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MODULAR AFFINE HECKE CATEGORY AND REGULAR
CENTRALIZER

ROMAN BEZRUKAVNIKOV AND SIMON RICHE

ABSTRACT. In this paper we provide a “combinatorial” description of the cate-
gory of tilting perverse sheaves on the affine flag variety of a reductive algebraic
group, and its free-monodromic variant, with coefficients in a field of positive
characteristic. This provides a replacement for the familiar “Soergel theory”
for characteristic-0 coefficients. As an application we deduce character for-
mulas for indecomposable tilting perverse sheaves on the affine flag variety in
terms of ¢-Kazhdan—Lusztig polynomials.
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1.1. Presentation. The present paper is the second step in our project (initiated
in [BRR], joint with L. Rider) of constructing “modular tamely ramified local Lang-
lands equivalences” adapting to positive-characteristic coefficients the constructions
of the first author in [B2]. These equivalences will relate some categories of ITwahori-
constructible or Iwahori-equivariant perverse sheaves on the affine ﬂ~ag variety Flg

of a connected reductive algebraic group G (or a natural torsor Flg over Flg),
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2 R. BEZRUKAVNIKOV AND S. RICHE

with coefficients in an algebraically closed field k of characteristic ¢ (or a “free-
monodromic completion”), to some categories of equivariant coherent sheaves on
the Steinberg variety of the reductive group G,/ over k which is Langlands dual
to G (or some variants). Our strategy involves a description of both sides of this
equivalence in “Soergel theoretic terms;” the present paper finishes the first half
of this construction, by providing such a description on the constructible side of
the picture. The second half will be completed in a future publication, based of
the localization theory for representations of reductive Lie algebras over fields of
positive characteristic developed by the first author with Mirkovi¢ and Rumynin,
see [ , ]. (This part of the work is closely related to our work in | 1)

The main result of the paper is therefore an equivalence of categories relating an
appropriate category of perverse sheaves on Flg to a category of “Soergel bimod-
ules.” This equivalence is fundamental for our project explained above, but it is
also of independent interest, given the importance of categories of perverse sheaves
on affine flag varieties in recent work on representation theory of reductive algebraic
groups over fields of positive characteristic (see in particular | , D.

As a direct application of our constructions, we prove that characters of inde-
composable tilting perverse sheaves on Flg can be computed using the combina-
torics of the f-canonical basis of the affine Hecke algebra. The analogous result
for characteristic-0 coefficients (involving the “ordinary” Kazhdan—Lusztig basis) is
well known, see e.g. [Yu], but such a result in the positive-characteristic setting was
known only for ordinary (“finite dimensional”) flag varieties of reductive groups,
see | ]. A similar claim for “mixed” perverse sheaves was proved in | 1,
but these “mixed perverse sheaves” are a priori unrelated to the ordinary perverse
sheaves we consider here; another consequence of our constructions is precisely a
construction of a “degrading functor” relating these two categories.

1.2. Soergel bimodules. We need to explain what we mean by “Soergel bimod-
ules” in our present context. Ordinarily, Soergel bimodules are attached to a Cox-
eter system (W', S) and a suitable representation V' of W’ and defined as a certain
category of graded &' (V)-bimodules, see [So]. The case we are interested in here
is when (W', S) is the affine Weyl group' attached to G with its standard Coxeter
generators, and V' is the dual of the Lie algebra of a fixed maximal torus 7,/ in G/,
with the action factoring through the canonical action of the (finite) Weyl group Wt
of (GY,T}Y). This representation does not satisfy the technical conditions imposed
in [So], so that a different definition of Soergel bimodules is required.

Various alternative definitions of categories of Soergel bimodules have been pro-
posed in the recent years by Fiebig [Fi] (involving sheaves on moment graphs),
Elias-Williamson [EW] (in terms of a monoidal category defined by generators and
relations involving planar diagrams), Juteau-Mautner—Williamson | ] (involv-
ing parity complexes) or Abe [Ab1] (involving bimodules with extra structures).
Some of these definitions apply in our context, and give rise to essentially equiv-
alent categories; in fact some will be used in the body of the paper. But they all
have one drawback, which is that they do not “see” an essential ingredient that is
specific to the case of affine Weyl groups (rather than a general Coxeter system),
namely the relation with the geometric Satake equivalence [MV] and the Langlands

IThe main player in this paper will rather be the extended affine Weyl group, for which we
reserve the notation W.
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dual group G)/. For that reason we will consider a different (although equivalent)
realization of the category of Soergel bimodules, in terms of certain representations
of the universal centralizer associated with G)/. Earlier instances of relations be-
tween Soergel bimodules for affine Weyl groups and representations of universal
centralizers can be found in [Dod, , ].

1.3. Categories of perverse sheaves. Now we can start explaining the definition
of the categories we aim at describing. Let F be an algebraically closed field of
characteristic p > 0, and let G be a connected reductive algebraic group over F,
with a choice of (negative) Borel subgroup B and maximal torus 7' C B. Let z be
an indeterminate, and let LG and LT G be the associated loop group and arc group,
i.e. the group ind-scheme, resp. group scheme, over k representing the functor

R +— G(R((z))), resp. R— G(R[z]).

Let also I C LTG be the Iwahori subgroup obtained as the preimage of B under
the canonical morphism LTG — G, and let I, be its pro-unipotent radical, namely
the preimage of the unipotent radical U of B. The affine flag variety Flg is defined
as the fppf quotient LG/T; it is known to be represented by an ind-projective ind-
scheme. For technical reasons we will also consider the fppf quotient ﬁlg = LG/1;
this quotient is represented by an ind-scheme of ind-finite type, and the natural
morphism Flg — Flg is a (Zariski locally trivial) T-torsor.

Let k be an algebraic closure of Fy, where /£ is a prime number different from
p. We will denote by Dy1 and Dy, 1 the I-equivariant and I,-equivariant derived
categories of constructible étale k-sheaves on Flg, respectively. We will also denote
by Pri and Pp, 1 the hearts of the perverse t-structures on these categories. The
category Drj admits a natural convolution operation %y, which endows it with a
monoidal structure.

Let Grg be the affine Grassmannian of G, defined as the fppf quotient LG/LTG
(which is, again, represented by an ind-projective ind-scheme over F). Denote by
Dr+q.1+c the LT G-equivariant derived category of constructible étale k-sheaves on
Grg, and by Pr+g +¢ the subcategory of perverse sheaves. This category is the
main ingredient in the geometric Satake equivalence. Namely, convolution defines
a monoidal product xz+¢ on Dp+¢ +¢, which turns out to be exact with respect
to the perverse t-structure, hence to induce a monoidal product on Pp+q r+g. The
geometric Satake equivalence, proved in this setting in [MV], provides an equiva-
lence of monoidal categories

(1.1) (Prrc,r+a *r+a) = (Rep(Gy), ®)

where G}/ is the connected reductive algebraic group over k which is Langlands dual

to G and Rep(G)/) is its category of finite-dimensional algebraic representations.
A way to “upgrade” LT G-equivariant perverse sheaves on Grg to I-equivariant

perverse sheaves on Flg has been proposed by Gaitsgory | ]. More specifically,

this construction provides a canonical t-exact monoidal functor

Z:(Dpig,rrar*+a) — (Dri, *1),

which admits various favorable properties and structures (in particular, a “mon-
odromy” automorphism) that will not be recalled in detail here.

Our goal is therefore to provide “combinatorial” descriptions of the categories
Pi1 and Py, 1, in a way compatible with the functor Z and the geometric Satake
equivalence.
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FIGURE 1.1. Bounds on ¢

1.4. The equivariant regular quotient. A first step in this direction has been
obtained (jointly with L. Rider) in [ |. Contrary to the case of D+ r+q,
the monoidal structure on Dp; is unfortunately not compatible with the perverse
t-structure, in the sense that * is neither left nor right exact. In order to take
advantage of this structure while staying in the world of abelian categories, we
consider a category that we call the “regular quotient” PP of Pr1. Recall that
the simple objects in Py; are in a canonical bijection with the elements in the
extended affine Weyl group W associated with G. Then Py is defined as the Serre
quotient of Py; by the Serre subcategory generated by the simple objects whose
label has positive length (equivalently, whose support is not a point). The simple
objects in P%I are uninteresting (they are labeled by length-0 elements in W), but
the extensions between these objects are more subtle. The convolution product *p
induces in a natural way a monoidal product x on P%I, which is exact on both
sides.

The main result of | ] is the following claim. Here we denote by 27 the
composition

Rep(GﬂZ) E—1)—> Pria,r+a i> Pir— P?,I

where the third functor is the natural quotient functor. (This composition is easily
seen to be monoidal.)

Theorem 1.1. Assume that the following conditions are satisfied:
(1) the quotient of X*(T) by the root lattice of (G, T) is free;
(2) the quotient of X..(T) by the coroot lattice of (G, T) has no {-torsion;
(8) for any indecomposable factor in the root system of (G,T), € is strictly
bigger than the corresponding value in Figure 1.1.

Let u € GY be a regular unipotent element. There exists an equivalence of monoidal
categories

Or1: (PL A7) = (Rep(Zgy (), ®)
such that @pyo0 Z° identifies with the restriction functor Rep(Gy/) — Rep(Zgy (u)).

Remark 1.2. (1) The first two assumptions in Theorem 1.1 are rather standard.
The third assumption is an artefact of the method of proof of one of the
crucial claims in [ ]; we expect that this assumption can be weakened
at least to the requirement that ¢ is good for G.

(2) For V in Rep(GY), the functor @y sends the monodromy automorphism of
Z9(V) to the action of u on V.

The proof of Theorem 1.1 is based on a general result regarding central functors
whose domain is a category of representations of an affine group scheme over a
field; see | , Lemma 3.1] for a precise statement. (This statement first appeared
in [B1].) This statement immediately provides an equivalence between a certain full
subcategory of P%I and the category of representations of a closed subgroup scheme
of GY; what remains to be checked in order to obtain the theorem is that this full
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subcategory is the whole of PIO,I, and that the subgroup is Zgy(u) for a certain
regular unipotent element u. Note that the freedom in the choice of the element u
is closely related to the fact that there does not exist any “canonical” fiber functor
on the category P?,ﬁ in fact, a choice of such a fiber functor is essentially equivalent
to a choice of a regular unipotent element u.

1.5. The monodromic regular quotient. Theorem 1.1 has a clean formulation,
but it has the drawback that the category Di; cannot be recovered from the regular
quotient P?’I. In order to solve this issue one might be tempted to play the same
game with the category Dy, 1 instead of Dy 1. (In fact, standard arguments guarantee
that if P{ | is defined by the same procedure as P, then the quotient functor
Pr,1 — P?.,,I is fully faithful on tilting perverse sheaves, and the category Dy, 1
identifies with the bounded homotopy category of the category of tilting perverse
sheaves. In this sense, Dy, 1 can be recovered from P?‘MI.)

However, in this process one looses the monoidal product, which was crucial for
the construction of the functor ®;;. To remedy this, one needs to work instead
with the category Dy, 1, which is the full triangulated subcategory of the derived
category of constructible complexes of k-sheaves on Flg generated by complexes
obtained by pullback from I,-equivariant complexes on Flg. This category admits
a natural perverse t-structure, whose heart will be denoted Pr, 1,. Once again the
simple objects in Py 1, are in bijection with W, and we can define the monodromic
regular quotient P?u,lu as the quotient by the Serre subcategory generated by simple
objects whose label has positive length. There exists a natural convolution product
*1, on Dy, 1., which is not exact, but which induces in a natural way a monoidal
product x{, on P ; . (This product is only right exact on both sides.) The pullback
functor D11 — Dy, 1, induces an exact monoidal functor

(1'2) (P?,D*?) — (P?u,lu>*?u)'

Compared with P(I{I, the category P?U,Iu has two new “directions of deformation,”
corresponding to the replacement of I by I, on both sides. On the geometric
side, the corresponding process is the replacement of ZGkV(U) by a group scheme
constructed out of the “universal centralizer” over G. This universal centralizer
is an affine group scheme over G}/ whose fiber over a closed point g € Gy is the
scheme-theoretic centralizer Zgy (g). Its restriction to the regular locus in G}/ is
smooth. We consider a “Steinberg section” ¥ C Gy, a certain section of the adjoint
quotient GY — G}//G)/ = T,Y /W; which consists of regular elements. (Here, T}/
is the canonical maximal torus in Gy, and W; is the Weyl group of (GY,T}),
which identifies with the Weyl group of (G, T).) The restriction Jx of the universal
centralizer to X is therefore a smooth affine group scheme over the affine scheme
Y. We consider D := T} X1y w, T}, seen as a scheme over ¥ via the identification
Y =T, /Ws, and set

J D = D X% J pP)

a smooth affine group scheme over D. We consider the category

RePO(JD)

of representations of Jp whose underlying &p-module is coherent and set-theore-
tically supported on {(e,e)} C D. The tensor product of &(T,’)-bimodules endows
this category with a monoidal product &®.
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The point in ¥ corresponding to the image of the unit e € 7, in T,/ /W; is
a regular unipotent element u, and by construction the fiber of Jp over (e, e) is
Zgy (u). We therefore have a natural exact monoidal functor

(1.3) Rep(Zgy (u)) — Repy(Ip)

induced by pushforward along the embedding {(e,e)} — D.
The first main result of the present paper is the following claim.

Theorem 1.3. Assume that the conditions in Theorem 1.1 are satisfied. There
exists an equivalence of monoidal categories

®r,1, : PL 1, = Repy(Jp)

uslu

such that the following diagram commutes:

¢ 3
P9, ——————Rep(Zgy (u))

(l-Q)i l(m)

¢IU=IU
P?H,Iu — Repy(Jp)-

The general result that was the basis for the proof of Theorem 1.1 has no ver-
sion for group schemes over a base. Our proof of Theorem 1.3 therefore follows a
different, and more specific, approach. We make the functor appearing in Theo-
rem 1.1 more explicit, and then provide an explicit “deformation” of this functor by
deforming each of its constituents. Precisely defining these deformations requires
recalling and generalizing a number of known tools in this domain (in particular,
from [B2]), and proving that the functor constructed in this way has the expected
properties turns out to be long and technical; these tasks occupy a large part of
the paper.

The functor @1, 1, also admits some compatibility properties with an appropriate
version of the central functor Z. These properties are however more difficult to spell
out, and will not be discussed in this introduction.

Remark 1.4. The action of G on the base point in PN‘IG induces a closed embed-
ding G/U < Flg. As in the definition of Dy, 1,, we define the category Dy, as
the triangulated subcategory of the derived category of U-equivariant constructible
k-sheaves on G/U generated by objects obtained by pullback from U-equivariant
complexes on G/B. This category admits a natural perverse t-structure, and the
simple objects in its heart Py iy are in bijection with W. We can then define P%_U
as the Serre quotient of Py iy by the Serre subcategory generated by simple objects
whose label has positive length. A variation on the constructions of | ] (ex-
plained in Section 8) provides an equivalence of monoidal categories between PY, ;,
and the category Cohg(D) of coherent sheaves on D which are set—theoreticaﬂy
supported on {(e,e)}. The equivalence @y 1, is also compatible with this equiv-
alence, using the functor P%’U — P?U,Iu induced by pushforward along the closed

embedding G/U < Flg and the functor Coho(D) — Rep,(Jp) sending a coherent
sheaf to itself with the trivial structure as a representation.

1.6. Description of tilting perverse sheaves. As explained in §1.5, one moti-
vation for considering the category P?U,L. is that one can reconstruct the category
Dy, 1, out of it. This can however not be done directly as in the case of D, 1,

u us
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essentially because there is no appropriate notion of tilting perverse sheaves in this
category. For this one needs to use a “completed” version DIAu 1, of Dr,1,, con-
structed following a procedure developed by Yun in an appendix to [BY]. The
category Df: 1, Is triangulated, it contains Dy, 1, as a full triangulated subcategory,
and it is endowed with a perverse t-structure whose heart is denoted P{ ; . In
Pﬁ 1, We have an appropriate notion of tilting objects; the full subcategory of tilt-
ing perverse sheaves will be denoted Tf\u 1,- We have a canonical equivalence of

categories
(14) KbT{\qu :> Dﬁl7lll7

so that Df\ ; ~can be reconstructed from Tp | .

The monoidal product *;, admits a natural “extension” to a (triangulated)
monoidal product * on Df\ | , which stabilizes the subcategory Tf\ ; . With these
structures, (1.4) becomes an equivalence of monoidal categories.

On the coherent side, we consider the scheme D” obtained as the spectrum of
the completion of /(D) with respect to the ideal of the point (e,e). We also set

J]/S = D/\ XD JD-

The category Rep(Jg) of representations of the group scheme Jg on coherent O'pa-
modules admits once again a canonical monoidal product ®. It also contains natural
objects %% attached to simple reflections s € S, and natural objects .#/" attached
to length-0 elements w in W. We define the category SRep(Jp)) of “Soergel repre-
sentations” of J) as the full subcategory generated under ®, direct sums and direct
summands by the objects Z, and 7).

The second main result of the paper is the following claim.

Theorem 1.5. Assume that the conditions in Theorem 1.1 are satisfied. There
exists an equivalence of monoidal categories

(T{ 1,.%) = (SRep(Ip), ®).

From the description in Theorem 1.5 one obtains (at least in theory) a description
of the category Dp | and its subcategory D, 1,, and also of the category Dy, 1.
Making this description explicit, in terms of coherent sheaves on the Steinberg
variety of Gy, will be the subject of the third part of this project.

The proof of Theorem 1.5 proceeds by describing each side of the equivalence
in terms of the categories appearing in Theorem 1.3. (This description is similar
to the description of finitely generated modules over the completion A" of a noe-
therian ring A with respect to an ideal I in terms of sequences of modules over
the quotients A/I™ for m > 0.) On the coherent side, this uses restriction to the
various infinitesimal neighborhoods of the preimage of the base point in T /Wr.
On the perverse side, this uses some “truncation” functors which “kill” powers of
the ideal of this base point acting by monodromy.

1.7. Applications. We finish the paper with some direct applications of Theo-
rem 1.5. The first of these applications is concerned with the study of tilting per-
verse sheaves in Py, 1. The general theory of highest weight categories shows that
isomorphism classes of indecomposable tilting perverse sheaves are in a canonical
bijection with W; the indecomposable object attached to w € W will be denoted
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- The main combinatorial information one might hope to compute on these ob-
jects is encoded in the multiplicities (7, : A;) of a given standard perverse sheaf
A?IJ in a standard filtration of .7,,.

The following claim is obtained as a consequence of Theorem 1.5.

Corollary 1.6. Assume that the conditions in Theorem 1.1 are satisfied, and as-
sume moreover that either G = GL,, or £ is very good for G. For any y,w € W we
have

(T A?IJ) = ‘hy (1),

where the polynomials (Zhy,w s y,w € W) are the £-Kazhdan—Lusztig polynomials
attached to W (and its standard realization) as in [JW].

Similar descriptions of tilting multiplicities in terms of Kazhdan—Lusztig-type
polynomials were previously obtained in the characteristic-0 setting (for the flag
variety of any Kac-Moody group, see [Y1, ]), and for positive-characteristic co-
efficients on “finite” flag varieties G/ B, see | ]. Such formulas are also proved for
“mixed” perverse sheaves (on the flag variety of any Kac-Moody group) in | I;
from such information one can however not directly deduce information on the “or-
dinary” perverse sheaves we consider here.

In order to prove Corollary 1.6 we relate the category SRep(Jg) to the “ordinary”
Hecke category attached to W as in [EW, , ]. This involves a comparison
of SRep(Jp) with an “additive” version defined in terms of the universal centralizer
over the Lie algebra of Gy, and then the use of the recent “bimodule theoretic”
description of the Hecke category by Abe | ]. (This second step has already been
used in our previous paper [BR2].)

These methods also provide an alternative way of constructing the “Koszul du-
ality” of | ] in the affine case, following the method used in the “finite” case
in | |; as a byproduct, we also obtain a construction of a “degrading” functor
relating mixed perverse sheaves to ordinary perverse sheaves (again, in the affine
case); see §13.4 for details.

Finally, in §13.5 we explain that our results also imply a weak form of the
Finkelberg—Mirkovié¢ conjecture [F'M] relating the principal block of a semisimple
algebraic group with Iwahori-constructible perverse sheaves on the affine Grassman-
nian of the dual group, which provides yet another proof of Lusztig’s conjecture
on characters of simple modules in large characteristics. (A stronger form of the
Finkelberg—Mirkovié¢ conjecture will be obtained in the third part of this project.)

1.8. Contents. In Section 2 we prove or recall a number of facts regarding the
geometry of the (multiplicative) Steinberg variety. In particular we explain the
construction of the Steinberg section and recall some facts about the universal
centralizer group scheme. In Section 3 we explain various incarnations of the “Hecke
category” attached to an affine Weyl group.

Sections 4-7 are devoted to reminders on essentially known constructions regard-
ing categories of constructible sheaves on affine flag varieties. More specifically, in
Section 4 we introduce these categories, recall Gaitsgory’s construction relating the
Satake category to Iwahori-equivariant perverse sheaves on the affine flag variety,
and recall the construction of the main player of [ ] (the equivariant regular
quotient) and the main result of that paper (an equivalence of categories relating
this equivariant regular quotient to representations of the centralizer of a regular
unipotent element in the dual group). In Section 5 we introduce one of the main
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players of the present paper, the “monodromic regular quotient” category. In Sec-
tion 6 we recall Yun’s construction of the “free-monodromic derived category” and
its perverse t-structure. Finally, in Section 7 we discuss a free-monodromic variant
of Gaitsgory’s construction, following a similar construction in [B32].

Sections 8-11 contain our main constructions, and the proofs of our main results.
First, in Section 8 we reinterpret the results of | ] from a slightly different per-
spective, thereby providing a “reconstruction” of the base scheme D from perverse
sheaves on G/U. In Section 9 we prove some technical results regarding a “trun-
cation” operation on perverse sheaves that will be required later. In Section 10
we construct our functor ®;, 1, and prove a slightly more precise version of Theo-
rem 1.3 (see Theorem 10.1). Then in Section 11 we explain how to deduce a slightly
more precise version of Theorem 1.5 (see Theorem 11.2).

In Section 12 we explain variants of Theorems 1.3 and 1.5 which describe the
more familiar category Pr, 1. Finally, in Section 13 we prove the applications of our
results described in §1.7. (In particular, we prove Corollary 1.6 in Corollary 13.7.)

The paper finishes with four appendices, each discussing a technical construction
which is required in the course of our proofs.

1.9. Notation and conventions. Unless otherwise specified, a “module” will
mean a left module, and a “comodule” will mean a right comodule. If A is a
ring, we will denote by Mod(A), resp. Mod,(A4), the category of A-modules, resp. of
right A-modules. If A is noetherian, resp. right noetherian, the subcategory of
finitely generated modules will be denoted Mod™®(A), resp. Mod'®(A).

Given an affine group scheme H over a noetherian scheme X, we will denote by
Rep™ (H) the category of representations of H, and by Rep(H) the full subcategory
of representations whose underlying &'x-module is coherent. In most cases we will
encounter below X will be affine; in this case we will identify Rep®™ (H) with the
category of comodules over the ¢(X)-Hopf algebra ¢(H), and Rep(H) with the
subcategory of comodules which are finitely generated as ¢'(X)-modules.

In this paper we will make extensive use of the theory of pro-objects and ind-
objects in categories, for which we refer to [I[XS, Chap. 6]. (For us, all pro-objects
will be parametrized by Z>¢ with the standard order. On the other hand, ind-
objects will be parametrized by arbitrary filtrant categories.) In particular, we
will repeatedly use the property that any functor “extends” in a canonical way to a
functor between categories of pro-objects or ind-objects; see [[XS, Proposition 6.1.9].
We will also use the fact that the category of ind-objects in an abelian category is
itself abelian; see [IXS, Theorem 8.6.5(i)].
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2. COHERENT SHEAVES ON THE STEINBERG VARIETY

In this section we collect a number of results on the geometry of various varieties
associated with a connected reductive algebraic group, and coherent sheaves on
such varieties, that will be required in later sections.

2.1. Notation. We fix an algebraically closed field k of characteristic ¢, and a
connected reductive algebraic group G over k whose derived subgroup ZG is simply
connected. We choose a Borel subgroup B C G and a maximal torus T C B, and
denote by U the unipotent radical of B. The respective Lie algebras of G, B, T
will be denoted g, b, t. The Borel subgroup of G opposite to B (with respect to
T) will be denoted BT, and its unipotent radical will be denoted U™..

We will denote by Wy the Weyl group of (G, T), and by U the unipotent radical
of B. We will also denote by 8 C X*(T) the root system of (G,T), and by
RY C X.(T) the corresponding coroots; for any root 3 € R, we will denote by 8
the associated coroot. The choice of B determines a system 94 C R of positive
roots, chosen so that the T-weights on Lie(U) are the negative roots. The associated
basis of % will be denoted Ry. We will denote by X (T) € X*(T) the submonoid
of weights which are dominant with respect to i, and by =< the order on X*(T)
such that A < p iff p— A is a sum of positive roots. The choice of i also determines
a system Sy C Wt of Coxeter generators; the longest element with respect to this
structure will be denoted ws.

The following classical result of Steinberg (after earlier work of Pittie, see [S2])
will be crucial in later sections.

Theorem 2.1. The O(T/Wy¢)-module O(T) is free of rank #Wrs.

Remark 2.2. In [S2] the author assumes that the group under consideration is
semisimple (and simply connected). However the proof applies in above setup, as
checked in detail in [Go2, §10.1.1].

For any connected reductive algebraic group H over k, we will denote by H,., C
H the open subscheme of regular elements, i.e. the unique open subscheme whose
k-points are the elements g € H whose centralizer Zg(g) has dimension the rank of
G (i.e. the minimal possible dimension). If H' is another connected reductive group
and ¢ : H — H is a finite central isogeny, then for any closed point h € H’ we

have dim Zgy/ (h) = dim Z(p(h)) (see e.g. [[{u, Proposition 2.3]); as a consequence
we have
(21) /reg = wil(erg)'

2.2. The adjoint quotient and Steinberg’s section. Consider the adjoint quo-
tient G/G. It is a classical fact that the embedding T C G induces an isomorphism

(2.2) T/W; = G/G;

see e.g. [Lec] for a proof of this theorem over any commutative ring (and for any
reductive group admitting a maximal torus). We will denote by x : G — T/W;
the composition of the adjoint quotient morphism with the identification (2.2).
The algebra 0(G/G) admits a basis (as a k-vector space) parametrized by
X3(T) € X*(T) and defined as follows. For any M in the category Rep(G) of
finite-dimensional algebraic G-modules, we denote by ch(M) : G — Al the func-
tion sending g € G to the trace of its action on M. For A € X7 (T) we denote
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by L(\) the simple G-module with highest weight A, i.e. the socle of the induced
module Ind§ (\). Then (ch(L())) : A € X% (T)) is a k-basis of &(G/G). More
generally, for any family (M, : A € X5 (T)) of G-modules such that
(2.3) My s L =1 and [My:L(u)] £0 = p <A,
the family (ch(My) : A € X*(T)) is a k-basis of O(G/G).

Under our assumption that 2G is simply connected, the adjoint quotient can be
described more explicitly, as follows. First, recall that (without any assumption)

the quotient G/2G of G by its normal subgroup 2G is a torus, whose lattice of
characters is determined by the fact that the pullback under the composition

(2.4) T—G—> G/2G
provides an identification
(2.5) X*(G/2G) = (N € X*(T) | Va € Ry, (A, a") = 0}.

If A belongs to the right-hand side, then the G-module L()) is one-dimensional,
with the G-action given by the associated character of G.

On the other hand, the intersection T N ZG is a maximal torus of ZG, and we
have a surjective restriction morphism X*(T) — X*(T N 2G). For each a € R,
the coroot o takes values in TN 2G; the map (—, ") therefore factors through a
map X*(TNZ2G) — 7Z, which identifies with the similar map for the root arnoc
of 2G. For each a € R, we have the fundamental weight w, € X*(T N Z2G),
which is characterized by the property that (w,,8Y) = da,p for 8 € R;. Let us fix,
for each o € R, a lift w, € X*(T) of w,. Then, using the identification (2.5) we
obtain an isomorphism of Z-modules

(2.6) 7% x X*(G/92G) = X*(T)
given by

(Mg 1 v € R),A) = A+ Z Mala,
aERg
which in turn provides an identification

(2.7) T = (Gn)” x G/2G,

such that (Gy,)™ x {e} corresponds to T N ZG and the projection T — G/2G
coincides with (2.4).
For o € Ry, we set xo = ch(L(w,)) : G — Al

Lemma 2.3. The morphisms (X : @ € Rs) and the projection G — G/ 2G induce
an tsomorphism
G/G = A x (G/2G).

Proof. Since G/2G is a torus we have

0G/2G)= P
veX*(G/PG)
and our morphism is induced by the morphism
O(G/2G) 2k k[ X, :a€eR) — O(G/G)
sending v ® [[,, X'~ to

(2.8) ch(L(v) @ ) L(wa)®™).
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Now (2.6) restricts to a bijection
(Z>0)™ x X*(G/2G) = X3 (T).

The family of characters (2.8) can therefore be considered as parametrized by
X1 (T). As such, the corresponding family of G-modules satisfies the conditions
spelled out in (2.3), and these characters therefore form a basis of €(G/G). Our
algebra morphism sends a k-basis to a k-basis, hence is an isomorphism. O

We now explain how to construct a “Steinberg section” for x, i.e. a closed sub-
scheme ¥ C G contained in Gyeg such that the composition ¥ — G N T/W;
is an isomorphism. (This construction is due to Steinberg [S1] in the case G is
semisimple; the extension to reductive groups is due to De Concini-Maffei | 1)
Let us fix a numbering (o, -+ ,a;) of R, For i € {1,--- ,r}, we will denote by
U,, and U_,, the root subgroups of G associated with c; and —a; respectively.
We will also chose a lift n; € Ng(T) of the simple reflection s; € W associated
with a; which belongs to 2G. Let us denote by A C T the subtorus given by the
image of {e} x G/2G under the identification (2.7). We then set

Y:=A -Uyni-(-) -Uyn.
Standard properties of the Bruhat decomposition (see e.g. [Hu, §4.15] for details)
show that the map
(U1, up) = ugnaugny - - Uty - (ng - myp)

induces a closed embedding U, x -+ x U, < U™T; this shows that X is a closed
subscheme of G, isomorphic to A x Aj. The other properties of ¥ announced above
are proved in the following proposition.

Proposition 2.4. (1) We have ¥ C Gieg.
(2) The composition
Y G5 T/Wq
s an isomorphism.
Proof. (1) It is clear that we have
Y =Ugni- () -Ugq.n, - ((n1~--nr)_1An1---m~) CcUgni-(--)-Ugn, - T,

so that it is enough to prove that the right-hand side is contained in Gycg. Now
if Z is the neutral component of the reduced center Z(G)yeq, as explained in [Ja,
§1.18] multiplication induces a finite central isogeny

p:Zx 929G — G.
By (2.1) we have
6 (Greg) = (Z X DGy = Z X (G ).
Now by Steinberg’s results for semisimple groups (see [S1] and [ITu, §4.20]) we have
Uy () - Ugny - (TNZ2G) C (ZG)reg-

(Steinberg’s results involve elements in Ugy,ny - (+++) - Uy, n,, but the choice of
the elements n; can be arbitrary; for the various choices of these elements, the
corresponding “Steinberg sections” cover Uy, ny - (--+) - Ug.n, - (TN Z2G).) We
deduce that

¢ (Ugynr - (---) - Ua,ny - T) C ¢71(Gr0g)a
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and then that Uy, ny - (---) - Ug,np - T C Gyeg, as desired.

(2) Let us fix, for any i € {1,--- ,r}, an isomorphism u,, : Al = U,,. Then we

have an isomorphism

A x A 5%,
given by (a, (c1, -+ ,¢)) = auq, (c1)N1Ua, (C2)N2 - - - Uq, (¢ )Ny Using this isomor-
phism and that of Lemma 2.3, one can consider the morphism of the proposition as
a morphism from A x A} to itself. It is clear from definitions that its composition
with the projection A x A; — A coincides with this projection.

Now we consider the composition of our morphism with projection on Af. For
this, we define a partial order C on {1,--- 7} by declaring that ¢ = j if there
exists a dominant weight A for (ZG,T N 2G) such that @w; — A is a sum of
positive roots and (A, ) > 0. (Here, the positive roots for ZG are taken as
the restrictions of those for G. For an explanation of why this defines an order,
see [Hu, §4.16].) For any ¢ € {1,---,7r}, a € A and (c1,--- ,¢.) € A, the value
of Xa,; (U, (€1)N1Ua, (C2)N2 - - - Uq, (¢r)n,) can be computed as the sum (over the
weights A of L(w;)) of the traces of the linear maps

AUy (cl)nlua2 (c2)n2-Uq,. (cr)nr

L(wi)a <= L(w;) L(wi) = L(wi)x

where the left, resp. right, morphism is the embedding of, resp. projection on, the
A-weight space of L(w;) (parallel to other weight spaces). The discussion in [[Tu,
§4.17] shows that this morphism vanishes unless A is dominant, and that
(1) if A = w;, there exists d; € k* such that the trace is d;c;w;(a);
(2) otherwise, there exists a polynomial Py € k[X : j T ] such that the trace
is A(a)Px((¢j)jci)-
From this analysis we see that the algebra morphism (A x A]) — O(A x A})
induced by our morphism of schemes A x Ay — A X Ay is an isomorphism, so that
the latter morphism is an isomorphism too. O

2.3. Application to smoothness results. For any closed point g € G, we
will denote by Zg(g9) C G is the scheme-theoretic centralizer of g in G. Re-
call (see [ , §§2.1-2.2] for references) that the morphism h ~ hgh~! factors
through a locally closed immersion G/Zg(g) — G, whose image is denoted O(g)
(and called the adjoint orbit of g); it is a smooth locally closed subscheme in G,
whose set of k-points is the conjugacy class of g in the usual sense. We will denote
by Xreg the restriction of x to Gyeg. As a first application of the construction of
the Steinberg section we prove the following claim.

Proposition 2.5. The morphism Xieg @5 smooth. Moreover, for any x € Gyeg we
have

(Xreg) ™ (X(@)) = O(2).

Proof. By a classical characterization of smooth morphisms (see e.g. [[1a, Proposi-
tion II1.10.4]), to prove smoothness it suffices to prove that the differential dy(x) is
surjective for any closed point g € Greg. This property is true by Proposition 2.4(2)
if g € X, hence if g is a conjugate of an element of 3. Now any fiber of y contains
exactly one regular conjugacy class (see [ITu, §4.14]), and it also contains an element
of ¥, which is regular by Proposition 2.4(1). It follows that any regular element in
G is conjugate to an element of 3, which finishes the proof that xes is smooth.
Once this is known, we know that O(g) and (xreg) '(x(z)) are smooth, and that



14 R. BEZRUKAVNIKOV AND S. RICHE

the morphism O(g) — (xreg) (x(2)), which is a locally closed immersion (see [S,
Tag 07RK]) is a bijection on k-points; it is therefore an equality. O

We now consider smoothness of centralizers of regular elements in G. For this we
will have to assume that the (scheme-theoretic) center Z(G) is smooth; by | ,
Lemma 2.2], this is equivalent to requiring that X*(T)/ZR has no ¢-torsion.

Lemma 2.6. Assume that Z(G) is smooth. Then for any g € Gyeg the centralizer
Za(g) is smooth.

Proof. By [Co, Theorem 7.13(1)] the quotient Zg (g)/Z(G) is smooth, which implies
that Zg(g) is smooth under our assumption. (Here the cited theorem applies

to “strongly regular” elements; looking at [Co, Definitions 5.2 and 5.11] one sees
that this notion is equivalent to regularity for reductive groups over k with simply
connected derived subgroup.) O

Remark 2.7. Under the additional assumption that ¢ is good for G, Lemma 2.6 can
also be deduced from the results of [ITe].

The following smoothness result will also be crucial below.

Proposition 2.8. Assume that Z(G) is smooth. Then the morphism

G XX = Greg

1

defined by (g,s) — gsg—* is smooth and surjective.

Proof. To prove smoothness of our morphism, as in the proof of Proposition 2.5,
what we need to show is that the differential of this morphism at any closed point
of G x X is surjective. By G-equivariance, it suffices to do so at points of the
form (e, s) with s € ¥. For such s, from Proposition 2.4(1) and Proposition 2.5 we
obtain that the differential ds(x) is surjective, and that its kernel is T5(O(s)). Now
since the composition ¥ — G — T /Wy is an isomorphism (see Proposition 2.4(2)),
Ts(X) is a complement to the kernel of ds(x), which implies that

(2.9) T,(G) = T,(0(s)) & T, (5).

The differential of the morphism in the statement is the sum of the differential at
e of the morphism G — G given by g — ¢gsg~! and the embedding T(2) — Ts(G).
The first of these morphisms can be described as the composition

Te(G) — T5(0(s)) = T5(G),

where the first morphism is the differential of the morphism G — O(s) given by
g — gsg~'. The latter morphism identifies with the quotient morphism G —
G/Za(s), which is smooth by Lemma 2.6 and the comments in [ , §2.1]. TIts
differential is therefore surjective, which finishes the proof in view of (2.9).

Once we know that our morphism is smooth, we know that its image is open
(see [SP, Tag 01UA]), so that to prove surjectivity it suffices to prove that this
image contains all closed points of G,¢s. This property was observed in the course

of the proof of Proposition 2.5. a

Remark 2.9. Proposition 2.8 does not hold in general if Z(G) is not smooth. For
instance, explicit computation shows that when G = SLy(k) the morphism under
consideration is not smooth in characteristic 2.


https://stacks.math.columbia.edu/tag/07RK
https://stacks.math.columbia.edu/tag/01UA
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Let us note the following consequence of Proposition 2.8, which will be used in
Section 10.

Corollary 2.10. Consider the action of G on itself by conjugation, and the induced
action on the algebra O(G). For any G-equivariant O(G)-module M and any
n € Zso we have Torf(c')(M7 X)) =0.

Proof. Since G is affine, the category of G-equivariant &'(G)-modules is equivalent
to that of G-equivariant quasi-coherent sheaves on G. If we denote by i : ¥ — G
the embedding, and consider the derived pullback functor

Li* : D~QCoh(G) — D~ QCoh(%),

the claim we want to prove is therefore equivalent to the statement that Li*(%)
is concentrated in degree 0 for any .Z in QCoh®(G). Now the morphism i can be
written as a composition

25 GxE—G

where the first morphism is given by j(s) = (e, s) and the second one is the mor-
phism of Proposition 2.8. Since the latter morphism is smooth (hence flat) and
G-equivariant (for the action on G x ¥ induced by multiplication on the left on
the first factor), to prove the desired statement it suffices to prove that for any
¢ in QCoh®(G x X) the complex Lj*(¥) is concentrated in degree 0. Now if
q: G XY — X is the morphism of projection on the second factor, the functor
¢* induces an equivalence of categories QCoh(X) = QCth(G x X); in particular,
any object 4 of QCoh®(G x %) is of the form ¢*.# for some .# in QCoh(X), and
moreover since ¢ is flat we have ¢*.# = Lq*.#. We deduce that

Lj*(9) =2 Lj*Lq* M = A
since g o j = id; in particular, this complex is indeed concentrated in degree 0. [
2.4. Multiplicative Grothendieck, Springer and Steinberg varieties. Re-

call from | , §2.4] that the multiplicative Springer resolution is the induced
variety

U:=G xBU,
where B acts on U via the adjoint action. In this paper we will also consider the
multiplicative Grothendieck resolution

Groth := G xB B,
where B acts on itself by conjugation. We have a natural projective morphism
v : Groth — G,

defined by v([g : b]) = gbg™* for g € G and b € B. Using this morphism we can
consider the fiber product

St := Groth x g Groth,

which we will call the multiplicative Steinberg variety. We also have a canonical
morphism

7 : Groth - T
sending a class [g : b] to the image of b in B/U <= T. The embedding U C B
induces a closed embedding Uc Groth, which identifies U with n~t(e).
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If we set
Groth’ := G XT /W T,

it is a classical observation that the morphisms v and 1 combine to give a morphism
of schemes

¥ : Groth — Groth'.

The morphism v obviously factors through ¥, so that we can consider the fiber
product

St’ := Groth’ xg Groth’ = G xtw; D,
where
D:=T XT/Wf T.

Using the morphism ¥ considered above we obtain a canonical morphism St — St’.

2.5. Some coherent sheaves on Groth. Let H be an affine k-group scheme of
finite type, and consider the adjoint action of H on itself. Recall that for any
V € Rep(H) the H-equivariant coherent sheaf V' ® &g on H (where the equivari-
ant structure is diagonal) admits a canonical “tautological” automorphism mi2"*
which can be described as follows. Taking global sections induces an equivalence of
categories between Coh® (H) and the category of H-equivariant finitely generated

O'(H)-modules; under this equivalence, m{?"* corresponds to the composition

id®@me )
———

Ve oMH) 29 v g o(H) @ 0(H) V& 0(H)

where Ay : V' — V ® 0(H) is the coaction morphism and m ¢ g is the multiplica-
tion morphism in the ring & (H). This construction is functorial in V', but also in H,
in the sense that if K is another affine k-group scheme and f : K — H is a morphism
of k-group schemes, then the canonical isomorphism f*(V ® 0g) = (ForgV) ® Ok
(where Forfe : Rep(H) — Rep(K) is the “restriction” functor associated with f)

intertwines the automorphisms f*mi*"* and mp2%, .
K

We will consider in particular this construction in the case of the group schemes
G and B. More specifically, for any V' in Rep(G) we will consider the automorphism
taut) of V' ® Ogroth- It is well known that restriction to

v (my

B = {e} x BC G x® B = Groth
induces an equivalence of categories
(2.10) Coh®(Groth) = Coh®(B);

under this equivalence, v*(m{*"*) identifies with m{2% .. On the other hand, we
B

have a canonical morphism Groth — G/B, from which V' ® Ogon is obtained by

pullback of V ® Og/g. If for A € X*(T) we denote by g,g()) the line bundle

on G/B associated with A\, and after choosing a completion of < to a total order

<on X*(T), V ® Ogrotn admits a canonical filtration indexed by (X*(T), <) with

associated graded
D V.o bamw.
neX*(T)

(Here, V, is the T-weight space of weight p in V.) As a consequence, if we denote
by Ogroth(A) the pullback of & s(A) to Groth, then V ® Ogroth admits a canonical
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filtration indexed by X*(T) with associated graded

@ Vu, @ ﬁGroth (/’L)

REX*(T)

Under the equivalence (2.10), Ogroth(pt) corresponds to kg (u) ® O, and the filtra-
tion above is induced by the obvious filtration on Forg' V indexed by X*(T) and
with associated graded
P v.oksw.
HEX*(T)

In particular, this shows that v*(m{#"*) preserves this filtration, and acts on the
subquotient V), ® Ogroth (1) by multiplication by the function (uon) € &(Groth).

