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Flying qualities reliability constraints in aircraft conceptual
design using time-marching simulations
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Nathalie Bartoli ‡ and Sébastien Defoort §
ONERA/DTIS, Université de Toulouse, F–31055 Toulouse, France

Aircraft conceptual design, especially when novel concepts are involved, is inherently af-
fected by uncertainty. Although many efforts are done to include more physics at the earliest
design phases, often information on impact of the underlying uncertainty is missing. This work
proposes an approach to incorporate uncertainty into aircraft conceptual design through reli-
ability constraints on some desired dynamic performance requirements. These are estimated
from unsteady time-domain simulations through a system identification process, leveraging on
three available aerodynamic fidelity levels. Uncertainty propagation is addressed by a poly-
nomial chaos expansion technique. After presenting the structure and the validation of the
proposed framework, a demonstrative application of fuel mass optimization for a transport
aircraft under uncertainty is performed, with reliability constraints on short period character-
istics.

I. Introduction

Aircraft design is complex and multifaceted. The traditional design process has been developed assuming a
weak interaction among disciplines. The design was optimised for each discipline in turn, treated like "silos" [1].

This approach started to show signs of inadequacy with the advent of new lightweight materials and the trends to
increase the wing span, in a continued search for better performance. More recently, there has been a large body of
work focusing on the development of a concurrent design process, embedded within a multi–disciplinary analysis
and optimisation framework [2–5]. Whilst successful in their attempts to further improve the aircraft performance,
these modern approaches are often carried out at the detailed phase of the design process. As a result, the number
of parameters describing the disciplinary models (external aerodynamic shape, internal structural elements, etc.) is
very high, and certainly incompatible with feasibility and exploratory studies. To this goal, we aim at developing an
aircraft sizing process to support decision making at the early phases of the design process, scouting multiple and
radically different vehicle concepts. Unique to our approach is the ability to include aleatory and epistemic uncertainties,
ranging from design parameters (manufacturing), operating conditions (sensed information) to numerical schemes
(mathematical models), into design considerations, and leverage on this information to identify aircraft designs that
meet reliability constraints.

To this end, the present work proposes a framework to address the following tasks: 1) predict some desired key
performance indices on the aircraft dynamic stability in support of conceptual design evaluations, where conventional
and unconventional configurations can be analysed by selecting the appropriate fidelity levels among those available; 2)
estimate, based on an uncertainty quantification study, the reliability of the calculated figures of merit when uncertain
input parameters are present; 3) provide the information on the dynamic performance and the related uncertainty to an
aircraft sizing and optimization tool to enable a reliability constrained optimization study.

More in details, although the developed modules allow a certain generality in the problem definition, spanning
from purely aerodynamic characterization, to longitudinal, lateral and directional stability or control sensitiveness, the
study here presented concerns aircraft longitudinal dynamic stability. The effort is to extend the use of classic stability
specification constraints, such as those on linear damping ratios or frequencies, to cases where the classical analytical
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computation of those parameters is not a trivial task and more advanced strategies are required. In future work, this will
be applied to cases including structural dynamic behaviour modelling.

This paper initially describes the implementation of the framework and its modules, and their validation against
conventional test-cases. Then, an application on a reliability-constrained optimization problem based on the proposed
methodology is demonstrated. The paper continues in Section II with a discussion of the available computational
tools. Some of them have already been presented in the literature, whereas others have been developed or introduced
only recently to enhance the capabilities of the framework. For the latter case, some validation studies are reported
in Section III. Section IV presents an application to a fuel mass optimization for a transport aircraft with respect to
planform parameters, under longitudinal flying qualities reliability constraints. Uncertainty is considered to arise from
the estimation of mass distribution, and is therefore associated to the center of gravity (CG) location and to the moment
of inertia of the vehicle. Conclusions are then given in Section V.

II. Formulation
The computational framework builds upon the FAST-OAD aircraft sizing tool (standing for Future Aircraft Sizing

Tool - Overall Aircraft Design) [6]. The open source software∗ has been developed by ONERA and ISAE-SUPAERO
since 2015 and it is conceived as a quick conceptual design tool for tube and wing configurations. The user specifies
a series of Top Level Requirements and the framework computes the aircraft geometry and estimates the required
fuel consumption through a series of sizing loops involving modular analyses for the key disciplines, namely flight
mechanics, aerodynamics, structures, propulsion, weight and balance. The original approach is based on a point mass
approximation together with semi–empirical equations for performance and aerodynamic predictions. This allows
high computational efficiency and accuracy to be achieved as long as traditional concepts are treated. The propulsion
module can be based either on a dataset from the CeRAS project [7], or on an analytical model that provides thrust
and fuel consumption as function of altitude and flight speed [8]. The performance module gathers all the information
from the disciplinary modules and performs a time marching simulation of the full mission. Sizing and positioning of
components are iteratively updated during the design loops through dedicated geometry, weight and balance modules.
Overall aircraft design rules from [9] are used to initially locate the main components, such as wing, tail, landing gear,
etc. FAST-OAD has recently been enhanced by embedding physics–based analysis tools to extend its applicability to
novel aircraft concept [10].

This work extends the platform with a toolset dedicated to the analysis of dynamic performances of the sized
airplane, allowing for uncertainty to be propagated onto the desired figures of merit. The toolkit takes as input the
information about lifting surfaces configuration, flight conditions, weight and balance, thrust. It is composed by the
following modules:

• A choice of aerodynamic models, including a classical analytical model based on linear aerodynamic derivatives,
and a steady or unsteady implementation of the Vortex Lattice Method (VLM/UVLM);

• A flight dynamics simulation module (FDM) implementing the 6DOFs non-linear equations of motion;
• A post-processing module that extracts amplitude, frequency and damping information out of the simulation
history by use of a fitting technique of the time-domain data;

• An Uncertainty Quantification (UQ) and sensitivity analysis module that wraps the above modules and propagates
the uncertainty from the input parameters into the desired quantity of interest (QoI). It returns the required
statistical metrics to be used in the reliability evaluation.

