.45 seconds on a i5-5200U CPU. To
illustrate the use of the obtained N-RPI set, a simulation
was done using the attack scenario reported in Fig. 3.

Fig. 3. DoS attack sequence for 30 times. The blue area
denotes the DoS activation times
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Fig. 4. Tube trajectory of the closed-loop system
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Fig. 5. Trajectory of the difference between the disturbed
and the nominal system.

To implement the MPC controller, S is computed as a
solution of the Lyapunov equation (13). This results in
g - 2.2567 —0.6841
~ |—0.6841 1.4846
an ellipsoid Xy = {z € R? | ||z]|% < B} where 8 = 0.926
was computed to obtain the biggest set possible while
verifying the assumption 3. Set computations were done
using the CORA toolbox (Althoff et al. (2021)), using
zonotope to obtain an RPI and then polytopes for the
constraints of the MPC problem. The terminal set was
inner-approximated by a polytope for convenience of the
MPC implementation.

. The terminal set is designed as

The online MPC problem (8) is formulated as a quadratic
programming problem and solved using the function mp-



cActiveSetSolver.m provided in the Model Predictive Con-
trol Toolbox of Matlab. Starting from an initial state ¢ =

[1.4 —3]T7 Fig. 4 shows the tube trajectory of the system
along with the initial feasible set. To better observe the
resilient set, Fig. 5 shows the trajectory of the difference
21, as well as the sets Z, ZT and P.

7. CONCLUSION

A new resilient and robust control scheme is proposed
for a class of CPS subject to state and input constraints,
unknown but bounded disturbances and possibly repeated
time-limited Denial of Service (DoS) attacks cutting an
acknowledgement-based communication between the con-
troller and smart? actuators. The proposed tube-based
MPC scheme was proved to be robust to unknown-but-
bounded disturbances and jointly resilient to the DoS
attacks. To achieve this, a new robust and resilient invari-
ant set, namely p-RPI set, was introduced in this paper.
Finally, an algorithm was proposed to analyze and evaluate
the maximal number M of sample DoS attacks over the
MPC time horizon N such that the property of u-step
resilience is still robustly ensured.

This work paves the way for further investigations. In par-
ticular, other common attacks such as false data injection
or replay attacks may also be considered. Moreover, the
original pu-RPI set introduced in this paper is not specific
to an MPC context and may be adapted to other control
framework. Special attention may be paid on combining
1-RPI sets with other resilient metrics such as the critical
time recently proposed in Perodou et al. (2021), all put
together to move toward a robust and resilient control of
cyber-physical systems.
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