Given A € X7 (T), we will say that a representation V' € Rep(G) has highest
weight A if dim(V)) = 1 and moreover all the weights p appearing in V' satisfy
B2 A

Lemma 2.11. If A € X3 (T) and if V € Rep(G) has highest weight X, then we
have a canonical embedding

Vwo \) ® OGroth (wo(A)) = V® ﬁGroth»
whose image is ker(mi?"* — (w,(X) o n) -id).

Proof. The weight w,(A) is minimal among the weights of V' (with respect to our
choice of order); the desired inclusion is therefore provided by the subobject labelled
by wo () in our filtration on V & Ogroth. As explained above mi#" — (w,(\) on) - id
preserves this filtration, and acts trivially on Vi, (1) ® Ogroth(wo(A)). For any weight
p of V' the induced action on the subquotient V), ® Ogroth (1) is multiplication by
the function (g — wo(A)) o n, which is injective if pu # wo(\); this implies that
Vo () ® OGroth (wo (X)) identifies with ker(m{?™* — (wo(X) o n) - id). O

2.6. Regular semisimple elements. We will denote by G, C G the open sub-
scheme of “éléments réguliers” in the sense of | , Exp. XIII, Théoréme 2.6].
(In this case the Cartan subgroup attached to T is T itself.) We will denote by
Ng(T) the (scheme-theoretic) normalizer of T in G, which is smooth by | ,
Exp. XIII, Lemme 2.0]. One can then consider the scheme G xV¢(T) T and the
natural morphism
G xVeM T - G.

By definition this morphism restricts to an isomorphism on the preimage of G,.
This preimage is G xVe(T) T where T, := G, N T is the open subscheme of
T whose k-points are the elements ¢ € T such that a(t) # 1 for any o € R.
Comparing | , Exp. XIII, Corollaire 2.5] with [[u, §2.3], one sees that the
k-points of G, are the regular semisimple elements in the usual terminology of the
algebraic groups literature; in particular we have G, C Gyeg.

Recall from | , Exp. XIII, Corollaire 2.7] that G, is the open subscheme
in G defined by a certain section in &(G). This section is clearly G-invariant,
hence determines an open subscheme (T/W¢), in T/W; =2 G/G (see (2.2)) such
that G, is the inverse image of (T/W;¢), in G. The inverse image of (T/Wg¢),
under the quotient map T — T/W¢ is To; (T/Wk), therefore identifies with the
quotient To /Wy (see | , Exp. V, Corollaire 1.4]). Note that the inertia group
(in the sense of | , Exp. V, §2]) of each point in T, (with respect to the ac-
tion of Wy) is trivial; in fact, by the analysis at the beginning of | , Exp. V|
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§2], to justify this claim it suffices to prove that W¢ has no fixed point in T, (K)
for any algebraically closed extension K of k, which follows from the description
of centralizers of semisimple elements in [Hu, §2.2] together with Steinberg’s con-
nected theorem (see [ITu, §2.11]), which applies since G is assumed to be simply
connected. From the theory reviewed in | , Exp. V, §2], it follows that we have
a natural isomorphism

(2.11) Wi x To = To X1, /w; To

defined by (w,t) — (w - t,t).
We set B, := G, N B.

Lemma 2.12. The morphism defined by (u,t) — utu™"' induces an isomorphism
of schemes

U x T, = Bo.

Proof. We claim that B, coincides with the subset of “éléments réguliers” in the
sense of | , Exp. XIII, Théoreme 2.6] applied to the group B. (Here again
the Cartan subgroup associated with T is T itself, but now its normalizer is again
T.) Indeed, if b is a k-point in B,, then b is “régulier” in B by | , Exp. XIII,
Corollaire 2.8]. On the other hand, if b is a k-point of B which is “régulier” in B,
then there exists ¢ € B such that che™! € T and (b/t)?¢" = {0}, i.c. a(cbe™?) # 1
for any o € =93 ,. Then cbc~! € T,, hence b € G, which finishes the proof of our
claim.

Now that this claim is established, we obtain from the definition that the natural
morphism

BxTT-B

restricts to an isomorphism over the preimage of B,. The natural embedding
U x T — B xTT is an isomorphism since B = U x T, and this preimage identifies
with B xT T, which finishes the proof. O

2.7. Restrictions to the regular locus. Recall the schemes and morphisms in-
troduced in §2.4. We set

Groth, := v (G,), Groth, := Go X1/w; T = Go x1,/w, To,

and denote by
Vo : Groth, — G, ¥, : Groth, — Groth/

the restrictions of v and ¥ respectively. Similarly, we set

Grothyeg := 1 (Gieg), Groth, ., := Greg XT/w; T,
and denote by

Vreg : Grothreg — Gieg,  Ureg : Grothyey — Grothy,,

the restrictions of v and 1 respectively.
The following claim is somewhat standard, but no proof appears in the literature,
to the best of our knowledge.

Proposition 2.13. The morphism ¥Uyeg : Grothyee — Groth;eg s an isomorphism.

As a preparation we prove the following claim.
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Lemma 2.14. The morphism 9, : Groth, — Groth’ is an isomorphism. Moreover,
the morphism

G/T x T, — Groth,
defined by (gT,t) — [g : t] is an isomorphism.
Proof. Recall from §2.6 that the natural morphism
G xNe(M T, - G,
is an isomorphism. We deduce an isomorphism
Go xp,w; To 2 G xNe(T) (T, x1,/w; To)

where Ng(T) acts on the first factor in Ty X, w, To. Combining this with the
isomorphism (2.11), we deduce an identification

Go %1, /w; To = G xVe™ (Ng(T) xT T,) 2 G xT T..

Here in the right-hand side the action of T on T, is trivial, so that this scheme
identifies with G/T x T,. On the other hand, using Lemma 2.12 we obtain an
identification

Groth, 2 G xBB, =2 G xB (B xTT,) =G xTT,,

which finishes the proof. O

Remark 2.15. Since G, is an affine open subscheme in G (or since G/T is known
to be affine), Lemma 2.14 implies in particular that Groth, is an affine scheme.

Proof of Proposition 2.153. We follow the proof of the analogous statement for Lie
algebras, see [R2]: we will prove that ¥, is finite and birational, and that its
codomain is smooth and irreducible, which will imply the claim since a finite bira-
tional morphism f : X — Y of integral schemes with Y normal is an isomorphism,
see [SP, Tag 0ABI].

First, since Xy eg is smooth (see Proposition 2.5) the scheme Groth;eg is smooth
over T, hence smooth. Smoothness (hence flatness) of Groth,,, over T also implies

reg
that Groth;, = Groth;,, X1 T, is dense in Groth,,, see [SP, Tag 081H]. (The notion

reg?

of “scheme theoretic density” used in this staten%ent is equivalent to density in our
present setting, see [SI”, Tag 056D].) Now by Lemma 2.14 Groth! is isomorphic to
an open subscheme in the irreducible scheme Groth, hence is itself irreducible; this
implies that Groth;,, is irreducible (see [SP’, Tag 004W]).

By Lemma 2.14 again, the restriction of ¥;¢; to the preimage of G, is an iso-
morphism. Since both its domain and its codomain are irreducible, this shows that
this morphism is birational.

Finally we prove that .. is finite, i.e. that it is proper and quasi-finite (see
e.g. [GW, Corollary 12.89]). In fact, this map is proper by [SP, Tag 01W6], since
its composition with the (separated) projection Gieg X1 w; T — Gieg is proper.
To prove that it is quasi-finite, by | , Remark 12.16] it suffices to prove that
the induced map on k-points (i.e. closed points) has finite fibers. Now the map on
k-points induced by vyes has finite fibers, see [Hu, §4.9], hence the same holds for

Ureg, Which finishes the proof. O


https://stacks.math.columbia.edu/tag/0AB1
https://stacks.math.columbia.edu/tag/081H
https://stacks.math.columbia.edu/tag/056D
https://stacks.math.columbia.edu/tag/004W
https://stacks.math.columbia.edu/tag/01W6
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We will denote by Styeg, resp. Sty
morphism St — G, resp. St' — G. By Proposition 2.13 the morphism Vreg induces

an isomorphism

the inverse image of Gy¢g under the canonical

~ /
Streg — Streg;
below we will identify these two schemes whenever convenient. (The same comment

applies to Groth,e, and Groth.,,.)

reg*

2.8. Universal centralizer and Steinberg section. In the rest of this section
we assume that Z(QG) is smooth, so that Proposition 2.8 applies.

Recall that for any separated k-scheme X endowed with an action of G, the
associated universal stabilizer is the group scheme over X defined as the fiber
product

GG,X = (G X X) XX xX X,

where the morphism G x X — X x X is defined by (g,z) — (g - z,z), and the
morphism X — X x X is the diagonal embedding. The projection g x — G x X
is a closed embedding as a subgroup scheme, so that S, x is affine over X (but not
flat in general). Its fiber over x € X is the scheme-theoretic stabilizer of z in G.
Moreover, for any G-equivariant coherent sheaf .# on X there exists a canonical
action of Sg x on (the underlying coherent sheaf of) .%; see [MR, §2.2] for details.

We will consider in particular this construction in the case X = G with the
adjoint action, and denote by J the resulting group scheme. (In this case, we will
often use the expression “universal centralizer” instead of universal stabilizer, for
obvious reasons.) We will also denote by Jyeg, resp. Jo, resp. Js, the restriction of J
t0 Gieg, resp. to Go, resp. to X (where ¥ is the Steinberg section studied in §2.2).

Remark 2.16. The group scheme J admits a canonical section, induced by the
diagonal embedding G — G x G. (In other words, this section sends g € G to the
pair (g, g) where the second g is seen in the centralizer of the first g.) The identity
functor of the category Rep™(J) (identified with the category of & (J)-comodules)
therefore admits a “tautological” automorphism, defined on an &'(J)-comodule M
by the composition

M — M®@>(G) oJ) — M®5(G) oG) =M

where the first morphism is the coaction and the second one is induced by restriction
to the canonical section. By restriction, we deduce similar structures for Jieg, Jo
and Js.

In the following statement, of course (1) is a consequence of (2), but the proof
will require to prove this claim first. In fact, this is the only claim that will be used
in the rest of the paper; (2) is stated only for completeness.

Lemma 2.17. (1) The group scheme Jx is smooth (in particular, flat) over
2.
(2) The group scheme Jieg is smooth (in particular, flat) over Gyeg.

Proof. (1) By definition, we have
Jg =X XGreng (G X E)

where the morphism ¥ — Gyeg X X is defined by s — (s, s), and the morphism
G X X — Gyeg X ¥ is defined by (g,s) — (gsg™1,s). It is clear that both of these
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maps factor through Gyeg X1 /w; 2, so that
JZ =3 XGrchT/WfZ (G X E)

Now by Proposition 2.4(2) the projection Gieg X /w; 2 —+ Greg is an isomorphism,
so that
Js =% xg,., (GXX)
where the map ¥ — Gy is the obvious closed embedding and the map G x ¥ —
Gieg is defined by (g,s) — gsg~!. The latter map is smooth by Proposition 2.8,
hence so is the projection Jy — X, which finishes the proof of our claim.
(2) Consider the commutative diagram

reg

G X JZ H«Hreg

L

G XY —> Greg

where the vertical maps are induced by the structure morphisms Jyeg — Greg and
Js — 3, the lower horizontal arrow is the morphism of Proposition 2.8, and the
upper horizontal arrow is defined by (g, (h,s)) — (ghg,gsg™!) (for g € G, s € &
and h € Zg(s)). Using G-equivariance and the corresponding functors of points
one checks that this diagram is cartesian. Since the lower horizontal arrow is smooth
and surjective by Proposition 2.8, so is the upper horizontal arrow. And since the
left vertical arrow is smooth by the case treated above, using [SP, Tag 02K5] we
obtain that the right vertical arrow is smooth, as desired. O

Remark 2.18. Lemma 2.17 can also be deduced from [Co, Theorem 7.13(1)] applied
to the group scheme G x Gyog over Gyg and its “diagonal” section.

Given a separated scheme S and a separated scheme X — S endowed with an
action of G such that X — S is G-invariant, for any separated scheme S’ and any
morphism S’ — S we have a canonical identification

~ !
G, xxgs — S x5 6a x.

Applying this observation in our context, we obtain that the universal stabilizer for
the G-action on Groth’, resp. on St’, identifies with

TXT/Wf J, resp. DXT/Wf J

!/
reg’

In particular, the universal stabilizer for the G-action on Grothi,,, resp. on St;eg,
identifies with
T XT/W; Jrega resp. D XT/W; Jreg~

Similarly, the universal stabilizer for the G-action on Groth, identifies with
TO ><Tc/VVf “]]0'
Lemma 2.19. There exists a canonical morphism

T X1/w, Jreg — Groth,, x T

reg

of group schemes over Grothieg, which restricts to an isomorphism
T, X, /Wi Jo = Groth; x T

over Groth’.


https://stacks.math.columbia.edu/tag/02K5
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Proof. As explained above, T X /w; Jreg identifies with the universal stabilizer for
the action of G on Groth;eg = T X7,w,; Greg- On the other hand, by Proposi-
tion 2.13 we have a G-equivariant isomorphism Groth,e, — Groth;eg.
the natural closed immersion Groth — G x G/B, the universal stabilizer for the
G-action on Groth,, is contained in the subgroup of G x Groth,e; whose fiber over
a point [g : u] € Groth,g is gBg~!; moreover, since the torus T identifies canoni-
cally with the quotient of any Borel subgroup by its derived subgroup, there exists
a canonical morphism from the latter subgroup to T x Groth,.s; we deduce the
desired morphism.

Over G,, by Lemma 2.14 the natural morphism G xT T — G xB B induces
an isomorphism G/T x T, = Groth,, which is G-equivariant if G acts on the
left-hand side via its action on G/T. The universal stabilizer for the action of G
on G/T x T, identifies naturally with

In view of

(GxTT)x T, 2G/T x T x Ts.

Under this identification, the restriction to G, of the morphism considered above
identifies with the natural isomorphism

G/TxTxT, = (G/T xT,) xT,
which finishes the proof. O

We will set
Yr =Y Xpw,; T, resp. Xp:=X xt,w, D,

so that we have a closed immersion ¥ — Groth’, resp. ¥p — St’, which factors
through Grothicg, resp. St]’rcg7 and whose composition with the natural morphism

Groth’ — T, resp. St' — D, is an isomorphism. We will also consider the group
schemes

Jr =T xXp)w;Js, JIp:=D xp,w; Js.

Here Jr identifies with the restriction of Jp to the diagonal copy of T in D, and
also with the restriction of the universal stabilizer for the G-action on Groth’ to
Y. Restricting the morphism of Lemma 2.19 to the preimage of ¥ we obtain a
canonical morphism

(212) Jpr = Y7 xT
of group schemes over Y1 = T, whose restriction to T, is an isomorphism.
2.9. Application to coherent sheaves. The universal stabilizers for the actions

of G on Gyeg, Grothys and St,es encode the categories of equivariant coherent
sheaves on this schemes, as explained in the following proposition.

Proposition 2.20. Restriction to X, resp. to Xp, resp. to Xp, induces an equiv-
alence of abelian categories

Coh®(Gieg) = Rep(Jyx),
resp. Coh®(Groth,eg) = Rep(Jx)
Tesp. Cth(Streg) = Rep(Jp)

)
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Proof. The proof is similar to that of [R2, Proposition 3.3.11]; the equivalences are
obtained by applying descent theory to the morphisms

G XY = Gy, G x X — Groth, G x ¥p — St,

reg’ reg’

which are smooth and surjective (hence faithfully flat and quasi compact) by
Proposition 2.8, and then identifying Groth;eg with Groth,e, and St,., with Streg,

reg

see §2.7. 0

Lemma 2.21. For any A € X*(T), the image of the restriction of Oguon(N) to
Groth,eg under the equivalence

Coh®(Groth,eg) = Rep(Jx)

of Proposition 2.20 is the restriction along (2.12) of the (X x T)-module Os,. ®
k().

Proof. The equivalence under consideration is induced by restriction to Xp C
Groth,eg. Now X identifies with T, hence any line bundle on this scheme is trivial
by [SP, Tag 0BDA]. In particular, there exists an isomorphism

Ocroth(N) 5 = Osyp;

we fix a choice for this isomorphism. Now this line bundle has a canonical structure
of representation of Jr; in other words it is endowed with a coaction morphism

L(ET, Ocroth(N)|21) = T(ET, Ocroth (V) |21) @6 (s) O(JT)-

In view of our identification above there exists a group-like element ¢ € &(Jt), or
in other words a morphism of group schemes

Q,:JT—)ETXGm,

such that this coaction morphism is given by m — m ® o. To conclude the proof,
we have to show that ¢’ is the composition

(2.12) idx A

JT ETXT—>ETXGm.

Since Jy; is flat over ¥, to prove this claim it suffices to prove that the two morphisms
under consideration coincide on the open subscheme To X1 w, Js.

Consider the restriction Cgroth, (A) 0f Ogroth(A) to Groth,. Under the identifica-
tion G/T x T, — Groth, (see Lemma 2.14), this line bundle is the pullback of the
line bundle &g 1 () on the affine scheme G/T associated with X. As in the proof
of Lemma 2.19, the universal stabilizer for the action of G on G/T identifies with
G/T x T; under this identification, the action of this group scheme on 0 /() is
via A, or in other words corresponds to the coaction morphism

ING/T,0g/r(\) = I(G/T, Og,r(\)) @ O(T)

given by m — m® A. We deduce a similar claim for the pullback of this line bundle
to G/T x To, i.e. for Ogoth, (A), and then for its restriction to

Groth, N X = To X1/w, %,

which finishes the proof. O


https://stacks.math.columbia.edu/tag/0BDA
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3. SOME HECKE CATEGORIES

We continue with the setting of Section 2, still assuming that Z(G) is smooth.
In §§3.1-3.3 we introduce some basic constructions that will be used in the proofs
of our main results. From §3.4 on we treat more technical constructions that will
be required only for the applications in Section 13. These subsections might be
skipped at first reading.

3.1. Affine and extended affine Weyl groups. The extended affine Weyl group
of (G, T) is the semidirect product

W = Wi x X*(T).
The affine Weyl group of (G, T) is the subgroup
W' = W; x ZR.

For A € X*(T), we will denote by t(\) the associated element of W. It is a standard
fact that there exists a natural subset S C W’ containing S¢ and such that (W', S)
is a Coxeter system; more precisely S consists of the elements of St together with
the products t(8)sz where § is a maximal short root. By construction, Wy is then
a parabolic subgroup in W’.

If we set, for w € Wi and A € X*(T),

(3.1) CwtN) = Y [ha)+ DY [(haY) +1],
acNRy acNRy
w(o)ERL w(a)E—NRy
then it is well known that the restriction of £ to W’ is the length function associated
with our Coxeter generators S, and that if we set @ = {w € W | £(w) = 0} then
the natural morphism

Ox W - W

is a group isomorphism. Moreover, in this semidirect product © acts on W’ by
Coxeter group automorphisms, i.e. it stabilizes S.

Lemma 3.1. For any s € S\ Sy, there exist s € S¢ and w € W such that
l(ws') = l(w) + 1 and s = ws'w™ 1.

Proof. This claim is well known in case G is semisimple (and simply connected); see
[R1, Lemma 6.1.2] or [BM, Lemma 2.1.1]. We deduce the general case as follows. Set
Wier := WX X*(TNZG). Then we have a surjective group morphism W — W g,
(induced by restriction of characters) which is injective on W', and Wye, is the
extended affine Weyl group of the semisimple group G (and its maximal torus
T N 2G). The formula recalled above for the lengths shows that this morphism is
compatible with the length functions. Using the known case of semisimple groups
we obtain that there exist s € S and w € W such that ¢(ws’) = ¢(w) + 1 and
the images of s and ws’w™! in Wy, coincide. Now W’ is normal in W, hence it
contains ws'w~!. Since the morphism W — Wy, is injective on W', we deduce
that s = ws'w™!. O

In the rest of the paper we will fix once and for all, for each s € S\ S¢, elements
s’ € S and w € W such that £(ws’) = f(w) + 1 and s = ws'w™!. (The condition
on lengths will not be needed in the present section, but will be used later.)
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3.2. Some representations of Jp. Consider the group scheme Jp over D =
T x1,w, T, and its category Rep(Jp) of representations on coherent &'p-modules,
see §2.8. This category identifies with the category of comodules over the &'(D)-
Hopf algebra

O0(Ip) = 0(Js) ®p(x) 0(D)
which are finitely generated as &'(D)-modules. Since €/(D) is finite as an €(%)-
module, it admits a natural monoidal structure defined by

M®N=M®egT) N.

This bifunctor is right exact on each side, and the unit object for this monoidal
structure if €(T), seen as functions on the diagonal copy T C D, and endowed
with the trivial structure as a representation of Jp.

We will now define objects (., : w € Weyt) of Rep(Jp) parametrized by W as
follows. First, if w € W¢ then .#,, is defined as the structure sheaf of the closed
subscheme

{(w(t),t) 1t e T} cT XT/Wf ’]?I7
endowed with the trivial structure as a representation. The projection on the first
component induces an isomorphism .#, — O(T); under this isomorphism, the
action of O(T xt,w, T) = O(T) ®¢ (1 w;) O(T) on .4, is given by (f®@g) -m =
fw(g)m for f,g,m € O(T).

If A € X*(T), then in Lemma 2.21 we have considered the pullback to Jr of
the representation €(T) ® kr(A). Pushing this representation forward along the
diagonal embedding T — D we obtain an object of Rep(Jp ), which will be denoted

M-

It is clear that for w,y € W and A\, u € X*(T) we have canonical isomorphisms
(32) %w @ %y ; %w!ﬁ
(33) M) ® Myy = Moy

Next we need to study the interplay between these two classes of objects.

We have a canonical action of W on Groth’ induced by the natural action on
T; this action commutes with the action of G and stabilizes Groth;eg; we deduce a
canonical action on the universal stabilizer T X w, Jreg, and then (by restriction)

on T xp/w, Jz. (This action is simply induced by the action on T.)

Lemma 3.2. The morphism (2.12) is W¢-equivariant, where Wy acts on the right-
hand side diagonally.

Proof. By flatness it suffices to check this claim over T,. Now, by Lemma 2.14 we
have an isomorphism G/T x T, — Groth_. Under this isomorphism the action of
W; on G/T x T, is given by w-(gT,t) = (gw™*T,w(t)), where we write gw =T for
g1~ 1T where 1 is any lift of w to Ng(T). From this description the equivariance
is clear. (]

From Lemma 3.2 we deduce that for w € Wy and A € X*(T) we have a canonical
isomorphism
%y; ® '%t()\) ® %w—l :—> %t(w()\))
Combining this with (3.2)—(3.3) we deduce that if for w = 2t(\) € W¢ x X*(T) =
W we set
Moy = My ® 'ﬂt()\)a
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then for any w,y € W we have a canonical isomorphism
My ® My = Moy

We next define some objects (%, : s € Sag) associated with simple reflections in
W. First, if s € Sy we define %, by

Bs = 0(T x1/(1,5 T),
which we view as an (D)-module via the closed embedding
T XT/{1,s} TCT XT /Wi T,

and endow with the trivial structure as a representation. If s € S \\ S¢, recall that
in §3.1 we have fixed s’ € S; and w € W such that s = ws’w™'; we then set

(3.4) By = My ® By ® M.

It is easily seen (e.g. by reduction to the case s € S¢) that for any s € S there exist
exact sequences

Mo — By — My, Ms— Bs — M.

3.3. Completions. We will denote by Z C &(D) the ideal of the point (e,e),
and by D" the spectrum of the completion of &(D) with respect to Z. Let also
K C O(T) be the ideal of the point e € T, and T be the spectrum of the
completion of &(T) with respect to K. Note that

T =K®gr/w;) O(T) + 0(T) @¢/wi) K

where both summands are ideals in &(D) since €(T) is flat over &(T/Wy¢) (by
Theorem 2.1). Finally, we will denote by J C &(T /W) the ideal of the image of
e € T in T/W¢, and by (T/W;¢)”" the spectrum of the completion of &(T/Wr¢)
with respect to J.

Lemma 3.3. (1) There exist canonical isomorphisms of k-schemes
T" = T xq,w, (T/Wi)"
and
D" =T" xp D =D xp T" =D X ,w, (T/W¢)" = T" xp/w,» T"

where in the first, resp. second, fiber product the morphism D — T is
induced by projection on the first, resp. second, factor. Moreover, O(T")
is finite and free (in particular, flat) over O((T/W¢)").

(2) The natural morphism O((T/W¢)") — O(T")Wt is an isomorphism.

Proof. (1) Since the morphism T — T /W is finite, and since e is the only closed
point in the preimage of the point corresponding to 7, by the structure theory of
artinian local rings (see in particular [SP, Tag 00J8]) the ideal J - &(T) contains
a power of K. On the other hand this ideal is contained in C; hence the comple-
tions of €(T) with respect to K and to J - ¢(T) are canonically isomorphic. By
definition the first of these completions is &(T"), and since T is finite over T /Wp
the second completion identifies with (T X w, (T/W¢)"), proving the first iso-
morphism. Combined with Theorem 2.1, this implies that &(T") is finite and free
over O((T/Wg)™).

Similar considerations using the morphism D — T /Wy prove the isomorphism
between the first and fourth schemes in the second series of isomorphisms. Since
the ideals K ®g(r/w;) O(T) and O(T) @(r/w,) K contain J - (D) and are
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contained in Z, the completions of & (D) with respect to these ideals (or, in other
words, the algebras of functions on the second and third schemes) also identify
with ¢(D”). Finally, the last isomorphism follows from the isomorphism T/ =
T x7/w, (T/Wi)".

(2) Using the first isomorphism in (1) we see that the canonical embedding
O(T/W¢) — 0(T) induces an embedding

O((T/Wi)") = 0(T"),
which of course factors through an embedding
(3.5) O(T/Wip)") — O(TM)Wr.

As explained above, any basis of &(T) over 0(T/W;) provides a basis of &(T")
over O((T/W¢)"). On the other hand, in | , Theorem 8.1] it is proved that a
specific basis of €(T) over ¢(T/Wy) provides a basis of &(T") over ¢(T")Wr.
The embedding (3.5) is therefore an equality. a

We set
Jp :=D" xp Jp =2 D" X /w; Js,

a smooth affine group scheme over the affine scheme D”. We will consider the
category Rep(Jp) of representations of this group scheme which are of finite type
over 0(D”). The isomorphisms in Lemma 3.3 show that an ¢(D”)-module is
the same thing as an &(T”)-bimodule on which the left and right actions of
O((T/Wi)") = O(T")Wt coincide. (We will use this identification repeatedly
and without further notice below.) In particular the category of such modules
admits a natural monoidal product, induced by the tensor product for &(T")-
bimodules; moreover this product stabilizes the subcategory of finitely generated
O(D”)-modules. Since Jg is the pullback of a group scheme over (T/Wy)”, this
product induces a monoidal product on the category Rep(Jg)), which will again be
denoted ®.

Recall that a category is called Krull-Schmidt if any object admits a decompo-
sition as a (finite) direct sum of objects with local endomorphism ring.

Lemma 3.4. The category Rep(Jp) is Krull-Schmidt.

Proof. By | , Theorem A.1], an additive category is Krull-Schmidt iff it is idem-
potent complete and the endomorphism ring of any object is semiperfect. Here
Rep(Jg) is idempotent complete because it is abelian, and the endomorphism alge-
bra of any object is semiperfect because it is finite as a module over the noetherian
complete local ring &(D"), see [L.a, Example 23.3]. O

Pulling back the representations (#, : w € W) and (% : s € S) introduced
in §3.2 along the natural morphism D* — D we obtain objects (A, : w € W)
and (A2 : s € S) in Rep(Jg). It is clear that for any w,y € W we have a canonical
isomorphism

3.6 M ® M= A
w Y

wy?
and that for s € S we have exact sequences
(3.7) ML B> MY, M B M

The following lemma will be proved in §3.5 below, using a different description
of (a subcategory of) Rep(Jp). (In this statement we use the fact that wsw™' € S
for any s € S and w € €, see §3.1.)
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Lemma 3.5. For any s € S\ S¢ the object B2 is independent of the choices of w
and s’ as in §3.1 up to canonical isomorphism. Moreover, for any w € Q and s € S
we have a canonical isomorphism

M) ® B ® M) = B

wsw—1*

We will denote by BSRep(J5)) the category with

e objects the collections (w, s, -+, ;) with w € Q and s1,--- ,8; € S;
e morphisms from (w,s1,---,si) to (W', s, , ) given by

Homgep(rpy) (A0 ® B, @ -+ @ B, ML ® By @ - @ B).
By definition there exists a canonical fully faithful functor
(3.8) BSRep(Jpy) — Rep(Ip)-

Using Lemma 3.5 we obtain, for any collections (w, s1,---,s;) and (w', 87, -, s%)
as above, a canonical isomorphism

(M) ® B, @ ®B)® (M & B, @ ®H )
= My ® B, ® - ® B,

w

A A
N~lsiw! /)_1313‘*’/@%5/1 ®"'®‘@s;'

This allows us to define a monoidal product (again denoted ®) on BSRep(Jg)) which
is defined on objects by

(UJ781,"' 7Si) ® (w/>s/17"' 789) = (Ww/u(wl)_ S1W - a(w/)_lsiwl7s/1"" 7‘9;)

and such that (3.8) is monoidal.
We will denote by
SRep(Ip)
the Karoubian closure of the additive hull of the category BSRep(Jp)). By the Krull-
Schmidt property (see Lemma 3.4), this category identifies with the (monoidal) full
subcategory of Rep(Jg)) whose objects are direct sums of direct summands of objects
of the form
My ® B ® - @ B
with w € Q and s1,---,8; € S. (In these notations, “BS” stands for “Bott—
Samelson,” and “S” for “Soergel,” since these constructions are very similar to
classical constructions related to Bott—Samelson resolutions and Soergel bimod-
ules.)

3.4. Hecke categories “a la Abe”. We now explain how to construct some
categories by following a pattern initiated by Abe | ]. We consider a noetherian
domain R endowed with an action of W (by ring automorphisms), and denote by
@ the fraction field of R. We denote by K'(R) the category defined as follows. The
objects are the R-bimodules M together with a decomposition

(3.9) MepQ= @ My
weW
as (R, Q)-bimodules such that:

e there exist only finitely many w’s such that My £ 0;
e for any w € W, r € R and m € M we have m -r = w(r) - m.
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Morphisms in this category are defined as morphisms of R-bimodules respecting
the decompositions (3.9). The category K'(R) has a natural monoidal structure,
with product denoted x and induced by the tensor product over R. (To see this
one observes that the conditions above imply that the left R-action on M ®gr Q
extends to an action of @, see [Abl, Remark 2.2].)

We will also denote by K(R) the full subcategory in K'(R) whose objects are those
whose underlying R-bimodule is finitely generated, and is flat as a right R-module.
The latter condition implies that the natural morphism M — M ®g @ is injective,
which (in view of the second condition above) implies in particular that the left
and right actions of RW on M coincide. The arguments in | , Lemma 2.6] show
that the underlying bimodule of any object in K(R) is in fact finitely generated as
a left R-module and as a right R-module. Using this property, it is easily seen that
K(R) is a monoidal subcategory of K'(R).

Remark 3.6. As explained in [Ab1, §2.2], for any M in K’'(R) there exists a canonical
isomorphism Q ®z M = M ®r Q. (In the examples we will consider below, the
action on W on R will factor through an action of the finite group W¢, so that
R will be finite over RW. In this case, both Q ®g M and M ®g @ identify with
M® pw Frac(RW).) As a consequence, switching the left and right R-actions defines
an autoequivalence of the category K’'(R), where the w-graded part in the image of
M is Mé{l with the actions switched. This equivalence is “antimonoidal” in the
sense that it swaps factors in a tensor product. It restricts to an autoequivalence of
the subcategory of K'(R) whose objects are finitely generated (as bimodules) and
flat both as a left and as a right R-module.

We have natural objects in K(R) attached to elements in W, and constructed
as follows. Given w € W, we denote by F,, the R-bimodule which is isomorphic to
R as an abelian group, and endowed with the structure of R-bimodule determined
by the rule

rem-r =rmw(r’)
for r,7’ € R and m € F,,. If we endow this bimodule with the decomposition of

F, ®r @ such that this module is concentrated in degree w, we obtain an object
in K(R). It is clear that for any w,y € W we have a canonical isomorphism

Fux Fy 5 Fyy,.

Next, for s € S we will denote by R® C R the subring of s-invariants. Assume
that

(3.10)  there exists d; € R such that (1,05) is a basis of R as an R°*-module.

Then we set
Bs .= R ®pgs R.

Our assumption ensures that By is finite and free (in particular, flat) as a right
R-module. Moreover this objects admits a canonical decomposition (3.9), hence
defines an object in K(R). In fact, since the action of s on R is nontrivial by our
assumption, the decomposition of Bs ®gp Q@ = R ®ps @ is uniquely determined by
the fact that it is concentrated in degrees {e, s} C W. More explicitly, using the
formula

505 = 05(0s + 5(35)) — 645(5)
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one checks that we have
(BS)ZQ =00;s®1—-1®s(ds)) Q, (BS)‘ZZ =00;s®1-1®4d) Q.

The following lemma can be checked by explicit computation. (A similar claim
in a slightly different setting is proved in [ , Lemma 2.4].)

Lemma 3.7. Let s,s’ € S, and assume that w € W satisfies s' = wsw™. If (3.10)
holds for s, then it also holds for s’, and moreover we have a canonical isomorphism

F,xBs*xF,-1+ = B,.

Remark 3.8. Recall that any element in S is conjugate (in W) to an element in Sg,
see Lemma 3.1. In view of Lemma 3.7, to check condition (3.10) for all s € S it
suffices to do so when s € Sg.

We now assume that (3.10) is satisfied for any s € S. We will then denote by
BSK(R) the category with

e objects the collections (w, s1, -+, ;) with w € Q and s1,--- ,8; € S;
e morphisms from (w, s1,---,s;) to (W', s, , ;) given by
Homy gy (Fly * Bs, % -+ % By, Fir x Bgr % -+ *Bs;).
By definition there exists a canonical fully faithful functor
(3.11) BSK(R) — K(R).

Using the isomorphism in Lemma 3.7 (when w € §2) one sees that there exists a
natural convolution product (still denoted *) on BSK(R) which is defined on objects
by

(w7 81, 75i) * (w/a 89_7 T 583) = (WOJI, (w/)_lslw/a R (w/)_lsiw/7 8/17 e 7S;)a

and such that (3.11) is monoidal.

Remark 3.9. Instead of putting the element in €2 to the left, one can also put it to
the right, and define the monoidal category BSK,(R) with objects the collections
(1, ,8;,w) and morphisms defined in the obvious way. The equivalence of Re-
mark 3.6 sends each B; to itself, and each F,, to F,,-1. It therefore induces an
equivalence of categories BSK(R) — BSK,(R) which is antimonoidal and is given
on objects by

-1
(W,S]_,"',Si)'-)(SZ',"',S]_,OJ )
The following lemma is obvious.

Lemma 3.10. Let R and R’ be two noetherian domains endowed with actions of
W by ring automorphisms. Assume that condition (3.10) is satisfied for the ring
R (for any s € S), and assume given a W -equivariant ring isomorphism R — R’.
Then condition (3.10) is satisfied for the ring R’ (for any s € S), and there exists
a natural equivalence of monoidal categories

K'(R) = K'(R')
which restricts to an equivalence

K(R) = K(R)
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sending each object Fy, (w € W) or By (s € S) in K(R) to the corresponding object
in K(R'). As a consequence, we deduce an equivalence of categories

BSK(R) = BSK(R/)
which is the identity on objects.

The construction above admits a “graded variant” as follows. In this setting
we assume that R is a graded noetherian domain, and that the action of W is by
graded ring automorphisms. Then we have a “grading shift” functor (1) on graded
R-bimodules, defined in such a way that (M (1)) = M**L. In this setting we define
the category K, (R) as above, but using graded R-bimodules and morphisms of
graded bimodules. One then defines the subcategory Ky (R) in the same way as
above. In order to define B, we assume that there exists a homogeneous element
0s € R such that (1,05) is a basis of R as an R°-module. Moreover, we set

Bs; := R®p-s R(1).
Finally, BSKg.(R) is defined as the category with

e objects the collections (w, s1,- - ,s;,n) with w € Q and s1,---,s; € S and
n € 7;
e morphisms from (w,s1,---,si,n) to (W', 5], ,s},n') given by

Homy,, (r)(Fu * Bs, %+ % B, (n), Fur x By % -+ % By (n')).

As above we have a canonical fully faithful functor BSKg (R) — Kg(R). Given
M, N in Kg (R), we will set

Homy (gy(M,N) = @HOngr(R)(MvN(”))-
neZ

Again the category K’gr(R) admits a natural convolution product %, which makes
it a monoidal category and stabilizes the subcategory Kg:(R), and which induces a
monoidal structure on BSK, (R) given on objects by

(W,Sh'" asian)*(wlvsllv"' 583'7’”/) =
(ww/, ([J.)/)—lslwl7 - (W/)—lsiw/7 8/1, c. ,S;JL 4 n/).
Remark 3.11. In [Ab1], Abe studies an analogue of the category BSK,(R) in the

setting where W is replaced by a Coxeter group (so that there are no nontrivial
elements of length 0) and for a specific choice of graded ring R. We do not claim
that the results of | | apply in the generality considered above, but only that
the main definition makes sense.

3.5. Completed Hecke category and representations of Jfy. The first ring
to which we will apply the construction of §3.4 is @ (T”), with the action of W
obtained from the natural action of W; by pullback along the projection W —
W;. To check conditions (3.10) in this case, it suffices to do so when s € Sy
(see Remark 3.8). In this case the condition can be checked explicitly, or deduced
from Lemma 3.3 applied to the Levi factor of G associated with s. The resulting
categories K(0(T")) and BSK(&(T")) will be denoted

K" and BSK"

respectively.
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Recall the category Rep(J{y) considered in §3.3. We will denote by Repq(J5)
the full subcategory of representations whose underlying coherent sheaf is flat with
respect to the projection D — T/ on the second component. It is not difficult
to check that Repg(Jg) is a monoidal subcategory in Rep(Jp), and that it contains
the essential image of (3.8).

The following statement is an analogue of the statements | , Proposition 2.7
and Lemma 2.9], and its proof is very similar.

Proposition 3.12. There exists a canonical fully faithful monoidal functor
Repa(Ip) — K

sending M) to Fy for any w € W and B to Bs for any s € St.

Proof. We start by constructing a functor

(3.12) Rep(Jp) — K'(O(T™)).

Recall the open subscheme T, C T, which is defined by the function []_ (o —1)
where a runs over the roots of (G,T), see §2.6. We have an open embedding
T,/W¢ C T/W¢ and an isomorphism

(313) Wf X To l> I’]-10 XTO/Wf TO7

see §2.11. Let us denote by Jr o the restriction of J1 to To. Then it follows from
Lemma 2.19 that we have a canonical isomorphism of group schemes

(3.14) Jr.o — To x T.

We are now ready to explain the construction of the functor (3.12). Starting
from an object M in Rep(Jg), the underlying ¢(T")-bimodule of its image is
simply taken as M with its given & (D”")-module structure. Next, using Lemma 3.3
and (3.13) we obtain a canonical isomorphism

DA XT/Wf‘ To/Wf = Wf X (TA XT To).

This implies that M ®4(r/w,) O(To/W;) has a canonical decomposition as a
direct sum parametrized by W¢. Moreover, each graded component has a natural
structure of representation of the group scheme

T X1 J1.0,
which by (3.14) identifies with
(T" xp To) x T.

This component therefore admits a canonical grading by X*(T). We can then
obtain a decomposition of M ®4(r/w,) O(T./Wt) parametrized by W by defining
the summand associated with t(A\)w (A € X*(T), w € W¢) as the A-graded part in
the summand associated with w. Now the morphism

O(T") — Frac(0(T"))
factors through the morphism &(T") — 0(T") ® (1 w;) O(T./Wy), and we have
M ®g(rny Frac(O(Th)) =
(M @6(1/w) O(To/Wt)) @6(T)8 oz iy 0(Ta /W) Frac(O(T")).
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From the decomposition of M ® g (1 w;) O(T./W;) parametrized by W we there-
fore obtain a decomposition of M ®g(r~) Frac(¢(T")) parametrized by W, which
finishes the construction of the functor (3.12).

It is clear from construction that our functor (3.12) has a canonical monoidal
structure, and takes values in objects whose underlying &'(T”)-bimodule is finitely
generated and flat as a right ¢(T”)-module. It therefore restricts to a monoidal
functor

Repy(Ip) — K.

We now need to prove that this functor is fully faithful. Morphisms in both of
these categories are by definition certain morphisms of ¢'(D”")-modules; the functor
is therefore faithful. If M and N are in Repg(Jg), @ morphism in K” from the image
of M to the image of N is a morphism f : M — N of ¢(D”)-modules such that
the induced morphism

M ®g(rry Frac(O(T")) = N ®g(1r) Frac(0(T"))
is a morphism of representations of the group scheme
Jp x7a Spec(Frac(0(T")))

over D” X Spec(Frac(@(T"))). To check that f is a morphism of representations
of J§ we need to check that the two natural morphisms

M — N ®gmn) O(JIp)

constructed out of it coincide. Now since N is flat over &(T") (for the action on
the right) and €(Jp) is flat over &(D"), the right-hand side is flat over &(T") (for
the action on the right), so that to check this condition it suffices to prove that the
induced morphisms

M ®g (1) Frac(0(T")) = (N ®mr) 0(Ip)) @p(1r) Frac(0(Th))

coincide, which is exactly the condition given by the fact that f is a morphism in
KA.

Finally we prove that our functor sends each .Z, to F,, (for w € W) and each
B to By (for s € S¢). The case of the objects % is clear. It is clear also that this
functor sends ., to Fy) for any A € X*(T), and .Z to F, for any x € Wy.
By monoidality, it therefore sends .# to F,, for any w € W. |

We can now give the proof of Lemma 3.5.

Proof of Lemma 3.5. If (w1, s}) and (ws, s5) are two pairs of elements as in §3.1 for
the same element s € S \ S¢, then by Lemma 3.7 the images under the functor of
Proposition 3.12 of the objects

My, ® B ® ///731,1 and A, ® B ® %13;1

are canonically isomorphic. By fully faithfulness, this implies that these objects
are canonically isomorphic, proving that the definition of %2 is independent of the
choice of (w, s).

The proof of the second claim is similar. O

From the proof of Lemma 3.5 we see that the functor of Proposition 3.12 also
sends B2 to B, for any s € S\ S¢; as a consequence, by monoidality, for any w €
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and s1,---,s; € S it sends ) ® B, ®---® B, to F,* Bs, - x By,. Tt follows
that this functor induces an equivalence of monoidal categories

(3.15) BSRep(Jpy) — BSK”
which is the identity on objects.