• A Bayesian optimization toolbox, whose advantage is the capability to handle black-box optimization tasks
exploiting Gaussian processes to speed up expensive computations.

The framework allows addressing at least three possible optimization problems: 1) a reliability-constrained
optimization where a figure of merit (such as fuel) is minimized under a stochastic constraint based on the probability of
matching a certain performance (such as the generic damping b); 2) a robust optimization where the expectation of
a certain target (such as fuel) is minimized against some uncertain input variables; 3) a combination of the two. In
this work the framework is applied to a case study of the first type. The global architecture is summarized in Fig. 1.
The optimizer requires to define the optimization variables, their bounds, the constraints and the objective function. In
this case the optimization variables are denoted as +6. For each candidate evaluation the uncertainty quantification
module takes into account the prescribed distributions of the uncertain parameters and runs an adequate number of
calls to the multidisciplinary analysis (MDA) in order to compute the statistical metrics associated to one or more
QoIs. In the present study the chosen metrics are the 5% and 95% percentiles of the short period damping and natural

∗https://github.com/fast-aircraft-design/FAST-OAD
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frequency, indicated as %5
(
bB? , l= B?

)
and %95

(
bB? , l= B?

)
. These values are compared by the optimizer with the

required boundaries to enforce the reliability constraints. The MDA starts with the FAST-OAD sizing process, which
receives the design variables +6 and returns a converged configuration characterized by additional geometric parameters
%6, an estimation of the CG location G�� , and other indicators such as the mission fuel mass, which is here used as
objective function. The configuration returned by FAST-OAD is subsequently given to the UVLM module, with a CG
position altered by Δ G�� , representing its uncertainty. The unsteady solver simulates some pitching oscillations at the
frequency l0, which is assumed a representative short period frequency for the particular class of aircraft considered.
The time response in terms of aerodynamic loads is then processed to extrapolate an equivalent, derivative-based
aerodynamic model characterized by a set of coefficients �!8 , �!8 (defined later in Section II.A). The assumption here is
that even if each candidate has a slightly different frequency, this variation adds a negligible aerodynamic contribution
compared to the model obtained at l0. The assumption is reasonable because, given the relatively high flight speed, a
small variation of l produces a negligible variation of the reduced frequency : = l 2̄/2+ , which is the parameter that
really affects the unsteady aerodynamics. Once the aerodynamic derivatives are identified, they are fed to the flight
dynamics module, together with the other aircraft parameters %6 and the longitudinal moment of inertia �HH , given by
the uncertainty quantification module. Here the time response (in this case the longitudinal short period response) is
computed following a disturbance, and the time domain results are then processed to get the desired QoI, in this case the
short period damping bsp and natural frequency l= sp. More details on the single disciplinary modules mentioned above
are given in the following sections.

∆̂xCG, Îyy TLAR ω0

V ∗
g Optimizer Vg

P5∗ (ξsp, ωn sp)

P95∗ (ξsp, ωn sp)

P5 (ξsp, ωn sp)

P95 (ξsp, ωn sp)
UQ ∆xCG Iyy

Fuel∗ Fuel FAST OAD Vg, Pg, xCG Pg

UVLM CLi , CMi

FDM θ(t), q(t)

ξsp, ωn sp Processing

Fig. 1 Framework for aircraft multidisciplinary design and optimization under reliability constraints. The
diagram is built according to the graphical XDSM structure proposed in [11].

A. Aerodynamic Models
The quest for an appropriate mathematical model of aerodynamic loads for flight simulation is a long–standing

challenge. A multitude of approaches has been proposed [1, 12, 13], but the challenge still remains: how to retain
unsteady and nonlinear flow effects for applications requiring fast turn–around times, such as in conceptual design?
Herein, we leverage on three possible options.

The first and simplest method is the canonical form based on Bryan’s approach [14], where the six aerodynamic
coefficients are linearly dependent on the state variables through a series of aerodynamic derivatives:

�8 = �8U · U + �8V · V + �8+ · + + �8@ ? · ? + �8@ · @ + ...
with �8 = �! , �. , �� , �<, �; , �A

(1)
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The aerodynamic terms in Eq. (1) need to be computed or measured. Within this work, the VLM is used to calculate
these terms. An alternative is to run the VLM in a standalone manner, so that aerodynamic forces and moments
are directly exchanged to the FDM module once relevant input parameters are known (speed, aerodynamic angles,
angular rates, etc.). The VLM implementation follows that of Katz and Plotkin [15]. The assumptions are of potential,
incompressible flow around zero–thickness lifting surfaces, an approach generally recognised as adequate for early
evaluations, and compatible with the restricted set of geometrical parameters available at this stage. For more complex
studies, which may involve for example high frequency oscillations, control design, gust or aeroelastic coupling, the
unsteady version of the VLM (UVLM) can be employed. The main difference is in that a more complex wake model
is used, where at each time step a new row of wake panels is shed from the trailing edge, and each wake panel is
convected along the direction of the local flow speed. In this way a more accurate evaluation of the three-dimensional
flow interaction is achieved, and the information on the past history is kept to influence the present flow conditions.

As the aerodynamic module is often the most computationally expensive in aeronautics, again the Fortran language
was preferred instead of more comfortable but less efficient interpreted languages. The Fortran modules, namely the
flight dynamics and the VLM/UVLM modules, are then wrapped to be called within the remaining high-level routines,
all of which are coded in Python. The wrapping is done in two steps: a) first, a static library is created containing the
full Fortran project, b) then a small list of routines to be exposed via Python are wrapped by use of the f90wrap [16]
utility and compiled together with the static library into the final product, a dynamic library that can be imported in
Python to access the desired Fortran routines.

The verification of VLM module and its coupling with the flight dynamics simulation module are briefly presented
in Section III.A.

B. Flight dynamics module
A flight dynamics simulation module was developed to support the design process with the possibility of visualizing

the vehicle behaviour under desired flight conditions. In order to be adaptable to a wide variety of configurations, the
architecture is retained simple and easy to interface. Also, the formulation is kept as general as possible, and the full
6DOFs non-linear equations of motion have no simplifying assumptions other than that of flat, non-rotating earth. The
aerodynamic loads can be imported as an external function, so that the module is independent on the aerodynamic
formulation. Any of the three aerodynamic modules presented in this work can be called according to the particular
necessities of the examined case. Mass and inertia are allowed to vary, and no assumptions are made on the vehicle
symmetry. The equations of motion are integrated using second and third order numerical schemes. The software was
coded in a compiled language (Fortran) to ensure a high execution speed. When a precomputed aerodynamic database
is employed one simulation of around 10 seconds flight is run in a small fraction of second, a speed comparable to other
analysis methods such as linear eigenvalue analysis or other frequency domain techniques. Stability analysis and modal
characteristics can still be achieved via the processing module that will be introduced in Section II.C. A validation study
for this module is briefly described in Section III.B.

C. System Identification
The primary scope of a simulation tool as the one described above is to quickly visualize the time domain performance

of the candidate vehicle with higher fidelity approaches with respect to those commonly available at conceptual design
level, based on analytical and semi-empirical relationships tailored on well-known conventional architectures. The aim
is to capture the major aerodynamic interactions in unconventional geometries and related control surface layouts (such
as for strut-braced wings, box-wings, asymmetric geometries), possible non-linear rigid body effects as those described
in Section III.A or flight dynamics and aeroelastic interactions. This, of course, should come compatibly with the low
level of detail available and with the requirements of affordable computational time. To accomplish this, this work
leverages on some parameter identification techniques that exploit the higher–fidelity time simulation data to extrapolate
desired QoIs. Here this strategy is applied at two levels. On one hand an identification technique extrapolates a reduced
order aerodynamic model from unsteady time domain UVLM simulations. The process identifies a set of aerodynamic
derivatives that form a quasi–steady model capable to reproduce with good approximation the UVLM results. This
process is detailed in Section II.C.1. On the other hand, a second technique is applied to the flight simulation results to
identify the main modal characteristics of the response. This is done here to determine the short period damping and
frequency, but the approach is general and could be applied in future applications to filter other information, such as
lateral modes, structural stress or aeroelastic modes. The approach is described in Section II.C.2.
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1. Unsteady aerodynamic derivatives
The derivation of a quasi–steady aerodynamic model follows the approach described in [17]. First, the unsteady

solution has to be obtained with a high-fidelity solver (the UVLM in this case) for a forced oscillating motion. Enough
oscillation cycles must be run in order to let the transient response vanish, achieving the periodic evolution. This could
take two or three cycles at high frequency, but in the present case it was found that the transient decays in a small fraction
of a period. Once the periodic evolution of the aerodynamic coefficients is available, the derivatives can be identified by
assuming a law of the type:

Δ�8 = �8U ΔU + �8@
(
2̄

2+

)
@ + �8 ¤U

(
2̄

2+

)
¤U + �8 ¥U

(
2̄

2+

)2
¥U (2)

(8 = �, !,m)

For a sinusoidal pitch oscillation with U (C) = U0 sin(l C) the aerodynamic variables of interest are:

¤U = @ = U0 l cos(l C) (3)

¥U = ¤@ = −U0 l
2 sin(l C) (4)

Equation (2) then becomes:

Δ�8 = �̄8U U0 sin(l C) + �̄8@ U0 cos(l C) (5)

with:

�̄8U = (�8U − :2 �8 ¥U) (6)
�̄8@ = (�8@ + �8 ¤U) (7)

where : = l 2̄/(2+) is the reduced frequency. Equation (5) represents a truncated Fourier series for �8 (FC), and
therefore the coefficients (6) and (7) can be obtained as:

�̄8U =
2

U0 =)

∫ =)

0
Δ�8 (C) sin(l C) 3C (8)

�̄8@ =
2

U0 : =)

∫ =)

0
Δ�8 (C) cos(l C) 3C (9)

These coefficients were computed by numerical integration of the �! (C) and �" (C) curves obtained with the UVLM.
The �8U and �8@ coefficients were computed with the steady VLM. Ultimately, with these quantities known, the
remaining terms �8 ¤U and �8 ¥U where obtained from (6) and (7). The approach is demonstrated in Fig. 2, where the lift
and moment coefficients obtained with the steady and unsteady derivatives are compared with the output curves from
the UVLM. It can be seen that the linear model based on the identified unsteady derivatives matches satisfactorily the
reference curve, except for the initial transient due to the start of motion. An appreciable difference is found with respect
to the prediction based on static derivatives only.

2. Flying qualities
Although the time domain visualization of the aircraft response under a higher fidelity representation is already an

added value in support of the decision making, the effort here is to further exploit the simulation data to be used within
an automatic process of performance characterization within feasibility and optimization studies. In particular, it is still
interesting at this design stage to have access to quantifiable figures of merit, such as frequencies or damping ratios,
that are typical of linear system analysis. The estimation of such parameters would enable to assess the compliance
with dynamic specification constraints, which are mostly about linear system characterization, even for design concepts
that are not well represented, or at least not a priori, by the conventional, knowledge-based, linear characterization.
Moreover, a linear Jacobian of a complex, non-linear coupled system, such as for flexible airplanes dynamics, may not
always be available, depending on the models employed and how their coupling is implemented. For this reason, an
effort is done here to process the time domain simulation data and extrapolate a set of figures of merit - corresponding
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(a) Lift coefficient (b) Moment coefficient

Fig. 2 Identification of lift coefficient time history under forced pitch oscillations.

to linear damping and frequency - that with the best approximation describe the obtained non-linear response. It should
be noted that when assigning some linear descriptors (frequency, damping) to a non-linear curve, an approximation is
inevitably demanded. The advantage here is that such approximation is done a posteriori based on the full non-linear
results, and its adequacy can be verified against those.