3.6. “Additive” Hecke categories. From now on, in addition to our running as-
sumptions we will assume that ¢ is good for G abd that there exists a G-equivariant
isomorphism g ~ g*. (We fix such an identification.) Of course this assumption
holds if G = GL,,. It also holds if £ is very good for G, see [Let, Proposition 2.5.12].
We consider the ring &'(t*), endowed with the grading such that t C O(t*) is
placed in degree 2, and with the action of W obtained from the natural action
of W¢ by pullback along the projection W — W;¢. Conditions (3.10) are again
satisfied in this case; indeed by Remark 3.8 we can assume that s € S¢. In this
case, if « is the associated simple root, as explained in | , Claim 3.11] one can
take as d5 any element x € t such that d(«)(z) = 1 where d(a) is the differential of
a. (Such an element does exist thanks to our assumption that X*(T)/ZR has no
{-torsion.) The categories Kg (O(t*)) and BSK,, (€ (t*)) will be denoted

Kadd and BS Kadd-

These categories are (up to the subtleties related to length-0 elements) the cat-
egories denoted C and BS in [AD]1], for the following data:

e the underlying k-vector space is V = t;

e if s € S, and if « is the simple root associated with s, then the “root”
as € t is the differential of a¥, and the “coroot” o € t* is the differential
of a;

e if § € M, is a maximal short root and s = t(8)sga, then the “root” a, € t
is the opposite of the differential of 8, and the “coroot” o € t* is the
opposite of the differential of 3.

(As explained in | , §2.2], these data satisfy the technical assumptions imposed
in [ABI].)

We will now denote by (t*)”" the spectrum of the completion of &'(t*) with respect
to the ideal t - &'(t*). We will consider a third family of categories as in §3.4, now
associated with the ring &((t*)"). To check that conditions (3.8) hold in this case,
one can e.g. use the following “additive” variant of Lemma 3.3 (applied to the Levi
factor of G associated with s). Here we denote by (t*/W¢)” the spectrum of the
completion of &(t*/Wy¢) with respect to the ideal corresponding to the image of
0 € t*, we set

Dagq :=t" X yw, t7,
and we denote by D/, the spectrum of the completion of &'(Daqq) with respect to
the ideal corresponding to (0,0) € D,qq.

Lemma 3.13. (1) There exist canonical isomorphisms of k-schemes
(t)" =t X pw, (87/Wi)"
and
Dyyq = (t°)" X4+ Dagd = Daga - (£°)"

=~ Daaa X¢+/wy (/W)™ 22 (85)" x g pwpn (8°)°
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where in the first, resp. second, fiber product the morphism Dyqq — t* is
induced by projection on the first, resp. second, factor. Moreover, O((t*)")
is finite and free (in particular, flat) over O((t*/Wi)").

(2) The natural morphism O((t* /We)") — O((t*) )Wt is an isomorphism.

Proof. The proof of (1) is similar to that of the corresponding claim in Lemma 3.3,
replacing the reference to Theorem 2.1 to a reference to the main result of | ]
(applied to the “precised” root system RY in X, (T); our assumptions guarantee
that ¢ is not a torsion prime for this root system).

To prove (2), let us set Kagq :=t- O(t*) and Jaaq := Kaaa N O(t*/Wr), so that
O((t*)") is the completion of &(t*) with respect to Kaqq and O((t*/W¢)") is the
completion of &(t* /W) with respect to Jaaq. It is easily seen that &'((t*)")Wr is
the completion of & (t*/Wy¢) with respect to the (decreasing) family of ideals

((Kadd)n n ﬁ(t*/Wf) n e Zzl)‘

Now for any n > 1 we have (Jadd)™ C (Kadaa)™ N O(t*/W¢). On the other hand, as
in the proof of Lemma 3.3 there exists N such that (K.qq)™ C Jada - €(t*). We
deduce that for any n > 1 we have (Kaqa)™™ C (Jada)™ - €(t*), and then since
the embedding O(t*/W;) — £(t*) admits an O(t*/Wy)-linear retraction (again
by the main result of | ]), we deduce that (Kaaa)™™ N O(t*/W¢) C (Jaaa)™, so
that our two completions are isomorphic. (I

The categories K(((t*)")) and BSK(Z((t*)")) will be denoted

respectively.

3.7. Additive Hecke categories and representations of the (additive) uni-
versal centralizer. We begin with some generalities on (affine) group schemes
and their categories of representations. Given a commutative finitely generated
Z-graded k-algebra R (or, equivalently, an affine k-scheme X = Spec(R) of finite
type endowed with an action of the multiplicative group Gy, over k) and a Z-graded
R-Hopf algebra A (or, equivalently, an affine group scheme H = Spec(A) over X
endowed with an action of G, such that the structure morphism H — X, the
multiplication morphism H xx H — H, the inversion morphism H — H and
the unit section X — H are Gu-equivariant), we will denote by Rep®=(H) the
category of Gy -equivariant representations of H on coherent &x-modules, or in
other words the category of Z-graded A-comodules which are finitely generated as
R-modules. This category admits a “shift of grading” functor (1), defined with the
same convention as in §3.4.

We can also forget about the Gp-action, and consider simply the category
Rep(H) of A-comodules which are finitely generated as R-modules. We then have
a canonical forgetful functor

For® : Rep™ (H) — Rep(H)

which satisfies For®® o (1) = For®=.

Finally, given an algebra morphism R — R’ where R’ is also commutative and
of finite type as a k-algebra, we can set X’ := Spec(R’) and consider the group
scheme obtained by base change

X' xx H = Spec(R' @r A)
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and its category of representations (finite over R’) Rep(X’ x x H). We then have a
canonical functor
R' ®@g (=) : Rep(H) — Rep(X' xx H).

Lemma 3.14. (1) For any M, M' in Rep®= (H), the functor For®™ induces an
isomorphism
D Homgepewm () (M, M’ (n)) =5 Homgep( ) (For®™ (M), For®= (M”)).
neL
(2) Assume that the morphism R — R’ is flat. Then for any M, M’ in Rep(H),
the functor R' @ (—) induces an isomorphism

R ®g HomRep(H)(M; M’) = HomRep(X’XXH)(R/ ®r M, R ®g M/).

Proof. (1) We will prove this property when M’ is more generally a Z-graded A-
comodule which is not necessarily finitely generated over R. (The category of
such objects will be denoted RepS=(H).) First, assume that M’ = V @x A for
some graded R-module V' (with the coaction induced by the comultiplication in A).
Then by Frobenius reciprocity ([Ja, Proposition 1.3.4]), for any n € Z we have

HomRepg’Qm(H) (M, M'(n)) = Hompogz(r) (M,V(n))
where Mod?(R) is the category of Z-graded R-modules, and
Homgep( sy (For® (M), For® (M’)) = Hompmod(r) (M, V).

Now it is a classical fact that since M is finitely generated over R the forgetful
functor induces an isomorphism

@B Hompgouz gy (M, V(1)) = Hompeg(r) (M, V);

ne”Z
the desired claim follows in this case.

The case of a general Z-graded A-comodule M’ follows from this special case
using the five lemma and the fact that for any such M’ the coaction defines an
injective morphism of Z-graded A-comodules M’ — M’ ®r A, where in the right-
hand side M’ is regarded as a graded R-module.

(2) As explained e.g. in | , Lemma 3.8(2)], the R-module Hompg(M, M’)
admits a natural structure of A-comodule, and we have

H
HomRep(H)(Ma M,) = (HOIDR(M, Ml)) )

where (—)# is the functor of H-fixed points. Similarly, Homg/ (R’ ®r M, R' @z M")
admits a natural structure of R’ ® g A-comodule, and we have
Hompep(x/x 1) (R ®r M, R' @5 M') = (Homp/ (R ©p M, R @ M)~ ="
where (—)X " *xf is the functor of X’ x x H-fixed points. Now we have
Homp (R ©p M, R ®p M') = Homp(M, R' @5 M),
and since R’ is flat over R we have
Homp(M,R ®r M') = R' @ g Hompg (M, M')
by [ , Lemma 3.8(1)]. Finally by [Ja, Equation 1.2.10(3)], using again our flat-
ness assumption we have

(R’ @5 Homp(M, M) **H

— R @ (Homp(M, M"))".
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Combining these isomorphisms we deduce the desired claim. O

From now on we fix a Kostant section S C g as in | , §2.3], and denote by
S* its image under our identification g — g*. (A Kostant section is an “additive”
variant of the Steinberg section ¥; in particular the coadjoint quotient provides
an isomorphism S* = t*/W;.) The same considerations as in §2.8 lead to the
definition of the universal centralizer group scheme Ig« over S*, see [R2] and | )
§2.3] for details. This is a smooth affine group scheme over S*, endowed with
an action of Gy, which is compatible (in the sense considered above Lemma 3.14)
with the action on t*/Wy such that the quotient morphism t* — t*/Wy is Gy,-
equivariant, where t € Gy, acts on t* by multiplication by ¢t ~2. We can then consider
the group scheme

]IDadd = t* Xt*/Wf ]IS* Xt*/Wf t*
and the associated category
Reme (HDadd )
of Gp-equivariant representations on coherent sheaves. This category admits a
canonical convolution product defining a monoidal structure. If we denote by

Rep(ﬂ;m (HDadd )
the full subcategory whose objects are the representations whose underlying coher-
ent sheaves are flat with respect to the second projection D,qq — t*, then this full
subcategory is stable under convolution, hence a monoidal category.
On the other hand, set
H]/Sadd = Dg\dd XD.da HDadd'
Then once again the category Rep(]IADadd) admits a canonical convolution product
which makes it a monoidal category. If we denote by Repq (Hgadd) the full subcate-
gory whose objects are the representations whose underlying coherent sheaves are

flat with respect to the second projection D2, — (t*)”, then this subcategory is
stable under convolution, hence a monoidal category.

Proposition 3.15. (1) There exists a canonical fully faithful monoidal functor
(3.16) Rep(ﬂ}“‘ (Ip,.y) = Kadds

whose essential image contains the objects By (s € S) and F,, (w € W).
(2) There exists a canonical fully faithful monoidal functor

(3.17) Repﬂ(ﬂgmd) — Kl
whose essential image contains the objects By (s € S) and Fy, (w € W).

Proof. (1) This statement is proved in | , Proposition 2.7 and Lemma 2.9].
(2) The proof is similar to that of Proposition 3.12. O

More specifically, one can define canonical objects in Repgm (Ip,.4), Tresp. in
Repq (I, ,,); whose image under (3.16), resp. (3.17), are the corresponding objects
Bs and F,,. Using these objects one obtains that the functors (3.11) in these two
settings factor through (fully faithful) monoidal functors

BSKadd — Repgm (]IDadd)’ BSKé/l\dd — Repﬂ(]ll/sadd)'

Using the second of these functors one can define a category BSRep(]I]ADadd) of “Bott—
Samelson type” representations of HADadd, with objects the collections (w, s1,- -+ , ;)
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with w € Q and s1,---,s; € S, and which is canonically equivalent to BSKQdd.
We can define the category SRep(HADadd) of “Soergel type” representations as the
Karoubian closure of the additive hull of BSRep(Hgadd); equivalently, this category
identifies with the full subcategory of Repﬂ(]IADadd) whose objects are direct sums of
direct summands of objects in the image of BSKY),.

We deduce from Proposition 3.15 the following property. (We expect this propo-
sition to admit a direct algebraic proof, but the proof given below relies on geometry
and Proposition 3.15.)

Proposition 3.16. There exists a monoidal functor

which satisfies F o (1) = F and sends each object F,, (w € W) and B (s € S) in
Kadd to the corresponding object in Koy, and such that F induces an isomorphism

Hom.BSK.ddd (]\47 Ml) ®ﬁ(t*) ﬁ((t*)/\) l) HomBSK;\dd(F(M)’ F(M/))
for any M, M’ in BSK,qq.
Proof. The functor F is defined by
F(M) = M Qg+ O((t*)"),
where in the right-hand side we omit the functor forgetting the Z-grading. Let
us first explain why this indeed defines a functor from K,qq to K2,,. Here since

M is an object in K,qq, it admits in particular an action of &(D,qq). Hence
M @gt+) O((t*)") admits an action of

O (Daad) ®e ) O((E")"),

which identifies with &'(DZ,,) by Lemma 3.13. This object can therefore be re-
garded as a (finitely generated) &'((t*)")-bimodule. On the other hand, we have

(M @o(-) O((t)")) @p((4+)r) Frac(O((t)")) =
(M ®@g gy Frac(O(t"))) @prac(ot+)) Frac(@((t)")).

Here we are given a decomposition of M ®g¢+) Frac(0(t*)) parametrized by W,
which induces a decomposition of (M ®g(+) O((t*)")) @e(-)~) Frac(O((t*)"))
parametrized by W. Finally M ®g+) O((t*)") is flat over &((t*)") for the action
on the right, hence it indeed admits a canonical structure of object in K.

It is easily checked that F has a canonical monoidal structure, and the required
action on the objects F,, and Bs. To check that this functor has the required
property on morphism spaces, we consider the equivalences of Proposition 3.15, and
the functor of pullback under the natural morphism D/, — Daqq (and forgetting
the grading). This defines a natural monoidal functor

(3.18) Repy™ (I,..,) = Repq(Ip,,,)
and, in view of the identification @(DJy,) = 0(Daaa) ®o+) O((t*)"), the diagram

(3.16)

Rep(ﬂ;m (I[Dadd ) Kadd

(S.lS)l F

(3.17)
Repg (Hﬁadd) I K;\dd
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commutes. The desired property of F therefore follows from the corresponding
property of the functor (3.18), which itself follows from Lemma 3.14 and the iden-
tification &(D)yy) = 0(Dadaa) ®@o+) O((t*)"). O

3.8. Relation between the “multiplicative” and “additive” Hecke cate-
gories. Finally we explain the relation between the (completed) “additive” and
“multiplicative” Hecke categories.

Lemma 3.17. Assume that there exists an étale isogeny G' — G and a morphism
G’ — Lie(G') which is G'-equivariant (for the adjoint actions), sends e to 0, and
is étale at e. Then there exists a We-equivariant isomorphism O((t*)") = O(T"),
from which we obtain an equivalence of monoidal categories

A ~ KN
Kadd =K

sending each object F\, (w € W) or By (s € S) in K2, to the corresponding object
in KN, As a consequence, we obtain an equivalence of monoidal categories

BSK.,4 = BSK"
which is the identity on objects.

Proof. By assumption there exists a G-equivariant isomorphism g — g*; if one
identifies t* with the subspace of g* consisting of linear forms vanishing on each
root subspace, then this isomorphism must restrict to an isomorphism from t = gT
to t* = (g*)T, which is Wi-invariant. To construct our isomorphism it therefore
suffices to construct a We-equivariant isomorphism from &(T”) to the completion
of O(t) with respect to the ideal corresponding to 0.

Consider now an étale isogeny G’ — G as in the statement. If TV Cc G’ is
the preimage of T, then T is a maximal torus in G’, and our isogeny restricts to
an étale morphism TV — T sending e to e. It therefore induces an isomorphism
between O(T”) and the completion (T’)" of O(T’) with respect to the ideal
corresponding to e, and also an isomorphism from Lie(T') to t. The Weyl group
of (G, T’) canonically identifies with W, and both of our isomorphisms are W-
equivariant.

Our morphism G’ — Lie(G’) must restrict to a We-equivariant morphism from
T = (G)T to Lie(T’) = (Lie(G'))T". Moreover, this morphism sends e to 0 and
is étale at e (e.g. by consideration of tangent spaces). It therefore induces a Wi-
equivariant isomorphism between &(T')" and the completion of &'(Lie(T’)) with
respect to the ideal corresponding to 0. Combining these isomorphisms we deduce
the desired isomorphism

o) = o(Th).
Once this isomorphism is constructed, we deduce the desired equivalences using
Lemma 3.10. (]

Lemma 3.17, together with the equivalence (3.15) and its analogue deduced from
Proposition 3.15(2), we obtain an equivalence of additive monoidal categories

(3.19) SRep(Jp) — SRep(Ig

add)'

Remark 3.18. The assumption in Lemma 3.17 holds at least in the following cases:
(1) G = GLy(k);
(2) ¢ is very good.
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In fact, in the first case one can take G’ = G, with the morphism GL,, (k) — gl,, (k)
given by X — X — I,,. For the second case one observes first that if £ is very
good and G is semisimple (and simply connected) then there exists a morphism

G — g sending e to 0 and étale at e: if G = SL,, on can take X — X — tr(nX)In,
if G is quasi-simple and not of type A this is a standard consequence of results of
Springer—Steinberg (see e.g. | , §5.3]), and the general case follows since G is
a product of such groups. The similar claim of course also holds if G is a torus.
Finally, for a general G, as explained in [Ja, §1.18] there exists a torus H and an
isogeny 2(G) x H — G (where 2(G) is the derived subgroup of G) whose kernel
is a subgroup of the center of 2(G). Since ¢ is very good this center is a discrete
group, hence this kernel is smooth, proving that the isogeny is étale. One can
therefore take G’ = 2(G) x H.

4. CONSTRUCTIBLE SHEAVES ON AFFINE FLAG VARIETIES

4.1. Affine flag varieties. Let F be an algebraically closed field of characteristic
p > 0, and let G be a connected reductive algebraic group over F. We fix a Borel
subgroup B C G, whose unipotent radical will be denoted U, and a maximal torus
T CB.

Recall that the loop group LG, resp. the positive loop group LTG, is the group
ind-scheme, resp. group scheme, over F which represents the functor

R+ G(R((2)), rtesp. R+ G(R[]),

where z is an indeterminate. By definition LT G is a subgroup scheme of LG, hence
one can define the affine Grassmannian Grg as the fppf quotient
_ +
GI"G = (LG/L G)fppf'
It is well known that Grg is an ind-projective ind-scheme over F.

There exists a canonical morphism of group schemes L*G — G, induced by the
assignment z — 0. The Iwahori subgroup I C LG is defined as the inverse image
of B under this morphism. The pro-unipotent radical of I is the subgroup I, C I
defined as the preimage of U. We can then define the affine flag variety Flg and
the canonical T-torsor Flg over Flg as the fppf quotients

Flg := (LG/1), ., Flg:= (LG/L,)

fppf fppf”
Once again these are ind-schemes of ind-finite type, and Flg is ind-projective. The

embeddings I, C I C LG induce natural morphisms
(4.1) I“:IG — FIG — Grg.

It is well known that the second morphism is a Zariski locally trivial fibration with
fibers G/ B, and that the natural action of T" on ];:IG (induced by right multiplication
on LG) exhibits I*:IG as a Zariski locally trivial T-torsor over Flg; this map will be
denoted 7 : Flg — Flg.

Consider the coweight lattice X,(T"). The choice of the Borel subgroup B de-
termines a system of positive roots for (G,T) (chosen as the set of T-weights in
Lie(G)/Lie(B)), which then define a subset X7 (T) C X.(T) of dominant weights.
We will denote by =< the order on X, (7T') such that A < p if and only if 4 — X is a
sum of positive coroots.



MODULAR AFFINE HECKE CATEGORY AND REGULAR CENTRALIZER 41

Recall that the LT G-orbits on Grg (for the action induced by left multiplication
on LG) are parametrized by X (T). Namely, any A € X, (T) determines a point
2* € LG, and for A € X} (T) we denote by Grgy the LT G-orbit of the image of 2*
in Grg (with its reduced subscheme structure). We then have

(Grg)red = |_| Grg

Xex(T)

We will denote by Wy = N¢g(T')/T the Weyl group of (G,T). The choice of B
determines a system Sy C Wt of simple reflections, such that (W, St) is a Coxeter
system. The orbits of I on Flg are naturally parametrized by the extended affine
Weyl group

W= W x X, (T).
Namely, let us fix for any v € W alift © € Ng(T'). Let w € W, and write w = t(\)v
with v € W and A € X, (T). (Here and below, t(\) denotes the image of A in W.)
Then if we denote by Flg,., C Flg the I-orbit of the image in Flg of 220 (again
with its reduced subscheme structure), we have

(4.2) (Fl)rea = | | Flow.
weWw
It is well known also that each Flg ,, is an I,-orbit, isomorphic to an affine space
For w € W we will set

((w) = dim(Flgw), Flow=7r"(Flg.w).

For w € Wy, £(w) is the length of w for the Coxeter group structure on Wt considered
above. We will also set Q := {w € W | {(w) = 0}.

4.2. I-equivariant sheaves on the affine flag variety and convolution. Let k
be an algebraic closure of a finite field of characteristic ¢ # p. We can then consider
the I-equivariant derived category of étale sheaves on Flg with coefficients in k,
which we will denote by

DI,I~

(The definition of this category requires a little bit of care but is standard; see | ,
§84.1-4.2] for some details. The complexes on ind-schemes that we consider will
always be supported on a finite-type subscheme. Similar comments apply to several
constructions below, where we will “pretend” that some group schemes of infinite
type are honest algebraic groups for notational simplicity.) This category admits a
natural perverse t-structure, whose heart will be denoted Py;. For each w € W, if
we denote by j, : Flg ., — Flg the (locally closed) embedding, then we will set

Ay = (o) ke, [0w)], Vi, = () sk, , [0(w)]-

These define objects in Dy 1, which are in fact perverse sheaves since j,, is an affine
morphism.

The simple objects in the category Pi; are naturally labelled by W. Namely, if
for w € W we denote by .#%,, the intersection cohomology complex associated with
the constant local system on Flg,, (in other words, the image of the unique—up
to scalar—nonzero morphism Al — V1) then the assignment w — #%,, induces
a bijection between W and the set of isomorphism classes of simple objects in Py .

The category Di; also admits a natural convolution product, whose definition
we briefly recall. First we consider the ind-scheme FlgxFlg, defined as the (fppf)
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quotient of LG x Flg by the action of I defined by g - (h,z) = (hg~!,g-x). The
multiplication map in LG induces a proper morphism m : FlgxFlg — Flg. Then,
given .#,¥ in Dy, there exists a unique object # K% in the I-equivariant derived

category of FlgxFlg whose pullback to LG x Flg is the exterior product of the
pullback of % to LG with ¢; then we set

Fx 9 =m(FRY).

With this construction the pair (Dyr,*1) is a monoidal category, with unit object

6 := IG.,.

Remark 4.1. Below, given XY some I-invariant subschemes in Flg, we will also
denote by X xY the quotient of X’ xY by the I-action induced by that on LG x Flg
considered above, where X’ is the preimage of X in LG.

Similarly one can consider the I,-equivariant derived category of étale k-sheaves
on Flg, which will be denoted

Dr 1.

This category admits a natural perverse t-structure, whose heart will be denoted
P1,,1. We have a canonical t-exact “forgetful” functor

(4.3) For; :Dry — Di, 1,

and the simple objects in the category Pr, 1 are (up to isomorphism) the objects
For%u(f%w). We also have a canonical right action of Dyy on Dy, 1, defined by a
bifunctor

(4.4) D1, 1 X Dr1 — Di, 1

whose construction repeats exactly the definition of x1; this bifunctor will also be
denoted %;. With this definition we have

Fori (%1 ¥) = For| (F)x¥

for any .#,% in Di.

Since each I;-orbit on Flg is isomorphic to an affine space, the methods of | ,
§§3.2-3.3] in the sense considered e.g. in [ , §2.1], with underlying poset W
(endowed with the Bruhat order) and standard, resp. costandard, object attached
to w the perverse sheaf For; (AL), resp. For; (VY). In particular we have a notion
of tilting object in this category (namely, objects which admit both a filtration with
subquotients of the form Fori“ (AL), and a filtration with subquotients of the form
For%“(A{U)), and the isomorphism classes of indecomposable tilting objects are in

a natural bijection with W. The indecomposable tilting object associated with w
will be denoted .7,,.

4.3. Central sheaves — properties. We now consider the action of L*G on Grg,
and denote by

Dr+g.r+a
the LT G-equivariant derived category of étale sheaves on Grg with coefficients in

k. As for D11 we have a convolution bifunctor %7+ on this category. We also have
a perverse t-structure, whose heart will be denoted

Pria,r+a-
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It is a standard but crucial fact that this subcategory is stable under the bifunctor
*p+q; one can therefore consider the monoidal category (Pp+¢g r+a,*r+¢g). This
category is the main ingredient of the geometric Satake equivalence of [MV], which
provides a canonical connected reductive algebraic group G}/ over k with a maximal
torus 7}/ such that the root datum of (GyY,T}’) is dual to that of (G,T), and a
canonical equivalence of monoidal categories

S:(Prig,rta*r+a) = (Rep(GY), ®).

(See [ , §4.1] for more precise references.) The unit object in the category
Pr+q,+¢ will be denoted dg,. (This object is the skyscraper sheaf at the base
point of Grg.) We will also denote by By the Borel subgroup of G}/ containing 7;’
such that the 7}-weights in the Lie algebra of B are the negative coroots.

Below we will apply the constructions of Sections 2-3 to the group G = G/; in
that setting, the groups W and W identify with the groups W; and W considered
in those sections, and their structures (in particular, the function ¢) also identify.
In this setting we will denote by S C W' C W the subsets corresponding to
SCW CW.

Recall that the main construction of [Gal] (reviewed in detail in [AR4]) provides
a canonical monoidal functor

Z: DL*G,L*G — DI,I-
For o/, % in D+ 1+ we will denote by
¢£{7g : Z(JZ% *r+G %) = Z(,SZ{) *1 2(33)

the associated “monoidality” isomorphism.
This functor has a number of favorable properties, which are listed in | , §4].
Among these properties, we note the following for later use.

(1) The functor Z is t-exact with respect to the perverse t-structures.
(2) Forany & in Dp+¢g +¢ and .# in Dy, there exists a canonical isomorphism

0d79:2(£f)*1§’7l>ﬂ\*12(£{),

and Z, together with the isomorphisms ¢ and o, define a central functor
from Pr+¢ 1+ to Di in the sense of [31]; in other words these data define
a braided monoidal functor from P+ y+g to the Drinfeld center of Dy
(with respect to the commutativity constraint on Py +¢ 1+ and the natural
braiding on the Drinfeld center).

(3) Since it is defined by nearby cycles, the functor Z comes with a “mon-
odromy” automorphism m, such that for &/, % in Dy+g +¢ the isomor-
phism ¢z 2 intertwines P with mg * mg.

For simplicity, from now on we fix a total order < on X, (T') compatible with the
dominance order, i.e. such that if A\, € X, (T) are such that p < X then u < A\
Recall that in Dy; we have the Wakimoto sheaves (#y : A € X, (T)), see | ,
§4.5], which are perverse sheaves such that for any A\, u € X, (T) we have a canonical
isomorphism

(45) % *1 7/“ = W)\—HL-
(The construction of these objects is due to Mirkovié, and appears in particular
in [AB].) Recall that an object .% of P (resp. Pr, 1) is said to admit a Wakimoto

filtration if there exists a finite filtration on % such that each subquotient is of the
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form #) (resp. For{u(%)) for some A € X, (T'). In this case, there exists a unique
filtration (F<x : A € X (T)) on F such that F< = {0} for some \, F<, = F
for some p, and F<y/F<y is a direct sum of copies of #) for each A € X, (T).
(Here, F . means %<y where X is the predecessor of \.) Moreover this filtration
is functorial: if .#,% admit Wakimoto filtrations and f : % — ¢ is any morphism,
then f(F<\) C 9<) for any A € X, (T); this allows to define the functor gr, sending
an object % which admits a Wakimoto filtration to

gr/\(y) = yg)\/y<)\.

This notion is relevant in the present context thanks to a result of Arkhipov
and the first author (see [AB3, Theorem 4]; see also | , §4.4] for the extension
to positive-characteristic coefficients) which claims that Z(«) admits a Wakimoto
filtration for any & in Pp+g p+g, and that moreover the multiplicity of #) in
gry(Z(47)) is the dimension of the A-weight space of S(#).

4.4. Central sheaves — construction. For later reference, we now briefly recall
how the functor Z and the relevant isomorphisms are constructed. This functor is
defined using nearby cycles associated with an ind-scheme
Grem — Al

called the central affine Grassmannian, whose fiber over 0 identifies canonically
with Flg, and whose restriction to Al \ {0} identifies (again, canonically) with
Grg x (A'\.{0}). We have a smooth affine group scheme G over A whose restriction
to Al \ {0} identifies with G x (A! \ {0}), and whose group of F[[z]-points is
I In | , §2.2.3] the construction of this group scheme is explained (following
Zhu) using fpqc descent. Following [ ], this group scheme also admits another
equivalent description, as the Néron blowup of G'x A! in B along the divisor {0} C
A'; see in particular | , Example 3.3]. Then GrS® is defined as the F-scheme
which represents the functor sending an F-algebra R to the set of isomorphism
classes of triples (y,&, ) where y € A'(R), € is a principal G-bundle (over A}),
and 3 is a trivialization of € over AL \ T, (where Iy, C A}, is the graph of y).
Using the Beauville-Laszlo descent theorem (see | , Remark 2.2.12] for details)
one sees that Grgen(R) also classifies isomorphism classes of triples (y, &', 8’) where
y is as above, & is a principal G-bundle over the completion fy of AL along I'y,

and (3’ is a trivialization on f,, ~TI'y. Using this description, the identification
{0} x 41 Gr&™ = Flg

simply follows from the fact that Flg represents the functor sending R to isomor-
phism classes of pairs consisting of a principal Gjgpec(r[-)-bundle over Spec(R[z])
together with a trivialization over Spec(R((z))); see | , Proposition 2.2.6] for
details. (Here, Gigpec(r[2]) is the Iwahori group scheme attached to B.) The iden-
tification
(AT {0}) x a1 Gr&™ = Grg x (AP~ {0})

is obtained using the similar moduli description of Grg (in terms of G-bundles,
see | , Proposition 2.2.2]) and the additive structure on A!, which allows to
identify T, with Spec(R][[z]).

The study of this functor also involves another scheme over A!, denoted GrgD
and called the Beilinson—Drinfeld affine Grassmannian. This ind-scheme represents
the functor sending an F-algebra R to isomorphism classes of triples (y, &, ) where
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y and & are as above, but now f is a trivialization on AL ~ (I'o UT,). (Here,
I'o = {0} x Spec(R) C A} is the graph of the constant point with value 0.) We still
have an identification
{0} XAl GI‘](B;D = Flg,

but now we have

(AT {0}) x4 Gr&™ = Grg x Flg x (A~ {0}),
see | , Lemma 2.3.16]. As explained in | , §3.2.1], nearby cycles along
GrgP — A define a bifunctor

Y :Dr+g,r+¢ X D11 — D11

By | , Theorem 3.2.3], for &/ in Dy+g +c and .% in Dy; we have canonical
isomorphisms
(4.6) 2(A)x F 2Y (A, F) 2 F x L(A);

in fact the composition of these isomorphisms is precisely the definition of oz #.
We will now explain how the functor Z, and its various structures, can be en-
tiredly described in terms of the bifunctor Y and some related structures. First,
applying (4.6) in case .# = §, we see that we have Z(&/) = Y (&, ). This can also
be seen more directly (in particular, without using (4.6)) from the compatibility of
nearby cycles with proper pushforward, after we remark that there exists a closed
embedding Grg™ < Grg?: in terms of functors this embedding is obtained by
sending a triple (y, &, 8) to the triple (y,&, 3") where ' is the restriction of § to
AL~ (DouUTy). The restriction of this embedding to A' \ {0} identifies with the

natural embedding
Grg x (A' ~ {0}) = Grg x Flg,. x (A' < {0}) = Grg x Flg x (A' < {0}).

Now we consider the isomorphism ¢.s . The same arguments as for the con-
struction of this isomorphism (see | , §3.4.1]) show that for &/, % in Dp+¢ r+¢
and .#,% in D11 we have a canonical isomorphism

(47) Y(d,y) *1 Y(,@,g) gY(JZ{*LJrG %79*1 g)

Using this for .# = ¢ = § and using the identification above we recover the iso-
morphism ¢z 2.

Finally, we note that the isomorphisms in (4.6) can be reconstructed from (4.7),
using the fact that the functor Y(dg,, —) is the identity. To justify the latter claim
one remarks that there exists a natural closed embedding Flg x A' < GrgP,
obtained using restriction of trivializations as above, and the fact that Flg x A!
represents the functor sending an F-algebra R to isomorphism classes of triples
(y,&,B) where y € AY(R), £ is a G-bundle on Ak, and $ is a trivialization on
AL \Ty. The restriction of this embedding to A! \ {0} identifies with the natural
embedding

Flg x (A' < {0}) = Grd x Flg x (A ~ {0}) = Grg x Flg x (A < {0}).

Since nearby cycles for a constant family identify with the identity functor, one
deduces the claim.

Then, applying the isomorphism (4.7) with # = § and & = dg, one obtains the
first isomorphism in (4.6), and applying this isomorphism for & = g, and ¥ = ¢
one obtains the second one.
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Remark 4.2. In order to define the isomorphism o4 # we need to consider objects
in Dr+g,r+¢ and Dr1. But the definition of Y in terms of nearby cycles makes
sense without any equivariant structure. In particular, if we denote by DP(Flg, k)
the constructible derived category of k-sheaves on Flg, we have a natural bifunctor

Dr+a.r+c X D11 — D2(Flg, k),
which will again be denoted Y, and which satisfies
Y(o,Fory (F)) = For| (Y(</,.F))

for o in Dp+g 1+ and .# in Dy;. In particular, this bifunctor therefore factors
through a bifunctor
1 — Dr,.1,

us us

Dr+g,r+c % D1
which will again be denoted Y.

Below we will need the following standard property. Recall that we have a “loop
rotation” action of Gy, on LG. (We normalize this action in such a way that for
t € k¥ we have t - 2 = A(t)~! - z*.) This action induces actions on Flg, Flg and
Grg such that the morphisms in (4.1) are equivariant.

Lemma 4.3. There exists a canonical action of Gy, on Gre®™ such that the mor-

phism Grrgen — A is Gy, -equivariant with respect to the standard action on Al (by
dilation), and whose restriction to A' ~ {0}, resp. {0}, identifies (via the isomor-
phisms considered above) with the product of the standard action on Al ~ {0} and
the loop rotation action on Grg, resp. with the loop rotation action on Flg.

Sketch of proof. First we note that there exists an action of G, on G, compatible
with the group structure in the obvious way, such that the projection G — A! is
Gu-equivariant (with respect to the standard action on A'), which restricts over
Al < {0} to the action on G x (A! \ {0}) on the second factor, and such that
the induced action on F[z]-points is by loop rotation. This action can e.g. by
constructed using the formalism of | | as follows. By compatibility of Néron
blowups with base change (see [ , Theorem 3.2(6)]), the fiber product

G xp1 (G x A1),
where the morphism G, x A' — Al is the action morphism, is the Néron blowup
of (G x A') x41 (G x AY) in B x (G, x {0}) along G, x {0}. Now using the
Gm-action on A! we obtain an identification of (G x A') x 41 (G, x A1) with the
similar fiber product where the morphism G, x A! — A! is the projection. Again
by compatibility of Néron blowups with base change, we deduce an isomorphism
G xp (G x AY) G x G

as schemes over G,, x A!. Composing the inverse isomorphism with the natural
projection on G defines the desired action.

Once this action is constructed, the Gy,-action on Grgen is obtained using pull-
back of torsors; details are left to the reader. O

For simplicity of notation, below we will set
% =708 ' :Rep(GY) — Diy,
and write
my = mg-1(y) € End(Z'(V))
for V in Rep(GY)).
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4.5. Extending the functor 2 to coherent sheaves on Gy . Below we will use
the following general construction. Let H be an affine k-group scheme of finite type.
We consider the category QCoh (H) of H-equivariant quasi-coherent sheaves on
H, where H acts on itself via the adjoint action. The latter category identifies with
the category of H-equivariant ¢(H)-modules. The identity functor of QCoh® (H)
possesses a canonical automorphism mEi“)t, which can be described as follows. Any
H-equivariant ¢(H)-module M admits a canonical automorphism, defined as the
composition
M—-M®OH)— M

where the first morphism is the coaction (with respect to the H-module structure
on M) and the second one is the action morphism. It is easily checked that this
morphism is a morphism of H-equivariant &'(H )-modules, and defines an automor-
phism of the object .Z corresponding to M in QCoh® (H), which by definition is

mtaut,
7
The category QCoh (H) admits a monoidal structure, given by tensor product
of Og-modules. Tt is easily checked that for .#,% in QCoh™ (H) we have
M= m e, m
Remark 4.4. As in §2.8 one can consider the universal stabiliser &y y associated
with the adjoint H-action on itself, and we have a canonical (monoidal) functor

(4.8) QCoh™ (H) — Rep™ (S p.1r).
As in Remark 2.16, any object in Rep™ (&g g) admits a tautological automor-

phism. It is easily checked that the functor (4.8) sends m%@"* to the tautological
automorphism of its image.

Now, consider the full subcategory Coh® (H) of H-equivariant coherent sheaves
on H, and the category Rep(H) of finite-dimensional representations of H. We
have a canonical monoidal functor

1: Rep(H) — Coh™ (H)
defined by V — V ® Oy, where the H-equivariant structure on V ® O is diagonal.
For V' in Rep(H) we will write mi?"* for mjt}y, so that mi#"" is an automorphism
of V ® Oy which satisfies

taut _ taut taut
Mgy, = My, ®my,

for V1, Vy € Rep(H). We will denote by Cohi! (H) the full subcategory of Coh™ (H)
whose objects are the coherent sheaves V @ @y for V in Rep(H), so that 1 factors
through a functor Rep(H) — Cohf!(H) (still denoted 1) which is the obvious bi-
jection on objects. (Note that Cohg(H) is defined as a full, but not strictly full,
subcategory of Coh® (H).)

The following lemma is a variant of [AB, Proposition 4(a)], and follows from
similar arguments.

Lemma 4.5. Let A be an additive k-linear monoidal category, and let
F :Rep(H) — A

be a k-linear monoidal functor. Let N(_y be an automorphism of F' such that for
any V1,V in Rep(H) we have

Nviev, = Ny, ® Ny,
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and the diagram

N
F(Vi @ V) — 225 F(V; @ Va)
b
F(Va @ Vi) —= F(V, ® V)

commutes, where the vertical arrows are the images under F of the commutativity
isomorphisms in Rep(H). Then there exists a unique k-linear monoidal functor

FC . Cohfl (H) — A
such that F" oy = F, and such that
FCoh(m%/e}ut) _ NV
for any V in Rep(H).

In more concrete terms, this lemma says that the datum of N(_) allows to “ex-
tend” in a canonical way the morphisms

Homgep(11) (V1,V2) = Homa(F(V1), F(V2))
to morphisms
Homeopt 17y (Vi @ O, Va © Opr) — Homa(F(V1), F(V2)),

for any V1, Va € Rep(H). (Here, the left-hand side identifies with (V;* ® Vo) in the
first case, and with (V* ® Vo ® ¢(H)) in the second case.)

Remark 4.6. If K C H is a closed subgroup scheme and if h € H commutes with K,
then we can apply Lemma 4.5 to the restriction functor Forﬁ : Rep(H) — Rep(K),
and its automorphism induced by h. In this case, the functor

Coh{! (H) — Rep(K)
is induced by restriction of coherent sheaves to h € H.

Applying Lemma 4.5 to the monoidal functor 2 : Rep(Gy) — Di; and its
automorphism m(_), we obtain a canonical monoidal functor

\2
N . Coh¥¥ (GY) — Dy
In particular, this provides for any V in Rep(G)/) a canonical algebra morphism

(4.9) End 6t vy (V @ Ocy) = Endp,  (Z(V)).

The G}/-module 0(G)/) (endowed with the action induced by left multiplica-
tion of G} on itself) defines an ind-object in Rep(G}) (namely, the functor V
Homgy (V, 6(GY))); therefore, applying 2 we deduce an ind-object Z(0(GY)) in
P11. As a special case of (4.9) we have a canonical algebra morphism

Bnd,, ot (i) (O (GY) @ Oy) = Bndinap, (Z((GY))

Note that given a ring object X in a k-linear monoidal category (A, ®), with
unit object 1, the vector space

Homa (1, X)
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admits a natural structure of k-algebra, where the product of two morphisms f, g :
1 — X is the composition

1=10142%% xox - X,

where the right morphism is the multiplication map for X. Moreover, there exists
an algebra morphism

Homa (1, X) — Enda(X)°P
sending a morphism f :1 — X to the morphism

X=X019% xox X,

where again the rightmost morphism is induced by multiplication in X; this mor-
phism in fact takes values in endomorphisms of X seen as a left module over itself.
Let us apply this construction to the ring-object ﬁ(Gﬂ\{/)®ﬁG]¥ in Ind-Coh% (GY).
Then we have 5
Hom(Ogy, O(GY) @ Ogy) = O(Gy x GY)%x,
where G} acts on GY x GY via g - (h1,h2) = (gh1,gh2g™!). Now the morphism
GY x GY — GY defined by (g, h) — g~ hg defines an algebra isomorphism
0(Gy) = 0(Gy < GY)%,
which therefore provides a canonical algebra morphism
v v
0(Gy) = End(0(Gy) ® Ogy),
hence finally an algebra morphism
(110) O(GY) = Endinap,, (Z(0(GY)))

In this way, 2 (0(G)/)) becomes an (G} )-module in the category Ind- Py, in the
sense recalled in §B.1.

4.6. The regular quotient: definition. The next considerations will make in-
tensive use of the notions of Serre quotient of an abelian category and of Verdier
quotient of a triangulated category; for a brief reminder on these notions, and
references, see §A.1.

The main player of | | is the abelian category

P?.,Iv
defined as the Serre quotient of the abelian category P11 by the Serre subcategory
Pﬂ'l generated by the simple objects £, for w € W such that £(w) > 0. If we
denote by Dﬂ' 1 the full triangulated subcategory of Dy 1 generated by Pﬂ' 1» and by D?)I
the Verdier quotient of D1 by le [, then by Lemma A.2 (applied using the perverse
t-structure on Dy 1) there exists a unique t-structure on DRI such that the quotient
functor HIO,I D1y — D%I is t-exact, and moreover this t-structure is bounded, and
its heart identifies canonically with P%I. This t-structure will be called the perverse

t-structure, and the associated cohomology functors will be denoted P7#™(—). Since
P11 is a finite-length category, so is PRI, and its simple objects are the objects

63) = HIO,I(j(gw)

for w € Q. (In case w = e is the unit, we will write §° for §2.)
Consider the bifunctor Dy x Dry — DY sending a pair (#,%) to I} {(F x1 ¥).
By | , Lemma 5.1(1)] we have TIY [(.7 %1 &) = 0 if either .7 or ¢ belongs to
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fo 1~ By the general properties of Verdier quotients (see §A.1), it follows that there
exists a unique bifunctor
* : DYy x DYy — D4
such that
H?,I(y) *? H%I(g) = H?,I<9 *19Y)
for any #,% in Drj. It is easily seen that this bifunctor equips DIO,I with the
structure of a monoidal category, with monoidal unit 6°.

From the fact that 96, 1 €., = I%,. for w,w' €  one sees that *? is
t-exact on both sides with respect to the perverse t-structure; it therefore restricts
to a bifunctor PPy x PY; — P{; which equips P{; with a monoidal structure. Tt is
clear that the functor

7" =1} 0 Z : Rep(Gy) — PY;
has a canonical monoidal structure.

4.7. Another convolution bifunctor. For later use, we now explain a variant of
the constructions of §4.6 where I-equivariance is replaced by I-equivariance.