To this purpose, different signal processing techniques have been tested, including Dynamic Mode Decomposition
(DMD) [18], Empirical Modal Decomposition (EMD) [19], the Hilbert Transform†, useful to extract damping ratios,
the Fast Fourier Transform (FFT)‡, the Prony method [20] and some Least Squares fitting techniques§. The method
to be used shall be selected according to the complexity of the problem. For example, two-dimensional aeroelastic
simulations, or constrained flight dynamics simulations - such as those used in Section III.A - are expected to show
simpler dynamic characteristics compared to 3D aeroelastic or full 6DOFs coupled manoeuvres.

When the objective of the processing module is to extrapolate frequencies and damping ratios, the Prony method
was found effective and robust enough. It performs a curve fitting similar to the Fast Fourier Transform, returning a best
fit function of complex exponential form:

�̃ (C) =
#∑
8=1

�8 4
_8 C (10)

where �8and _8 are both complex coefficients, and # the number of vibration modes to retain. This can be either
estimated by an FFT analysis, or fixed by the user if a certain behaviour is expected. For the initial testing of the
presented framework, the category of problems investigated can be adequately described by just one or two modes,
simplifying the fitting process. For example, Fig. 3 reports the curve fitting of some random 4th-order harmonic
oscillations combining both converging and diverging modes. In this case, the Prony fitting of Eq. (10) with # = 4
perfectly captured the dynamics identifying the two dominant frequencies and damping ratios.

D. Uncertainty Quantification
As mentioned above, early aircraft analysis is inherently affected by uncertainty, both of aleatory and epistemic kind.

In this work, which focuses on aircraft flying qualities estimation at conceptual design level, we aim at including and
propagating the most relevant uncertainties onto the desired output performance indicators. More in details, this work
restricts the investigation into longitudinal dynamics, and therefore the uncertainty herein considered is that arising from
the approximate methods used during the sizing process to estimate weight and balance characteristics. In this case,
typical uncertain parameters would be the location of the center of gravity, the moment of inertia, the relative position
and orientation between main and stabilizing lifting surfaces. In this preliminary development stage, the off-the-shelf
Uncertainpy toolbox [21] was chosen for uncertainty quantification and sensitivity analysis and interfaced with the
performance analysis modules. The toolbox, originally conceived mainly for computational neuroscience, is easily

†Scipy.signal.hilbert, https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.hilbert.html
‡Scipy.fft, https://docs.scipy.org/doc/scipy/reference/tutorial/fft.html
§Scipy.optimize.curve_fit, https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html
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Fig. 3 Example curve fitting of a 4th-order oscillator function via the Prony method.

adaptable to any computational field in that it is a model-independent, open source, Python-based platform. The main
features of the platform are here briefly summarized. The sensitivity analysis is addressed by computation of first-order
Sobol indices and total Sobol indices when interactions between the uncertain parameters exist. As far as uncertainty
quantification is concerned, it implements both quasi-Monte Carlo methods and Polynomial Chaos Expansions (PCE)
using non-intrusive methods. The quasi-Monte Carlo methods employ variance-reduction techniques to reduce the
number of model evaluations needed. As for the PCE approach, the orthogonal polynomials are found using the
three-term recurrence relation, and the expansion coefficients can be found either through the Tikhonov regularization,
belonging to the class of point collocation methods, or by a pseudo-spectral approach based on Leja quadrature and
Smolyak sparse grids. The Sobol first and total order methods can be computed directly from the PCE [22]. The
output metrics provided are the QoI mean, variance, 5% and 95% percentiles and the Sobol indices. Additionally, some
modifications were made to obtain the Probability Distribution Function (PDF) together with any desired percentile.
Before using the framework for aerospace-related applications, the UQ module was tested and validated against a
benchmark case to prove its effectiveness. The validation is presented Section III.C.

E. Surrogate modelling
The work here presented leverages on the use of effective and well-proven surrogate modelling techniques to

speed-up the analyses involving the most expensive disciplines. To this purpose, the python open-source SMT¶ toolbox
was adopted [23]. The tool provides several customizable options for surrogate modelling, including Kriging, Radial
Basis Functions, Least Squares approximations, among others. For the applications reported in this work, a Kriging
approach based on constant regression trend and Gaussian correlation function was adopted as it gave satisfactory
performances. In all cases the Design of Experiments was built via a Latin Hypercube Sampling algorithm, also
available from SMT.

F. Bayesian Optimization
The optimization task performed in this work relies on a Bayesian Optimization approach using the SEGOMOE toolbox

(standing for Super Efficient Global Optimization with Mixture of Experts) by ONERA and ISAE-SUPAERO [24].
The advantage of Bayesian optimization is that no derivative needs to be computed through finite differences, and
therefore the required number of function calls is considerably reduced compared to other approaches. Moreover, the
method leverages on Gaussian surrogate modelling of the objective function and constraints, enhanced by different
available adaptive learning strategies. In this work the enrichment process was guided by the Watson and Barnes

¶https://github.com/SMTorg/smt

7

https://github.com/SMTorg/smt


criterion (WB2) [25] that gives slightly more merit to local search. Constraints were handled by means of Upper Trust
Bound [26], which encourages exploration of the feasible domain by combining the mean prediction and the associated
uncertainty function given by the Gaussian processes. Two optimization algorithms to solve the subproblem related to
the acquisition function were tested: COBYLA and SLSQP, both associated to a multistart approach to achieve global
search. The latter was adopted as it has proven more stable for this specific case.

III. Verification of the added tools

A. Aerodynamics
As one target application of the present framework is a transport aircraft design and optimization task, a validation

study is here reported to show the good match of the developed VLMmodule against available data and models regarding
the A320-like CeRAS baseline. A first reference is the CeRAS database itself. A second reference, here denoted as L0,
is the aerodynamic model already validated and embedded into the FAST-OAD tool, based on semi–empirical relations
only. To make sure that the VLM can be interfaced consistently with the framework, a hybrid aerodynamic model was
built, named L1, where trim and induced drag are taken from the VLM, whereas viscous and compressibility drag are
the same as for L0. The VLM representation of the CeRAS baseline is shown in Fig. 4a. The comparison of the drag
polars from L0, L1 and the CeRAS database is reported in Fig. 4b, showing that the VLM-based model is quite close to
the reference data.

A validation on another test case of the present unsteady VLM formulation is now presented. The verification is
done by comparison with the unsteady theory of Theodorsen [27]. In this case, as the theory concerns two-dimensional
flow around thin airfoils, a single wing with a very high aspect ratio (A= 100) was used in the 3D UVLM model. Three
frequencies were employed from : = 0.25 up to : = 0.75, a value which is far high with respect to those generally
expected for wings and aerodynamic actuators during airplane operations. A good matching was obtained as shown in
Fig. 5.

(a) VLM representation

(b) Cruise drag polars

Fig. 4 Application of the present VLM tool to the FAST-OAD platform. (a) VLM representation of the A320
baseline. (b) Comparison of the A320-baseline cruise drag polars computed with the FAST-OAD semi-empirical
aerodynamic model (L0) and with an adapted version of the present VLM (L1). Data from the CeRAS [7]
database are also reported for validation.
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Fig. 5 Validation of the UVLM solver. Lift coefficient of a 2D thin profile in harmonic plunging oscillations,
for three reduced frequencies. Comparison against the theoretical model of Theodorsen [27], data from [28].

B. Flight dynamics
The test case is for a small manoeuvrable airplane performing a fast rotational motion. The reference simulation

data are from [29], and the aircraft parameters can be found in [30], including the aerodynamic derivatives provided
for a linear description of the vehicle aerodynamics. The simulation reproduces a fully coupled manoeuvre where the
non–linearities of the equations of motion become relevant. Two cases are reported corresponding to aileron deflections
of X0 = −4.0◦ and X0 = −5.0◦. In both cases, a pitch–down initial condition is imposed by setting the elevator to
X4 = 2.0◦. The time history of the angles of attack and sideslip are reported in Fig. 6. The test case shows that a small
difference in the control input causes the response to diverge within a couple of seconds from the equilibrium point. The
unstable oscillations experienced when the aileron deflection is X0 = −5.0◦ are exclusively due to the nonlinear inertial
coupling of the equations of motion. A dynamic model linearized around the same stable initial condition would not
be able to predict such a behaviour, and would give instead stable oscillations around the initial equilibrium as those
corresponding to X4 = −4°, where the rotational rates are not sufficiently large to make the system lose its stability.

C. Uncertainty quantification
A benchmark mathematical problem was chosen from the literature to verify the Uncertainpy results. The example

is adopted from [31] where an uncertainty quantification using dimensional adaptive polynomial chaos expansion was
performed on the following function:

6(G1, G2, G3) = 0.25
(
sin(G1 − 3) (G2 − 1) + (G3 − 1)2

)
− 1 (11)

with uncertainty on the three input variables as described in Tab. 1.
The Uncertainpy PCE was used with the point collocation method. The resulting PDF after 72 model evaluations

is compared with that from [31] in Fig. 7. Also, a comparison is reported in Tab. 2, based on the available data from the
reference, on the quantile @̄ which is predicted to satisfy a certain probability threshold %̄. Other methods are used in the
reference paper: first-order reliability methods (FORM), second-order reliability methods (SORM) and the probability
density evolution method (PDEM). For these methods the values of @̄ are not given, and in this case only the number of
evaluations needed to complete the UQ task is available and reported in the table for comparison. The validation shows
that the adopted method performs well and with good efficiency compared with other methods.
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(a) Angle of attack. (b) Sideslip angle.

Fig. 6 Validation of the non-linear 6-DOFs flight dynamics simulation module. Reference data from [29].

Variable Distribution Range
G1 Uniform [0.0 , 10.0]
G2 Uniform [6.0 , 16.0]
G3 Uniform [0.0 , 10.0]

Table 1 Uncertain ranges and distributions of variables for the test-case in Eq. (11).

Fig. 7 Comparison of the PDF obtained with the present approach against data from [31].

IV. Application: transport aircraft planform optimization under uncertainty
A first application of the discussed framework is here presented. The case study aims at optimizing the planform of

an A320-like configuration with respect to the fuel mass required for a representative flight, under reliability constraints
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@̄ B.C. %{@(-)} > %̄
Method P̄ = 28.4% P̄ = 77.4% P̄ = 99.3% Evaluations
Monte Carlo [31] ∼ 0.5 ∼ 10.0 ∼ 20.0 106

Dimensional Adaptive PCE [31] 0.0 10.0 20.0 11
Uncertainpy 1.1 10.9 21.2 73
FORM [31] - - - 96
SORM [31] - - - 123
PDEM [31] - - - 135

Table 2 Comparison of output metrics from the UQ module for the validation test-case.