Recall the category Di, 1, its perverse t-structure, and the heart Py 1 of this
t-structure (see §4.2). Let us denote by Pfr“_l, resp. D1+" 1» the Serre subcategory
of Pr, 1, resp. the full triangulated subcategory of DImI,’generated by the simple
perverse sheaves For{u (ICw) with w € W such that £(w) > 0. We will denote by
P? 1 the Serre quotient of Py, 1 by P{,,I’ and by Df ;| the Verdier quotient of Dy, 1
by Dﬂl. Then by Lemma A.2 there exists a unique t-structure on D?u,l such that
the quotient functor

17 ;: D1 — DY, |

is t-exact; moreover, this t-structure is bounded, and its heart identifies with P? ;.
This t-structure will be called the perverse t-structure, and the associated coho-
mology functors will be denoted P72 (—).

By the universal property of the Verdier quotient, the composition

Forj 0
u

HIu,I 0
PI,I E— PIu,I —_— PIU,I

factors through a triangulated functor

ForhO : D?’I — D?U)I.
This functor is easily seen to be t-exact with respect to the perverse t-structures,
and its restriction to the hearts identifies with the functor provided by the universal
property of the Serre quotient. Recall that For%“ is fully faithful on perverse sheaves;
from the standard description of morphisms in a Serre quotient category (see | D,
and since Pr 1 is closed under subquotients in Py, 1, one sees that the restriction of
For};o to the heart of the perverse t-structure is fully faithful.

Consider the bifunctor

DIu,I X DI,I — DIOH,I
sending a pair (F,%) to I} [(F %1 9), where 4 is as in (4.4). Tt follows again
from [ , Lemma 5.1(1)] and the general properties of the Verdier quotient
(see §A.1) that there exists a unique triangulated bifunctor

0.no 0 0
*7 DI“,I X DLI — DL”I
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such that for .% in Dy, 1 and ¢ in D11 we have
7 ((F) 4 I71(9) = I} 1(F + 9).

This bifunctor defines a right action of the monoidal category (DPy,+?) on DY

us

for #,9 in D?)I we also have a canonical isomorphism
(4.11) Fory *(F +{ 9) = For;*(F) +) 4.

As in the I-equivariant setting in §4.6 one sees that the bifunctor %{ is t-exact on
both sides; its restriction to the hearts of the perverse t-structures defines a right
action of the monoidal category P?’I on P?U,P by exact autoequivalences.

4.8. The regular quotient: coherent description. In this subsection we make
the following assumptions:

(1) the quotient of X*(T') by the root lattice of (G,T) is free;

(2) the quotient of X, (T) by the coroot lattice of (G,T) has no ¢-torsion;

(3) for any indecomposable factor in the root system of (G,T), ¢ is strictly
bigger than the corresponding value in Figure 1.1.

Here the first assumption is equivalent to requiring that G}/ has simply connected
derived subgroup, and the second one that its scheme-theoretic center is smooth.
The third assumption can most probably be weakened; it implies in particular that
¢ is good for G.

By | , Theorem 5.4], there exists a regular unipotent element u € G and an
equivalence of monoidal categories

Orp: (PLi*t) = (Rep(Zay (u), ®)

such that

0 ~ G]l;/
Z o= ForZG]Z(u)

as monoidal functors, where Zgy (u) is the centralizer of u and
G\/
Forzzkv(u) : Rep(GY) — Rep(Zgy (u))

is the restriction functor. (Note that by Lemma 2.6 the scheme-theoretic centralizer
of u is smooth, so the structure we consider on Zgy(u) is unambiguous.) This
equivalence furthermore satisfies the property that the automorphism

O (T} 1(my))

identifies with the action of u on V, for any V in Rep(Gy).

Below we will need a more explicit description on this equivalence than what
is provided in | ], which we now explain. This description will make use of
the notion of tensor product with an R-module in a category, whose definition is
recalled in §B.1.

We first recall the structure of the main construction in | ]. As explained
in §4.5 the G)-module O(G}/) defines an ind-object in Rep(Gy ), which is moreover
a ring ind-object. The image 2°(0(GY/)) therefore defines a ring ind-object in the
category P(ﬂl. As explained in [ , §3.3] (following [131]) any left ideal subobject
in Z9(0(GY)) is automatically a two-sided ideal; in particular if we fix a maximal
left ideal subobject # C Z°(0(G))) then the quotient

#° = 200(GY))] S



52 R. BEZRUKAVNIKOV AND S. RICHE

has a canonical structure of ring ind-object such that the surjection Z°(0(Gy)) —
2" is a ring morphism. One then checks that the assignment

\IILI : y — Homlnd'P(I),I (60,%0 *IO y)

defines a functor from P?; to the category Vecty of finite-dimensional k-vector
spaces, that this functor admits a canonical monoidal structure (induced in an
appropriate way by the ring structure on #°), and that its composition with 2
identifies with the forgetful functor For® . Rep(G)/) — Vecty. Using this functor
we invoke Tannakian formalism to obtain a closed subgroup scheme H C G}/ and
an equivalence of monoidal categories

(PY1.#7) = (Rep(H), ®)

whose pre-composition with Z° is the restriction functor Forff‘v, and whose post-
composition with the forgetful functor For? is Uy 1. From the automorphism m of
the functor 2°° we obtain an automorphism of the functor Foerv, which defines an
element u € GY. Most of the content of | ] is then devoted to showing that u
is unipotent regular, and that H = Zgy (u).?

A posteriori, the ind-object Z°(0(GY)) identifies with &(GY) seen as a Zgv (u)-
representation; its maximal left ideals are therefore parametrized by the cosets in
Zay (W\GyY. We claim that, if we still denote by ®1y the induced equivalence on
ind-objects, we have a canonical identification

(I)L](%O) = ﬁ(ZGl;/(u))
In fact the ring surjection 2°(0(GY)) — %° induces a ring map
(4.12) O0(GY) =011 (2°(0(GY))) = ®11(%°),

which as explained above identifies the right-hand side with functions on a certain
coset in Zgyv (u)\GY; what remains to be justified is that this coset is Zgy (u). To
check this it suffices to prove that our coset contains the unit element e, i.e. that
the augmentation morphism 0'(G,/) — k factors through our morphism (4.12). For
that we consider the commutative diagram

Homgy (k, 0(GY) ® O(GY)) Homgy (k, 0(GY))

| |

Homy,q.pp (0%, 2°(0(Gy)) 5 Z°(0(GY))) — Homyyq.py (6%, 2°(0(GY)))

T

Homlnd—P? I (507 %0)

where the upper vertical arrows are induced by 2, the lower vertical arrow by the
quotient morphism 2°(0(GY)) — %°, and the horizontal ones by multiplication
in 0(GY). (The G}/-action on each copy of O(G}/) is the left regular action.) Here
the diagonal arrow factors through ®;1(#°), and the upper line identifies with the
augmentation morphism (G}/) — k, via the morphism 0(G)) ® O(GY) — O(G}))

0
LD

then shown to coincide with P?I. This subtlety is irrelevant for the present discussion.

2In fact the equivalence we initially obtain concerns only a full subcategory of P?, which is
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induced by f ® g — f(e)g and Frobenius reciprocity. Moreover the composi-
tion of the right vertical arrows is an isomorphism in view of the isomorphism
Hom(6°, %2°) = ®11(6°) = k. The desired claim follows.

Recall from (4.10) that Z°(€0(Gy)) is an O(Gy )-module; hence Z°(0(GY)) has
the same structure, and the corresponding morphism

O(GY) — Ending-rep(z4y w) (O(GY))

obtained by applying ®711) is induced by the morphism GY — GY given by g —
Yy applymg @, Y p k k 8 Yy g
¢ lug. It is easily seen from definitions that restriction induces an isomorphism

O(GY) ®acyy O{u}) = O(Zay (v)),
from which we deduce a canonical isomorphism
Z(0(G)) ®eocyy O({u}) = %°.
Here, since O0(GY) acts on Z°(0(GY)) by endomorphisms of left modules, the
left-hand side is naturally a left 2°°(£(G)/))-module, and this identification is com-
patible with this structure; it follows that the multiplication map on %#° can be

recovered from this description.
The comultiplication morphism of &(G)) defines a morphism of G)/-modules

(4.13) OGY) = O0(GY) @ O(GY)

(where the action on the right term in the tensor product is trivial) which we use
to obtain a morphism

O(GY) @ Ocy — (0(GY) @k Ogy) ® O(GY)
in Ind—Cothjkv (GY). Here the right-hand side has an action of O(GY) ® O(GY)
obtained from the (G)/)-action on the first term (as in §4.5) and the obvious
O(G)))-action on the second term. If we restrict this action to O(Gy) via the

morphism induced by (g,h) + h~lgh, then explicit computation shows that our
morphism is €(G)/)-linear. We now consider the morphism

Z(0(GY)) — Z(0(Gy)) @ 0(Gy)

in Ind-Py1 obtained by applying (the extension to ind-objects of) 2 Coh  This
morphism is again & (Gﬂz )-linear; as a consequence the composition

Z(0(GyY)) - Z(0(Gy)) ® 0(Gy)
= (Z(0(GY)) ®o(cy) O({u})) ® O(Zgy (v))
factors (uniquely) through a morphism
(Z(0(GY)) ®ocy) O({u})) = (Z(O(GY)) ®o(ay) O({u})) ® O(Zay (u)).

Applying T |, we deduce a morphism
(4.14) (Z°(0(G)@o(ay)0({u}) = (Z°(O(GY)Ro(ay)O({u})©0(Zgy (u)).

These considerations show that the functor
(4.15) @11 : PPy = Rep(Zgy (u))
can be reconstructed a posteriori as the functor

F = Hom (0%, (Z°(0(GY)) @aay) O({u}) + F),
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with the monoidal structure induced by the product on Z°(0(Gy)) @ (ay) 0 ({u})
induced by the product on Z°(€(GY)), and the Zgv(u)-action defined by the
coaction induced by (4.14). With this description, the regular unipotent element u
can in fact be chosen a priori, and arbitrarily, and the induced functor (4.15) will

be an equivalence in all cases. (As explained above, this choice is equivalent to the
choice of a left ideal ideal subobject in Z°(0(GY)).)

Remark 4.7. (1) We do not claim that we know how to prove that @y is an
equivalence using the description as above, but only that we can give this
description a posteriori, once we know that it provides an equivalence.

(2) These considerations show that the ind-object % is in fact the image under
H?’I of a canonical ind-object in P11, namely the tensor product

(4.16) %= Z(O(GY)) ®ocy) O{u).

Moreover, the same arguments as for Z° show that Z has a natural struc-
ture of ring ind-object. As explained above, the morphism (4.14) defining
the Zgy (u)-action is also defined at the level of this object.

(3) One can also describe a variant of the equivalence ®; which does not re-
quire any choice; namely, if U, denotes the unique open orbit in the unipo-
tent cone U of Gy, then as explained in | ; §2.4] the map hZgy (u) —
huh~! induces an isomorphism of varieties

G]I\(//Z(;]\(/(U) =5 Ureg,

hence an equivalence of categories Coh® (Ureg) — Rep(Zgy (u)). One can
check that the composition of ®1; with the inverse of this equivalence de-
fines an equivalence

PO & Coh®¥ (Useg)

which is independent of the initial choice of the ideal _# (or, equivalently,
of the element u).

5. CONSTRUCTION OF THE MONODROMIC REGULAR QUOTIENT

In this section we provisionally come back to the general setting of §4.1.

5.1. I,-monodromic sheaves on the extended affine flag variety, convo-
lution, and monodromy. Recall the ind-scheme F~1G defined in §4.1. This ind-
scheme admits an action of I,, and we can consider the associated equivariant
derived category DR (FNIG7 k). We will denote by

DII

ustu

the full triangulated subcategory of D}’u (P~‘lg, k) generated by the essential image of
the pullback functor 7* : Dy (Flg, k) — Dy, (Flg, k). (In other words Dy, 1, is the
I -equivariant derived category of sheaves on F~lg, constructible with respect to the
stratification given by inverse images of T-orbits on Flg.) The perverse t-structure
on D}’“ (Flg, k) restricts to a t-structure (pDISuE)Iu7 pDIZUE)IU) on Dy, 1,, whose heart will
be denoted Py, 1,. Since 7 is smooth with connected fibers the functor

7l = 7*[dim(T)] = «'[~ dim(T)] : Dy, 1 — Dy, 1,

us
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is t-exact, and the simple objects in the category Py, 1, are the object 7' For{u (ICw)
with w € W.
We define a natural convolution product — 1, — on the category Db (Flg, k) as

follows. We denote by FIGxFIG the fppf quotient of LG x FIG by the action of I,

defined by g - (h,z) = (hg™!, g - x); it is easily seen that this functor is represented
by an ind-scheme, which we denote in the same way. The multiplication map in
LG defines a (non proper!) morphism m : Flg xFlG — Flg. Then, given 7 ,¥
in D (Flg, k), there exists a unique complex .# K% in DR(F]G X Flg, k) whose

pullback to LG x FNIG is the exterior product of the pullback of % to LG with ¢4.
We set B

F *1, Y = m(F RY)[dim(T)].
It is not difficult to check that this operation admits a natural associativity con-
straint. (In this definition we use the !-pushforward, which differs from the *-
pushforward since m is not proper.)

Remark 5.1. As in Remark 4.1, given I;-stable subschemes X,Y in ISIG7 we will
also denote by X xY" the quotient of X " XY by the I -action induced by that on
LG x Flg, where X’ is the preimage of X in LG.

Lemma 5.2. For any % ,% in D11 we have
(n'Fory (F)) #1, (n'Fort (9)) = (n'For| (F %1 ¥)) @ HN(T;k)[2 dim(T)),
where we write H (T k) for @,y HL(T, k)[—1].
Proof. If we denote by DP (ﬁlg,k) the I-equivariant derived category of ﬁlg, the
same definition as for the convolution product x; defines a canonical bifunctor
D11 x DP(Flg, k) — D? (Flg, k),
which will also be denoted *;. Let us again denote by
Fori. : D?(Flg,k) — DP (Flg, k)
the natural forgetful functor; then by the same considerations as for [ ,
Lemma 2.5], for .#’ in D} (Flg,k) and ¢’ in Dp(Flg,k) we have a canonical iso-
morphism
F!x1, For% (@) = (mF') %1 9 [dim(T)].
With .7 ,¥ as in the statement, we deduce an isomorphism
(n ForIu (F)) #1, (7 ForIu (4)) = (7 ForIu (F)) *1, (ForIu o 7*(¢))[2 dim(T)]
= (mr*Fory (F)) %1 (7°9)[3 dim(T)).

Il

Now we have
(mm*For] (F)) 1 (7*9) = n*Fory (m7*F) % Y).
If we denote by X C Flg a closed union of T-orbits over which .% is supported, and

by X its preimage in Flg, then by the projection formula we have 7w ﬁ ~F ' Ok
mk z. Since X is a T-torsor over X, we have a canonical isomorphism X xx X
T x X; the base change theorem then implies that mky 2 kg Qx HLe! (T; k), and
using thls (and the definition of the convolution product) we obtam an isomorphism

(ma* F) %19 = (F + 4) @ H(T; k).
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The desired isomorphism follows. a

The formula in Lemma 5.2 shows in particular that the bifunctor %1, restricts to
a bifunctor
D, 1

uyiu

x D1, 1, = Dr,.1,-
A similar construction provides a bifunctor

*1, : D11, X D1, 1 = D1
such that

T (F %1, G) = F x, 71 (9)
for % in Dy, 1, and ¢ in Dy, 1.

Verdier’s monodromy construction (see [Ve]; see also | , | for additional
comments) with respect to the action of T x T" on ﬁlg via (t1,t2) - gly = t1gtal,
provides, for any .# in Dy, 1,, a canonical algebra morphism

pz : 0T x T,') = Endp, , (F),

which is unipotent in the sense that it vanishes on a power of the kernel of the
natural augmentation morphism (7, x T,Y) — k. (Here we use the identification
O(T)) = k[X.(T)].) This construction satisfies various forms of functoriality; in
particular, for any #,% in Dy, 1, and any morphism f : . # — ¢ we have

fopz(r)=pg(x)o f

for all z € O(T}Y x T,Y). With this structure, Dy
category.

becomes an O (T} x T’ )-linear

wlu

Remark 5.3. Recall that each I-orbit on Flg is stable under the loop rotation action,
as well as each pullback of such an orbit to Flg. As a consequence, for every object
Z in Dy, resp. ¢ in Dy, 1,, we have a canonical monodromy morphism

et k[a@m_l] — Endp, ,(#), resp. gt k[x,x_l] — Endp, , (¥).

These morphisms possess the same functoriality properties as those considered
above.

Recall also that any object of Pr+ g 1+ is automatically equivariant with respect
to the loop rotation action, see [NV, Proposition 2.2]. As explained in [AB, §5.2]
(see also | , Proposition 2.4.6 and its proof]), as a consequence of Lemma 4.3
and this property, for any &/ in Pp+¢ +g we have

(5.1) M = 5l ().

5.2. The monodromic regular quotient. The main player in this paper will be

the abelian category

0
PL. L.

defined as the Serre quotient of Py, 1, by the Serre subcategory PI+., 1, generated
by the simple objects WTFor}u(J‘Kw) for w € W such that £(w) > 0. Let us also
denote by DIJ; 1, the full triangulated subcategory of Dy 1, generated by the perverse
sheaves WTForL(ﬂ‘Kw) for w € W such that £(w) > 0, and by D{ | the Verdier
quotient of Dy, 1, by DP:,,L; By Lemma A.2 once again, there exists a unique
t-structure on D?U,Iu such that the quotient functor

0 . 0
I, 1, : Dr,1, = Dp, 1,
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is t-exact; moreover this t-structure is bounded, and its heart identifies with P}, | .
This t-structure will be called the perverse t-structure, and the corresponding co-
homology functors will be denoted P.7#"(—).

Lemma 5.4. (1) If F belongs to DK,I., and ¢4 is any object of Dy, 1,, then the
objects F *1, 9 and 4 *1, .F belong to DIt,Iu'

(2) For #,9 in pDISu?Iu andn € Zsq, the object A" (F x1,9) belongs to P;:,Iu'

Sketch of proof. The proof reduces to the case % and ¢ are simple perverse sheaves,

which reduces to the claims in | , Lemma 5.1] using Lemma 5.2. g

As a consequence of Lemma 5.4 we obtain that the bifunctor

0
D1, 1, X D1, 1, = Dp

wlu

defined by

(F,9) — H?mlu(ﬁz *1, 9)
factors through a bifunctor

0 0 0 0

*1, + D11, X Dr,1, = Dr, 1,

which is triangulated and defines a structure of monoidal category (without unit
object) on D?U,Iu' This bifunctor is moreover “right t-exact” in the sense that if
F,%9 belong to the nonpositive part of the perverse t-structure on D?u,luv then so
does 7 *?u %. (This bifunctor is not t-exact if G is nontrivial, contrary to the

situation for DY;.)
We also define the bifunctor

(=) P, (=) PR, g, X Pr, = PR,
by setting, for .#,¥ in P?\,,Iu’
T G =" AT R, D).

The right t-exactness of x{ implies that the bifunctor (—) Pxp (—) is right exact on
both sides, and also that for .#,¥, 7 in P(I)mIu we have
(F P G) P A 2P0 ((F ). G) <) A,
T Px) (G P ) 2P (F <) (G ) H));
in particular, the associativity constraint on *?u induces an associativity constraint
on p*?u, so that we obtain a monoidal category
(P?U,Iuv p*?u)
(again, without unit object).
5.3. Relation with the regular quotient. It follows from the definitions and
the universal property of the Verdier quotient that the composition
¢ | onfoForf :Dyy— D} |
factors through a triangulated functor
0 0
7T8 : DLI — DIl“I .
From the t-exactness of 77 we deduce that 71'8 is t-exact with respect to the perverse
t-structures.
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Lemma 5.5. The restriction of 7T(Jg to the hearts of the perverse t-structures admits
a natural structure of monoidal functor

T (PR = (PR, 1, P0,)-
Proof. From Lemma 5.2 we obtain for .%,¥ in D%I a canonical isomorphism
T (F) L, w (@) = 7i(F +) F) @ HE(T K)[2 dim(T)).

If # and ¢ belong to the heart of the perverse t-structure, we deduce a canonical
isomorphism

T (F) A, (&) = (F ) ) @ H (T k).
Now the vector space H2dim(T) (T';k) is canonically isomorphic to k since T is con-
nected, which provides an isomorphism of bifunctors defining a monoidal structure
on our functor. O

Similar considerations show that the composition
H?‘“Iu ont: Dy, 1 — D?u,lu
factors through a triangulated functor
a0 D?ml — D?mlu,
which is t-exact for the perverse t-structures and satisfies

(5.2) mh 2 w0 o Forp”

where Fori’]0 is defined in §4.7.

6. FREE-MONODROMIC PERVERSE SHEAVES

We continue to consider the general setting of §4.1.

6.1. Yun’s completed category. Following Yun (see [BY, Appendix A]; see
also [BR1] for additional comments) we consider the “completed” category
Df\LnIu

associated with the T-torsor 7 : ﬁlG — Flg and the I,-action on these ind-schemes.
Recall that this category is defined as the full subcategory of the category of pro-
objects in Dy, 1, whose objects are the systems
“ @1 7 y’n
’I’LGZEQ

which are
e m-constant, in the sense that the pro-object “lim” m(F,) is isomorphic to
an object in Dy 1;
o uniformly bounded in degrees, in the sense that we have an isomorphism
“lim”.7, = “lim”%, and some N € Zxo such that cach .7, satisfies
P F!) =0 unless i € [N, N].
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It is proved in [BY, Appendix A] that this category admits a triangulated structure,
for which the distinguished triangles are the diagrams isomorphic to one of the form

13 H " o “I-Ln”a" 1R ” “Ln”ﬁn 1R H 2 A‘r&n”v" 1R » o
@ T, I&n 9, —— @ H, ———— @a Fnll]
where each
Fp 2@, 2 o, I Fnll]
is a distinguished triangle in Dy, 1,. In particular we have a canonical fully faithful
triangulated functor

(61) DIu,L, — Dﬁ,\vlll

sending an object % to the constant projective system with value .%. The functor
m = m[dim(7")] defines a functor D\ ; — D, 1, which will also be denoted m,
and which can be shown to be triangulated. This functor is conservative by [BY,
Lemma A.3.5]. By [ , Corollary 5.5], the category Dﬁ 1, is Krull-Schmidt.

It is clear that in this definition one can replace the ind-scheme P~‘IG by the inverse
image of any locally closed union X of I-orbits in Flg; in this setting the completed
category will be denoted D (X, k).

Recall the local systems 7, on T considered in | , §10.1], and the associated
pro-object

L= “lim” %
T % T,n

onT. (Here each %7, is an extension of copies of the constant local system k.)
We have FIG e = B/U 2 T. The pro-object £} therefore defines a pro-local system

on FlG ¢; taking the pushforward under the embedding in Flg of its shift by dim(7")
we obtain an object in Df\ ; , which will be denoted ¢”. By [ , Equation (3.3)],
we have a canonical isomorphism

m(6") 2 Fory_(d).

The arguments of [BY, §4.3] (see also | , §7.3] for the analoguous case of
G/U) show that the monoidal product 1, extends to a bifunctor

T. A A A
*: D1, X D1, = Dr,

which is triangulated on both sides. More specifically, the bifunctor x1, extends in
a canonical way to a bifunctor * on pro-objects, so that for pro-objects “ @ie ; " P
and 'mjeJ”%j we have

cc@w J‘i :k\ “ 'mvvgj —_— I&H ug‘i *Iu gj
el JEJ (i,9)eIxJ

Now if these pro-objects belong to DIAu’Iu (so that, in particular, we can assume
I =J=7Zxq) we have

(u@w{ggﬂ) "~ (écanwgm‘) — ul-&nw (“yll”jn *1, %m>

where for each m the pro-object @n " Fn *1, Ym 1s representable by an object of
D1, 1, It is explained in [BY, §4.3] that this formal inverse limit of objects in Dy, 1,
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belongs to Df\ ; . In fact we also have

n m n m
where for each n the pro-object “ @m " Fn *1, Ym belongs to Dy, 1,.

The bifunctor * on Df ; admits a natural associativity constraint and a unit
object (namely, 0"), which equips Df\ | ~with the structure of a monoidal category.
It restricts to (triangulated) bifunctors

~ . A -~ A
*: D1 1, X D1, = D11, %2 D1, X Dy 1, = Dr,, 1,

which define left and right actions of the monoidal category (Df. ; ,%) on the cate-
gory Dy, 1, respectively. These two actions commute, and are compatible in various
ways; in particular, for %#;, %5 in DIAu 1, and ¢1,% in Dy, 1, we have canonical
isomorphisms

(6.2)
(gl ??1) *Ty (92 ’;gg) = % KTy ((91 ;\:92) ;\gg) = («% * (ﬁl ;yg)) *, gg,
(63) (ﬁl ;gl) *T, gz = 91 * (gl *Ty gg)

Remark 6.1. As explained above, the convolution product on DIAu 1, extends that
on Dy, 1., and there exists a unit object for this product. The construction of DIAu,Iu
can be seen as a way to “complete” the category Dy, 1, so that it admits a unit

object, while staying in the world of ¢riangulated monoidal categories.

We similarly have an action on the category Dy, 1, defined by a bifunctor

~  RNA
*'DIu,IUXDI 1—>D1 1

us us

whose definition is similar to that considered above, and which is also triangulated

on both sides. These functors satisfy the following relations (see [ , Equa-
tions (7.2) and (7.6), Lemma 7.2]):

(6.4) T F*xY) =2 Fxmi(9)

(6.5) F % Forl (H) 2 mi(F) 51 H

(6.6) Frrl() =l (Fx0)

for #,9 in Dﬁylu, ¢ in Dry and % in Dy, 1.
The monodromy constructions of §5.1 pass to the completion, and provide for
any .% in Df\u 1, canonical algebra morphisms

pz: OT) xT)) — Endp,  (F), Wt K[z, a7 — Endp, (F)

which commute with all morphisms. In particular, with the morphisms p o, DIA‘“I“

becomes an O(T} x T,')-linear category. These operations are compatible with
convolution, in the sense that for .%#,¥ in Dﬁnlu and f,g € O(T}) we have

(6.7) sy (f @ 9) = pz(f @ 1) * pg(1®g)
(6.8) pr(1® f)*idg = idg * pg(f @ 1).
(The proof is similar to that given for sheaves on G/U in | , Lemma 7.3].) It is

not difficult to check that for .%,¥ in Dﬁ 1, We also have

(6.9) W (@) = 13" (2) * pig* ().
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The following claim follows from | , Remark 5.1].

Lemma 6.2. Let F in DIAu,Iu' Then F belongs to the essential image of the
functor (6.1) iff the restriction of ug to k @x O(TY) C O(T) x T,) vanishes on
some power of the mazimal ideal corresponding to e € T,/ .

6.2. The perverse t-structure. Another important feature of the “completed”
(or “free monodromic”) category Df ; is that it admits a “perverse” t-structure
(pDﬁ’fB,pDﬁ’i?), whose heart will be denoted P{ ; . (For the definition of this
t-structure, see | , §5.2]; for an earlier and slightly different construction of this
t-structure, see [BY, §A.6].) From the construction it is clear that the functor (6.1)
is t-exact. One can check also that the functor 74 of §6.1 is right t-exact, see [ ,
Corollary 5.8].

For any w € W, the quotient I,\Flg,,, is a T-torsor over Spec(k) for the action
induced by right multiplication on LG (but this torsor does not admit any canonical
trivialization in general). After choosing a T-equivariant isomorphism Iu\ﬁlg?w =
T, we can then define

AL = “Iim” (G )p}y L4 [dim(T) + £(w)],

n

Vi = “lm” ()0l 2P, dim(T) + £(w)],

where p,, is the composition ﬁlgm, — Iu\]?‘vlg,w 5T, and Gy - ﬁlng — P~‘1G is the
embedding. These objects are perverse sheaves, and do not depend on the choice
of trivialization up to (noncanonical) isomorphism. They also satisfy

(6.10) mi(A}) = Fory (AY),  m(V}) = Fory (V1,),
see | , Equation (5.3)]. With these objects at hand, one can describe the non-

positive part pr\u ?‘? of the perverse t-structure on Dﬁ,l., as the subcategory gen-

erated under extensions by the objects A\[n] with w € W and n > 0, see | ,
Lemma 5.6]. (The similar statement for the nonnegative part of the t-structure
does not hold.)

Lemma 6.3. (1) For any w € W, there exist isomorphisms
ALNEVA L 25N, VAL RAN =,
(2) Ifw,y € W are such that £(wy) = L(w)+L(y), then there exist isomorphisms
AT AN a0 AN A SO o oA
Ay *x Ay = AL, VxVy =V,
(8) For any w,y € W, the objects
ALKV and Vi %A}
belong to P{ 1 .
Proof. For (1)—(2), the proof is similar to that of the corresponding statements on
G/U, treated in detail in | , Lemma 7.7]. For (3), the proof is again based on
the same idea: by (6.4)—(6.5) and (6.10) we have
mH(ALF V) 2 Al % Forp (V}) = Forp (AL) » V5.
Now it is well known that the right-hand side is a perverse sheaf, see e.g. | ,

Lemma 4.1.7]. Since an object whose image under 7y is perverse is itself perverse
(see | , Lemma 5.3(1)]), the claim follows. O
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Remark 6.4. Lemma 6.3(1) implies in particular that the functor of left (resp. right)
convolution with A’} is an equivalence of categories, with quasi-inverse given by left
(resp. right) convolution with V/_,.
Corollary 6.5. For any w € W:
(1) the functors
Vi * (=), (5)* Vi : D1, = Di g,

are right t-exact;
(2) the functors

: Df\u,lu — DIAU’Iu
are left t-exact

Proof. Since the nonpositive part of the perverse t-structure on Df,,lu is generated
under extensions by the objects Aj[n] for y € W and n > 0 (see above), (1) is
a consequence of Lemma 6.3(3). We deduce (2) using the fact that the functor
Vi_1 % (=), resp. (=) * VI _, is left adjoint to Al % (=), resp. (=) x Aj, see
Remark 6.4. a

Below we will also need to consider the monodromy morphisms for the objects
A and V2. The following lemma is the analogue in our present setting of | )
Lemma 5.4, Lemma 6.1]. Here we denote by (7)" the spectrum of the completion

of O(T,Y) with respect to the ideal corresponding to e € T}Y. For A € X, (T), we

will also denote by e* the corresponding morphism 7Y — Gy, seen as an element
in 0(T)).

Lemma 6.6. Let w € W, and write w = vt(\) with v € Wy and X € X, (T).
(1) The restriction of uan to the subalgebra
OT)=ko0(T))C O(T))® O0(T)) = 0T} xT,)
factors (in the natural way) through an isomorphism
OT)) = Endoy , (AD),
and any nonzero endomorphism of Al is injective. Moreover, for any f €
O(T)) we have
pay(f@1) = pag(1@v™'(f)),
and we have
PRk () = pay(1®@e?).
(2) The restriction of pvn to the subalgebra
OL)=k@O0(T))C OT))® O0(T)) =0T xT})
factors (in the natural way) through an isomorphism
O((TY)") = Endoy | (VA).
Moreover, for any f € O(T}) we have
pop (f©1) = pys (L@ v (f)),
and we have
ok (x) = oy (1@ e™?).
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Proof. The claims about the right monodromy and the injectivity of nonzero mor-
phisms are general facts in completed derived categories, see | , Lemma 5.4].
Since I,, is normal in I, the left action of T on F~1G7w induces an action on the quo-
tient Iu\I*:IQw7 and it is easily seen that this action is the twist of the action consid-
ered above on Iu\I*:ngw by v~!, which implies the claim about left monodromy by
basic properties of the monodromy construction, see | , Lemma 2.5]. Similarly,
the loop rotation action on ﬁlg}w induces an action on the quotient IU\FNIG,U,, which
is deduced from the T-action via —A : G, — T; this implies the claims about the
loop rotation monodromy. O

6.3. Tilting perverse sheaves. Recall that an object % in Pﬁ,lu is said to be
tilting if it admits a filtration (in the abelian category Pf\u ,Iu) with subquotients of
the form A}, (w € W) and a filtration with subquotients of the form V) (w €
W). The full subcategory of Pﬁ,lu whose objects are the tilting perverse sheaves
will be denoted T{ ;. As explained in [BY, §A.7] (see also [ , §6.5]), the
isomorphism classes of indecomposable objects in TIAu 1, are in a canonical bijection
with W; more specifically, for any w € W there exists a unique (up to isomorphism)
object 7, in Dy, | ~such that 7{(7,) = 7, (where the right-hand side is defined
in §4.2); then 7 is an indecomposable tilting object in Pﬁ 1, and the assignment
w +— ) provides the desired bijection. (We insist that 7/ is defined only up to
isomorphism.)

The same arguments as in [B1t1, Remark 7.9] show that T{ | is a monoidal
subcategory in Dﬁ,lu' Note also that we have natural equivalences of categories

(6.11) K°T{, 1, = D"P{1, = D{\ 1.

see [ , Proposition 5.11], and that the composition of these two equivalences has
a natural monoidal structure.
Using tilting objects one obtains the following property of monodromy.

Lemma 6.7. For any % in Pf\u,lu the monodromy morphism ug factors through
the surjection

O xTy) = O(T xov yw; Ty).
Proof. Let us first note that for w,y € W we have
(6.12) Hompp (AL, A)) =0 ifw#y.

In fact, write w = vt(\) and y = v't(N) with v,v’ € W and A\, N € X, (T). If
[ Al — A} is a nonzero morphism and 7 is its image, then for any r € O(T})
we have pg(r®1) = pz(1 @ v=1(r)) by Lemma 6.6(1) and the fact that .Z is a
quotient of A\, and pgz(r®1) = pz(1® (v)71(r)) by the same lemma and the
fact that .# is a subobject of AJ). Hence pz(1® (v™"'(r) — (v)~'(r))) = 0 for any
r. The injectivity claim in Lemma 6.6(1) then implies that v=1(r) = (v/)~1(r) for
any r, so that v = v’. The same considerations using p'9* show that A = X', which
finishes the proof of (6.12).

Once this claim is proved, using the fact that pa, factors through the surjection
O(Ty) xT)) — O(T) xgyvw; Ty') (see once again Lemma 6.6(1)) one obtains as
in [ , §§6.3-6.4] or in §7.3 below (using a faithful associated graded functor) that
this property holds for any object of T{ 1,- Finally, the first equivalence in (6.11)
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shows that any object in Pﬁ 1, 1s a subquotient of a tilting object, which implies
our claim. 0

We will still denote by pg the morphism

induced by the map previously denoted pg. In concrete terms, Lemma 6.7 means
that the actions of €(T}) on an object of PIA\”I" defined by monodromy for the
left and right actions of T on Flg coincide on the subalgebra ¢/(1] Y /We). We can
therefore speak unambiguously of the monodromy action of (T} /W) on such an
object. In view of (6.7) the same comment will apply to any object of the form
F *9 with #,9 in melu, and moreover the action on % % ¢ identifies with both
the action induced by that on .% and the action induced by that on ¥.

6.4. Actions of DIAmIu on D?u,lu' Recall from §6.1 that the monoidal category
(Df, 1, %) acts on Dy, 1, via a bifunctor

uylu?

o~

* Df\u,lu X DIqu — DIu,Iu'
Lemma 6.8. For # € DIAL“Iu and 9 € Df‘u 1, the object F >4 belongs to Df‘u_lu.

Proof. As for Lemma 5.4, it suffices to prove the claim when ¢ = rf For%u (FC)
for some w € W with £(w) > 0. Now using (6.5)—(6.6) we see that

F *7For] (ICy) 27! ((71.F) %1 IC0).

Here 7. is an object of Dy, 1, and the bifunctor we consider is that of (4.4). Then
the claim follows once again from | , Lemma 5.1]. O

With this lemma at hand, the universal property of the Verdier quotient implies
that for any .7 in Df y , the functor

0
D11, — D1, 1,

defined by & — 117 _; (.#*%) factors canonically through a functor DY | — D} | ,
and one checks easily that this operation defines a triangulated bifunctor

~0 A 0 0
* D1, xDr, 1, = Dr,

defining a left action of the monoidal category (Df\ ; ,%) on DP ; . Similar consid-
erations starting with the right action of (Df\ ; ,*) on Dy, 1, (by convolution on the
right) leads to the construction of a triangulated bifunctor

~0 . O A 0
* Dy, 1, xDr 1, = Dr i,

defining a right action of the monoidal category (Df\u ,Iu’;) on D?U,Iu' These two
actions commute, and are related in various ways; in particular, from (6.2)—(6.3) we
deduce that for .%#1, %5 in DIAu 1. and 4 ,% in D?u,lu we have canonical isomorphisms

(6.13)
(@ 2 F) R (PR D) 2 G 0 (717 F2) R %) = (43 (F1 5 Fo)) K0 %,
(6.14) (AR D)% G2 T3 (G 0 D).

We will also consider the bifunctors

>0 . pA 0 0 r20 . po A 0
* P, X PrLa, = P, PP, x Py, = Pg

us
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defined by
F g = F9).
Lemma 6.9. If &% € Df:hI“ and 4 € Dy, 1, belong to the nonpositive parts of the

perverse t-structures, then so does H?‘“I“ (F*9). In particular, for & in Pf:hl“ the
functor

FrR (=) PY P
is right exact, and for 4 in P?H,Iu the functor
(—) PG PP =P
is right exact.
Proof. The first claim will follow in general if we prove it when ¢ is a simple

perverse sheaf, i.e. is of the form TT(FOF%“(]%M)) for some w € W. In this case, as
in the proof of Lemma 6.8 we have

F x 7l (Fory (I€,)) = nl (14 (F) 1 IC,).

Now if ¢(w) > 0, Lemma 6.8 implies that H?‘”I“ (7 (74 (F) %1 IE,)) = 0, and if
£(w) = 0 the object m;(.F) 1 F€,, belongs to the nonpositive part of the perverse
t-structure by right exactness of 7+ (see §6.2) and exactness of (—) 1 6.

To prove the second claim, we fix # in P{ ; . An exact sequence in P(I)\,,L, is
given by a distinguished triangle

1
gl — gg — gg u)
in D?U,Iu where each ¥; belongs to P?u,lu' Applying the triangulated functor % 0 (-)
we deduce a distinguished triangle
~ ~ ~ 1
y*Ogl %y*ogg—)y*oggg.
Now ) =11} | (4]) for some &/ in Py, 1, (by essential surjectivity and t-exactness

of II{ | ), and then & Py = I | (F*¥]) is concentrated in nonpositive perverse
degrees by the first claim; taking the long exact sequence of perverse cohomology
associated with the above distinguished triangle we deduce an exact sequence

PANTF R G) = PN TR G) = PHO(F R D) — 0,
showing the right exactness of .Z Px° (—). The proof that (—) P*’ & is right exact

is similar, and left to the reader ([l

6.5. Truncation of completed perverse sheaves. Recall that the monodromy
morphism for the right action of T' on Flg (see §6.1) provides for any .% in Pﬁ’lu
a canonical k-algebra morphism

O(T)) = Ende;, | (),

which is compatible in the obvious way with all morphisms in Pf\u 1, in the language
of §B.1, this means that the monodromy constructions provides a functor

(6.15) P{ 1, — Mod (0(T}),P1. 1)
whose composition with the obvious forgetful functor

Mod (0(T;), Pt 1,) — Pf.

w,lu



66 R. BEZRUKAVNIKOV AND S. RICHE

is the identity. Composing (6.15) with the bifunctor (B.2), we therefore obtain a
bifunctor
(=) ®e(my) (=) : Mod®(O(Ty)) x P{. 1, — PL 1.
We will denote by J C O(T,'/Ws) the ideal of the image of e € T in T}/ /Wy,
and for m > 1 we set

(1) := Spec(0(Ty)/T™ - O(TY)).
Below we will make use of the “truncation” functor
Cp = ﬁ((Tugv)(m)) Re(1y) (—): Pﬁ,lu — Pﬁ,lu'

In view of Lemma 6.2, this functor in fact takes values in Py, 1,, which allows us to
also consider the composition

0 ._ 170 . PA
Cm = HIU7IU [¢] Cm : PIu 1

stu ustu

6.6. The case of the finite flag variety. Recall that the action of G on the base
point of Flg provides a canonical closed embedding G/U — F~lg, which identifies
G /U with the closure of ﬁ]wa where w, € Wk is the longest element (or, in other
words, the union of the orbits ﬁlg,w with w € Wt). Under this identification, the
action of I, on the closure of 151@,“,0 corresponds to the action on G/U induced by
the natural U-action (by left multiplication) via the projection I, — U.

The same construction as for Dy, 1, and DIA‘”I“ above provides a category Dy ¢ of
sheaves on G/U, and a “completed” triangulated category D@7U, with a monoidal
product %*y. There is also a perverse t-structure on D&U, whose heart will be
denoted P[A])U, and a notion of tilting perverse sheaves; the full subcategory of
P{}’U whose objects are the tilting perverse sheaves will be denoted T{}’U. The

pushforward functor associated with the closed embedding G/U — ﬁlg provides a
t-exact, monoidal, fully faithful functor

(D{\J,U’;;U) - (Dﬁ,luv;)v

which sends tilting perverse sheaves to tilting perverse sheaves. (This functor will
usually be omitted from notation; similarly, objects of Df: 1, supported on G/U
will be considered as objects in D{}’U whenever convenient.) The tilting perverse
sheaves in the essential image of this functor are those which are direct sums of
objects I with w € Wr.

The study of the category Tf;; is the main subject of [ ]. In the course of
this study, we in particular construct explicit representatives for the objects ZU/:
and I (s € St), as follows. Let us denote by U™ the unipotent radical of the
Borel subgroup of G opposite to B with respect to T', so that the T-weights in the
Lie algebra of U™ are the positive roots. Fix, for any s € St, a trivialization of the
root subgroup Us C U* associated with the simple root corresponding to s. Then
we obtain a group morphism y : Ut — G, as the following composition:

Ut - Ut/2wt) <& [ U= ] G = G
s€St s€St
(Here we denote by 2(U™) the derived subgroup of UT.) Let us also fix a non-
trivial p-th root of unity in k, and denote by Zas the associated Artin—Schreier

local system on G,. Then as in | , §10.3] one can consider the (U, x*(Zas))-
equivariant derived category of k-sheaves on G/B, which will be denoted Dwn 5,
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and the full triangulated subcategory Dwyp 7 in the (U™, x*(Zas))-equivariant de-
rived category of k-sheaves on G/U generated by complexes obtain by pullback
from Dwn,p. We have “averaging” functors

Avwh : Dy — Dwh,u, Avy ., Avy : Dwno — Do,

which form adjoint pairs (Avy,, Avywy) and (Avwn, Avp,.). One can also consider a
“completed” category D(}Vh’U using the same procedure as above (based on [BY]),
and the averaging functors induce triangulated functors

AVWh : D&U — D<\7Vh,U> AVU,*,AVU’! : D\/}\Vh,U — D/(}’U,
which have the same adjointness properties as above.
We set
E.;/\ = AVU7! ] AVWh((sé\), E;\ = AVUﬁ* o AVWh((;é\).
It is proved in [ , Lemma 10.1] (following standard arguments taken from | ,

]) that 2 and = are (noncanonically) isomorphic, and representatives for the
object .7, . We will also set

0]
w
Il
3
T
* >

H o =m(E

so that we have =, 2 =, =2 7, .
In the following lemma we gather some standard properties of this object that

will be used later.
Lemma 6.10. For w € Wty and n € Z we have

_ o |k ifw=eandn=0;
HomDﬁ,U(:!A’WTFor%“(j(gw)[n]) - {0 otherwise

In particular, the object Z* is projective in Py ;.