on the short period dynamics. The reference configuration is the CeRAS baseline (see Fig. 8), whose main characteristics
are summarized in Tab. 3. Four geometric parameters were chosen as optimization variables: the taper ratio and the
quarter-chord sweep of the main wing and horizontal tail. Although previous studies [10] showed that aspect ratio
may play a key role in fuel mass optimization, it was decided here not to include it among the optimization variables.
In fact, highly elongated wings would require further aeroelastic verification, which is not available at the current
state of the presented framework. It was assumed instead that the baseline aspect ratio is already the best trade-off
between aerodynamic efficiency and structural mass. The chosen variables and their bounds are summarized in Tab. 4.
Uncertainty is associated to the estimation of the center of gravity location G�� and to the longitudinal moment of
inertia �HH . The propagation of this uncertainty through the MDA is handled by the uncertainty quantification module,
which ultimately returns the probabilities of constraints violations. Four flying qualities constraints were applied: the
upper and lower bounds of short period damping bsp and natural frequency l= sp. This choice arises from the fact that
short period characteristics in particular have critical influence on manoeuvrability. Of course this study does not aim
at a complete treatment of flying qualities requirements, which would require a prohibitive effort for the collection
and codification of the certification specifications. Instead, we want to present a proof of concept of the proposed
framework, showing the capability to handle multidisciplinary aircraft design and optimization under uncertainty, with
reliability constraints on aerodynamic and/or dynamic performances. Which performance constraints to enforce will be
a case-dependent choice of each particular study.

Fig. 8 CeRAS baseline planform, from [32].
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Top Level Aircraft Requirements
Number of passengers 150
Passenger weight [lbs] 200
Design Range [NM] 2750
Operational Range [NM] 800
Cruise Mach number 0.78
Approach speed [kts] 132
Planform parameters
Wing area [<2] 122.4
Mean aerodynamic chord (MAC) [m] 4.2
Aspect ratio 9.48
Wing break 0.40
Wing sweep angle at 25% chord [deg] 24.5
Wing taper ratio 0.313
Horizontal tail sweep angle at 25% chord [deg] 28.0
Horizontal tail taper ratio 0.300
Propulsion
Max thrust at sea level [N] 117880
Weight & balance
Max take-off weight [N] 7.55 × 105

Selected nominal CG location 45%MAC
Pitching moment of inertia [kg×<2] 3.6 × 106

Table 3 CeRAS baseline parameters, from [32].

Design variables Symbol Lower bound Upper bound
Main wing taper ratio CA , 0.25 0.37
Main wing sweep at 25% chord Λ, 20° 29°
Horizontal tail taper ratio CA ) 0.24 0.36
Horizontal tail sweep at 25% chord Λ) 23° 34°

Table 4 Design Variables and relative boundaries.

A. Aerodynamics and flight dynamics
The unsteady aerodynamics module based on the UVLM (see Section II.A) and the derivatives identification

techniques of Section II.C.1 are here employed to compute the full set of derivatives needed for longitudinal flight
simulation. A snapshot from a UVLM simulation of the CeRAS baseline is reported in Fig. 9. These simulations
impose a sinusoidal pitching oscillation and return the time history of the force and moment coefficients. As the short
period is not really affected by drag, only lift and moment coefficients are taken into account. The imposed pitching
motion is of the form:

U(C) = U" + U0 sin(l C) (12)

with U" = 5.0° and U0 = 3.0°. The choice of oscillations around a non-zero angle of attack is mainly due to the fact
that it is of no interest to include negative angles of attack for an airliner configuration. It is preferable instead to span a
larger portion of the positive, linear range of angles of attack. An example of the lift and moment responses is reported
in Fig. 10. It can be seen that the unsteady aerodynamics capture two main differences with respect to the steady model.
The first is an amplitude gap, especially visible in the lift coefficient curve, producing a higher lift for the unsteady
case. This translates into a slightly steeper slope of the �! − U ellipse. The second effect, mainly affecting the pitching
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moment, is a phase anticipation of the unsteady moment with respect to the steady one. That appears clearly in the
time-domain curve and it is even more evident from the larger �! − U ellipse. These effects are to be attributed to the
interaction between main wing and tail, and in particular to tail downwash delay, whose effect is to let the main wing lift
coefficient grow bigger and the main wing moment coefficient to grow earlier than the steady prediction, where the tail
effect is considered immediate.

The aerodynamic calculations were carried out around a trimmed climb configuration with U = \ = U" , where \1
is the pitch angle. The trim is achieved by a Newton algorithm to find the nonlinear equilibrium with the steady VLM.
The nonlinearity comes from the fact that a change in the tail tilt angle also changes loads and loads distribution, so that
an iterative process is required to achieve balance. The UVLM is then run from the trimmed geometry. This allows to
be consistent with the following flight dynamics simulation, which is then started from an equilibrium condition at
U = U" . The flight dynamics module, taking as input the configuration file including the computed derivatives, returns
the response to a step pitch control. The output is then processed as described in Section II.C.2 to extract the damping
and frequency of the short period mode.

Fig. 9 Snapshot during unsteady simulation of the CeRAS A320 baseline, run with the present UVLM solver.

B. Surrogate modelling of the aircraft sizing process and aerodynamic characterization
The aircraft sizing process and the aerodynamic characterization of the converged configuration are the most

expensive tasks in the present MDAO chain. Running the optimization and uncertainty quantification loops with the full
architecture showed in Fig. 1 would reach prohibitive costs for conceptual exploration and design (the study presented
herein would require several days as one single run of the UVLM analysis takes around on our). For this reason it was
chosen to build a surrogate model of sizing and aerodynamic characterization of the design candidates. The FAST-OAD
output depends only on the geometrical optimization variables +6. The UVLM solver requires as input, in addition
to +6, a complementary set of geometrical outputs from FAST-OAD, %61 (root chords, distance between main wing
and tail, nominal center of gravity location, etc) and the uncertainty on the center of gravity location Δ G�� , and its
ultimate output, after the derivative identification process, is the set of aerodynamic derivatives to be fed to the flight
dynamics module. Therefore the block FAST-OAD+UVLM takes five inputs (the four optimization variables +6 plus
the uncertain parameter Δ G��) and outputs the fuel mass objective function, the eight aerodynamic derivatives (�!U

,
�!@ ,�! ¤U ,�! ¥U ,�"U

, �"@
,�" ¤U ,�" ¥U ) and the remaining aircraft parameters %62 needed by the flight dynamics module

(wing area and mean aerodynamic chord). Overall, the block takes five inputs and returns ten outputs. The structure of
this updated version of the MDAO framework is summarized in Fig. 11. A Gaussian process was chosen as surrogate
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(a) Lift coefficient vs time (b) Moment coefficient vs time

(c) Lift coefficient vs angle of attack (d) Moment coefficient vs angle of attack

Fig. 10 Example of aerodynamic responses to pitch oscillations and their identification via linear derivatives.

model. This generally requires around 10× #dim sample points to reach adequate precision. As in this case #dim = 5, a
DOE of 65 samples was set up via Latin Hypercube Sampling, accounting for about 20% extra points to be used for
validation. The training points and the test points were selected through the ScikitLearn toolbox [33]. With this set
up the surrogate model gave satisfactory results for all the outputs, with a root mean square error always below the 0.3%.
The validation is reported in Appendix A.

C. Reliability constraints
As mentioned above, the dynamic constraints here adopted are on the short period damping and natural frequency. A

wide set of possibilities is available from the literature for flying qualities specifications or recommendations, including
qualitative and quantitative guidance, in frequency and time domain. In this work the quantitative definition of the
constraints was made starting from the so-called longitudinal short period thumb print criterion. It defines some regions
in the bsp − l= sp plane corresponding to different pilot ratings such as satisfactory, acceptable, poor, unacceptable. The
diagram is reported in Fig. 12. The figure also shows four lines defining the scalar values adopted here as upper and
lower bounds for the two parameters. It is worth pointing out that as bsp is expected to stay close to the lower bound, the
upper bound on l= sp was fixed close to the satisfactory limit corresponding to bsp, min. The values for each bound is
given in Tab. 6.

With these scalar bounds fixed, the reliability problem is based on the probability of those bounds to be violated:
acceptable configurations are considered those for which the probability to fall within the bounds is greater than 95%.
Before running the optimization task, the capability of the uncertainty quantification module to well predict the statistics
for the quantities of interest was tested with a single, random combination of the design variables +6. An uncertainty
quantification with the PCE method introduced in Section II.D was run on this configuration assigning the following
uncertainty distributions reported in Tab. 5. The choice of these different distributions is due to the fact that FAST-OAD
gives an estimation for the CG location but not for the moment of inertia. The results were validated against a distribution
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Fig. 11 Framework for robust design and optimization under reliability constraints. Shaded fields are suscep-
tible to uncertainty.

obtained via a Monte Carlo simulation with 104 samples. A probability distribution function was extrapolated from
the PCE evaluating it at 105 samples, and this is compared in Figs. 13a and 13b with a histogram chart built from the
Monte Carlo results. The outcome demonstrated that the PCE approach is able to reproduce the model with satisfactory
accuracy. It was found that a polynomial order of 4, using point collocation method and the Hammersley sampling
with 32 function calls was sufficient as no appreciable improvement was obtained by increasing the order up to 6 and
the function calls up to 80. The main statistical metrics are reported in Figs. 13c and 13d. It also confirms that the
sensitivity analysis is consistent as the first Sobol indices correctly sum to 1. It is worth pointing out that the obtained
distributions are wide enough to approach the constraint boundaries of Tab. 6, which justifies the search for optimal
constrained configuration.

Fig. 12 Thumb print criterion reporting the pilot opinion contours related to the short period characteristics.
The dashed red lines show the bounds used in this work.
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Parameter Distribution Descriptors
ΔG�� Normal ` = Ḡ�� , f2 = 0.1 Ḡ��
�HH Uniform �min = 0.8 �HH�, �max = 1.2 �HH�

Table 5 Uncertainty distributions on the input parameters. Ḡ�� is the CG location for a prescribed load case
defined in FAST-OAD. �HH� is the moment of inertia of the baseline configuration.

Parameter Lower bound Upper bound
bsp 0.45 1.35
l= sp 2.4 3.4

Table 6 Short period damping and natural frequency constraints adopted for the present case study.

(a) Short period damping - PDF (b) Short period natural frequency - PDF

(c) Short period damping - statistical metrics (d) Short period frequency - statistical metrics

Fig. 13 Validation of the PCE approach for a reference configuration (CA , = 0.3, Λ, = 25°, CA ) =

0.28, ,Λ) = 28°).

D. Optimization results
The overall optimization task is summarized in Tab 7. In order to perform the optimization with the SEGOMOE tool it

is required to define a learning DOE, which is used to build a Gaussian process for the black-box function to optimize.
A DOE size of 60 points was given, and additional 100 calls were allowed to the optimizer as exploration iterations.
At each iteration, the optimizer updates the surrogate with the added knowledge and maximizes the WB2 acquisition
function to choose the next candidate to evaluate. The learning and optimization history is reported in Fig. 14. It can be
seen that the optimizer rapidly converges to candidates very close to the optimum in few iterations after running the
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DOE, demonstrating that the learning was sufficient to identify the most promising design regions. The 100 iterations
were also enough to explore the design space, as no relevant changes in the objective function were found after the first
iterations. In a few cases the expected improvement moved towards worse candidates, sometimes giving a very high
value of the objective function. It was found that the best configurations in terms of fuel burn always have satisfactory
short period characteristics with respect to the given constraints. In particular, the only constraint which is sometimes
violated is the lower bound on natural frequency, whereas the others are matched in all cases. This could be explained by
recalling, from classical notions of flight dynamics [30, 34] that a low short period frequency could arise mainly from a
low absolute value of the aerodynamic stiffness in pitch �"U