Proof. Let us denote by Dy, p the U-equivariant derived category of constructible
k-sheaves on G/B, and by Py p the heart of its perverse t-structure. Then the
realization functor DbPU7 B — Dy, p is an equivalence by the formalism of high-
est weight categories, see | ], and m(E}) = F,, is the projective cover of
For%u(f‘ge) in Py g. We deduce the desired isomorphism using adjunction. This
implies in particular that
HomD[AJYU(E!A, F)=0
for any .% in pDE;}. By Proposition D.4, any object .# in pD/,}:[%_l can be written
as “ ILnn 7 %, where each 7, belongs to pDa?Jl; we then have
HomDﬁ‘U(Ef\ﬁ) = T&nHomDaU(E{\,ﬁn) =0,
n

which proves that =" is projective in Py ;. O
Using the fact that convolution on the left and on the right commute with each
other, one sees that the functors
B *v (=), Bl %u (=) : Dy = Dy
are canonically isomorphic to the functors Avy, o Avywy and Avy . o Avyyy respec-

tively. In particular, the adjunction morphisms for the pairs (Avy, Avyy) and
(Avwn, Avy ) provide canonical morphisms

=AS =A A A =AS =A
(6.16) D kp 2y — 00, 00 — 20 %y E
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which satisfy the appropriate zigzag relations, so that the functor = %y (—) is left
adjoint to =2 %y (—). The same holds for any category which admits an action of

Dty» eg Df 1.
Lemma 6.11. The functor

E(\;(—) . Dﬁnlu — D{\ I

ustu

is t-exact for the perverse t-structure.

Proof. The subcategory PDﬁ if) is generated under extensions by the objects A/ [n]
for w € W and n € Zxo, see | , Lemma 5.6]. Now Z* % A} is perverse for any
w by Lemma 6.3(3), since =" admits a costandard filtration. This implies that our
functor is right t-exact. As explained above this functor is isomorphic to 22 % (—),
which admits as a left adjoint the right t-exact functor =" % (—). It is therefore left
t-exact, hence finally t-exact. O

Remark 6.12. One can check (using essentially the same arguments) that in fact
the functor 7  (—) is t-exact for any 7 in T{ | .

If now s € S is a simple reflection in W¢, let us denote by 7, the embedding of
the closure of Flg s in Flg. We set

EsA,! = (1)« (1) EY, ESA* = (is)*(is)!Ei\'
As explained in | , Remark 9.5], these objects are (noncanonically) isomorphic,
and are representatives for the object Z*. Moreover, there exists a surjection

=" — E], whose kernel admits a standard filtration, and there exists an embedding
=L, = EJ whose cokernel admits a costandard filtration.

*
7. FREE-MONODROMIC CENTRAL SHEAVES AND WAKIMOTO SHEAVES
As in Sections 5—6 we continue with the general setting of §4.1.

7.1. Free-monodromic Wakimoto sheaves — definition. Recall the Wakimoto
sheaves mentioned in §4.3. In this subsection we explain (following [32]) how these
objects can be “lifted” to the completed category DIAu T

Recall that for A € X,(T) we have a point z* € LG(F) whose image in Flg
belongs to F~1G7t()\). This point defines a point in the quotient Iu\FNIG,w, hence
a trivialization of this T-torsor. In case w € X,(T) C W, the objects A/ and
V2 therefore admit canonical representatives A2 and V-2 defined using this
trivialization. With this definition, we have canonical isomorphisms

(7.1) TH(A ) 2 Forf (A,,),  m(Viy™) = Fory (V).
We will also denote by pS™ : Flg ,, — T the associated morphism (for w € X,.(T)).

w
Lemma 7.1. If \,u € X (T), then there exist canonical isomorphisms

A,can ~ A A,can ™~ A,can A,can ~ —/A,can ~ A,can
s % > s s , , .
By * By B0 Viy Vi 7 Vi

Moreover these isomorphisms are compatible with associativity, in the sense that
for X, u,v € X;F(T) the two natural isomorphisms between

A,can ~ A A,can ~ A A,can A,can
Ay * By * Ay and AT
resp. between

A,can ~ A,can ~ A,can A,can
Vi * Vi) *Viey  ond Vi
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which can be constructed by combining these isomorphisms coincide.

Proof. The proof is similar to that of [32, Lemma 4].

Namely, let us first consider the case of the objects A,EA(;)a ™. Recall that for

A € XH(T) we have £(t(X)) + €(t(p)) = £(t(X + p)); the morphism m therefore
induces an isomorphism
(7.2) Flg v XFlg ) — Fla (-
Let us denote by
’IT’L)\’N : FlG,t(A)XFlG,t(,u) — FlG,t()\+,u)

the morphism induced by m, by

jc()\) Q%(H) : ﬁlG,t()\);ﬁlG,t(p) — ﬁlg ;ﬁlg
the (locally closed) embedding, and by

can

PR XPER  Flg ey XFlaey — T x T
the morphism induced by pf(a)r\‘) and pf(a;). These morphisms fit in a diagram

ﬁlG,t()\) §15lc:,t(u) s ﬁlc,t(xw)

pfﬁi‘%ﬁf{%l lpf:;;w

TxT mr T

(where the lower horizontal arrow is multiplication in T'), which is easily seen to
be commutative. Moreover, the isomorphism (7.2) implies that this diagram is
cartesian.
Using the isomorphism
1 0 (Jen) X))t = Gergp)r © ()

and the definition of * we obtain an isomorphism

A/\,,can ;\A/\,can ~
t(w)

t(A) )
i n” G (71 P50 <P (Lrn 8L ) [£(t(A+ ) + 3 dim(T)].

Using the base change theorem we deduce an isomorphism

A,can ~ A A,can ~u
A * A =

t(A) t(n)
B T G o) (820 () (L B L IO+ ) + 3 dimn(T).
Now by | , Lemma 3.4], for any m there is a canonical isomorphism

« @” (mT)!(fT’n X aS/ﬂT,m) = $T7m[_2 d.lIIl(T)]7
n
which provides the desired isomorphism. The verification that this isomorphism is
compatible with associativity in the sense above is straightforward, and left to the
reader.
The proof for the objects VtA(/\C)d " will be similar, once we construct a canonical
isomorphism

~

1y 0 (Geon) X))« F — Gera))x © (Mr i F



70 R. BEZRUKAVNIKOV AND S. RICHE

for each % of the form (pﬁ(a/{’) QpE(%)*(me X %) with n,m > 0. We obtain a
morphism from the left-hand side to the right-hand side as the composition

1 (Jen) XTeu))« F = Geonen))x Geiren)) T Geon) XTequy )+ F
Z Geonrm)+ (Mx )1 Geon XTe)* Geony X))+ F = Geinm) ) (M T

where the first and third morphisms are induced by adjunction, and the middle
isomorphism is given by the base change theorem. Since the objects we have to
consider are all extensions of constant local systems, to prove that this morphism
is invertible on these objects it suffices to prove this property when .# is constant.
In this case, Lemma 5.2 shows that the left-hand side identifies with

(jt(/\Jr/t))*k ®K H; <T7 k)’

and the same holds for the right-hand side since my , is a trivial T-torsor. It is
easily seen that our morphism identifies with the identity of this objects, which
concludes the proof. O

This lemma will allow us to define the free-monodromic Wakimoto sheaves as
follows. Given A € X.(T), for # in Df, | and y1,v € X;F(T) and such that A = p—v
we consider the k-vector space

A,can A,can -~
Hompy (Vi s Vi) *F)-
If (¢/,v') is another pair of elements of X (T) such that A = p/ — v/, and if
' —p € X(T), then there is a canonical isomorphism

HomDA

Lu,Tu

(Vi ™ Vi) " * F) = Hompy,

(Vi V)

A,can

t(p' —p)
Moreover, the compatibility with associativity implies that this collection of spaces

and isomorphisms is an inductive system for the order on pairs (i, v) of elements
of X(T) such that A = p — v given by (u,v) < (¢/,v") iff ' — p € XF(T). One
can therefore consider the functor

induced by left convolution with V and the isomorphisms of Lemma 7.1.

F oty Homoy , (V45" V5" %),
(k,v)

This functor is representable, since each transition morphism is an isomorphism
and for any given choice of pair (u,v) we have an isomorphism

(v/\,can v/\,can ;\:g) ~ HOI’HD/\

A,can ~ A,
tn) Vi) fore B S * Vi F)s

Hompy, (=) * Vi) >

Tu,Tu

see Lemma 6.3. One can therefore define #" as the object representing this functor.
From the construction, we see that for any pair (u,v) € (X} (T))? such that A =
1 — v we have a noncanonical isomorphism
A ~ AN\can ~y—A,can
TN =B Ve -
Using Lemma 6.3, it is also not difficult to check that the right-hand side is (again,

noncanonically) isomorphic to V:\(:)a % A?(fil;
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7.2. Free-monodromic Wakimoto sheaves — properties. The following state-
ment gathers the main properties of free-monodromic Wakimoto sheaves that we
will need below.

Lemma 7.2. (1) If N € X.(T), and if p € X;F(T) is such that \+p € X (T),
then there exists a canonical isomorphism

-~ A,can ~ A,can
7 *vt(u) - vt(/\+u)'

(2) For A, € X.(T) and n € Z, we have

Hompr  (#4, WM/\ [n]) =0

IL\vIll
unless u < A.
(8) For any A € X.(T), we have a canonical isomorphism

i (#5) == Fory, (#4).
Moreover, # is a perverse sheaf.
(4) For A\, € X.(T) there exists a canonical isomorphism
V2O A= W

(5) For any A € X,.(T), the restrict;on of pwp to
OTY) =k ® 6(TY) C O(TY x TY)
factors (in the canonical way) through an isomorphism
O((TY)") = Endoy | (47,

and we have

Hompy — (#4, #5}(1]) = 0.

(6) For any A € X.(T) and f € O(T}) we have
o (f @ 1) = poyp (1@ f),
and moreover
s (@) = pyp (L@ e?).

Proof. (1) The proof is identical to that of its counterpart in Dij, see | ,
Lemma 4.2.5].

(2) Let v € X (T) be such that A +v € X;F(T) and p + v € X5 (T). Since the
functor () ?V:\(’Vc)a " is an equivalence of categories (see Remark 6.4), using (1) we
obtain an isomorphism

Homp, | (7, # N n]) = Hompa

H Iu,Iu

A,can A,can
(vt()\Jru) ’ vt(;ﬁ»u) [Tl] ) .

Now the right-hand side vanishes unless Flg 1(,4.) C Flgt(a4v)- It is well known
that this condition is satisfied if and only if g+ v < A+ v, which implies the claim.

(3) If uw € XF(T) is such that A + u € X (T), then by (1) we have a canonical
isomorphism

-~ A,can ~ A,can
7x *Vt(#) - vt(A+u)'

Now we have

o

=
—~

3

1)

W/\A ;ﬂ.T(vtA(»:)an) o 7/)\/\ * Fol’%u (Vi(ﬂ))

(

T (H5) F Ve

lle

(6.5)

= i (#30) %1 V-
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Using again (7.1), we deduce a canonical isomorphism

(W) %1 Vi = Fory, (Viotm)-

By [ , Lemma 4.2.7] the right-hand side is canonically isomorphic to For{u (W) *1
Vi( - Since the functor (—) 1 V{( . is an equivalence of categories (with quasi-

inverse (—) *1 Ai(ﬂt)), this defines an isomorphism

i (#5) == Fory, (#4).

One can easily check that this isomorphism does not depend on the choice of p,
hence is indeed canonical. Finally, since #) is perverse this isomorphism implies
that %" is perverse by | , Lemma 5.3(1)].

(4) If v € X}F(T) is such that u+v € X} (T) and A+ p+ v € X (T), then
using (1) we obtain canonical isomorphisms

A /\ A,can ~ -~ Ascan ~ A,can A,can
W xW, Vt(u =W * V. tutr) = Vt(,\+u+u) = W/\w * V.. W)

Since the functor (—)% VtA(;)a " is an equivalence of categories (see Remark 6.4), we
deduce an isomorphism
W, ?WA = “//A/)m.

It can be checked that this isomorphism does not depend on v, hence is indeed
canonical.

(5) Let u € X;F(T) be such that A+ p € X (T). Then as above, using (1) we
obtain that the functor (—)% Vf(:)a " induces an isomorphism

Hompy  (#4", %5 [n]) = Hompy (VX Vit 1)

for any n € Z. When n = 1, it follows from | , Corollary 4.6] and adjunction that
the right-hand side vanishes, so that the left-hand side vanishes as well. For n = 0,
it follows from (6.7)—(6.8) and Lemma 6.6 that the composition of this isomorphism
with pyp is Hog g the desired claim therefore follows from Lemma 6.6.

(6) Let us fix pu,v € X (T) such that A = u — v, and an isomorphism #," =
Aé\( Cir)’AVA(:; ". Identifying these objects via this isomorphism and using (6.7)-(6.8)
and Lemma 6.6 we obtain that for f € O(T}) we have

pp (f @ 1) = pppean(f @ 1) F1d = pppcan (1@ f) *id

=id% pgren(f®1) =id% pgren (1@ f) = pyp (1@ f),

which proves the first claim. To prove the second claim, we observe that by (6.7)—
(6.8)—(6.9) and Lemma 6.6 we have

rot

s (x) = M]Z}(fjl; () ;Mrv?i:;n( z) = ray: Ca"( ®e”)* *p s Ca“(l ®e ")
= 1d*uvA(,c)a11(1 ®e ) = ,UW)\/\(l ® 6_)‘),
t(p
which finishes the proof. O

Below we will also need the following property, which has no counterpart in the
nonmonodromic setting.

Lemma 7.3. If \,u € X,.(T) are distinct, then we have
Homp, | (7, 7/“/\) =0.



MODULAR AFFINE HECKE CATEGORY AND REGULAR CENTRALIZER 73

Proof. Let v € —X(T) be such that A + v and u + v belong to —X(T). Then
we have

A D> AN can ~ -~ A ~v AN~ A/Ncan
W)\ * At(l/) - W)\ * WV - W)\Jrl/ - At()\+y)’

and similarly for p. Since the functor (—)% A:\(VC)& " is an equivalence of categories
(see Remark 6.4), we deduce an isomorphism

A A\ ~v A,can A,can
Homey | (730 7,0) = Homey | (Biyiuy Beuin)

The claim then follows from (6.12). O

7.3. Wakimoto filtrations of free-monodromic perverse sheaves. The no-
tion of objects admitting a Wakimoto filtration (see §4.3) has an obvious analogue
in the category PIAu 1,0 we will say that an object F admits a Wakimoto filtra-
tion if there exists a finite filtration on .% such that each subquotient is a free-
monodromic Wakimoto sheaf #}" with A € X, (T). As in the case of Py and Py 1,
the properties of free-monodromic Wakimoto sheaves stated in Lemma 7.2(2)—(5)
imply that if % admits a Wakimoto filtration, then there exists a unique filtration
(F<xn : A€ X (T)) on F such that F< = {0} for some \, F<,, = .F for some
p, and F<y/F-y is a direct sum of copies of #{* for each A € X, (T). Moreover,
this filtration is functorial in the same sense as for its “traditional” counterpart
in §4.3, which allows to define the functor gr{ sending an object .# which admits
a free-monodromic Wakimoto filtration to

g (F) = Far/Fen.
For such %, we will also set
al(F)= D el (F).
AEX,(T)
Proposition 7.4. If #,9 in PIAU,L, admit Wakimoto filtrations, then the morphism

Homp, (F,%) — Hompp  (gre(F),gre(9))

Tu
induced by the functor grl is injective.

Proof. The claim is an easy consequence of Lemma 7.3, following the same argu-
ments as in | , Corollary 6.3]. O

From this proposition we deduce in particular the following claim.

Corollary 7.5. For any % in PIAmIu which admits a Wakimoto filtration, the mor-
phism
pz: OT) x T,)) — End(%)
factors through the morphism O(T} x T,Y) — O(T}) induced by the diagonal em-
bedding T,) — T,) x T} ; in other words, for any f in O(T}) we have
pz(f®l)=pzr(1®f)
Proof. The functoriality of monodromy implies that the composition
O(TY x T)Y) £ End(.#) — End(grl (%))

(where the second morphism is induced by the functor gr') coincides with Her) (F)-
This reduces the proof to the case .# is a free-monodromic Wakimoto sheaf, in
which case the claim was proved in Lemma 7.2(6). O
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‘We finish this subsection with a criterion for the existence of Wakimoto filtra-
tions.

Lemma 7.6. Let 7 in D{ ;. Then F belongs to Py ; and admits a Wakimoto
filtration iff m(F) belongs to Pr, 1 and admits a Wakimoto filtration. Moreover,
in this case the multiplicity of W3 in gri(F) equals the multiplicity of W in
gra(mi(F))-
Proof. 1f # belongs to P{. | and admits a Wakimoto filtration, then Lemma 7.2(3)
implies that 7 () belongs to Py | and admits a Wakimoto filtration.

Now, assume that m;(.%) belongs to PIAU)I and admits a Wakimoto filtration.
Choose u € X (T) such that A + p is dominant for any A € X, (T) such that
gry (m4(F)) # 0. We have

(6.4) (7.1) (

T (FFVEET) = Frm(Vyn™) = F % Fory (Vi)

Our assumption, (4.5) and the choice of p imply that m;(F) Vi(u) is perverse
and admits a filtration with subquotients of the form V! with v € X (T). The
arguments in the proof of | , Lemma 5.9(1)] (see also [B2, Proposition 9]) show
that this condition implies that .%# ?VQ’:)& " is perverse and admits a filtration with

subquotients of the form VtA(f)an with v € X, (T). Applying the functor (—)?AQETS
we deduce that .# is perverse and admits a Wakimoto filtration, as desired.
The proof of the claim about multiplicities is immediate for these considerations.

(]

(=)
ez,
)

Ff(y) *1 Vi(ﬂ)

7.4. Free-monodromic central sheaves. We now explain how to “upgrade”
Gaitsgory’s functor Z (see §4.3) to a functor with values in Df\u,lu’ following the
case of Q-coefficients treated in [132, §3.5]. (This construction is based on the
point of view explained in §4.4).

We start with the group scheme H defined as the Néron blowup of G x A!
in U along the divisor {0} C A', in the sense of | ]. Then H is a smooth
group scheme over A!, and the ind-scheme ﬁlg represents the functor sending an
F-algebra R to isomorphism classes of pairs consisting of a principal H-bundle over
Spec(R][z])) together with a trivialization over Spec(R((z))). One can then define
the ind-scheme (TrED by simply replacing G by H in the definition of GrgD. In this
way we have canonical identifications

——BD ~
{0} xpa1 Gr; =Flg,
and
1 ~7BD ~ 1
(A"~ {0}) xa1 Gr = Grg x Flg x (A"~ {0}).
Using nearby cycles we therefore obtain a bifunctor

? : DL+G’,L+G X DI.,,I“ — Ds(ﬁlg,k)

We have a smooth morphism (r}vrCB;D — GreP which restricts to the morphism 7 :
Flg — Flg over 0, and to the induced morphism Grg x Flg x (Al ~ {0}) —
Grg xFlgx (A1 {0}) over A1\ {0} under the identifications above; by compatibility
of nearby cycles with smooth pullback we deduce a canonical isomorphism

(7.3) Y(o,7*For] (F)) = n*For; (Y(/, F))



MODULAR AFFINE HECKE CATEGORY AND REGULAR CENTRALIZER 75

for any &/ in Dp+¢ r+g and % in Dy;. In particular, this shows that the functor
Y factors through a bifunctor

Dr+¢,r+¢ X D11, — D1, 1>

which will also be denoted Y.
In the following statement, we use the variant of the bifunctor Y considered in
Remark 4.2.

us

Lemma 7.7. For any </ in Dp+g +q and F in Dy, 1,, we have a canonical
isomorphism
m¥Y (o, F)2Y (A, mF).

Proof. By general properties of nearby cycles (see [Del, §2.1.7]), there exists a
canonical morphism

Y (o, F) = Y(A, m.F).
Since Dy, 1, is generated, as a triangulated category, by the objects of the form
ﬂ'*FOI{u (¢) with 4 in Dy, to prove that our morphism is an isomorphism it suffices
to do so for such objects. Now by the projection formula we have

mn'Y =G @ mkg

so that
Y(ﬂ,mﬂ'*%) = Y(&f,g) Rk mkf‘lg'

On the other hand, using (7.3) and again the projection formula we see that
nY(o, 7G) 2 ma Y (A, G) 2 (A, G) D Mk

One can check that under these identifications our morphism identifies with the
identity morphism of Y (<, ¥) ®k W!kﬁc; in particular it is indeed an isomorphism,
which finishes the proof. U

For & in Dp+¢q +q, the functor \7(427, —) extends to a functor from Dﬁulu to
pro-objects in Dy, 1,. Using Lemma 7.7 one sees that this functor in fact takes
values in Df j ; we have therefore obtained a bifunctor

vV - A A
Y. DL+G7L+G X DIu,Iu — DI

wlu

which satisfies
(7.4) Y (A, F) 2N (A, 71 F)

for any &/ in Dy+g p+g and Z in DY ;.
The same considerations as in §4.4 show that for &/, % in Dy+g 1+ and F,¥9
in Dy, 1, we have a canonical isomorphism

Y(, F)x1, Y(B,G) =Y (A *p1c B, F x1, D).

(The proof of this isomorphism involves the compatibility of nearby cycles with
respect to pushforward along a nonproper map; this compatibility does not follow
from a general result, but can be obtained using considerations similar to those
encountered in the proof of Lemma 7.7.) Once this is proved, one obtains more
generally that for &/, % in Dp+g +¢ and #,9 in DIAU,I\, we have a canonical
isomorphism

(7.5) Y(, FV5Y(B,G) 2N (A g B, F5Y).

us
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‘We now define the functor
7 Drrgr+c — Dﬁ,,lu
by setting
2() =Y (,8").

Since this morphism is defined by nearby cycles, it comes with a canonical mon-
odromy automorphism m. These data possess properties similar to those of the
“traditional” functor Z of §4.3, as explained in the following statement.

Theorem 7.8. (1) There exists a canonical isomorphism of functors
wTofg For%u oZ
which identifies mym with For%u(m).

(2) The functor Z restricts to an ezact functor from Priq p+q to PIA“’I“.
(3) There exist canonical isomorphisms

botp: L(A x4+ B) > L) % L(B)

for o, % in Dp+q r+q and 2(5@) >~ §N which endow Z with a monoidal
structure. Moreover, via the identification

m(Z( A FLUB)) = ()% (Z(B)) = L() % Forl (Z(B))
=" 1 (Z2()) %1 Z(B) Y Z(e) * Z(B)

we have WT(QASW"@) = G2, and (ZQ{W@’ intertwines the automorphisms
r/T\]g{*LJrGgg Of Z(% *L+@GQ %) and r/ﬁg{;\r/ﬁgg Of Z(JZ{);Z(@)
(4) For any o/ in Dyt +¢ and F in Df\u’lu, there exists a canonical isomor-
phism
Gz L(AN*F S FRLA)

which identifies My % idg and ids % M.. Moreover the functor Z, to-
gether with the isomorphisms G o and ¢or z, define a central functor

from Ppig p+q to Df\uaIu in the sense of [B1]; in other words these data
define a braided monoidal functor from P+ p+¢ to the Drinfeld center of
D .

(5) For any o in Pr+q r+q, the functor

18 t-exact.
(6) For any o/ in P+ +c we have

Moy = Mrfztd)(x_:l)

(7) For any & in Pr+q p+q, the perverse sheaf 2(427) admits a Wakimoto fil-

~

tration. Moreover, for any A € X, (T') the multiplicity of #5 in gri (Z(<))
equals the dimension of the A-weight space of S().
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Proof. (1) Using (7.4), for & in Dp+¢ 1+ we obtain a canonical isomorphism
mZ() =Y (o, 6") 2 Y (o, 7 00) 2 Y (o, 6).

Now by (4.6) the right-hand side identifies with Z(), which provides the desired
isomorphism. The compatibility with monodromy automorphisms follows from
general properties of nearby cycles functors.

(2) The isomorphism in (1) and the exactness of Z show that mi(% ) is perverse
for any &7 in Pp+q p+q. By | , Lemma 5.3], this implies that 2(,;27) is perverse.
Hence Z sends P L+a,L+¢ to PIAqu. Exactness of the restriction is automatic since
this functor is obtained from a triangulated functor.

(3) The isomorphism $d7g is obtained by applying (7.5) in the case # = ¢ = §"
and using the canonical isomorphism 6" % 8" = §”. The compatibility with ¢ 2
follows from the comments in §4.4. The proof of the compatibility with monodromy
is similar to that in the case of Z.

To justify that Z(dgy) = 6", we remark that more generally we have

(7.6) Y (b, F) = F

for any # in Df: 1,- In fact this follows from considerations analogous to those

~

for the isomorphism Y (dgy, —) = id in §4.4, using the natural closed embedding
Flg x Al < Gro .

The fact that these data define a monoidal structure on Z is easy, and left to the
reader.

(4) As in the case of the functor Z in §4.4, the isomorphism o, & is constructed
from (7.5) and the isomorphism (7.6). Namely, these isomorphisms imply that we
have

L)% F 2 (A, 0")FY (06, F) 2 Y (A *po 0ar, 6° % F) 2 Y (A, F)
on the one hand, and that
FFLA) =N e, F) Y (A, 6") 2Y (e *1+¢ A, F76") 2Y (A, F)

on the other hand. The proof that these data define a central functor can be copied
from the case of Z (see [Ga2] or [ARA]).

(5) First we prove that our functor is right exact. For that, since the nonpositive
part of the perverse t-structure is generated under extensions by the objects A7)
(w € W), it suffices to prove that for any such w the object 2(;2{) % A2 has no
perverse cohomology in positive degrees. In fact we will prove that this object is
perverse. Indeed, using (6.4)—(6.5) and (1) we obtain that

m(Z() % AL) = Z(/) % For] (AL) = For] (Z(e7) »1 AL).

Now Z(&/) %1 AL is perverse by “convolution exactness” of usual central sheaves
(see | , Theorem 4.2(2)]). Using | , Lemma 5.3(1)] we deduce that Z(W)QAQ,
is perverse, as desired.

To prove left exactness of our functor, we consider the rigid dual .27V of & in the
rigid tensor category Pervy+q(Grg, k). By monoidality of Z (see (3)), the functor
2(&%V) % (=) is left adjoint to 2(42%) % (=). Since the former functor is right exact,
we deduce that the latter is left exact, which finishes the proof.

(6) The proof is similar to that of the corresponding claim for Z, see (5.1).
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(7) The claim follows from Lemma 7.6, in view of (1) and the property that
Z(</) admits a Wakimoto filtration, see §4.3. O

For simplicity of notation, below we will set
¥ =705 :Rep(GY) = DA

and write

my = r’ﬁs—l(v) S End(ff(V))
Theorem 7.8(7) and Corollary 7.5 imply that for any V in Rep(G}) the morphism
By factors through a canonical morphism

(7.7) py : 6(TY) = End(Z(V)).
Let us note for later use that from Theorem 7.8(4)—(5) we also deduce, for any
V € Rep(GY) and .Z in DIO‘”I“, a canonical isomorphism
(7.8) TP Z D 7207V,
and that these objects belong to the heart of the perverse t-structure if % does.

7.5. Some tilting perverse sheaves. In this subsection we assume that the con-
ditions in §4.8 are satisfied. Under this assumption, the free-monodromic central
sheaves, together with the object =" introduced in §6.6, allow to describe a family
of tilting objects in PIAD’Iu7 as follows.

Proposition 7.9. For any V € Rep(Gy) which is tilting, the perverse sheaf E* %
Z (V) is tilting.

Proof. In view of | , Lemma 5.9], to prove the claim it suffices to prove that the

.

object m4(E*Z°(V)) of Dy, 1 is a tilting perverse sheaf. Now, using Theorem 7.8(1)
we have

— (6.4) oy
m (SN * Z(V)) = E %k m(Z(V)) 2 =0 % Fory (Z(V))

© . _
= mENAZ(V) =24 Z(V).

(1]

Let I} be the inverse image of U under the evaluation morphism LTG — G,
and consider the composition

xi:IF Ut %G,

where the first morphism is the obvious projection adn x is as in §6.6. Let us denote
by Dz 1 the (I, x7 (Zas))-equivariant derived category of k-sheaves on Flg. (This
category is denoted D%, (Flg, k) in [ ].) This category has a natural perverse
t-structure, whose heart Pzyy 1 has a canonical structure of highest weight category.

As in the case of G/U in §6.6, standard constructions provide t-exact “averaging”
functors

AVIW : DIU,I — DIW,I, AVI [ DIW,I — DL,,L AVIU,* : DIW,I — DIU,I

us*

such that Avy,  is left adjoint to Avz)y and Avy, . is right adjoint to Avzyy. Standard
considerations (see e.g. | , Lemma 3.6]) show that Avy, i, resp. Avy, ., sends
objects admitting a standard, resp. costandard, filtration to objects admitting a
standard, resp. costandard, filtration.
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It follows from the definition of =, that we have a canonical isomorphism of
functors

Er 41 (—) =2 Avp, 1 0 Avzyy 0 For%u;

in particular we deduce that
m (B0 * Q/‘”\(V)) = Avp, 10 Avgyy o For%“(f(V)).

Now by | , Theorem 8.1] the perverse sheaf Avzyy o For] (2(V)) is tilting, from

which we deduce that Avy, 1o Avryy o For%u(f'f (V)) is a perverse sheaf admitting a
standard filtration.
Using the isomorphism = & =, we similarly obtain that

(S0 F Z(V)) = Ay, . 0 Avgyy o Forf (Z(V)),

which implies that 7} (E{\ * D@/”\(V)) admits a costandard filtration and finishes the
proof. O

7.6. Quantum trace of monodromy. Recall (see e.g. | , §2.10]) that if
(A, ®) is a monoidal category with unit object 1, and if X is an object of A, a left
dual of X is the data of an object XV together with morphisms

evy : XVOX =1, coevy:1=>X0oXY
such that the compositions
X coev x ®id X@XVQX id@evx X
K
X\/ id®coev x X\/GX@X\/ evx ®id X\/
are the identity morphisms of X and XV, respectively. (Here, we omit the unit and
associativity isomorphisms.) Similarly, a right dual of X is the data of an object
VX together with morphisms
evy : XOVX =1, coevy:1—=VYX0OX

such that the compositions

coev’y ®id id®ev,
VX — X VX o XoeoVXx —5 v)(7

evly ®id
=

X id®coev'’y X@\/X@X X

are the identity morphisms of VX and X, respectively. The object X is called left
dualizable, resp. right dualizable, if a left dual, resp. right dual, exists; in this case
such a dual is unique up to unique isomorphism, see | , Proposition 2.10.5].
This notion is functorial is the following sense: if X,Y are left, resp. right, dualiz-
able, then there exists a canonical isomorphism

Homa (X,Y) = Homa(Y"Y,X"), rtesp. Homa(X,Y) = Homa("Y, " X),

denoted f s fV, resp. f — Vf. Here, given f : X — Y, the morphism fV is the
composition

YV id®coev x Y\/ @X @XV ide fEeid YV @Y@XV evy @id )(\/7

and the morphism Vf is the composition

VY coev’y ©®id VX@XQVY ide® feid VX@YQ\/Y id@ev'Y VX.
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Below we will also use the fact that if X is left dualizable, resp. right dualizable,
then the functor XV @ (=) is left adjoint to X ® (=) and the functor (=) ® X is
left adjoint to (—) ® XV, resp. the functor X ® (—) is left adjoint to VX ® (—) and
the functor (—) ® VX is left adjoint to (—) ® X; see | , Proposition 2.10.8].

The application of this notion that will be relevant for us is to the definition
of quantum traces, see | , §4.7]. Namely, consider an object X which is left
dualizable, and assume that XV is itself left dualizable (with left dual denoted
XVV). Then for any a € Homa (X, X"Y) the left quantum trace tr'(a) of a is
defined as the endomorphism of 1 obtained as the composition

1 coevx X@XV a®id XVVQXV evyv 1.

A similar definition leads to the notion of the right quantum trace of a morphism
a:X —VVX,in case X and VX are right dualizable.

In our present setting, since a monoidal functor sends dualizable objects to du-
alizable objects, and their duals to the corresponding duals (see | , Exer-
cise 2.10.6]), and since every object V in Rep(GY) is left and right dualizable with
left and right duals V* (together with the obvious evaluation and coevaluation
maps), for any V the object Z(V), resp. Q/F\(V), is left and right dualizable in Dy,
resp. D\ 1, with left and right dual 2°(V*), resp. Q/”\(V*). Hence the (left) quantum

trace tr™(a) is defined for any a € Endp, ,(Z(V)), resp. a € Endpp (Q/"\(V)) The
case of Dy is not very rich, since the endomorphisms of § are k. But in D/\ we
have End(6") = O((T}Y)") (see Lemma 6.6); the left quantum trace of a morphlsm
is therefore an element in O((T}Y)").

The following lemma will play a technical role in the construction of a functor
in Section 10. Its proof will occupy the rest of the section. (No detail of this proof
will be used in later sections, so that these subsections can be safely skipped.)

Lemma 7.10. For any V in Rep(G}/) we have

Z dim(V},)

HEXL(T)

where V), is the u-weight space of V. In other words, trl(my ) is the image of the
character of V' (seen as a function on T,') in O((T,/)").

7.7. Description of duals. The proof of Lemma, 7.10 will use the free-monodromic
Wakimoto filtration on 2 (V). For this we will need to show that each subquotient
in this filtration is dualizable, and describe its dual.
For the next lemma, we will have to assume that the order < on X, (7T) chosen
in §4.3 satisfies the following property:
for \,u € X, (T), A < p if and only if —pu < =\
(Of course, there exists an order with the desired properties.)

Lemma 7.11. Consider some V in Rep(GY), and let \,u € X.(T) be such that
A< .
(1) The object Z(V )<M/f'f(V)<,\ is left and right dualizable, with left and right
dual Z(V* )< N Z(V )
(2) The object QF( ><u/ff(
)

<—
V < s left and right dualizable, with left and right
dual QF(V*)< )\/9@0( Vv <—

e
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Remark 7.12. It can be checked that in a monoidal category (A,®) where A is
abelian and © is exact, the kernel (resp. cokernel) of a morphism between du-
alizable objects is dualizable, with dual the cokernel (resp. kernel) of the dual
morphism. This statement does not apply here, since we do not have an obvious
abelian subcategory of Df\u 1, or Dr1 containing the central sheaves and stable under
the convolution product; however the proof below repeats arguments close to those
required to prove this property.

Proof of Lemma 7.11. We will treat the two cases in parallel, and work with left
duals; the proof for right duals is similar. First, let us assume that A satisfies A < v
for any v € X, (T) such that V,, # 0, so that Z(V)<x = 0 and Z(V*)c_\ =

Z(V*) (and similarly for Z(V) and 2/(V*)). In this case we will proceed by
downward induction on p, and prove (in addition to the fact that 2'(V)<, and

Q/f\(V)SH are dualizable with the duals given in the statement) that the dual of

o~ —~

the embedding Z(V)<, — Z(V), resp. Q’(V/)\SM <—>:?(V), is the projection
ZV*) > 2LV ZV*)cop, resp. Z(VF) - Z(VH)/Z (V" )cp.

If p > v for any v € X,(T) such that V,, # 0 we have Z(V)<, = Z (V) and
Z(V*)<—, = 0 (and similarly for D@/';(V) and D@/';(V*)); in this case the claim has
already been justified above Lemma 7.10. Now we fix p € X, (T), and assume the
claim is known for the successor y of u, i.e. that 2°(V)<,  and Q/;(V)Su’ are left
dualizable, with left duals

FV/Z V) and Z(V)/Z(V )y

respectively, and that the dual of the embedding in Z°(V), resp. Z(V), is the

—~

projection from 2°(V*), resp. Z°(V*). We now consider the exact sequence
(7.9) ZV)ep = Z(V)<u = grp(Z(V)).

Here the right-hand side is isomorphic to %@T for some r > 0; we fix an isomor-
phism gr, (Z/(V)) = 7/:,97' and therefore identify the second morphism in (7.9)
with a surjection f: (V)< — V/ﬁr. By assumption 2(V)<, is left dualizable,
and since #,, is invertible it is also left dualizable (with left dual #_,,); hence so
is W#ﬂ?r. We can therefore consider the dual morphism

JAE (Wﬁr)v = (Z(V)<p)Y,

which we interpret as a morphism from ”//f]a; to Z(V*)/Z(V*)<—,w. By functori-
ality of Wakimoto filtrations this morphism factors through a morphism

(7.10) YW EL = e (Z(VF)).

We claim that fV is an isomorphism. In fact we have gr_ w(Z(V7)) = V/_GBJ, since
dim((V*)—,) = dim(V,/). Since End(#_,/) =k (see | , §4.5]), the morphism
fV can be represented by an r X r-matrix, and saying that it is invertible is equivalent

to this matrix being invertible. If this were not the case, then there would exist an
embedding #_,, — Wg:} as a direct summand such that the composition

r fv * *
Wow = WL = Z(V) ) Z (V)
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vanishes. However, by adjunction we have
Hom(#_ ., W?J,) = Hom (#_ v 1 W,ﬁ;r, J),
Hom(#_ ./, Z(V*) | Z (V") c_p) = Hom(W_ o 1 Z(V)<pr,0),
and through this identification the morphism fV o (—) corresponds to the morphism
(—) o (ld* f) : HOIH(W_H/ *1 %E?r’ 5) — Hom(W_H/ *1 QF(V)S“/,(S),

which is injective since id * f is surjective. This provides a contradiction, proving
therefore that fVv indeed is an isomorphism.

We have now obtained an isomorphism

Vo~ T ~ r "~ *
(gr#,(ff(V))) — (7/;9 »Y = ”//f'i, — gr_, (Z(V")),

which is easily seen not to depend on our initial choice of isomorphism gr,,, (2°(V)) =
V/ﬁ”"; it is therefore canonical. Moreover, through this identification the dual
of the projection Z'(V)<,y — gr,(2(V)) is the embedding gr_, (2'(V*)) —
2V ZV )<

Let us consider the composition

5 F(V) ey 51 (Z (V) LV ) ame) = (V)51 (Z(V)/Z (V) ).
The preceding considerations show that its composition with the surjection
ZV)<w = (Z(V)/Z(V)<p) = gr(Z(V) x (Z(VF)/Z(VT)<p)

vanishes; this morphism therefore factors through a morphism
(7.11) § L (V)< x1 (Z(VH))/Z(VF)p).
Similarly, the composition

(ZVZV)aop) 1 Z (V)< = (Z(V)/ LV )cop) 1 Z (V) =0
factors through a morphism
(7.12) (V") ZV )cp) 1 Z V)<, — 6.

It is then not difficult to check that (7.11) and (7.12) exhibit Z(V*)/Z(V*)<_,
as the left dual of Z°(V)<,. Moreover from the construction of the evaluation
and coevaluation morphisms one sees that the dual of the embedding 2 (V)<, —
Z (V)< is the projection Z(V*)/Z(V*)c_p — Z(V*)/Z(V*)<_,; by com-
pability of duality with composition and the induction hypothesis, it follows that
the dual of the embedding 2 (V)<, — Z (V) is the natural projection 2 (V*) —
2V Z(V)<p

Next, we consider the free-monodromic setting, and more specifically the exact
sequence . N .

ZV)<p = Z(V)<w = grp(Z(V)).

Here again, by induction the middle term is left dualizable, and the right-hand side
is dualizable because it is isomorphic to a direct sum of invertible objec§ If we fix
an isomorphism gr)), (Z(V)) = (#,/)®", the dual of the surjection f: Z'(V)<, —
(#,))¥" is a morphism

P AT = FV ) Z V) <o
which has to factor through a morphism

(WNE = g (Z (V).
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It is clear that the image of this morphism under 7 is the isomorphism
D *
WEL =gt (Z(V7))

considered in (7.10); since the functor 74 is conservative (see §6.1) this implies that
our morphism is also invertible, and as in the [-equivariant setting we deduce a
canonical isomorphism

(e (Z(V))" Zgr_ (Z(V).

Once this is established, the same arguments as above allow to prove that 2(V)<,

o~ —~

is left dualizable, with left dual 2/(V*)/Z(V*)<_,, and that the dual of the em-

bedding Q/;(V)Su — Q/;(V) is the surjection Q/;(V*) — Q/’IV*)/Q/F\(V*)<,M.
Now we fix u, and prove by upward induction on A that the object

Z(V)<u/Z(V)<n, vesp. Z(V)<u/Z(V)en,
is left dualizable, with left dual

LV )en/Z (VT )aop, resp. Z(V)en/Z(V)<op
The two cases are similar, so we only treat the second one. We consider the exact
sequence

o~ o~ o~

F(V)erx = Z(WV)ey > Z(V)<u/ Z(V)<n.

We now know that the first two terms here are left dualizable; moreover the dual

— —~

of the composition of the first map with the embedding 2°(V)<, — Z(V) is

o~

the surjection Z(V*) — Z(V*)/Z(V*)<_», with the dual of the latter map
being the surjection Z°(V*) — Z(V*)/Z(V*)<_,; by compatibility of duality
with composition this implies that the dual of this first map is the surjection
ZVH/ZV )y > Z(V*)/Z(V*)<—r. From this claim we deduce that the
composition

5 2 F(V)< % (2 2V <)
= (ZWV)<u/ ZW)2) 5 (Z(v)/Z1V)<m)

—~ —~

> (ZWN)<u/ Z022) 7 (2 Z1V)<n)

vanishes; it follows that the composition of the first two maps factors through a
morphism

—~

5 (Z0)<u ZV) ) 7 (ZV) < A Z(V)< ).
Similarly, from the evaluation morphism
(ZV)/ZW")<m) 3 202 > 0
we obtain a morphism

(Z0)es/ 2 3 (2020 ZV)22) = 0

— —~

It is easily seen that, taken together, these maps exhibit 2/ (V*)«_»/Z(V*)<_, as

o~ o~

the left dual of 2°(V)<, /% (V)<x, which finishes the proof. O
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Remark 7.13. From the proof of Lemma 7.11 we see that if A < X < u/ < pu, the
dual of the embedding

—

FV)<p/Z(V)er = Z(V)<u/ Z(V)<x

is the projection
Q/’IV*)<7/\/9?(V*)<W - ﬁ‘/*k—,\/g;(‘/*k—uu
and the dual of the projection
ZWV)<u/ Z(V)ex > Z(V)<u/ Z(V) <
is the embedding
FWV) x| ZV )= ZV) a2V )<

7.8. Proof of Lemma 7.10. In order to give the proof of Lemma 7.10 we need
another lemma.

Lemma 7.14. For any A € X..(T), we have
L rot —1 A
B (g (1)) = ¢,
Proof. By definition, tr (,u“’t (x71)) is the composition

;;tA (z~1)xid

A N SN/ A /2 NN

ev 6/\
Here by Lemma 7.2( ) we have ,umt (1) = pwp (e* ® 1), so that the middle map
s pppswn, (e* ® 1) by (6.7). By functoriality of monodromy this implies that the

composition above is psr (e ® 1), which implies the desired claim. g

A general result about monoidal categories states that in an abelian monoidal
category with exact monoidal product, the quantum trace is additive on short
exact sequences (for morphisms compatible with the exact sequence), see | ,
Proposition 4.7.5]. As in Remark 7.12 this statement does not apply directly in our
setting, but our proof of Lemma 7.10 will consist of repeating its proof® and using
Lemma 7.14 to compute the appropriate trace by induction.

Proof of Lemma 7.10. By Theorem 7.8(6) we have

:u’lgat(v) (xil)'

We will prove by induction on A that
o (g, (7)) = D dim(y,
n<A

this will imply the desired equality by taking A such that v < X for any v such that
V., #0.

If X satisfies A < v for any v such that V,, # 0, then this equality holds since
both sides vanish. Now let A € X, (T'), and assume the equality is known for the
predecessor X of \. We consider the exact sequence

Z(V)ew = Z(V)ex — gy (Z(V)).

3This proof was kindly explained to us by P. Etingof.
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—

By functoriality of monodromy, the automorphism p*2% (x71) of Z(V)<x pre-

Z(V)<a
serves Z(V)</, and restricts to u%v) (x~1) on this subobject. Moreover, the
<
induced automorphism of gry (Z'(V)) is p;‘;z(%\(v))(xﬂ).

The object

FWV)arF(Z (V) Z(V)en) = Z(V)arF (Z(V)<n)Y

admits a canonical 3-step filtration

o~ o~ o~

My C My CZ(V)r* (Z(V)]Z(VT)<n)

with successive associated subquotients given by

F(V)en Fgr_y(Z(VY),

o~ —~

FWV)ex 5 (ZV)/Z(V)en) @y (Z(V) Fer_\(Z(V"))
(

and gry (Z (V) % (Z(V*)/Z (V) <_x).

We have

Hom (8", gry(Z (V)% (Z(V*)/Z(V*) <))

= Hom(gr_,(Z'(V*)), Z(V*)/Z(V*)<_x) =0,

—~ —~

since (Z(V*)/Z(V*)<_x)<—x = 0; it follows that the coevaluation map

o~ —~ —~

0" = Z(V)ax*x (Z(V")/Z (V) <o)
factors through a map 6" — .#5. For similar reasons, the evaluation map
FW)aa*(ZV)/Z(V)<r) = 8"
vanishes on .1, hence factors through a morphism
(ZWN* (V) Z (V) <or)) /-ty = 5"

It follows that our trace is the composition

= F(V)en F(Z(V))Z (V) on) By (Z(V) Fgr_y(Z (V")

— —~ —~ — —

= Z(V)ax *(Z(V)/Z(V)<n) @ gry(Z(V)) Fgr y(Z(V7)) — o"

where the first, resp. third, map is the sum of the coevaluation, resp. evaluation,

—

morphisms for Z°(V)<y and gr )\(D@/‘;(V)), and the middle arrow is the map induced

rot —1y 2 -
by ué;(v)g(x ) xid, i.e. the direct sum

We deduce that

by, (@) = o gy @) et ) @),

which implies the desired formula by the induction hypothesis and Lemma 7.14. [
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8. PERVERSE SHEAVES ON G/U

We continue with the setting of Sections 47, and consider also the constructions
of Section 2 in the case G = G}/ (with the Borel subgroup By and the maximal
torus 7}/). It is clear that in this case the Coxeter system (Wr¢, S¢) of Section 2
identifies with the Coxeter system (W%, St) of Section 4. We will assume in this
section that G} has simply connected derived subgroup, or in other words that the
quotient of X*(T') by the root lattice is free.

Before constructing the main equivalence of the paper, we explain a similar
construction for perverse sheaves on the “finite” flag variety G/B (or, in fact, on
the basic affine space G/U). This construction is essentially a reinterpretation of
the main result of [BR1]; it will serve as a “toy example” to illustrate our methods,
but will also play a role in the proof of the theorem.

Remark 8.1. As explained above, the proofs in this section rely on the results
of [BR1]. In this reference it is assumed that the group G is semisimple of adjoint
type, but all the proofs apply more generally under the present assumption that the
dual group has simply connected derived subgroup. (In fact, the main ingredient
that requires some assumption is Theorem 2.1, which holds under our assumption
by Remark 2.1.)

8.1. Categories of sheaves on G/U. Recall the categories Dy ¢y and DﬁU con-
sidered in §6.6. These categories admit perverse t-structures, whose hearts are
denoted Py and P/t},U respectively. In fact, pushforward along the closed em-
bedding G/U — ﬁlg identifies Py, resp. Dy,y with the Serre subcategory of
P1, 1., resp. the full triangulated subcategory of Dy, ,, generated by the simple
objects WTFOF%U(j%w) with w € Wr; it also provides a t-exact fully faithful func-
tor Dfy; — Df 1,. If we denote by P;;)U, resp. DEU, the Serre subcategory of
Pu.u, resp. the full triangulated subcategory of Dy, generated by the objects
vl For%“(/‘cfw) with w € We \ {e}, then we can consider the quotient categories

P(I)J,U = PU,U/PJ[ZUa D(I]J,U = DU7U/DJ15,U-
By Lemma A .2, there exists a unique t-structure on D%)U such that the quotient
functor
119, 7 : Dy,w — DYy
is t-exact. This t-structure is bounded, and its heart identifies with P, ;;; it will be

called the perverse t-structure, and the associated cohomology functors will once
again be denoted P.7#"(—). We have a canonical t-exact functor

(8.1) DYy — DY, 1.

whose restriction to the heart of the perverse t-structure is fully faithful.

As for Dy, 1,, the category Dy iy admits a natural convolution product xy; which
equips it with the structure of a monoidal category (without unit object) such that
the embedding Dy — Di, 1, is monoidal, and whihc induces (in the appropriate
sense) the product x;. We also have a canonical bifunctor

o~ . A
*U - DU,U X DU,U — DU,U

which defines an action of (D[A],U,QU) on Dyy.
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As in §5.2, the bifunctor (% ,94) — H&U(ﬂ‘*y ) factors through a triangulated
bifunctor
0 .o 0 0
*ir DU7U X DU,U — DU7U
which defines a monoidal structure (without unit object) on D, so that (8.1) is

monoidal. Moreover, *?J is “right t-exact” in the sense that if .#,% belong to the
nonpositive part of the perverse t-structure on D?]’U then so does .7 +%, 4. We
therefore obtain a monoidal structure (without unit object) on P%,U by setting

F P G =P (T < G
for #,% in POU,U; then we have a fully faithful exact monoidal functor
(8.2) (Pl Pxpy) = — (PL, 1 p*(IJ“)
As in §6.4 we have a canonical bifunctor
*y : Dy x DYy — Diu

compatible with * in the obvious way, and which defines an action of (Df s *v)
on the category D%’U. For .% in P{}’U and ¢ in P&U we then set

F VR, G =P (TR D).

As in Lemma 6.9, this bifunctor is right exact on each side.
Recall also the functor C,,, considered in §6.5. It is clear that this functor restricts
to a functor from P&U to Py,u, which will again be denoted C,,

8.2. Morphisms from H?LU(E{\). Recall the object Z{* defined in §6.6. Consider-
ing this object as a pro-object in Dy 7, and applying the extension to pro-objects of
the functor I1Y, U,u We obtain a pro-object HUU(_, ) in DY, v,v- We can then consider
the functor from P v,u to the category of k-vector spaces given by

0 =A
ﬁ — HomD(lJ],U(HU’U(‘_‘! )a y))

where in the right-hand side we mean morphisms in the category of pro-objects in
D?JyU. Concretely, if we write E* = ¢ @n " of,, for some objects <7, in Dy, then
we have
0 (= . 0
HomD%YU (I y (B, F) = hﬂHomD?ij gy (), F).
n
Similarly, given ¢ in Py we can consider the vector space

Hompa (_4,, ) IEHOHIDUU(,!Z(”,%)

Lemma 8.2. For any ¢ in Py y, the canonical morphism
Homp,, , (5/",4) — Hompy, , (I}, (20,113, , ()
is an isomorphism.

Proof. Fix ¢ in Pyy. As explained above, writing Z* = “li m ” of, for some 4,
in Dy i, our morphism can be written more concretely as the morphlsm

(8.3) 11&1 Homp,, , (#,,9) — hﬂ HongU (HU,U('Q{n)v HU,U(g))

induced by the functor ITf; ;.
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Let us first show that (8.3) is surjective. A morphism in the right-hand side is
represented by a morphism H&U(szn) — H%,U(%) in D?LU for some n, i.e. by a
diagram

dy &L
where 2 is an object in Dy and s, f are morphisms in this category such that
the cone ¥ of s belongs to DaU. Now, by Lemma 6.10 we have

Hompy (2,71 (76,)[i]) = 0
for any w € W \ {e} and i € Z; it follows that
HOHID@ U(E!/\7 %) = 0,

or in other words that
lignHomDU’U (L, €) = 0.

We deduce that for m > n the composition «,, — <, — % vanishes. Fix such
an m, and denote by h the structure morphism <, — <,. If we complete the
morphisms s and h to a commutative diagram

Ay ~——— W

! l

in Dy, such that the cone of ¢ belongs to D‘[E,U, then the image of our morphism
in Hompo (119, (), I}y (%)) is represented by the diagram

o, L 1% g

Now since the composition «7,, — o, — % vanishes, there exists k : @, — Z in
Dy, such that s ok = h. Then in D?JVU we have

fogott=fostoh=fok.

This shows that the image of our morphism in Hompg (M09 1 (), 1Y 5 (7)) is the
image of a morphism in Homp,, ;, (,,%), which finishes the proof of surjectivity.

The proof of injectivity is similar. If a morphism f : ), — % has trivial
image in lim HomD%’U(HIOJ)U(bQ%m)y 1Y, (%)), then composing with the morphism
oy, — @, for some m > n we can assume that H%’U(f) = 0. This means that
there exists a morphism ¢ : ¢ — % whose cone € belongs to DEU such that
go f=0. Then f factors through a morphism 7, — €[—1]. Replacing again n by
a larger morphism we can assume that this morphism vanishes, so that f = 0 in
the inductive limit, which finishes the proof. |

8.3. Towards a monoidal structure. Recall the scheme D from §2.4; in our
present setting we have

D:= T]L;/ XT(V/Wf T]]Q/'
For any .# in P?LU, monodromy for the action of T on the left and on the right
on G/U equips HomD%)U(H%,U(E,A), ) with the structure of an &(T})-bimodule.
In fact, it follows from Lemma 6.7 that these actions factor through a structure of
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O (D)-module. Our goal in this subsection is to explain how to define, for #,¥ in
P%’ u» @& canonical morphism

(8.4) Hompy (I} (E), F) ©e(ry) Hompg | (11 (E1),9)
— Hompy (119, 7 (E"), F Pxiy %),

which will eventually be shown to define a monoidal structure on the functor
HomD%‘U(H&U(E,A), —). (Here O(T}’) acts on Hompo (T, (27, F) via the pro-
jection D — T}Y on the second factor, and on Hompy (119, ("), ¥) via the pro-
jection D — T,Y on the first factor.) To explain this construction we first need to
recall a similar construction from | ].

First, consider the scheme D considered in §3.3. By Lemma 3.3(2) this scheme
is the spectrum of the algebra

O(TY)") @ pervyeym O((TY)Y)

that appears e.g. in [ , Theorem 9.1]. (Section 3 is written under the running
assumption that Z(G) is smooth, but this condition is not required for this specific
lemma.)

Recall the category Ty, of tilting objects in Pg; ;. As explained in [ , Re-
mark 7.9], this subcategory is closed under the convolution product *y. For .% in
P{ v in [BR1] we explain that monodromy defines on Hompy | (2, .F) the struc-
ture of a finitely generated ¢'(D”)-module. Moreover, in | , §11.3] we construct
a monoidal structure on the functor

HomPf]’U(E!A7 _) : T/[},U — MOdfg(ﬁ(D/\))7

for the monoidal product on Tf;;; given by xp, and that on &(D”)-modules given
by tensor product over € ((7,Y)"). Using this structure we obtain an isomorphism

(85) Hompﬁw (E(\, E,/\ ;U E./\) = HOHlpG’U (E‘/\, E./\) ®ﬁ((Tk\/)/\) Hompéw (E(\, E./\)

Here the right-hand side has a canonical element, given by id=s ® id=p, which
then defines a canonical morphism ¢ : = — E %y E. Concretely, writing = =
« l&nn " gy, for some o7, in Dy as in §8.2, we have
E.A *U E,/\ =« Lin ? iy ] L

n,m>0

so that
HomPf,,U (E,/\, E'A /";U E'A) = @ hﬂHomDu,U ('Q{qv G *¥U *Q{m)§

n,m q
our morphism is therefore defined by a collection of morphisms &, m : Zg(n,m) —
Gy, ¥U Dy, for some function q : (Z>0)? — Z>0, which we fix from now on.

Finally we can explain the construction of (8.4). Consider some elements f
in Hompy (I}, ("), #) and g in Hompo (117, /(E("),%), represented by mor-
phisms f : 11{; () — F and g : 1Y) () — 4. Then the image of f ® g
under (8.4) is the composition

%0 (,

q

f

I, 4 (€nym)
(num)) —— Ty 11 (%0 o) = TGy 1 () 0 Uy 17 (i)
*0
L TG TG
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where the last morphism is the natural truncation morphism. (Recall that .7 x¢, ¢
belongs to the nonpositive part of the perverse t-structure, and % p*% Y is its
degree-0 cohomology.)

8.4. Statement. We will denote by Cohg(D) the category of coherent sheaves on
D which are supported set-theoretically on the closed subscheme {(e, e)}, which we
identify with the category of finitely generated &(D)-modules on which a power of
the ideal Z (see §3.3), or equivalently a power of the ideal J, acts trivially. This
category is monoidal (without unit object) for the product ® defined by

M® N = M@ﬁ(Tk\/) N.

(Here in the tensor product the action on M is induced by the projection D — T}
on the second factor, and the action on N is induced by projection on the first
factor; the action of &(D) on the tensor product is the obvious one, defined in
terms of the remaining actions.)

The following proposition is the promised “finite variant” of our main result. Its
proof will be explained in the next subsection.

Theorem 8.3. The functor Hompy U(H%’U(E{\), —) induces an equivalence of mo-
noidal abelian categories '

(I)U,U : (P(()],Uv*(()]) l) (COho(D),®) .
8.5. “Truncated” version. For m > 1 we set

D™ := Spec(0(D)/J™ - 0(D)).
Pushforward along the closed embedding D(") — D provides a fully faithful functor

Coh(D(™)) — Cohy (D),
and it is clear from definitions that the product ® restricts to a monoidal product on
Coh(D(™)). In fact, this collection of functors realizes Coho(D) as the direct limit
of its subcategories Coh(D(m)), in a way compatible with the monoidal product.
On the constructible side, again for m > 1 we will denote by Pg’g the full

abelian subcategory of Py ;; whose objects are the perverse sheaves such that the

monodromy action of O(T/Wr) (see §6.3) vanishes on J™. This subcategory

contains all the simple objects of Py 7, and is stable under subquotients (but not

under extensions). If we denote by Pg@,o the Serre quotient of P%) by the Serre

subcategory generated by the simple objects WTFOF%“ (FCw) with w € W \ {e},
then we have a natural fully faithful functor

m),0
pgﬂ} — Py

The essential image of this functor can be described as follows. It is clear that
monodromy induces, for any .% in P?LU, a canonical morphism p% : (D) —

Endp([ij’U(y). Then the essential image of Pg}?&’o in PP, ;; identifies with the sub-

category consisting of objects such that ©% vanishes on J™. Indeed, any object in
this essential image clearly satisfies this property. On the other hand, if x% van-
ishes on J™, writing % = H?]’U(g) for some ¢ in Py, we see that the surjection
Y —» 4/J™ -9 becomes an isomorphism after application of H%’ v and obviously

G]T™ -4 belongs to P(UmU)
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Using (6.7)—(6.8) one sees that the convolution product ¢, restricts to a monoidal

product on ngm[}’o. In this way we realize the category Py, as the direct limit of

its subcategories qu}},o’ in a way compatible with the monoidal product. It is clear

that the restriction of the quotient functor HO U,u to Pgn,} takes values in Pgn(}’o, and

identifies with the quotient functor P(m) — P(m) 0,
From these considerations we see that Theorem 8.3 is a corollary of the following
statement.

Proposition 8.4. For any m > 1, the functor Hompo U(H&U(E!A), —) induces an
equivalence of abelian categories '

Py =5 Coh(D(™).

Moreover these equivalences admit structures of monoidal functors compatible in
the obvious way with the natural embeddings

PO = P, Coh(D™) — Coh(D™))
when m < m’.
In the proof of this proposition we will consider, for m > 1, the object
=™ = C.(E)  €Puu.

It is clear that this object belongs to the subcategory Pgn[}
Lemma 8.5. For any m > 1, there exists a canonical isomorphism

11 1 (Con (B0 %1 21)) 2 1Y, (F™) Prgy 11, (E™).
Proof. Since the functor Z{* %y (—) is t-exact (see Lemma 6.11) the morphism

Exr = = 2 % :,(m)

is surjective, and identifies the right-hand side with C,,,(Z" %y Z*). On the other
hand, by definition we have

I (5™) Paty 119,217 2 P (0 (5™ 5 27)).
What we have to construct is therefore a canonical isomorphism
9, (5 5 E™) 2 A O (27 50 5™)).
A choice of a family of r generators of the ideal J™ defines an exact sequence
ENE - ) = 2™ 0.
Now the functor
R0 (0, (=) %0 E™)) = (=) Pro W0 (5™ Phu — Py
is right exact (see §8.1); we therefore deduce an exact squence

19 (BN %0 ™) = 1Y 5 (20 %o ) = 21 5 (E™ %0 ET™)) = 0.

Using (6.7)—(6.8) one sees that the first morphism in this sequence vanishes, which
shows that the second morphism is an isomorphism and finishes the proof. ([
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Proof of Proposition 8.4. We claim that for m > 1 the morphism fpi_cm) factors
through an isomorphism '

(8.6) (D) =5 Endp,, , (™).

In fact, since by definition the action of &(D) on E!(m) vanishes on J™ we have

Ende,U(E!(m)) = Hompy, (Z, :,(m))
Now by projectivity of Z{* (see Lemma 6.10) we have

Hompy (2, E(™) 2 Endpy,  (2") @4(p) O(D™).

Finally, by [ , Theorem 9.1] and the comments in §8.3, p=p induces an algebra
isomorphism
(8.7) O(D") = End(Z).

We deduce that (8.6) is an isomorphism, as desired.
For any .% in Pgn& we have

Hompy | (BN, 7)) = Hompgjm[} (E!(m), F).

From this and Lemma 6.10 we deduce that :.(m) is the projective cover of the

simple object WTForI (F€.) in Pg[}, which implies that the image 112 (”,(m)) of
:,(m) P(m) % is the projective cover of the unique simple object in thlS category;
by standard arguments this implies that the functor

F = Homp g (113, v(E™), 7)
induces an equivalence of categories
(8.8) R VI (Endpm, o (I (™).
Now since E,(m) is projective in P( v, With unique simple quotient WTFOI’I (FE.),

for any . in ngl} the morphism
HOmP(m) (E!(m), gZ’) — Homp(mm (H&U(El(m)), H&U(g‘\))

U, Uu U, Uu
induced by IIY v is an isomorphism. Using the isomorphism (8.6) this allows
to identify the algebra Endp(m) o(HUU("(m))) with @(D(™), hence the category
Mod# (Endp .o (2 =(™))) with Coh(D(™).

We claim that the functor
Homm, o(IY, 1 (E™), ) : P — Mod(6/(D))

identifies canonically with the restriction of

HOIHDg (HUU( SESE P(L)/,U — Mod(&/(D))

to Pg"[}’o. In fact, to prove this claim it suffices to construct, for .% in ngm[}, a
functorial isomorphism

Homp oo (I, (™), 1, (7)) = Homgy | (I1), ("), 113, (7).
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And for this, as explained above the left-hand side identifies canonically with
Hompg,n& (E!(m), Z), and then with Hompﬁyu(E{\,ﬁ). The desired identification is
therefore provided by Lemma 8.2. This isomorphism and the considerations above
show that the restriction of the functor Hompg (HOU v(EN),—) to Pg@,o takes val-

ues in Coh(D(™)), and induces an equivalence between these categories.
To conclude the proof, we have to construct compatible monoidal structures on
our equivalences, which will be done if we prove that (8.4) is an isomorphism for

any %, in Pgﬂ}’o.

First, consider the case . =¥ = H?J’U(Efm)). In this case we have seen that
(8.9) Hompy | (111 (21), g, (2™)) = ¢(D™).
On the other hand, by Lemma 8.5 we have

Hommpy, , (119, (1), 119, (Z"™) P, 11, (2(™))

= Hompy, , (119, (21), 11, (o (20 T 20))),
and by Lemma 8.2 the right-hand side identifies with
Hompy,  (E1', Cn((E *v E1')))-
By projectivity of Z* (see Lemma 6.10) this space identifies with
HOI’Ilp@YU (E"/\7 E'/\ ;;U E‘/\) ®6’(D) ﬁ(D(m))a
which itself, in view of (8.5) and (8.7), identifies with
(0(D) @p(ry) €(D)) @pmp) (D).

It is easily seen that under these identifications the morphism (8.4) identifies with
the natural isomorphism

o(D™) DoY) (D) = (¢(D) QoY) 0(D)) ®¢(p) oD™),

and is therefore an isomorphism.
Now we prove that (8.4) is an isomorphism in case .# = H?JU(E ) and ¥ is
arbitrary. For this, since we already know the equivalence

PUYY = Coh(DI™)
we know that there exists a presentation
—(m —~(m s
(M EM)N P = (MY, EN -9 =0

for some 7, s € Z>g. Then we have exact sequences
Hompy | (113, (2), 113, (B1™)) @ (ry) Hompy | (I 15 (E0), I 1 (2™)®7) —
Hompy | (113, (20), 113, (E1™)) @ (ry) Hompg | (I (21), TTY; (“F”‘))@S) -

Homog,,,](HUU(u')H v(E™) ®ﬁ<Tkv>Hong,U<HUU< 1),9) =0
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and
Hompy | (119, ("), T3, (2™) Py 1, 5 (2™ ®7) —
Hompy | (11, (), T3, o (2™) Py I, 5 (21 ®) —
Hompy | (1), (20), 113, (2™ Pxy 4) = 0,

which are related by the corresponding morphisms (8.4). The morphisms relating
the first two terms are isomorphisms by the case treated above, hence the one
relating the third terms is also an isomorphism, which finishes the proof of the case
under consideration.

Finally, one passes from this case to the case of general .#,% using similar
arguments, which finishes the proof of the proposition. O

8.6. Images of truncated costandard objects. Recall that in §3.2 we have
defined some representations (., : w € W) of Jp. By definition, in case w € W,
the representation .#,, is a coherent sheaf on D, endowed with the trivial structure
as a representation of Jp. In this subsection these representations will be simply
considered as coherent sheaves on D, or equivalently as finitely generated &'(D)-
modules.

Recall the functors C2, of §6.5. The comments in §8.1 show that if we consider
an object F € P{};, seen as an object in Py | , for any m > 1 the object C(Z)
belongs to the full subcategory POU7U - P?u,lu' In this way we obtain a projective
system (C),(F) : m > 1) of objects in P, ;.

Lemma 8.6. For any w € Wi, we have an isomorphism of projective systems
((IDUVU(C?n(Vg)) cm > 1) (M) T™ - My - m > 1).
Proof. For any m > 1, by Lemma 8.2 there exists a canonical isomorphism
Dy,u(Ch (Vi) = Hompy, | (21, Cin (V7).
By projectivity of Z* (see Lemma 6.10), the right-hand side identifies with
Hompy, (E(', V3) @y (O(T)/T™ - O(T)).

Finally, it is known that the standard object Al appears with multiplicity 1 in =",
see | ; §9.1]; we deduce an isomorphism of &(D")-modules Homp, (Z', V},) =
Ay, which finishes the proof. O

9. TRUNCATION OF PERVERSE SHEAVES

We continue with the setting and assumptions of Section 8. In this section
we prove a number of technical statements regarding the functors C,, and C2,
introduced in §6.5. These results will be used in the next section in our study of
the category PY i .

9.1. Flatness of standard, costandard and Wakimoto sheaves. In §B.2 we
recall what it means for a module in a category to be flat. Here we will be more
specifically interested in the case of &(T;)-modules in Pp 1,- We will say that
an object of P{ | is O(T)/)-flat if its image under (6.15) is flat; in other words,
F € Py, is O(T)))-flat iff the functor

(—) Reory) F MOdfg(ﬁ(THQ/)) - Pﬁ,lu
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is exact.

Our goal in this subsection is to show that standard perverse sheaves, costandard
perverse sheaves and free-monodromic Wakimoto sheaves are &(T,’)-flat. We start
with standard and costandard sheaves.

Lemma 9.1. For any w € W, the objects A}y and V., are O(T)))-flat. As a
consequence, every object in Pﬁ,lu which admits a standard or a costandard filtration
(in particular, any tilting object) is O(T})-flat.

Proof. We will prove the claim for the objects A%; the case of the objects V) can
be treated similarly, and the claim about objects with a standard or costandard
filtration then follows in view of Lemma B.4(2).
By Proposition D.1, the functor
(Guw)r : DY (Flg,w, k) — Df 1
(where (Jy)1 is as in §6.2) is t-exact, and by | , Proposition 4.5] we have a
canonical equivalence of triangulated categories
b : DPMod™®(0((Ty)")) =+ D} (Flg k).

By definition, under this identification the perverse t-structure on DIAu (§1G7w7k>

corresponds to the tautological t-structure on D°Mod®(&((TY)")). The mon-
odromy construction also provides an ¢'(1,’)-module structure on any object in
Df\u (li‘vlg’w, k), which under the equivalence ¢,, corresponds to the obvious &(T})-
module structure on a complex of &((7}/)")-modules. From these remarks we
obtain that for any N in Mod™(&/(T}Y)) we have a canonical isomorphism

N @1y A = (Ju)19w(N Qo) O(T)M))-

The functor on the right-hand side is t-exact by flatness of &((T}Y)") over O(T}')
and t-exactness of (7,) and ¢,,, which proves that A/} is flat. O

Lemma 9.2. For any finitely generated O(T})-module M and any w,y € W, the
convolution
AN x (M QoY) V,//\)

belongs to the heart of the perverse t-structure on DIAqu.

Proof. As in the proof of Lemma 9.1 we have

M®ﬁ(Tkv) V; = (7y)*¢y(N Re(Ty) ﬁ((Tkv)A»-
By construction of the equivalence ¢, in | , Proposition 4.5] and Lemma D.3,
if for m > 1 we denote by %, the k-local system on Flg, corresponding the
O(T,))-module N/K™N, then we deduce that

M ®g(zy) Vy = “Hm” (3y)«Fm [L(y) + dim(T))],

hence that
AL * (M @p(ry) Vy) 2 “lm” AL % ((Gy)+Fml(y) + dim(T)]).

m
Each .%,, is an extension of copies of the constant local system, so that Al %
((Gy)«Fm[l(y) + dim(T)]) is an extension (in the sense of triangulated categories)
of copies of
~ I ~
AL xiFory (V) 2wl (AL % V)),
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where the isomorphism follows from (6.5)—(6.6). Here the right-hand side is perverse
(by [ , Lemma 4.1.7] and t-exactness of 1), hence each Al % ((7y)+Zm[l(y) +
dim(T)]) is perverse. By Proposition D.4, this implies the lemma. O

Corollary 9.3. For any A € X.(T), the free-monodromic Wakimoto sheaf Wy
is O(T}))-flat. As a consequence, every object of Pf\u,lu which admits a Wakimoto
filtration is flat.

Proof. Once again, using Lemma B.4(2) it suffices to prove the first claim. Let A €
X,(T), and choose u,v € X (T) such that A\ = u—v, so that #* = Vt(u)*A{\( -
First, we claim that for any finitely generated &'(1})-module M we have
(9.1) M ®6(Tkv) W)\/\ = Vé\( (M R (1Y) At( ) )
Indeed, choose a presentation O(T,Y)®" — O(TY)®s — M — 0. We deduce an
exact sequence

(AL = (ALL)® = M Qg Af_,) = 0.
By right exactness of the functor Vt( ) Px (=) (see Corollary 6.5(1)), we deduce an
exact sequence

(Vt(u) *At( V)) LN (Vt(u) *At( V)) — Vt(u) (M ®ﬁ TV) A ) — 0.
Here the first two terms identify with (#{")®" and (#{")®* respectlvely, and by
Lemma 9.2 one can replace Px by % in the third term. We deduce (9.1).

Now, consider an exact sequence My < My — Mj of finitely generated O(1})-
module. By Lemma 9.1, the sequence

0= My ®p(1y) Vi) = M2 ®o(1y) Vi) = Mz @o(y) Vi = 0

AN
t(p)
is exact. Applying the triangulated functor V{\(#) % (=) we deduce a distinguished
triangle

VQ;A) * (M Qo) vé\(u)) - vtA(u) * (Ma Qeo(Ty) vt/\(u))

0
= Vit * (M ©o(ry) Vi) — -

By (9.1) all terms here are in the heart of the perverse t-structure, and this triangle
corresponds to an exact sequence

0= My @pry) WX = Ma @y #Y = Mz @y #5 =0
in P{ ; , which finishes the proof. O
The main consequence of these results that we will use below is the following.
Proposition 9.4. Consider an ezact sequence
00— F — Py — F3—0

n PIA“’I“. If F3 admits either a standard filtration, or a costandard filtration, or a
Wakimoto filtration, then for any m > 1 the induced sequence

0— Cn(F1) = Cu(F2) - C(F3) — 0

15 exact.

Proof. In view of the definition of C,,, the claim follows from Lemma B.4(1) and
either Lemma 9.1 (in the first two cases) or Corollary 9.3 (in the third case). O
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9.2. Truncation functors for perverse sheaves: monoidality. We will now
study some monoidality properties of the functors C,,.
Given Z,9 in Pﬁ,lu we have canonical maps

F = Cu(5F), G — Cn(9),
which give rise to a natural morphism
PANTF %G) = PH(Con(F) %1, Cin(9)).

It follows from (6.7) that the action of &(T}Y) on the right-hand side vanishes on
J™; this morphism therefore factors uniquely though a morphism

ConPHN (T FDG)) — PHO(Co(F) %1, Con(D)).
0

Finally, applying the functor H?u,lu and using the definition of the bifunctor Pxj
(see §5.2), we obtain a canonical morphism

(9.2) COANF %9)) — CO(F) Px, CO(9).
Lemma 9.5. Assume that one of functors

PAOT % (), PO ((—) %) : P 1, — Ph,
is right exact. Then (9.2) is an isomorphism.

Proof. We will write the proof in case the functor P2#°(.% % (—)) is right exact; the
other case is similar. Choosing a family of r generators of the ideal J™, we obtain
an exact sequence
GO g — C"™(Y) — 0.
Applying the right-exact functor Ps#°(.Z % (—)), we deduce an exact sequence
PAHNTF %G P (F5G) = PH(F % C™(4)) — 0,
which provides a canonical isomorphism
Crn(PHN(F59)) =P (F %C(9)).

Applying H?u,lu’ we deduce a canonical isomorphism

oA F59)) = .7 PR CO(Y).
At this point, to conclude it suffices to show that the morphism

Fr0C(G) — CO(F) P+l CO(9)
induced by the morphism % — C™ (%) is an isomorphism.

Our choice of generators for J™ also provides an exact sequence
FU  F - C(F) — 0.
By Lemma 6.9 the functor (—)P%°C° (¢) : P{ 1, — PP, 1, isright exact; we therefore
deduce an exact sequence
(F P20 CO(9)®" — 7 PR CO(4) — C™(F) Pxl CO(4) — 0.

By (6.7), J™ acts trivially on %# oy C% (), hence the first map in this sequence
vanishes; we deduce that the second arrow is an isomorphism, as desired. O

Proposition 9.6. Assume that we are in one of the following settings:

(1) either F or 9 admits a costandard filtration;
(2) F = A, and 4 = A for some w,y € W such that £(wy) = £(w) + £(y).
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Then (9.2) is an isomorphism.

Proof. To treat the first case, in view of Lemma 9.5 it suffices to show that if .7
admits a costandard filtration the functors

PAUT (=), P ()% F) Pl = Pl
are right exact. For that, it suffices to remark that the functors
Fx (=), (m)*xF: Df\u,lu — Df\mlu

are right t-exact, as follows from Corollary 6.5(1).

Now, let us assume that .# = A, and ¢4 = A} for some w,y € W such that
l(wy) = L(w) + £(y). Then by Lemma 6.3(2) we have . * ¥ = AJ} . Recall from
the proof of Lemma 9.1 that for any x € W we have

Cn(A2) = (o102 (O(T) /T O(TY)).

Now, using | , Lemma 3.4] and considerations similar to those encountered in
the proof of Lemma 7.1, it is not difficult to check that we have an

AL F (Guhey (O(T)/ T O(TY))) = (Guy)iduy (O(T) /T O(T)),
i.e. an isomorphism
Al iCm(Aﬁ) = Cm(A{\Uy).
Once this is known, the same arguments as in the final part of the proof of
Lemma 9.5 show the desired claim. ]

Recall from §6.3 that the subcategory TIAu,Iu C Df\u,lu is closed under the con-
volution product *. Proposition 9.6 implies in particular that for any m > 1, the
functor C%, induces a monoidal functor

i 0
(Tf\ll71u ? *) - (P?uJu? p*I )'

u

9.3. Truncation functors for perverse sheaves: fully faithfulness. We now
prove a statement that will allow us to describe tilting objects from their images
under the functors C .

Lemma 9.7. Let 7,7 in T{, | .
(1) The functors C, induce an isomorphism

u(ﬂ, T = lim Home, (Cn(7),Cn(T)).

HompIA .

(2) For any m > 1, the functor H?mlu induces an isomorphism

Homep, ,, (Cin(7), Cou(F7)) = Hompo | (C),(7), Cp (7).

Proof. (1) By definition of the tensor product (and functoriality of monodromy),
for any m > 1 we have

Homp, ; (Cin(7),Cn(T7)) = HOmpf\qu(j, Cn (7).
The isomorphism we have to prove can therefore by written as

(7,7") = limHompy | (7,C (7).

HompIA

Ty

There is an obvious (bifunctorial) map from the left-hand side to the right-hand
side, for any 7,.7" in Pf\u 1,5 we will prove that this map is an isomorphism when
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Z has a standard filtration and J’ has a costandard filtration, by induction on
the sum of the lengths of these filtrations.
First, if 7 = Aj} and 7' = V) for some w,y € W, then we have

o(Ty)") ifw=y;

0 otherwise.

u

Homp, (7,7') = {

On the other hand, from the description of Cm(V;\) in the proof of Lemma 9.1 we
deduce that

o)) T o1y) tw=y;
0 otherwise.

Hompp (7, Cn(T")) = {

The claim is therefore clear in this case.

Now, assume that the object Z admits a standard filtration, that we have an
exact sequence

0=V, =7 =7"=0
where .7 has a costandard filtration, and that the claim is known for the pairs
(7,Vy) and (J,7"). By Proposition 9.4, for any m > 1 we then have an exact
sequence
0= Cn(Vy) = Cu(T") = Cu(T") = 0.

The description of C,,(V}) in the proof of Lemma 9.1 shows that

1
ExtPIAu‘Iu (7, Cm(VQ)) =0;
we therefore obtain an exact sequence

u(yv Cm(vg//\)) —>H01’anAuI (9acm(gl))

0 — Hompp |
— Hompr  (J,Con(T")) — 0.

The inverse system (Hompy (7, C,,(Vy)) : m > 1) is an inverse system of finite-

dimensional k-vector spaces; it therefore automatically satisfies the Mittag-Leffler
condition, which implies that the sequence

0 — lim Hompp | (7, Cn(V))) = Jim Hompp (.7, Cn(T)
— lim Hompp (7,Cn(T") =0

m

is exact. Similarly we have an exact sequence

0 — Hompr  (F,V,) = Hompr  (F,7") = Hompr (T, ") = 0.

Ty, Iu »dua
Our maps for the pairs (7,V}), (7, 7") and (7, 7") define a morphism of exact
sequences; since the first and third maps are isomorphisms by assumption, the
second one is also an isomorphism by the five lemma.

Finally, very similar arguments show that if the object 7’ admits a costandard
filtration, if we have an exact sequence

07" =T —A)—0

such that 7" has a standard filtration, and if the claim is known for the pairs
(7",7") and (Al,,.7"), then it follows for the pair (7,.7”), which finishes the
proof.
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(2) The claim will follow from the description of morphisms in a Serre quotient
category provided we prove that C,,() does not admit a nonzero morphism to
an object of the form 7fFor; (.#%,) with £(w) > 0 and C,,(7’) does not admit a
nonzero morphism from such an object. Using Proposition 9.4 we obtain that if
 admits a standard, resp. costandard, filtration in P{ ; then C,,(#) admits a
filtration whose subquotients have the form C,,(A2), resp. C,,(V2), with w € W.
The desired claim will therefore follow if we prove that for y € W the object C,, (V@)
does not admit a nonzero morphism to an object of the form 7' For%u(/%w) with
{(w) > 0, and C,, (A7) does not admit a nonzero morphism from such an object.
However, from the proof of Lemma 9.1 we know that Cm(VQ) is an extension of

copies of 7' For%“(V;) and C,,,(A7) is an extension of copies of WTFOF%“(A?IJ); the
claim therefore follows from the fact that the head of VYIJ and the socle of A; are
both of the form .#€, with ¢(z) =0, see | , Lemma 4.5]. O

10. PERVERSE SHEAVES ON ﬁlg

We continue with the setting of Section 8, and make the following assumptions:

(1) the quotient of X*(T') by the root lattice of (G,T) is free;

(2) the quotient of X, (T) by the coroot lattice of (G, T) has no ¢-torsion;

(3) for any indecomposable factor in the root system of (G,T), ¢ is strictly
bigger than the corresponding value in Figure 1.1.

(As in §4.8, we expect that the third assumption can be weakened. What will be
used below is that the main result of | ] holds.) Our goal is to prove the first
main result of the paper, Theorem 1.3.

10.1. Statement. We will use the constructions of Section 2-3, for the group G =
G}/, its Borel subgroup By, and its maximal torus 7}Y. In particular, we fix a
Steinberg section ¥ C G} as in §2.2. Then we have the universal centralizer Jy. C
G} x ¥, a smooth affine group scheme over ¥. We have a canonical morphism
D — X obtained by composing the obvious projection D — T.Y/W; with the
inverse of the isomorphism ¥ = T,Y /W%, and the smooth affine group scheme

Jop =D xsgJs

over the affine scheme D. Consider as in §3.2 the abelian category Rep(Jp) of
representations of Jp which are finitely generated over &(D), and its monoidal
product ®. Recall that this product is right exact on both sides, and has as unit
object Oagv where AT, i/ C D is the diagonal copy of 7}, with the trivial structure
as a representation. We will also denote by

Rep,(Jp)

the full subcategory of Rep(Jp) whose objects are the representations which are
set-theoretically supported on the base point (e,e) € D (i.e., whose restriction to
the open complement vanishes). Using the notation of §3.3, the objects in this
subcategory can also be described as those on which the ideal Z acts nilpotently,
or equivalently as those on which J acts nilpotently.

The subcategory Repy(Jp) C Rep(Jp) is a nonunital monoidal subcategory. If
Cohg(D) is as in §8.4, we have a fully faithful exact monoidal functor

(10.1) Coho(D) — Repy(Jp)
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sending a coherent sheaf to itself with the trivial structure as a representation.
(This justifies our choice of notation for the monoidal products.)

Let now u € ¥ C Gy be the point corresponding to the image of e € T in
T,Y /Ws. Then u is a regular unipotent element, so that as explained in §4.8 the
constructions of | ] provide an equivalence of abelian monoidal categories

P11 : (Pl 1) = (Rep(Zgy (u)), ®).

The fiber of Jp over (e, e) is by definition the fiber of Js over u, which identifies
with Zgy (u). The functor of pushforward along the closed embedding {(e,e)} < D
therefore defines an exact fully faithful functor

(10.2) Rep(Zgy (u)) — Repy(Jp),

which is easily seen to admit a canonical monoidal structure. (The essential image
of this functor consists of representations on which the ideal Z acts trivially.)
On the other hand, recall the exact fully faithful monoidal functor

T.(p0 L0 0 0
To - (PI,Iv*I) — (Plu,luvp*lu)

considered in §5.3, and the exact monoidal functor (8.2). In this section we will
prove the following theorem, which is a more precise version of Theorem 1.3.

Theorem 10.1. There exists an equivalence of abelian monoidal categories

&, 1, (P?u,1u7p*?u> = (Repy(Ip), ®)

such that the following diagrams commute up to isomorphism:

o o
PY ——— Rep(Zgy (u)) PY, ; ———"—> Cohy(D)
(10.3) ﬂgi l(w.z) (&2)i l(lol)
o o
P?U,Iu % Repy(Jp)- P?U,Iu % Repy(Jp)-

The proof of this theorem will occupy the whole section. Our strategy will be to
define an appropriate “deformation” of the functor ®;1 as described in §4.8, and
check that this functor has the required properties by reducing most of them to the
similar properties of ®17 or &y y.

10.2. Truncation and completion of representations. Recall from §3.3 the
scheme D’ and the smooth affine group scheme

Ip = D" xp Ip = D" xpv,w, Jx

over the affine scheme D”. Recall that the category Rep(Jp) of representations of
this group scheme which are of finite type over ¢(D”) admits a natural monoidal
product ®. We have a natural fully faithful exact monoidal functor

(10.4) (Repy(Jp), ®) — (Rep(Jp), ®)

whose essential image consists of modules on which Z (equivalently, [J) acts nilpo-
tently.

We also have “truncation” operations which produce objects in Repy(Jp) out of
objects in Rep(Jp). Namely, for m > 1 we can consider the functor

Dy, : Rep(Jp) — Repy(Jp)
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given by restriction to the closed subscheme D™ ¢ D” from §8.5. The following
claim is clear from definitions.