(the sign is always negative), or from a high moment of
inertia, or both. As the inertia is here distributed in the same way for every configuration, the correlation between higher
fuel consumption and lower short period frequency is to be found on the aerodynamic pitch stiffness. In effect, the
module of �"U

is reduced with a backward shift of the CG but also with a lower slope �!U
, and the latter decreases

with a decrease on efficiency. Moreover, a very low pitch stiffness due to wing shape is automatically compensated
in the sizing process with a more effective (larger) tail plane, which translates into a heavier and consequently less
efficient configuration. For this reasons the most aerodynamically efficient configurations also provide good short period
characteristics, and conversely the worst shapes promoting inefficient load distributions also determine a deterioration
of the short period response. It is also interesting to note, from Fig. 15, that low sweep angles Λ, never comply with
the constraints. The reason is linked with the above discussion: low sweep angles have here the effect of moving the
aerodynamic center forward, reducing the static margin and the absolute value of the pitch stiffness �"U

, producing
lower short period frequencies.

Function/variable Range/distribution
Minimize Fuel mass
with respect to Main wing taper ratio [0.25, 0.37]

Main wing sweep at 25% chord [20° , 29° ]
Horizontal tail taper ratio [0.24, 0.36]
Horizontal tail sweep at 25% chord [23° , 34° ]

with uncertainty on Center of gravity location Normal (` = Ḡ�� , f2 = 0.1 Ḡ��)
Longitudinal moment of inertia Uniform [0.8 �HH , 1.2 �HH]

subject to Prob[bsp > 0.45] > 95%
Prob[bsp < 1.35] > 95%
Prob[l= sp > 2.4 ] > 95%
Prob[l= sp < 3.4 ] > 95%
Table 7 Definition of the optimization problem.

Fig. 14 Monitor plot of the DOE runs and optimization history.
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Fig. 15 Radar plot summarizing all the evaluations during the DOE and the optimization iterations.

Source tr ] �] tr Z �Z Fuel mass (surrogate) Fuel mass (true)
CeRAS 0.31 24.5° 0.3 28.0° - 19406 kg
Optimizer 0.37 29.0° 0.24 32.0° 19131 kg 19137 kg

Table 8 Fuel mass optimization results compared with baseline data. The optimized configuration offers an
improvement of 1.4%.

V. Conclusions
This work introduced a MDAO framework for aircraft design applications capable to deal with optimization under

uncertainty. The framework is composed by a combination of existing tools for aircraft sizing, optimization and
uncertainty quantification, and some more recent tools for aerodynamic and flight performance analysis developed,
validated and assembled during a PhD project promoted by the University of Southampton, UK, and the ONERA center
of Toulouse, FR. First, all the building blocks of the chain have been presented singularly, together with the validation of
those tools that have been developed by the author during the PhD project. All of these tools showed good performance
for applications involving flight dynamics, system identification, different aerodynamic fidelity levels, including steady
and unsteady three-dimensional flow. These tools were proved effective both for stand-alone applications and for coupled
analysis. Then, the whole framework was tested on a first case study: a transport aircraft fuel mass optimization with
respect to planform variables, with uncertainty on the center of gravity location and on the longitudinal moment of
inertia, and under reliability constraints on the short period damping and natural frequency. The unsteady aerodynamics
module was used to run a series of oscillating simulations, which were processed to identify a set of aerodynamic
derivatives. These were used to set up a much faster aerodynamic function to be called by the flight dynamics module.
This enabled a very fast computation of the dynamic response of the aircraft, which can then be processed to get the
desired figures of merit, in this case the short period damping and natural frequency. This process is automatically
handled by the uncertainty quantification module, that computes the stochastic output, given the distributions of the
uncertain input parameters. Such outputs are ultimately passed to the optimizer, which verifies the reliability of the
candidate against the required boundaries. The bayesian optimization converged to an optimum satisfying all the given
constraints. It was found that the most stringent constraint is the lower bound on the natural frequency, but for the type of
vehicle considered all the best candidates in terms of fuel burn also comply with the present short period requirements.
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The reason for this was recognized to be the fact that aerodynamic efficiency also translates into increased aerodynamic
pitch stiffness, and this relationship is favourable at least for the category of aircraft studied herein.

The framework proved capable to successfully address the multidisciplinary optimization task, with an architecture
conceived to be flexible with respect to the problem. In fact, although a reduced set of variables and constraints was here
adopted, the same approach and tools are applicable to more complex problems, with increased number of variables
or constraints or uncertain parameters. The same kind of analysis could be performed for example to include robust
control design, provided that the aerodynamic function is enriched with the needed control laws. In that case more
stringent constraints could be applied, and additional dynamic responses could be studied, including lateral dynamics or
the complete coupled set of the equations of motion. Moreover, as the aerodynamic tools here presented have already
been coupled with a structural dynamic solver of aeroelastic calculations, it is planned to extend the framework to
include aeroelastic constraints. This would allow to extend the exploration to larger aspect ratios and more efficient
and innovative configurations. Further work will also include a deeper analysis of the model uncertainties introduced
by modelling choices and surrogate approaches, to better understand the trade-off between computational time and
accuracy for this kind of multidisciplinary reliability analysis.

A. Appendix: verification of the surrogate modelling approach.
The verification of the surrogate model for the aircraft sizing and unsteady aerodynamic calculation processes is

here reported. The model depends on 5 variables (the 4 geometric optimization variables +6 plus the error on the
CG location ΔG��) and returns 8 aerodynamic derivatives plus 2 aircraft parameters (wing reference area and MAC)
and the objective function (fuel mass). Figure 16 shows that all the predicted outputs are in good agreement with the
training points, used to train the Gaussian process, and with the test points, excluded from the training and used only for
verification. The RMS error was always below 0.3%.
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