Lemma 10.2. Let M, M’ € Rep(Ip). For any m > 1 we have
Din(M @ M') 2 D, (M) ® Dy, (M').
10.3. Extensign of Qj; to coherent sheaves and definition of #”. Recall the

category Cohgk (GY) considered in §4.5. (Here the action of GY on itself is the
adjoint action.) Applying Lemma 4.5 to the monoidal functor

Z :Rep(GY) = D{ .
and its automorphism m_y (see §7.4) we obtain a canonical monoidal functor
FCN: Coh¥ (GY) = Df\ 1.
taking values in the subcategory PIAU 1,- Recall that for any V' in Rep(GY) and

Z in DIAu 1, the isomorphism os-1(y) # from Theorem 7.8(4) provides a canonical
isomorphism

(10.5) T3 T S FrZ(V),
or in other words a canonical isomorphism
(10.6) TNV @ Oa)FF = F*ZNV @ Oay).

We note the following property for later use.

Lemma 10.3. The isomorphisms (10.6) define an isomorphism of bifunctors from
Cohg* (GY) x D} | to D{ | .

Proof. Consider the monoidal k-linear additive category A of k-linear endofunctors
of Dﬁ Tu (with monoidal structure given by composition). We have two k-linear
monoidal functors from Rep(GY) to A, sending respectively V' to the endofunctors
Q/”\(V) % (=) and (=) % Q/”\(V) Each of these functors admits an automorphism,
given by my % (=) and (—) % My respectively. Lemma 4.5 provides extensions of
these functors determined by the corresponding automorphism, which are given by
V& Ogy — .f'zkoh(V) *x (=) and V@ Ogy — (=) é’z"h(V) respectively. Now the
isomorphism (10.5) intertwines my x idg and idg * my, see Theorem 7.8(4). By
unicity in Lemma 4.5, this means that (10.6) is an isomorphism of bifunctors, as
desired. g

Recall (see (2.2)) that the adjoint quotient G}/ /G, identifies with 7, /Ws. The
quotient morphism G} — Gy /Gy provides, for any .7 in Coh® (GY), a canonical
algebra morphism

ﬁ(Gﬂ\g//Gﬂz) — Endcohckv (G];/)(y)?
and therefore an algebra morphism (7, /Wy) — End(.#). With these morphisms,
the category Coh%* (GY) becomes an O(T, /Wr)-linear category.
Lemma 10.4. For any V in Rep(GY/), the composition

O(Ty /W) = Bnd_, oy v, (V @k Oy) = Endpp  (Z(V))

(G[Y)(

(where the second map is induced by Z¢
morphism wy (see (7.7)) to O(T, | Wr).

»lu

°h) coincides with the restriction of the
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Proof. First we consider the case when V = k is the trivial G}/-module. In this
case, ﬁ/"\(k) is the unit object 6" in D\ y . If M is a finite-dimensional G}/-module,
then we denote by chyy € O(GY /GY) = O(TY /Wr) the associated character. It is
well known that these elements generate 0(T,'/Wr) as a vector space, so that to
prove the desired claim it suffices to check that our maps coincide on such elements.
Now chj; can be interpreted as the composition

OG)) = M®0(G))M* = Me0G))2M* — 0(GY)

where the first (resp. third) morphism is induced by the canonical map k — M@ M*
(resp. M@ M* — k), and the middle one is m{3** ®@ids+. (See §4.5 for the definition

taut )

of m% Therefore, its image in End(g) is the composition

~ — P y Fﬁ]vl/‘;idf(M*) — = . ~
> ZM)*Z(M*) ————— Z(M)*x Z(M*) = 6,
where the first and third morphisms are the images of the maps considered above.
This map has been computed in Lemma 7.10, and is known to equal pz(chy ®1) =
i (chps); this proves the desired claim in this case.
Now we deduce the general case. It is clear that the canonical morphism
ﬁ(Tﬂg//Wf) — EndCth Gv)(V Rk ﬁGv)
is the composition

ﬁ(Tu;//Wf) — End (ﬁgv) — End (V Rk ﬁGkV)

Coh ¥ (GY) Coh ¥ (GY)
where the first map is the canonical morphism associated with the object ﬁckv, and
the second one is induced by the tensor product (on the left) with V ®j Ogy. Since

FCoh g monoidal, using the case already treated, it follows that its composition

with the morphism induced by Z is the composition

O(Ty /Wy) 5 Endpy | (Z(k)) — Endpp

Tu,Iu

(Z(V))

where the second map is induced by convolution on the left with fé/;(V) Now,
interpreting py in terms of right monodromy, it is clear that py = id F) * [,
which completes the proof.

Remark 10.5. Theorem 7.8(1) and the unicity in Lemma 4.5 imply that we have
mp o ZCoh =2 Coh Hence Lemma 10.4 implies that the composition of (4.9) with
the natural morphism

ﬁ(Tﬂg//Wf) — End V Rk ﬁGkV)

Coh®¥ (G;)(
factors through the quotient (T, /W) — O(T,) /Wr)/T = k.

Since the complement of the open subset GY .. C G}/ is known to have codi-

k,reg
mension at least 3 (see [H1, §4.13]), restriction induces an isomorphism &(Gy) —
O(GY/ ), hence a fully faithful monoidal functor

N4
Cohg* (GY) = Coh®¥ (G 1o)-
Recall that restriction to X induces an equivalence of monoidal categories

Coh® (GY 1og) = Rep(Jx),
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see Proposition 2.20. We use this equivalence and the functor above to see the
Vv

category CohfcjJk (GY/) as a full subcategory in Rep(Jyx). In these terms, the canon-

ical functor Rep(Gy) — Rep(Jg) is given by V — V ®y Ox, and the O(T,) /Wr)-

linear structure on Cohg/ G (G})) corresponds to the natural &(X)-linear structure on

Rep(Jx) via the 1dent1ﬁcat10n Y 5T /W
Let us consider &(G)/) with the G)-module structure induced by multiplication
on the left. In §4.5 we have considered a morphism

(107 O(GY) = Budy o o) (O(GY) © Ocy)

constructed using the morphism

0(GyY) — Hom (Ocy,0(GY) ® Ogy) = O(GY x GY)%*

Ind-Coh®¥ (GY)
induced by the map GY x GY — Gy given by (g,h) — g~ 'hg. In the terms above
the right-hand side identifies with the space (G} x £)*= of Js-invariant functions
on G} x ¥, and our morphism
O(GY) = 0(GY x n)l=
is induced by the morphism Gy x X — G}/ given again by (g, h) — g~ 'hg.
We now consider the ind-object 2°(0(GY)) € Ind-Df. ; . This object is a ring

ind-object, and taking the images of the morphisms above we obtain a ring mor-
phism

O(GY) — Hompapr . (6", Z(0(GY))) C Endpa.pr

Iu,Iu Iu,Iu

(Z(0(GY))),

where the embedding is as in §4.5. We can therefore consider the tensor product
#" = Z(0(GY) ®oy) O(2)

in Pﬁnlu (based on the general construction recalled in §B.1), which is the quotient

of D@/;(ﬁ(GE\(/)) by a left ideal. The same considerations as for 2°(0/(Gy/)) based on

the fact that 2 is a central functor (see [B1, p. 73] for details) imply that any left
ideal in Z°(0(GY))) is also a right ideal, so that #” also has a canonical structure

of ring object in Ind-Dy' ; , such that the surjection
(10.8) Z(6(GY)) — &
is a ring morphism.

Remark 10.6. From the definition we see that the restriction of (10.7) to the
subalgebra 0(GY /G)/) = O(T,' /W) coincides with the morphism considered in
Lemma 10.4; by this lemma, it therefore coincides with the restriction of mon-
odromy. As a consequence, the action of #(X) on #£” induced by the obvious
action on 0(X) coincides, via the identification 0'(X) = 0(T,Y /Ws), with the mon-
odromy action of O(T}Y /Wr).

10.4. Some properties of Z”. In this subsection we prove a number of properties
of the object Z".

Lemma 10.7. For any V € Rep(GY) we have a canonical isomorphism
B FEV) 2R @ V
n Ind—Df\u’Iu.
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—

Proof. By exactness of the functor (=) % 2 (V) (see Theorem 7.8(5)) we have
(10.9) B FZLV) 2 (Z(0G)FZ(V)) Doy (%),

o~ o~

where O(GY) acts on Z(0(GY)) * Q/f\(V) via its action on Z(0(GY)). Now by
monoidality of 2 (see Theorem 7.8(3)) we have

FOG)FZV) = Z(0(G) V)
where G}/ acts diagonally on 0(Gy)®x V. By standard arguments this tensor prod-
uct identifies canonically with the similar tensor product where G} acts trivially
on V', which provides an isomorphism

o~ —~

(10.10) F(OGY)FZ(V) 2 Z(0(GY)) @ V.
Q/fzoh

This isomorphism is the image under of an isomorphism

(0(GY) @k Oay) By (V &k Ocy) = (O(GY) 8k Oay) @V

in CohfcjK (GY), which is easily seen to be 0(G)/)-equivariant where on each side
O(GY)) acts via its action on O(G) ®x Ogy. Hence (10.10) is O(Gy/)-equivariant

o~

where on each side O(GY) acts via its action on Z(0(GY)). Combining this
with (10.9) we deduce the desired isomorphism. O

o~

Since Z" is defined as a quotient of Z°(0(GY)), the following claim follows from

—~

the similar property of 2°(&(GY)) proved at the end of §7.4.
Lemma 10.8. The monodromy morphism ug~ factors through the multiplication

morphism O(T) xT))) = O(TY) ® O(T})) — O(T})).

Recall that since the category PIO\,,IU is defined as a quotient of Py 1, any object
in this category admits a canonical action of &(T} x T) which factors through an
action of O(Ty xrv w, 7)) (see Lemma 6.7), and these actions commute with any
morphism in P{ ; . From Lemma 10.8 and (6.7)~(6.8) one obtains that for any .7
in P} | we have

(10.11) fhpnzoz = idgpn 7 puz.

Let consider the object 74(#2”) in Ind-Dy, 1. The category Ind-Dy, 1 is not trian-
gulated in any obvious way, nor can we consider any form of “perverse” t-structure
on it. However, for any n the perverse cohomology functor P5¢" : Dy, 1 — Py, 1 in-
duces a functor on ind-objects; we can therefore consider the object P70 (m(%"))
in Ind-Pg, 1. Recall also the object # in Ind-P11 considered in (4.16).

Lemma 10.9. We have a canonical isomorphism
PO (i (%)) =2 For (%)
in Ind-Py, 1.
Proof. Choose a presentation of 0(G)/)-modules
OGP — 0(GY) — 0(2) — 0,
and consider the induced exact sequence

Z(O(GY)* — Z(6(GY)) ~ %" — 0
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in Ind-P" y . Since 7 is right t-exact (see §6.2), the functor
A0 (i (=) PPLa, = Pro

is right exact. By [I{S, Corollary 8.6.8] it follows that the induced functor on ind-
objects is also right exact, and using Theorem 7.8(1) we deduce an exact sequence

Fory, (Z(0(Gi)))®" — Fory (Z(0(GY))) —= P (112") — 0,
which shows that
A (mR") 2 Fory (Z(0(GY)) ®eay) O(2))
where the action of O(G)/) on Z(0(G)))) is as in §4.5, or equivalently is obtained

—

from the action on Z°(0(GY)) by application of ;. By Remarks 10.5 and 10.6,
the restriction of this action to (T} /W) factors through the quotient morphism
o(T) /W) — O(T,) /Wr) /T =k, so that the action of O(G}) on Z(O(GY)) factors
through an action of the subscheme

Gy X1y w; Spec(k),

where the morphism Spec(k) — 7)Y /Wt corresponds to the image of e € T,Y. We
deduce that

Z(0(GY)) @y O%) = Z(0(GY)) BO(GY X1, Spec(k) O (3 x1yv w; Spec(k)).
Now since the morphism ¥ — 7, /W is an isomorphism we have
X7y wy Spec(k) = {u},
so that finally
Z(O(GY)) ®o(y) O(%) = Z(0(GY)) ®ecy) O({u}) = %,
which finishes the proof. (I

10.5. The coaction morphism. Consider the comultiplication morphism (4.13).
As in §4.8 this morphism defines a morphism of ind-objects

o~ —~

(10.12) Z(O(GY)) = Z(O(GY)) @k O(GY).

Here we can interpret the right-hand side as the tensor product
Z(0(GY)) ®@ecy) O(Gy x GY)

o~

where 0(G)/) acts on Z(0(G)/)) as in the definition of #” and the morphism
O(GY)) — O(GY xG))) is induced by the first projection. Hence using the morphism
O(G) x G})) = O(Jx) induced by the composition

Js = I xGY — GY xGY/

we obtain a canonical morphism

Z(0(GY) = Z(0(GY)) ®ocy) 0Ts)
where the morphism 0(G)/) — 0(Jx) is induced by the composition
Js = U xGY =S —=GY

where the second morphism is the obvious projection. Now, using (B.1) we obtain
a canonical isomorphism

Z(0(GY)) @oay) OTs) = 2" Do) O(Jx),
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where the morphism €'(X) — €(Jx) is induced by the natural projection Jy, — 3.
We can therefore consider our morphism as a morphism

(10.13) Z(O(GY)) = #" @) O(Ix).

Lemma 10.10. The morphism (10.13) factors (uniquely) through a morphism
coactgn : B = B o) O(Is).

Proof. Consider the action of O(GY) ® O(GY) on

Z(O(GY)) @x O(GY)

where the left copy acts via the action on Z°(0(G)/)) used in the definition of
Z", and the right copy acts via multiplication on O(G)). Of course, via the
identification

o~ —~

Z(0(GY)) e 0(GyY) = Z(0(GY)) ®ocy) O(Gy x GY)
this action corresponds to the action on the right-hand side induced by the obvious
action of O(G)/ x G}/) on itself.

An explicit computation using the Hopf algebra operations in €'(G}/) shows that
the morphism (10.12) is &(G}/)-linear, where the action on the left-hand side is as
in the definition of Z” and that on the right-hand side is obtained from the action
of O(GY)® O(GY) considered above via the morphism 0(GY) — O(G)) @ O(G)))
induced by the map

GY x GY = GY
given by (g, h) — h~1gh. Hence our morphism
Z(0(GY)) = Z(0(GY)) ®ay) O(GY x Gy)
is 0(G)/)-linear where the action on the right-hand side is induced by the same
morphism 0(GY) — O(G)) ® O(G,!) and the obvious action of O(GY) ® O(GY).
If follows that the morphism

Z(0(GY)) = Z(6(GY)) @ocy) O(Ix)

used to define (10.13) is O(G)/)-linear where the action on the right-hand side is
obtained from the obvious action of @ (Jx) on itself via the morphism 0(G)/) —
0 (Jx) induced by the map
Js — G]L(

given by (s,h) — h~!sh. By definition of Jx this morphism coincides with the
projection Jy; — ¥; in particular, this action of 0(G}/) on &‘/p\(ﬁ(Gﬂ\{/)) ®e(cy) 0 Js)
factors through the restriction morphism 0(Gy) — €(X), which implies the desired
property for (10.13). O

It is clear by construction that the morphism coactezs from Lemma 10.10 is
“counital” in the sense that the composition

B N BN sy O(Ts) — R

(where the second map is induced by restriction to the identity section of Jy) is
idg~, and “coassociative” in the sense that the composition

R L B @) OUn) = B Do) O(s) @os) O(Is)
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(where the second map is induced by the comultiplication map for the group scheme
Js) coincides with the composition

) coactpa ®id
_—

B 2y BN @) O(Jx " @o(z) 0Jx) Do) OIx).

10.6. A monoidality morphism. In this subsection we explain the construction
of a morphism which will be an ingredient in the construction of the monoidal
structure on the functor @1, 1,.

Recall that the product Q/p\(V) % .Z is perverse for any V € Rep(G)/) and .F €
P1,.1,, see Theorem 7.8(5). In view of the construction of the product % (see §6.4),
it follows that for any V' € Rep(Gy) and .# € P{ | the product Z(V)*.Z belongs
to PY | .

Lemma 10.11. Let % € P We have a canonical identification
R F = (Z(0G))F F) @o@y 0(2),

where the tensor product in the right-hand side is taken in the abelian category
Ind-P? ; , and the action of O(G))) is induced by that on Z(0(GY)).

Proof. By definition we have Z" = Q/;(ﬁ(GH\(/)) ®e(cy)y O(¥). Choosing a presen-
tation as in the proof of Lemma 10.9 we obtain an exact sequence

Z(O(GY)® = Z(0(GY)) — & = 0.

By Lemma 6.9 the functor (—) 0 7 Pﬁ,lu — P?U,L. is right exact. By [KS,
Corollary 8.6.8], it follows that the same is true for the extension of this functor to
ind-objects, and we deduce an exact sequence

(Z(O(GY)F° F)er = Z(OG )R F = R "%’ F =0
in Ind-P{ ; . Tt follows that
ZN T = (Z(0GY)F F) Doy O(%),
as desired. O

Using this lemma, we will now explain how to construct, for #,¥ in P?u I, &
canonical morphism

(10.14) (%" P2’ F)P) (BPRG) = B PR (F ). )

in Ind—P?‘hI“. First, from Lemma 10.11 and the right t-exactness of P*?u (see §5.2)
we deduce a canonical isomorphism

(%" P2 F) i (B PR G) =
(Z(OGY)*° )P (Z(O(GY) R D)) @ocyxay) O x T),

where O(GY x GY) = O(GY) ® O(G}/) acts via its action on the two factors
Z(0(GY)). Hence to construct (10.14) it suffices to construct a morphism

(10.15) (Z(O(GY)F F)Pxl (Z(O(GY) R G) — %" P%°(F P) b)
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which is annihilated by the ideal of ¥ x ¥ C G}/ x G}/. Now from the definition of
p*? , (7.8) and (6.13) we obtain isomorphisms
(Z(OG))F 7)o (Z(0(G)) R ) =
pA(Z(0GY) R 7)) (Z(0G)F 9))
O ((FF Z(0G))H, (Z(0(G)F D))
A ((FF(Z(OG)F Z(0(G)) 4, D).

By Lemma 10.3 these isomorphisms commute with the actions of O(Gy) x G}/)

induced by the actions on the factors Q/‘”\(ﬁ(Gi{/)). Now multiplication in (GY)
induces a morphism

1%

1

Z(O(GY)*Z(0(GY)) = Z(6(GY))

which is O(G) x GY)-equivariant, where the action on the right-hand side is the
composition of the product morphism O(GY) @ O(Gy)) — O(G)/) with the given
action of O(G)/). We deduce a canonical morphism

(Z(0GY)F" 7)™, (Z(0(GY)F'9) =P (FF Z(0(G)) 4, 9).
Using (7.8) and (6.14), the right-hand side identifies with
Z(O0(GL) R (F P, 9);
it therefore admits a canonical morphism to 2" Px° (F p*?“ %). Combining these
morphisms we obtain a morphism (10.15), and from the construction and the com-
ments above on equivariance one can check that this morphism is indeed anni-

hilated by the ideal of ¥ x ¥ C Gy x G}/; it therefore induces the whished-for
morphism (10.14).

10.7. Exactness. This (technical) subsection is devoted to the proof of the follow-
ing claim, which will be crucial for our considerations below.

Lemma 10.12. The functor

(10.16) #N PR (=) P g, — Ind-P} ;.

is exact. Moreover, for 4 in P%I we have a canonical isomorphism
(10.17) B3 (7l 9) = 7l (%° X D).

To prove this lemma we will need some preliminary results. Let us choose a
complex of €(G) )-modules

(10.18) 0 P2 pi PO g

where each P7 is free of finite rank (and placed in degree j), the natural morphism
Im(a) — ker(b) is an isomorphism (in other words, our complex is exact in degree
—1) and coker(b) = ¢(X). Tensoring with Z°(€(Gy)) we deduce a complex

0= ZYUO(GY)) ®o(ay) P —>ff°( (GY)) ®o(ay) P~

5 2%0(GY)) ®o )y PP —=0—-
of objects in Ind-PY} .
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Lemma 10.13. The natural morphism Im(a) — ker(d) is an isomorphism.

Proof. Recall from §4.8 the equivalence of categories @1 : PRI = Rep(Zgy (u))-
Passing to ind-objects we deduce an equivalence Ind-P{; = Ind-Rep(Z¢y (u)). Now
the category Ind-Rep(Zgy (u)) identifies with the category Rep™(Zgy(u)) of all
algebraic Zgy (u)-modules (see [I<5, §6.3]), and under the equivalence

Ind-P?; = Rep™(Zgy (u))

the object Z°(0(GY/)) corresponds to €(GY ), with the structure of Zgy (u)-module
induced by multiplication on the left on G)/. Through these identifications, the
action of O(GyY) on Z°(0(GY)) corresponds to the action on &(Gy) where ¢ €
O(GY) acts by multiplication by the function g — (g~ ug) (see Remark 4.6). To
prove our claim, it therefore suffices to prove that the complex of Zgy (u)-modules

50 O(GY) ®oayy P72 = 6(GY) ®ay) P
= O(GY) @p(ayy P =0 — -

has no cohomology in degree —1. Now, the cohomology in degree —1 of this complex
is

Tor} “(0/(GY). 0(5).
If we let G act on O(GY/) via the right regular action, then for the action above
O(G}) becomes a GY-equivariant ¢(G,/)-module (where G}/ acts on the algebra

O0(G}!) via conjugation). The desired claim therefore follows from Corollary 2.10.
(]

Now we can come to the main step towards Lemma 10.12. Here, as for Lem-
ma 10.9 we will use the fact that it makes sense to apply a functor P to an
object in Ind—D?mI7 even though there is no “perverse t-structure” on this category.

Lemma 10.14. We have

" Fort®(#°) if n = 0;
DAL () = { r (%)

0 ifn>0o0rn=-1.

Proof. By definition of the perverse t-structure on Df, | the functor II{ : Dy, 1 —
D?U’I is t-exact with respect to the perverse t-structures; this functor therefore com-
mutes with the functor P52°", and then the same property holds for the extensions to
ind-objects. Using Lemma 10.9, we deduce the case n = 0. Similarly, since Z” be-
longs to Ind-Pp, ; , and since my is right t-exact (see §6.2), we have P2 (m1%") = 0
for any n > 0, which implies the claim in this case.

It remains to treat the case n = —1. Consider again the complex (10.18), and
the complex

g =

(10.19) =0 ﬁﬁ(Gﬂ\é)) ®ﬁ(GB\&/) P2 i) Q/a\(ﬁ(Gﬂ\:)) ®0(Gu\§/) p!
= Z(0(GY)) ®eyy PP = 0— -

o~

in Ind-P{. | obtained by tensoring with 2°(6(GY)). Let us denote by A the full sub-
category of P{ 1, Whose objects are the perverse sheaves .7 such that 1'[?“71(%r (F))
belongs to the heart of the perverse t-structure. Then A is an additive category, and
the natural functor Ind-A — Ind-Pp\ ; is fully faithful by [IXS, Proposition 6.1.10].
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The object D@?(ﬁ (G})) belongs to the essential image of this functor, see Theo-
rem 7.8(1); the same is therefore true for any term of our complex (10.19).

For an additive category B, let us denote by C[=2.9(B) the category of complexes
of objects of B whose components are zero in all degrees except possibly —2, —1
and 0. By [KS, Lemma 15.4.1], the natural functor

Ind-C1=2%(A) — 1729 (Ind-A)

is an equivalence of categories. This implies that there exist a filtrant category I,
inductive systems (#; 2 :i € I), (' :i € T)and (4 :i € I) of objects of A,

3 7

and morphisms of inductive systems (f; : A, % — M Vier, (gi + M7 — M)icr

such that g; o f; = 0 for any 4, and such that (10.19) is isomorphic to
“ li ” f7, “ i ”gi
"'%O%“liﬂ”,ﬂi_2£—>t‘héﬂ”%_liééhg”%o—)o—}"'
iel icl iel

(as a complex of objects in Ind-P{\ ; ). For any i € I we set 2; := coker(g;); these
objects define in a natural way an inductive system of objects in PIAu 1,- The object
Z" is isomorphic to the cokernel of g; in view of the description of cokernels in
ind-objects in an abelian category (see [IXS, Lemma 8.6.4(ii)]), we therefore have

A s @i
4 1:?1? 2;,
so that what we have to prove is that
(10.20) “@”Pf*lng’mm(@) =0.
i€l
Note that with these notations, Lemma 10.13 (combined with the t-exactness of
Forho) says that the complex

“l.g”ngu,lﬂf(fi)

(1021) - = 0= “limg "1, ey (%) ——""00 “liag "TI9, e (71
el el

« ,,Hou, 4 (gi)
ﬂ Tu. 1 LLHA,IMH?H’I,]TT('%O)_)O_)...
icl

of objects in Ind—P?mI has no cohomology in degree —1.

Recall from (6.11) the equivalence of triangulated categories

DPf, , = Df
provided by the “realization functor.” For any ¢ € I we consider the complex
Fi= (>0 2 £>///i_1 L ) -0 --)
of objects in P{\ | ~(seen as an object in DbPIAqu), and denote by .¥; its image in
Df p,- If we set
Z’:(---—>O—>///[2 ﬁ)ker(gi)—>0—>---)

(seen as an object in DPP{ | ) where A? is in degree —2, and denote by ./ its
image in Df\u 1, then we have a distinguished triangle

RIS RIUR
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in DPP7 | , hence a distinguished triangle
Iu)Ill’

S I 2, L

in DI 1,- Applying the triangulated functor HI 17, then taking the long exact
sequence in perverse cohomology, and finally formal direct limits, we deduce an
exact sequence

“ling "R I, i () - <l P I, i (2,) = “lim "PAOTIY, i ()

iel iel iel
of objects in Ind—P?mI. By right t-exactness of the functor 7, and since each .7} is
concentrated in negative perverse degrees, the third term in this sequence vanishes.
As a consequence, to prove (10.20) it suffices to prove that
(10.22) “113771)%*111?“71@(5&) =0.
iel
Now we set

T =m0 M2 50

1
(seen as an object in DbPﬁ“I“) where ///i_ is in degree —2, and denote by ./ its
image in Df\u 1,- We have distinguished triangles

N N N RN

K3
where in the second triangle the morphism .2, 2[2] — .#; '[2] is f;[2], and in the
first triangle the morphism ./ — .#?[1] is the unique morphism whose composi-
tion with the map ., '[1] — ./ appearing in the second triangle is g;[1]. (The
existence and unicity of this morphism is guaranteed by the long exact sequence
obtained by applying Hom(—,.# [1]) to the second triangle.) Applying the trian-
gulated functor I1¢ T, We obtam distinguished triangles
1
I, i () =TI, i (%) = T,y (7).
(1]
Iy, g (A ) [1) = 0}, e (A7) — IO}, e (A 2)[2] —
Since 119 1Tt (A ~2) is perverse by definition of A, taking the long exact sequence
of perverse cohomology associated with the second triangle we obtain an exact
sequence

(10.23) 0y, gt (M%) = T gy (A7) = P gy (7)) = 0,

which identifies 222771 i (") with coker(I{ (mi(f;)). On the other hand,
the same procedure applied to the first distinguished triangle produces an exact
sequence

0— pjf_lﬂgu,lﬂ'f(y‘) — P~ 1H? 17'('1(5/”) — HI IWT(%O).
Here, by construction the composition of the right morphism with the surjection
090 (i () — 2ot i (") from (10.23) is 119 m¢(g;). Hence, through the
identification P27~ 'I} (my (7)) = coker(ITY, (mi(f;)), this exact sequence identifies
p%_ll_[?mlm(ﬂ) with the kernel of the morphism

coker (I}, ym4(fi)) — 17, 74 (A7)
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induced by TI} y7i(g;). Passing to formal direct limits and then using the de-
scription of kernels and cokernels in ind-objects in an abelian category (see [KXS,
Lemma 8.6.4(ii)]), we deduce that “lim, ” P} i () identifies with the ker-
nel of the morphism

coker(“lin "TI) ri(f;)) — “lim "TI9, s ()

K2 2

induced by “lim_” I} (mi(g:). The exactness of the complex (10.21) in degree —1

exactly says that this morphism is injective, which shows (10.22) and finishes the
proof. (]

Proof of Lemma 10.12. By construction, the bifunctor
Df 1, x DYy = DP |

given by (Z,9) — F 70 (WS% ) is the unique bifunctor through which the bifunctor
D{ y, X Drr— DY, 1

given by (F,9) — IT{ ;. (ﬁ?(ﬂTFor%u (9))) factors. Now, by (6.5)—(6.6), for & in
Dﬁ Tu and ¢ in D;1 we have a canonical isomorphism

F % (niFor; (9)) 2 nl(m4.F) «1 9).
We deduce, for .# in D\ | and ¢ in D}y, a bifunctorial isomorphism

F 2 (nlg) = 70 (1. 7)) 9)

(where the bifunctor x{ here is that defined in §4.7, and the functor 77° is defined
in §5.3) and then, by t-exactness of 77 and ¥, for any n € Z we deduce an
isomorphism

P (F R (m9)) = a0 (P (T, 1 Z) <) ).

This isomorphism extends to ind-objects, and provides for ¢ in P?’I and n € Z an
isomorphism
(10.24) P (RN R (n)9)) =2t (P (1), B+ ).

Applying (10.24) in case n = 0 and using Lemma 10.14, we obtain an isomor-
phism

2" %’ (n}9) = 7O ((For°%2°) +{ 9).

Using (4.11) and (5.2), we deduce the isomorphism (10.17).

The isomorphism (10.24) and Lemma 10.14 also imply that for any ¢ in P%I we
have

PR R (1)) =0 ifn>0o0rn=—1.
We claim that in fact, for any .# in P{ | we have
(10.25) PR R F)=0 ifn>00rn=—1
Indeed, write 2" = “lim, "%} with each Z; in Py | . Given an exact sequence
9\1 — 9\2 —» yg

in P?U’I“, for any ¢ we have a distinguished triangle

~0 ~0 ~0 1
AR N TS NG TS AN
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in DY | , and then a long exact sequence
Ill 7IL\ ?

S PN (R R Fy) = P (B R Ty = PR R F)
— PR 30 F3) — P (%) 30 Fy) — -

in P?u,lu' Taking the formal inductive limit, we deduce a long exact sequence

S PN (RN R Fy) — P (B Ty) = PR R F)
= PR R Fy) = PR R T -

in Ind—P?u 1, This exact sequence shows that if (10.25) is true for two objects, then
it follows for any extension between them. Since this statement is known for any
object of the form WS% with ¢ in PPy, and since any object in P{ ; is a successive
extension of objects of this form, this proves (10.25) for all .%.

Now that (10.25) is known, the same long exact sequence as above shows that
the functor (10.16) transforms exact sequences in P?u,lu into exact sequences in
Ind—P?qu7 i.e. is exact. (I

10.8. Definition of the functor. We start with the following observation: con-
sider a category A, a pro-object

X — ((M??Xi7
el
in A, and an ind-object
Y — “hﬂ”‘y‘—j
jeJ

in A. Then A embeds in the category Ind-A of ind-objects in A, and also in the
category Pro-A of pro-objects in A. Using the induced functors on categories of
pro-objects and ind-objects respectively, we can see X and Y either as objects in
Pro-Ind-A, or as objects in Ind-Pro-A. The spaces of morphisms from X to Y in
these two categories coincide: they both canonically identify with

lim lim Homp (X;,Y;) = 1 Homa (X;,Y;) = lim lim Homa (X, Y;),

%}ﬁ A(Xi, Y5) (Lj)?rr[lxj A(Xi, Y) _]EEJEI) A(Xi, Y5)
where the equalities follow from [I{S, Proposition 2.1.7]. This space will simply be
denoted Homa (X,Y).

In the present setting we have the pro-object Z* in Dy, 1,; applying (the functor
on pro-objects induced by) I ; we deduce a pro-object II{ | (Zf) in DY ; . (In
other words, I ; (/") is the image of the pro-object ITf; ;;(E{") considered in §8.2
under the functor on pro-objects induced by (8.1).) On the other hand, given %
in P ; we have the ind-object %" P2’ Z in P? ;.- Now we have a fully faithful
functor Ind-P{, ; — Ind-Dy, ; , see [IXS, Proposition 6.1.10]; #"PZ°.F can therefore
also be seen as an ind-object in Df ; . Using the notation above we can therefore
consider the vector space

i, 1, (F) i= Hompy (T} 1 (), 2" %" F).

For . in P} ; , monodromy endows ®y, 1, (:%) with a canonical action of &(Ty x
T,Y), which by Lemma 6.7 factors through an action of (D). (In view of Re-
mark 10.6, the restriction of this action to (T} /Wr) coincides with the action of
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0'(X) induced by the action on #Z”.) In this way, @y, 1, can be seen as a functor

PY 1 — Mod(¢(D)).

us

Again for .7 in P} | , using the right exactness of the functor (—) P20 F (see
Lemma 6.9), the morphism of Lemma 10.10 provides a canonical morphism

R PR T (%A PR f) Qo) 0Jsx)

in Ind-P? ; . (Here the action of &(X) on %" %0 .Z is induced by that on Z", or
equivalently by monodromy.)

Lemma 10.15. For any % in P?u,lur there exists a canonical isomorphism

1, 1, (F) ®(s) O(Js) = Hompy | (T, 1, (E), (2" P%" F) ©o() O(Jx)).

T
Proof. The object = is perverse; by Proposition D.4 it can therefore be written
as @n " of, for some projective system (<%, : n > 0) of objects in pDISH?Iu. On
the other hand, #” P2’ Z is an ind-object in P?mlu; it can therefore be written as
A H 9. : s 0
hﬂi %, for some objects ¥; in PIqu. We then have
D, 1,(F) = lim Hompy | (. %) = lim Hompy  (2°(4,), %),

Jlu
n,t n,t

If we write O(Jx) = ligj M; for some finitely generated ¢'(X)-modules M, then
we similarly have
(I, 1, (B), (2" 7% F) @) O(I5))

= hﬂ Hompo  (P°(4,),%; Rezy My),

Tu,lu

Hompo

Lu,Tu

n,i,j
where O(X) acts on %; via monodromy. By Lemma B.1, for any n,i,j we have a
canonical morphism

(10.26) HOmp?qu (pjfo(ﬂn), 4) Re ) M; — Homp?u . (pjfo(ﬂ{n), Y Qe (x) M;),

slu

which defines the desired morphism.
To prove that this morphism is an isomorphism, we observe that since €(Jy) is

flat over €(X) (see Lemma 2.17), by Lazard’s theorem (see e.g. [SP, Tag 058G])
the objects M; can be chosen to be finite free €(X)-modules. Then (10.26) is an
isomorphism for any n, i, j, which concludes the proof. ([

This lemma shows that the morphism of Lemma 10.10 induces, for any % in
P? 1, a canonical morphism

O1, 1, (F) = 1,1, (F) ®erx) Ox),

us

which is easily seen to define a structure of &'(Jx)-comodule on @1, 1, (.%#). Combin-
ing these structures, we see that ®;, 1, defines a functor from P?u,lu to the category
of 0(Jp)-comodules.

We now explain how to construct, for .#,¥ in P(I)ml“7 a bifunctorial morphism

(10.27) D1, 1,(F) ® 01, 1,(9) — D1, 1, (F Px). 9).
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First, the same construction as for (8.4) provides, for any %, ¥ in P?u,lu’ a canonical
morphism

(ITF, 1, (B),9)

= 0
- HomD?u,Iu (H?U,L, (E1), 7 Pxp, 9).

Hompo (H?u,lu (&), F) 265)) HOHID?‘

Iu,Iu Tu

We then deduce a similar morphism for ind-objects, which provides a canonical
morphism

D1,1,(F) ® B0, (%) — Hompy | (19, (20), (" 72° 7) 7l (" 72° 9)).
Composing this morphism with the morphism
(T}, 1, (1), (2" P%" F) Pui, (R PR F)) —
Hompy | (T}, 1 (E1"), 2" P%" (F P 4))

Tu,Iu

HomDIo .

induced by (10.14), we deduce the whished-for morphism (1() 27).
We will later see that (10.27) is an isomorphism for any .#,% in P{ | , but this
will require proving first some other properties of @y, 7.

10.9. Image of monodromy. Recall the monodromy construction with respect
to the loop rotation action, see Remark 5.3. This morphism provides, for any %
in P{ |, a functorial automorphism p'g*(z) : .7 = .7.

On the other hand, consider the category Rep™(Jp) of representations of the
group scheme Jp, or in other words of &(Jp)-comodules. As explained in Re-
mark 2.16, the group scheme Jx, admits a canonical section, hence so does Jp. This
implies that any M in Rep™(Jp) admits a “tautological” automorphism, defined
as the composition

M — M P o(D) ﬁ(JD) - M X o(D) ﬁ(D) =M

where the first morphism is the coaction, and the second one is induced by restric-
tion to the canonical section. Here again this automorphism is functorial (in the
sense that it defines an automorphism of the identity functor).

Lemma 10.16. For any .7 in PY ; , @1, 1,(ug"(x)"") is the tautological automor-
phism of @1, 1,(F).

Proof. Since the loop rotation action is trivial on G/U, for any ¢ in P?LU, seen as
an object in P{ | , we have u*(z) = id. On the other hand, by (6.9) we have

0
itz () = () P5° 134 (0)
rot .
Z(0(GY)
Df. ;, commutes with monodromy, it follows that ®r, 1, (u'g"()~"') coincides with
the automorphism of @, 1, (%) induced by pgk (x). By definition, this automor-

phism is obtained by passage to the quotient from ,u?;t(ﬁ (Gv))(x), which by Theo-

rem 7.8(6) coincides with (mﬁ(G\/))_l. By construction of this functor (see §10.3),

the latter automorphism is the image under T of the inverse of the tautological

automorphism of &(GY) ® Ogy as considered in §4.5.

rot

where piga is the automorphism induced by W Since any morphism in
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On the other hand, by definition of the coaction on ®r, 1, (%), the tautological
automorphism of this representation is induced by the automorphism of %" given
by the composition

174 % 748 Qe (x) O0Js) — 174 265)) orx) = R"

where the second morphism is induced by restriction to the canonical section. This
automorphism is obtained by passage to the quotient from the automorphism of

—

Z(0(GY)) given by the composition

— —~ —~

Z(O(GY)) » Z(0(GY)) @ O(GY) = Z(0(GY)) ®acy) O(GY x GY)
= Z(0(GY) @o(ay) O(GY) = Z(0(GY))

where the first morphism and the first identification are as in the construction of
coactgn, and the second morphism is induced by restriction to the diagonal. The
latter morphism is the image under FCh of the automorphism of O(G)) ® Ogy
given by the composition

O(GY)®Ogy — O(GY)RO(GY)® Ogy = (0(GY) @ Oay) ®acy) O(GY x GY)
= (O(GY)® Ogy) ®e(ay) OGY) = O(GY) ® Ogy

where the first morphism is induced by the comultiplication in €(G)/) and the
second one by restriction to the diagonal.

These remarks show that the claim will follow if we check that the two given
automorphisms of O(GY) ® ﬁGu\( coincide. This is an easy exercise of manipulation
with the Hopf algebra &(GY). O

10.10. Exactness and compatibility with ®;; and ®y . Our goal in this
subsection is to show that the functor ®; 1, constructed in §10.8 factors through
an exact functor

P?u,lu — Repy(Ip),

which is moreover compatible with the functor ®;1 from §4.8 and the functor ®y s
from Theorem 8.3.

Lemma 10.17. For any .Z in P{;, we have a canonical isomorphism of €(Jp)-
comodules

D, 1, (ﬂéj\) = @LI(J@\)
(where the coaction on the right-hand side is provided by the functor (10.2)), and
moreover

Hompy  (TI}, ;1 (E1"), 2" "% (x{-F)[n]) = 0
if n # 0.
Proof. By Lemma 10.12 and (5.2), for .% in P{; we have
(10.28) NP5 (m) F) =2 7l (%"« F) =2 7t OFor*(%° +) F).

On the other hand, it is easily seen that the functor
17 ;om: D1, — DY s
factors through a triangulated functor

. No 0
mi0 ¢ D1, 1, = DI,
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which is left adjoint to 7:°. Moreover, since 7;(Z{") = = we have
(10.29) mrooIlY 1 () =1 (&)

‘ 1,0 © M1, 1, \=! L, 1\=1)-

(In particular, this pro-object in D(I).,,I in fact belongs to D(I)MI.) We can now compute
using these considerations: for n € Z we have

Hompo (I}

Tu,Iu us

1L (E), 2" P 7l Zn))

~ —_ 1,0
= Hompy (I, 1, (E0), ﬂ'T’OFOI’Iu (%° + F)[n))
= Hompy (10117, 1, (E"), For; (#2° +) F)[n])

= Hompy (11, 1(Z), Fory (%" + .7)[n]).

(Here, the last space is simply a space of morphisms in the category Ind—DIO‘”I.)

To proceed further, consider the “Iwahori—-Whittaker” category of sheaves on
Flg considered in [ , §7.1], and which will be denoted Dzyy 1 here. As for the
“finite” flag variety in §6.6, we have “averaging” functors

Avi, 1 : Dzw1 — D, 1, Avzw : D1, 1 — Dzw1

such that Avy_ 1 is left adjoint to Avzyy and both functors are t-exact; moreover, by
construction we have

) = Avy, 1 0 Avzyy o Forp (6).

If we denote by Pzyy 1 the heart of the perverse t-structure on Dzyy 1, then the
simple objects in Pz 1 are parametrized in a natural way by the subset of W
consisting of elements w which have minimal length in their coset Wiw. We can
therefore consider the Serre and triangulated subcategories of Pz, 1 and Dz 1
respectively generated by the simple objects labelled by elements of positive length,
and then the corresponding Serre quotient P}, ; and Verdier quotient D, |, and
the quotient functor 11, : Dzyw,1 — D%,y 1. By Lemma A.2 there exists a unique
t-structure on D%,y | such that T19,, | is t-exact; this t-structure is bounded, and
its heart identifies with P}y, ;. The methods of | , §8§3.2-3.3] can be used to
show that the realization functor

b
D°Pryw 1 — Dzw;1

is an equivalence of categories; combining this with Proposition A.3, we obtain an
equivalence of triangulated categories

(10.30) DPP%yy 1 = DYy

whose restriction to P%W’I is the obvious embedding.
One can easily check that the functor IT{ ;o Avy, i, resp. 113,y ; o Avzyy, factors
uniquely through a t-exact triangulated functor

0 .o 0 0 .o 0
AVL,,! : DIW’I — DI‘”I, resp. Avrp DI.,,I — DIW,I,
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and that AV?U,I is left adjoint to AV%W. We then obtain that

Hompo | (I, 1 (Z), Fori’,o (%2° +{ F)[n])
= Hompy | (A, JAV, For?(8°), Forp*(2° ) ) [n])
= Hompy, (AV%W Forho(éo), AV Fori"]O (%° + F)[n))
= Hompopy (AvoZW Forho(éo)7 AV%WFor}’uO (%° +{ F)[n)),

I

where the last step uses (10.30). (Following our conventions, the last space means
morphisms in the category Ind-D"P%,,, |.)

It follows from | , Corollary 9.2] and the “transitivity” of the Serre quotient
that the functor

0 1,0 . po 0
Avzy, 0 ForIu : PLI — PIW’I
is an equivalence of categories. We deduce an equivalence of categories
bp0 bp0
D°Pi; — D°Pyy 1,
and finally an isomorphism

HOIHD?\MI“ (H?u,lu(E!A)vﬁA P (W(T)y)[”]) = HomeP?’I(507%O 1 F[n]),

where in the right-hand side we mean morphisms in Ind-DP P?’I.

Now consider the case n = 0. Since the natural functor Ind—P(ﬂI — Ind-DP PRI
is fully faithful (see [I{S, Proposition 6.1.10]), we can compute the morphism space
above in Ind—P?)I; by definition we recover ®; (%), which proves the isomorphism
of the lemma.

If n # 0, we use the monoidal equivalence

@1y : PP} =5 Rep(Zgv(u))

that sends #° to 0(Zgy (u)) (see §4.8) to obtain an isomorphism

Homlnd-DbPRI((soaﬁo ) F[n)) =

Homia. porep(Zgy (1) (k, O0(Zgy (u)) @k Pr1(F)[n]).

If we write
0(Zoy (v)) = “lmy” M,

el

where [ is filtrant and each M; belongs to Rep(Zgy (u)), then we have

Homlnd—DbRep(ZGv (u))(kv ﬁ(ZG;(V (u)) @k @1, 1,(F)[n]) =
k

hﬂHomeRep(ZGkv w)(k, M; @ @1, 1,(F)[n]).
iel :

It is known that the natural functor DbRep(ZGkv(u)) — DbRepoo(ZG]kv(u)) is fully
faithful. (This follows e.g. from the much more general results in [AB, Corollary 2.11
and its proof].) We deduce that for any i € I we have

HomeRep(ZGkv(u))(ka M; @ @11(F)[n]) = H"(Zgy (u), M; @k P11(F)),
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and then using the fact that cohomology commutes with filtrant direct limits
(see [Ja, Lemma 1.4.17]) that

Homlnd—DbRep(Zan (u))(kv ﬁ(ZGkV (u)) ®x @1,1(F)[n]) =
H"(Zgy (u), 0(Zgy (u)) @k Pr1(F)).

Finally, we use the fact that 0(Zgy (u)) ®x ®1,1(F) is injective in Rep™ (Zgy (u))
(see [Ja, §81.3.9-1.3.10]) to conclude that this space vanishes. O

As a consequence of Lemma 10.17 we obtain the following properties.

Proposition 10.18. The functor @y, 1, is exact, and takes values in Repy(Jp).

us

Moreover, the left diagram in (10.3) commutes.

Proof. Recall that P?u,lu is a finite-length category, and that its simple objects are

the objects 7} (.#) with .% simple in P?;. Given a short exact sequence

91 — yg — 93
in P?ualu’ by Lemma 10.12 we have a short exact sequence
(10.31) B3 Ty s B PR Ty - R PR Ty

in Ind-P? ; . By [IXS, Proposition 8.6.6(1)], there exists a filtrant category I and
an inductive system of short exact sequences

'%7;1 N %2 s %3
in P{ ; from which (10.31) is obtained by taking formal direct limits. Write also

o« ”
HI I“ ._4| L g

for some objects ¥, in DIOH,L,' Then for any n and i we have an exact sequence
Homog | (%, 1 [-1]) = Hompy (%, #7-1)) = Hompy | (G, 4[]
— HOHlD(I) 1 (gnv‘%zl) - HomD? I (gna'%f) — HOIHD? I (gna‘%zg)
- HOHID? I (g’na '%21[1}) - HomD? I (gna '%12[1]) — HOII’IDIO 1 (gn7 '%13[1])
By exactness of filtrant direct limits we deduce an exact sequence

HomDIo "

(19, 1, (5), 2" P%° Fa[-1]) = Hompy | (T (51), %" P F[~1])
— HonguYIu (H?U,Iu (=0 ),Q/\Pioﬁg[—l]) — Oy, 1, (F1) = 1,1, (F2) — P11, (F3)
= Hompy (IR}, 1, (E), 2" ¥ Z1[1]) — Hompy (119, 1, (5), 2" %" Fa1))

— Hompy (T, 1, (E1), 2" *%° Fs]1]).

Using these exact sequences and Lemma 10.17 one proves by induction on the length
that for any .# in P} ; the module @y, 1,(.F) is finite-dimensional and annihilated
by a power of 7, and that

Hompy (T2, 1, (E0), 2" »%" #[-1)) = 0= Hompyp (9, 1, (B), 2" P Z [1]).

The first property shows that ®p, 1, takes values in Rep,(Jp), and the second one
implies (using again the exact sequence above) the exactness of @y, 1,

us
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The commutativity of the left diagram in (10.3) has been established in Lem-
ma 10.17. ([

We can now prove the compatibility of ®;, 1, with the equivalence ®y; ¢ of The-
orem 8.3.

Proposition 10.19. The right diagram in (10.3) commutes; in other words, for
any .7 in Py there exists a canonical isomorphism of Jp-modules

oy (F) = O1,1,(F)
where the left-hand side is endowed with the trivial structure as a representation.
Proof. From the definition of the functors we see that there exists a functorial
morphism

Py (F) = 1, 1,(F)
induced by the unit morphism 6" — £” and the functor (8.1). Using Lemma 10.17
we see that this morphism is an isomorphism when % is the unique simple object in
P?, 7, namely wT(For%u J%€.). Since both functors are exact, the five-lemma implies
that this morphism is invertible for any .%# in P[O]’U7 which finishes the proof. U

10.11. Images of some truncated Wakimoto sheaves. Recall the representa-
tions of Jp introduced in §3.3, and the “truncation” functors introduced in §6.5
and §10.2. By construction, given .# € Py ; , resp. M € Rep(Jp), these functors
provide a projective system (C?,I(WIQ(A)) :m > 1) of objects in P?u,lu’ resp. a pro-
jective system (D,, (M) : m > 1) of objects in Repy(Jp). Our goal in this subsection
is to prove the following claims.

Proposition 10.20. (1) For any A € X} (T), there exists an isomorphism of
projective systems

(éluxlu(cg"b(wui\o()\))) tm > 1) = (Dm('%t/(\wo(/\))) m > 1)
(2) For any w € ), there exists an isomorphism of projective systems
(@1, 1,(CO(AD)) : m > 1) = (D (ML) :m > 1).
We will need some preliminaries.

Lemma 10.21. For any V € Rep(GY/) and Z in P?U,Iu we have a canonical iso-
morphism of Jp-modules

Oy (é’(\/) P30 9) =~V @y 1, 1,(F).

Proof. If we write Z =TI} | (¥
Z (V)% (—) (see Theorem 7.8(5)
ZWV)PRF =10 | (Z(V)59).
Using Lemma 10.7 we deduce an isomorphism
B (Z (V)R F) =2 (%R TF) @V,
and then an isomorphism
Op, 1, (Z(V) P20 F) = @y, 1, (F) @4 V,

us

as desired. O

with ¢ € Py, 1, then by exactness of the functor

we have

 —
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By exactness of the functor Q/p\(V)Q(f) (see Theorem 7.8(5)), for any m > 1 we
have

CLZV)) = Z(V)F C)(5").
In view of Lemma 10.21 and Proposition 10.19, we deduce a canonical isomorphism
1,1, (C,(Z (V) 2 V &k Duu(Ch,(5").

Now if we denote by A(T,Y)™ the spectrum of &(TY)/(JT™ - ( T,))), embedded
diagonally as a closed subscheme of D, it is clear that @y, (CY,(6")) =2 & A(TY)m)
so that we finally obtain an isomorphism

(10.32) 1,1, (CO,(Z (V) 2V @ Oz yom-

By Theorem 7.8(6) and Lemma 10.16, under this identification the automorphism
of the left-hand side induced by my corresponds to the tautological automorphism
of the Jp-module V & ﬁA(TkV)<m>. By Remark 4.4, this automorphism can also be

obtained from the tautological automorphism of V& 0gy € Coh®¥ (GY) by pullback
under the composition

A(TY)™ < D — St — GY.
(Here, the second embedding is provided by the identification of D with Xp.)

Proof of Proposition 10.20. (1) We fix A € X (T'), and consider V' € Rep(GY)
which has highest weight A (in the sense of §2.5). Recall from Theorem 7.8(7) that
the perverse sheaf Q/"\( V) admits a Wakimoto filtration whose subquotients have as
labels the weights of V. In particular there exists an embedding 7//\ N Q/P\(V)

whose cokernel admits a Wakimoto filtration. By Proposition 9. 4 the induced
morphism

(10.33) COLHL n) = Co(Z(V))

is injective for any m > 1. By Lemma 7.2(6) and Theorem 7.8(6), the endomor-
phism f :=my — uﬁv)(ewc’()‘) ®1) of Z(V) vanishes on the image of Wwo(A)' We
deduce that, for any m > 1, C% (f) vanishes on the image of C,,L(WI;\O(/\)).

For any m > 1 we can consider the finitely generated & (D(m))—module

D1, 1, (Co (e )
and, by exactness of @y, 1,, for any m’ > m we have
0(D"™) @ (D) P11, (Cor (Zihh (3)) = 1,1, (ChL(F) ())-
By [ , Proposition 7.2.9], it follows that
K\ —L‘I’I 1L (CL (70 )

is a finitely generated &(D”)-module such that
(10.34) 0(D"™) @y Ka = ®1,1,(Ch (70 (1)

for any m > 1. From the embeddings (10.33), and by exactness of ®;, 1,, we obtain
an embedding

Ky = lm i, 1, (C(F(V)))
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i.e., using (10.32), an embedding
Ky = VoAD"

where A(T}/)" is the spectrum of the completion of &'(T}) with respect to J-0(1}),
embedded diagonally in D”.

Now, recall from Lemma 2.11 that V ® Oagroth has a canonical endomorphism
whose kernel identifies with @agroth(wo(A)). Restricting to Styeg, using the equiv-
alence of Proposition 2.20 and Lemma 2.21, and then completing, we deduce that
V ® O(A(TY)") has a canonical endomorphism whose kernel is isomorphic to
///u/}\o( INE By construction and the comments just before the proof, this endomor-
phism vanishes on the image of K, which provides an embedding

Ky = My, (-

We will prove that this embedding is also surjective, hence an isomorphism, which
will conclude the proof in view of (10.34).

By | , Corollaire 7.1.14], to prove this surjectivity it suffices to prove that
the induced morphism

K\/(T - Kx) = My ) (T - My ()

is surjective. Now, by construction this morphism is injective, so that to conclude
it suffices to prove that

dim(K» /(T - K»)) = dim(%zij\o(A)/(j ) ///130(,\)))'
It is clear that the right-hand side equals dim(&(1)))/(J - 0(T}'))). For the left-
hand side, we remark that

K\/(T - Kx) = @1, 1,(CL(# ()

From the proof of Lemma 9.1 one sees that the object C?(WMAO(/\)) is an extension

of dim(0(T}Y)/(TJ - O(T}))) many copies of the simple object H?,I(Ai(wo()\)))' (The
fact that this object is simple follows from | , Lemma 4.5].) We deduce that

dim(Kx /(T - K»)) = dim(0(T) /(T - O(T}))),

as desired.

(2) Since Flg , is closed the natural morphism A/} — V) is an isomorphism; in
the statement one can therefore replace A/, by V.. Let us write w = wt(\) with
w € Wy and A € X, (T); then we have wt(—\) = w with {(wt(X)) = £(w) +£(t(—=N)),
hence by Lemma 6.3(1)—(2) we have

VL =V * Al
After fixing such an isomorphism, using Proposition 9.6 we obtain for any m > 1
an isomorphism
Ch(V0) 2 C0L(Va) Par, Chu(Afiy)-
Applying (10.27), one deduces a canonical morphism
D1, (C, (Vi) ® @1, 1, (C(ALL)) = Pr,1, (VD).
From (3.1) one sees that A is antidominant; using (1), we deduce isomorphisms

Or, 1, (Ch(AN) = @1, 1, (CL () = D (ML)

us
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On the other hand, using Lemma 8.6 and Proposition 10.19 one obtains isomor-
phisms

Or,. 1, (Cp,(AL)) = D ()
for any m > 1. Using Lemma 10.2 and (3.6), we deduce that our construction
provides morphisms

Do (ML) = D1, 1, (Ch(AD))
defining a morphism of projective systems, and to conclude it suffices to prove that
these morphisms are isomorphisms. Computing as in (1) one sees that the two
modules involved have the same dimension, so that it suffices to prove that these
morphisms are surjective. Now & (D(m)) is a local ring, with maximal ideal the
image of the ideal Z considered in §8.3. By Nakayama’s lemma, to prove surjectivity
it therefore suffices to prove that the induced morphism

Do (M) )T - Do (ML) — P11, (Co (AD))/T - (D11, (Ch,(AD)))
is an isomorphism. Here by exactness of ®;, 1, the right-hand side identifies with

‘I)LI(H%I(WT Al)), and the morphism is an isomorphism by monoidality of ®1;. O

10.12. Fully faithfulness. We will now prove that the functor @1, 1, is fully faith-
ful. The proof will rely on the following easy lemma.

Lemma 10.22. Let A, A’ be abelian categories, and let ' : A — A’ be an exact
functor. Assume that every object in A has finite length, and that for any simple

objects M, M’ in A:
e the morphism

Homa (M, M") — Homa/ (F(M), F(M"))

induced by F' is an isomorphism;
e the morphism

Extp(M, M') — Extp, (F(M), F(M"))
induced by F' is injective.
Then F is fully faithful.

Proof. One proves, by induction on the sum of the lengths of the objects involved
and using the four- and five-lemma, that for any objects M, M’ € A the morphism

Homa (M, M") — Homa/ (F(M), F(M")),
resp.
Extp(M, M) — Extp (F(M), F(M')),
is an isomorphism, resp. is injective, which implies the claim. (I
In order to use Lemma 10.22 we will need to describe some groups of extensions

in P?U,Iu’ which we will relate to some groups of extensions in PIOWI. First, the
forgetful functor

FOI’L : DI,I — DIu,I
induces a fully faithful functor P%I — P(I)ml; we deduce a canonical injective mor-
phism

(10.35) Ext,lggl (6°,6%) — Ext;%hl(For{f(&O), Fory?(8°)).
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On the other hand, we also have the similar quotient category P[O]’ p constructed out
of the category Py p considered in the proof of Lemma 6.10. The closed embedding
G/B — Flg induces a fully faithful functor P{; 5 — P} ;, and For%’uo(§0) is the
image under this functor of a canonical object of P%’ g denoted in the same way.
We deduce another canonical injective morphism

(10.36) Ext;& (Fory (), Fory®(s%)) ﬁExt,l,?uJ(ForIO(ao) Fory?(59)).

Lemma 10.23. The morphisms (10.35) and (10.36) induce an isomorphism of
k-vector spaces

Ext,lggl(éo,éo) @Ext,lg%B(ForIO((SO) Forp ((50)) = Extllgo (ForIO((SO) Forp’ (50))
Proof. Recall from the proof of Lemma 10.17 the exact functor
AV%W : P? 1 P%WI

such that Avy,,, o ForI induces an equivalence PII = PIWI The functor Avy,,
induces a morphism

(10.37) Iix’cllpghl(ForI (69, ForI 0(6%)) —
Extpy  (Avgyy(Forp(8%)), Aviyy (For " (6°)))

whose composition with (10.35) is an isomorphism; to prove the lemma it therefore
suffices to prove that its kernel is the image of (10.36).
Now, recall also (from the same proof) the functor

which is left adjoint to AvY,,, : D?u = D%W 1» and which satisfies
AVY | o AV, 0 Forp?(8°) = TI9 ().
By adjunction and standard properties of t-structures we have
Bxthy | (Aviu(Fork’(6°)), Avdyy(Fork(6”)) =
HomD%WYI(AVIW(ForI (50))aAV%W(FOV%O(‘SO))M)
HomDO (HI 1(E), F°"1 (")),

Il

and the morphism (10.37) identifies with the morphism
Homp, (For(8°), Fory(6%)[1]) — Hompy (I, (), For*(6%)[1])

induced by the natural surjection H%,,I(E!) ForI 0(50). If we denote by % the
kernel of this morphism, we have a long exact sequence

(10.38) 0 — Hompo I(ForI 0(6°), Fory" ((50))—>H0n’1p0 (IR, (2, For;°(6%))
L Hompy (A, Fory®(6%)) — Extpo (For;”(8°), For;(8%))
- EXtPIU I(Hlu,I(E!)»CSO) —
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which identifies the kernel of (10.37) with coker(f). But since all the objects in-
volved belong to the full subcategory P(I)L 5, we also have a similar long exact se-
quence

I, I, - I,
0 — Hompy (Fory”(6%), For;*(6°)) — Hompy, L1 1 (E), Fory *(6°))

% Hompy (A, For;?(6%)) — Extpy . (Fory (), Fory®(s%))
= Extpy (117, 1(Z1), Fory(6°)) = -+

Since Z is the projective cover of Foril(5) in Py p (see the proof of Lemma 6.10),
1) (=) is the projective cover of For;’(6°) in P}, ;, which implies that

Extpo . (I, 1(E1), Fory °(6%)) = 0,

and therefore allows to identify Exté,%B(ForiO(do), Forho(éo)) with coker(g). By

fully faithfulness of the functor P(l)f, B — P?U,I the domains and codomains of f and
¢ identify, in a way compatible with these morphisms, so that their cokernels are
canonically isomorphic.

Gathering these identifications we obtain an identification of the kernel of (10.37)
with Ext,l,% . (Fori’lo(éo)7 Fori’lo(do)); it is clear by construction that this identification
is induced by the morphism (10.36), which finishes the proof. O

The other ingredient we will need is a way to “pass from §° to §2,” which will
be provided by the following lemma. (See §4.6 for the definition of the object
0..) Here, given a simple object .# in P} | we will denote by (#)serre the Serre

subcategory generated by %, i.e. the full éubcategory whose objects are those all
of whose composition factors are isomorphic to .%.

Lemma 10.24. For any w € (2, the equivalence

A * (=) : D?\,,L, = DY

usiu

restricts to an equivalence <7T(];60>Serre = <w$53>3m6. Moreover the following dia-
gram commutes:

ANFO(_
<7T$60>Serre 1) <W862>Se”e

‘I’Iu,lul i‘l’lu,lu
ML®(—)

Repy(Jp) ————— Repy(Jp).
Proof. Using (6.5)—(6.6) we see that
ANR 7ls0 = wfol,

which implies the first claim. In order to prove the second claim, we consider some
object # in (71'850)59%, and choose m > 1 such that J™ acts trivially on .%. Then
using Lemma 6.9 we obtain a canonical isomorphism

AL F = (AL)Pxy, F.
Now (10.27) provides a functorial morphism

O, 1,(CO(AL)) ® @1, 1, (F) = P11, (C(AD) Pxy, F).
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Using the identification above and Proposition 10.20(2), this morphism can be
interpreted as a functorial morphism

MY ® Py, 1, (F) = Oy, 1, (ALFF),

us us

which does not depend on the choice of m. When .% = 71'2;(50, this morphism is an

isomorphism by Proposition 10.18 and monoidality of ®1;. By the five lemma it is
then an isomorphism for any %, which concludes the proof. O

We can finally prove the desired property.

Proposition 10.25. The functor ®; 1s fully faithful.

u,lu

Proof. Recall that the simple objects in P?u,lu are the images under W(T) of the simple
objects in P?,I. In view of Lemma 10.22, to prove the proposition it therefore suffices
to check that for any simple objects .#,¥ in P?’I the functor @1, 1, induces an
isomorphism

Hompy (.7, w{%) <> Hogep, (1) (1, 1, (76 F), 1,1, (709)

u,

and an injection

EXtég\h (70T, 7l G) = Extiep, (30 (1, 1, (70.F), @1, 1, (1] 9)).

For the Hom-spaces, this simply follows from the commutativity of the left diagram
in (10.3) (proved in Proposition 10.18) since @1 is known to be an equivalence,
hence in particular fully faithful.

To prove the claim about the Ext! spaces, recall that nonisomorphic simple
objects in PIO,I are supported on distinct connected components of Flg; hence if

F %9 then Exté? 1 ( 8357 ﬂg)g) = 0, and there is nothing to prove. Otherwise we

can assume that % = ¢ = §2 for some w € Q. In fact, Lemma 10.24 reduces this
case to the case when # = & = §%. (Indeed the horizontal arrows in the diagram
of Lemma 10.24 are equivalences, hence induce isomorphisms on Ext’ spaces.) In

this case we have @1, 1, (wgéo) =k, seen as the skyscraper sheaf at {(e, )}, endowed
with the trivial structure as a representation.
The same considerations as for (10.35) and (10.36) provide canonical embeddings

1 0 50 1 T50 150
ExtP?‘I(é ,0 )%EXtP?u,Iu (w6, mhd"),
1 0 150 1 0 150
EXtP%,U(WS(S , M0 )%EXtP[ﬂ,,Iu (7rg;§ ,TH0°).
We claim that these morphisms induce an isomorphism
Exté,?yl((so,(so) ® Ext%,%YU(ﬂg(So,ﬁgéo) = EthleUu,Iu (60, w3 89).

Indeed, using the adjunction (70, 77?) (see the proof of Lemma 10.17) we obtain
an isomorphism

]Elxtllr,lomIu (71'8(50, W(Jgdo) o HomD?uJ(7r1r,07rT’0507 5O)) = E}(tllgghl((s()7 6% @ HZ (T k)*
where r = dim(T), since my o7"06% = @, §° @i H?(T;k)[2r — n]. Similarly we have
Ext,l,%ﬂ(wg(so,wgao) = Extpy  (6°,0%) @ HZ (T3 k)",

so that our claim follows from Lemma 10.23.
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In view of this isomorphism, to conclude the proof we need to check that the
morphism

(10.39) Ext,l,?yl((SO, 6%) & Extpy ﬂ(ﬂa@, m40%) = Extiep (1) (k: k)

induced by @i, 1, is injective. Note that on the first summand this morphism
identifies with that induced by @1 (via the morphism induced by the fully faithful
functor (10.2)), and on the second summand it identifies with the morphism induced
by @y (via the morphism induced by the fully faithful functor (10.1)). Consider
elements ¢; € Exté?l(éo,éo) and ¢ € Ext:;%U(ﬁg(So,wgéo) such that the image of
¢1+¢s vanishes. We have a forgetful functor Rep,(Jp) — Cohg(D); the composition
of the induced morphism

EXtéepo(JD) (k7 k) - EXt(liohO(D) (ka k)

with (10.39) vanishes on the first summand, and identifies with the isomorphism
induced by ®y ¢ on the second summand. We deduce that c; = 0, and then that
c1 = 0 since @y is an equivalence, which completes the proof. ([

10.13. Essential surjectivity. We will now prove that the functor ®r, 1, is essen-
tially surjective. For this we need a preliminary lemma. Given V € Rep(G,/) and
M € Coh(D), the coherent sheaf V' ®, M has a canonical structure of module for
the group scheme G}/ x D over D. Now by construction Jp is a subgroup scheme of
Gﬂ\{/ x D, hence by restriction V ®y M has a natural structure of Jp-module. If M
belongs to Cohg(D), then this module belongs to Repy(Jp). Recall also the closed
subschemes D("™) C D considered in §8.5.

Lemma 10.26. Any object in Repy,(Jp) is a quotient of a module of the form
V Qk Opmy with V € Rep(GY/) and m > 1.

Proof. We will in fact prove that any M in Rep(Jp) is a quotient of a module
V ®x Op with V € Rep(GY); if M is in Repy,(Jp) the corresponding surjection
V ®k Op — M will necessarily factor through a surjection V ®x Opm)y — M for
some m > 1. Recall the equivalence of categories

COth (TEQ/ XTY /W (Gﬂ\é)reg XTY /W T]kv) = Rep(JD)

induced by restriction to ¥p, see Proposition 2.20. If .# is the equivariant coherent
sheaf corresponding to M, then there exists a G)/-equivariant coherent sheaf .7’
on Ty v yw; GY X1y w, T, whose restriction to the open subscheme T,/ x7v /y,
(GY)reg X1y yw; Ty is F; see eg. | , Lemma 2.12]. Now since T}/ x7v/w;
Gy x1v w, T is affine, there exists V € Rep(GYy) and a surjection of Gy -equivariant
coherent sheaves

V ®x ﬁTka v — F.

TY /Wi Gy x 1Y /Wil
Restricting to 7} X1v yw; (G )reg X 1,7 yw; T, and then to ¥p, we obtain the desired
surjection V ®y Op — M. O

Proposition 10.27. The functor
(I)I I, * P?uglu — RepO(JD)

us

is essentially surjective.
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Proof. We now know that @y, 1, is exact (see Proposition 10.18) and fully faithful
(see Proposition 10.25). By Lemma 10.26, any object in Rep,(Jp) is isomorphic to
the cokernel of a morphism between objects of the form V @, M with V' € Rep(G}/)
and M € Cohg(D), to prove the proposition it therefore suffices to prove that
any such object is isomorphic to the image of an object of P?u,lu' Let us fix V €
Rep(GY and M € Cohy(D). Since @y s is essentially surjective (see Theorem 8.3),
Proposition 10.19 implies that there exists .% in PIO‘”I“ such that &1 1, (F) = M.
Then Lemma 10.21 implies that

1,1, (Z(V) P30 .7) 2V @, M,
which finishes the proof. O
10.14. Monoidality. Combining Propositions 10.18, 10.19, 10.25 and 10.27, we
have now proved that ®;, 1, is an equivalence of categories, and that the diagrams
in (10.3) are commutative. To conclude the proof of Theorem 10.1, it therefore only
remains to prove that @1, 1, is monoidal. Recall that in (10.27) we have defined a
canonical “monoidality” morphism; what we will now prove is that this morphism

is an isomorphism for any .#,% in P{ | .
We start with a special case.

Lemma 10.28. The morphism (10.27) is an isomorphism in case
F=7V)FXF awd 9=2V)3 ¥
for some V,V' € Rep(G)/) and F', 94’ € P?LU,
Proof. Assume that % and ¢ are as in the lemma. By Lemma 10.21 and Proposi-
tion 10.19 we have
O1,1,(F) =V ek Cuu(F), O,1,(9) =2V @k Puu(9).
On the other hand, using (7.8) we obtain a canonical isomorphism
TP G2 Z Ve V)R (F 4 ),
so that similarly we have
Or, 1, (F 2, 9) = (V@ V') @k Quu(F' <4 9').
Under these identifications the morphism (10.27) is induced by the isomorphism
uu(F * Y') = by (F') @ Cuu(¥)
defining the monoidal structure of ®y  (see Theorem 8.3); it is therefore an iso-
morphism. O
Proposition 10.29. The morphism (10.27) is an isomorphism for all F,9 in
P?U,Iu ; in other words, the functor ®1, 1, admits a canonical monoidal structure.
Proof. By right exactness of the bifunctors *?u and ® and the five lemma, if given
F.,9,9" in P?u,lu the claim is known for the pairs of objects (¥#,¥) and (F,9’),
then it will hold for the pair (.%,%") for any cokernel 4" of a morphism ¢4 — ¥’.
The same property holds when the order of the factors is switched. In view of

Lemma 10.28, to conclude the proof it therefore suffices to prove that any object
in P(I)mIu is isomorphic to the cokernel of a morphism between objects of the form

Q/”\(V) %°.Z' with V € Rep(GY) and .F' € P - In view of the computation in the
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proof of Lemma 10.28, this follows from Lemma 10.26 and the fact that ®y and
®r, 1, are equivalences of categories. g

us

11. A SOERGEL-TYPE DESCRIPTION OF TILTING PERVERSE SHEAVES

We continue with the assumptions of Section 10. In this section we explain how
to deduce Theorem 1.5 from Theorem 1.3.

11.1. Tilting completed perverse sheaves. Recall the category Pﬁ,,lu and its
subcategory T{ | from §6.3. Recall also that Tf\ ;| is stable under the monoidal
product *. In §6.6 we have defined, for any s € S¢, an object Z, in T{ ; . On
the other hand, in §3.1 we have chosen, for any s € S ~\ St, elements w € W and
s’ € S¢ such that ¢(ws') = £(w) + 1 and s = ws'w™!. We then have

ALFAL 2 ANKAL and VL %V XVL*VA_L

s’ —

by Lemma 6.3(2), hence
AP ALKTALXVL . and V) 2XALXVL*VA L

by Lemma 6.3(1). From these isomorphisms we deduce that the object

=N ANTEN T ON
':‘S,! = Aw *._45/7! * qu

is a representative for the indecomposable tilting object .Z.*. On the other hand,
for any w € Q the natural morphism A/, — V/) is an isomorphism since E?lg)‘,J is
closed, which shows that these perverse sheaves are tilting.

Recall that the category Df}1 1, 1s Krull-Schmidt, see §6.1. Standard arguments
(see e.g. | , Remark 7.9]) show that any object in T{ ; is a direct sum of direct
summands of objects of the form

ANFED % FED,

=s1,! Sisye

with w € Q and s1,---,s; € S.
Let us recall also that for any V' in Rep(G)/) tilting the object
ENRF(V) 2 Z(V)FE)

belongs to Tf\u,lu’ see Proposition 7.9.

11.2. Soergel representations. Recall the category
SRep(Ip)

defined in §3.3. Note that any object in this category is finite and flat, i.e. finite
and projective, as an O((T,)")-module for the action on the right.
Let us note the following technical property for later use.

Lemma 11.1. The scheme (T}/)" X1y w,; Js is integral.

Proof. First, we note that since T} is isomorphic to a product of copies of the
multiplicative group, the scheme (7,/)" is integral. Recall the open subscheme
(T, )o C T} introduced in §2.6; in concrete terms, &'((1}’)o) is the spectrum of the
localization of ¢'(T) with respect to the elements o — 1 where « runs over the
coroots of (G,T). We define similarly (7,)) as the spectrum of the localization

of O((T})") with respect to the elements o — 1 where « runs over the coroots of
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(G,T). Then (T}/)} is integral, and &((T})2) is also the localization of &'((1,)")

[e]

viewed as an @(T})-module; in other words we have a canonical identification
(11.1) (TY)o 1y (L) = (TY)5-
Since Jy, is flat over T}/ /Wt (see Lemma 2.17), the natural morphism
O(T)" <y ywe Is) = O(T)0 X1y yw; Is)

is injective. To prove our claim it therefore suffices to prove that the right-hand
side is a domain. However, in view of (11.1) we have

(T2 Xy w, Is = ()" <y (e X, ) -
By Lemma 2.19 the right-hand side identifies with
(L))" xmy (I )o x ) = (T)S x T,
which is integral since it is a split torus over the integral scheme (7,Y)). (I

11.3. Statement. Our main application of Theorem 10.1 is the following state-
ment.

Theorem 11.2. There exists a canonical equivalence of additive monoidal cate-
gories
(I)T : (Tf\u,IHJ;\) ; (SRep(J]/S)7®)
which satisfies the following properties:
(1) ®1(E)) = B forany s € S;
(2) o1(AL) =2 A for any w € ;
(3) Sr(Z(V)FED) 2V @, O(D) for any V € Rep(GY) tilting.

Note that property (3) shows in particular that V @, &(D”) belongs to SRep(Jp)
for any V' € Rep(GY) tilting, which is not clear from definitions. The proof of
Theorem 11.2 occupies the rest of the section. The idea of the proof is to give
“sequential” descriptions of the categories Tf 1, and SRep(J3), in terms of the
categories P?u,lu and Repy(Jp) respectively, and then use Theorem 10.1 to relate
these two descriptions.

More specifically, on the perverse side, we will denote by Pﬁ’sﬁf‘ the monoidal
additive k-linear category with 7

e objects the projective systems (%, : m > 1) of objects in P?u,l., such that
J™ acts trivially on %, for any m > 1, and for m’ > m the morphism

o(1y)™) QoY) Fm = Fm

induced by the transition morphism .%#,,, — %#,, is an isomorphism;
e morphisms from (%, : m > 1) to (%, : m > 1) the inverse limit

u

lim Hompo (ZFm,Ym)

where for m’ > m the morphism Hom(.%,,,/,%,/) — Hom(%#,,,%,,) is in-
duced by the functor O((T)™) @ g(pv) (-);

e monoidal product sending a pair of objects ((:F, : m > 1), (%, : m > 1))
to the object (F, p*?u %, : m > 1). (This projective system is indeed an
object of our category by right exactness of p*?“.)
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With this definition, Proposition 9.6 and Lemma 9.7 imply that the assignment
T = (CO(T):m>1)

defines a fully faithful monoidal functor

(11.2) T = POTL

11.4. Truncation functors for representations: fully faithfulness. We now
consider the category Rep(J), and the functor D,, introduced in §10.2.

Lemma 11.3. Let M, M’ € Rep(Jp). If M’ is projective for the right action of
O((T))"), then the functors Dy, induce an isomorphism
HomRep(JAD)(M, M) = @HOmRepO(JD)(Dm(M), D (M")).

Proof. For any M, M’ in Rep(Jg) and any m > 1 the forgetful functor Rep,(Jp) —
Cohg(D) induces an embedding

HomRepO(JD)(Dm(M)a Dm(M/)) — HomCoho(D)(Dm(M)> Dm(M/))'

These embeddings give rise to a morphism fitting as the right vertical arrow in the
following commutative diagram (where the other arrows are the obvious maps):

HomRep(Jg)(Ma M/) — ]{Elm HomRepO(JD) (Dm(M)7 Dm(M/))

|

HomCoh(DA)(Ma M/) - r&lm HomCohg(D) (Dm(M)v Dm (M/))

The lower horizontal arrow in this diagram is an isomorphism by [ , Chap. 0,
Corollaire 7.2.10]. It follows that the upper horizontal arrow, which is the morphism
we need to study, is injective.

To prove surjectivity, we consider a projective system

(fm)le € @HomRepo(JD)(Dm(M), Dm(M/))

Each f,, is a morphism of &'(D)-modules; this collection therefore defines a mor-
phism f: M — M’ of &(D”)-modules, and what we have to show is that f is also
a morphism of &(Jg))-comodules. We consider the second projection D — (T,Y)".
Then we have

J/]S = D/\ X(T*K\/)/\ ((Tﬂg/)/\ XTkv/Wf JZ) ,
so that M and M’ can be considered as representations of (7')" x7v /w; Jz. From
this point of view, to prove the desired claim it suffices to show that f is a morphism
of O((T)" X1y w; Jz)-comodules. Now Jx is smooth over the smooth k-scheme
T,Y /Wt, and (T,Y)" is flat over T} /W as the composition of flat morphisms

(T)" = (T /W) = T /Wy

(see Lemma 3.3 for the first map). By Lemma C.1 and Corollary C.4, this implies
that (T,')" x1v,w; Js is infinitesimally flat. This group scheme is also integral by
Lemma 11.1, and noetherian since it is of finite type over the noetherian scheme
(T,Y)". We can therefore apply Lemma C.2 which reduces the proof to checking
that f is a morphism of Dist((7}/)" X1 j Wy Js)-modules. However each f,, is a
morphism of Dist((7}/)" X7y w; Js)-modules, so that this claim is clear. O
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Let us denote by Rep®™®?(J5y) the monoidal additive k-linear category with:
e objects the projective systems (M,, : m > 1) of objects of Repy(Jp) such
that J™ acts trivially on M,, for any m > 1, and for m’ > m the morphism
Dy (Mpy) = M,
induced by the transition morphism M,,» — M,, is an isomorphism,;
e morphisms from (M,, : m > 1) to (N,, : m > 1) the inverse limit
I.Ln HomRepO(JD) (Mm7 Nm)
m

where for m’ > m the transition morphism
HomRepo(JD) (1\47”/7 Nm/) — HomRepo(JD) (Mm, Nm)

is induced by the functor D,,;
e monoidal product sending a pair of objects ((M,, : m > 1), (N, : m > 1))
to the object (M, ® Ny, : m > 1).

With this definition, Lemma 10.2 and Lemma 11.3 imply that the assignment
M~ (Dp(M):m >1)

defines a monoidal functor

(11.3) Rep(Jp) — Rep**(Ip)

which is fully faithful on the full subcategory of objects which are projective for the

right action of &((T}')"). In particular, objects of SRep(Jg)) satisfy this condition
(see §11.2), hence (11.3) is fully faithful on SRep(Jg).

11.5. Construction of ®t. Comparing the definitions of the categories PIAU’SIeuGl

(see §11.3) and Rep***(Jg)) (see §11.4), we see that Theorem 10.1 provides a canon-
ical equivalence of monoidal additive k-linear categories

Asseq ~
O, PLL = Rep™i(Jp).
In the remaining subsections we will prove the following claim.

Lemma 11.4. (1) For any s € S there exists an isomorphism of projective
systems

(‘I)Iu,lu (C%(EQ,)) m > 1) >~ (D (B2) :m > 1).
(2) There exists an isomorphism of projective systems
(P11, (CY,(E)) :m > 1) =2 (D, (O(D")) : m > 1).

For now, let us explain why Lemma 11.4 allows to complete the proof of Theo-
rem 11.2.

Proof of Theorem 11.2. Lemma 11.4(1) implies that the equivalence ®;°% matches
the image of each =7, (s € S) under (11.2) with the image of %, under (11.3).
Similarly, Proposition 10.20(2) implies that ®;°] matches the image of each A/
(w € Q) under (11.2) with the image of ./} under (11.3). In view of the discussion
in §11.1 and the definition of SRep(Jg)), these properties and monoidality imply that
P identifies the essential images of the functor (11.2) with the image of SRep(Jp)
under (11.3). We deduce the equivalence @1, and also that this equivalence satisfies
properties (1)—(2).
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Finally, consider some V' € Rep(G)/) which is tilting. As explained in §11.1, we

have the object 2°(V)*E[ in T{, | . Lemma 11.4(2) and Lemma 10.21 provide an
isomorphism of projective systems

(®1,1 (CLZV)FED) 1 > 1) = (D (V @1 6(DY) s > 1),

which allows to identify the images of ®1(Z(V)*E}) and V &y ¢(D") under (11.3).
Now &1(Z (V) *Z[) satisfies the assumption in Lemma 11.3 because it belongs to
SRep(Jp), and V @, 0(D") also does by Lemma 3.3(1). We deduce that these

objects are isomorphic, proving that ®1 satisfies property (3). O

11.6. The case of G//U. Recall the category Dy, from §6.6, the heart Pf;; of
the perverse t-structure on this category, and the full subcategory T[A,’U of tilting
perverse sheaves. Recall also that we denote by Py the heart of the perverse
t-structure on Dy . The pushforward along the closed embedding G/U — flg
defines a fully faithful monoidal functor (Df};, %) — (Df, 1,,%), which restricts
to a fully faithful monoidal functor (T7 7, %u) — (Tf, 1,,%). As noted in §8.1, for
any m > 1 the restriction of the functor C,, to Pﬁ,U factors through a functor
P#. v — Pu,u, which will be denoted similarly.

Consider also the category Coh(D"") of coherent sheaves on the noetherian scheme
D”. We have a natural fully faithful functor

(11.4) Coh(D") — Rep(Jp)

sending a coherent sheaf to itself with the trivial structure as a representation of
Jp, whose essential image contains the objects £, for s € Sp. It is clear from
definition that the monoidal product ® on Rep(Jg)) restricts to a monoidal product
on Coh(D”) (which will be denoted similarly). It is clear also that for any m > 1
the restriction of the functor D, to Coh(D") factors through a functor Coh(D") —
Cohg(D), which will be denoted similarly. We will denote by

SCoh(D")

the full monoidal additive subcategory of Coh(D”) generated (under the monoidal
product, direct sums and direct summands) by the unit object .#,* and the ob-
jects AL for s € S;. With this definition, (11.4) identifies SCoh(D”) with a full
subcategory of SRep(J5)-

In [ , Theorem 11.8] we have shown that the functor Homp, (Z", —) defines
an equivalence of monoidal categories Y

(PT,U : (T/[}’US*\U) = (SCOh(D/\)7®)

which satisfies

(11.5) b1y (L) = B, forse S
and
(11.6) o1y (E) =2 0(DM).

Lemma 11.5. For anym > 1 and any F in T&U we have a canonical isomorphism
@11, (C (7)) 2 D (@1,0(7)),
where the right-hand side is seen as an object of Cohg(Jp) via (10.1).
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Proof. The object C (.7) belongs to the subcategory P{;; C PY ; . By Proposi-
tion 10.19, this implies that

@11, (Ch (7)) = @uu(Ch, (7)) = Hompy (B, C(T)),

where the last step uses Lemma 8.2. Now by projectivity of =" (see Lemma 6.10)
we have

Hompy (51", Cn (7)) = Hompy (21, T) @gzy) O(T)™),
which finishes the proof in view of the definitions of ®t ; and D,. O

11.7. Images of truncated standard and costandard objects. We now need
to describe the images under @1, 1, of (images in P?H,Iu of) truncated standard and
costandard free-monodromic perverse sheaves. Recall that the images of truncated
costandard perverse sheaves have been described in Lemma 8.6. We next prove the
analogous statement for standard objects.

Lemma 11.6. For any w € Wk, there exists an isomorphism of projective systems
of 0(D)-modules

(Puu(CO(ANY)) :m > 1) 2 (M| T™ - My - m > 1).
Proof. By Lemma 6.3(1) we have an isomorphism
AL FV =60

After fixing such an isomorphism, using Proposition 9.6 we deduce for any m > 1
an isomorphism

Cou(A%) Pap, € (Vi) = €0, (67,
which by monoidality of ® ¢y provides an isomorphism
(11.7) Du,u(Ch (A7) ® u,u(Ch(Vi-1)) = @uu(C,(67)).

Now, consider
M, = lim @yy(C), (A7)

m>1
For any m > 1, the &(D)-module ®y(CY (AL)) is finitely generated, and, by
exactness of @y 7, for any m’ > m the natural morphism
(0(D)/T™ - 0(D)) ®em) Pu,u(Ch(AL)) = Puu(Ch(AL))
is an isomorphism. By | , Chap. 0, Proposition 7.2.9], it follows that M, is a
finitely generated &(D”)-module, and that for any m > 1 the natural morphism
Mw/jm My — (I)U,U(an(Aﬁz))

is an isomorphism. To conclude the proof, it therefore suffices to construct an
isomorphism of &(D”)-modules M,, = .#;. Now the isomorphisms (11.7) and the
description of images of costandard objects in Lemma 8.6 provide an isomorphism

Mw ®ﬁ((Tk\/)/\) %71,\71 [ %e/\.

Since . _, is invertible for the product ®, with inverse .#,; , we deduce the desired
isomorphism M,, = ). O

We can finally prove the desired general statement.
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Lemma 11.7. For any w € W, there exist isomorphisms of projective systems
(P, 1,(C.(AR) : m > 1) = (D (M) 2 m > 1)
and

(®1,1,(Co (VD)) :m > 1) 2 (D () : > 1).

Proof. First we prove the isomorphisms when w = s € S. In case s € St, they follow
from Lemma 8.6 and Lemma 11.6. Now assume that s € St~ {s}. Then there exist
w € Wy and A € X, (T) antidominant such that s = wt(\) with £(t(\)) = £(w) + 1.
By Lemma 6.3(1)—(2) we then have

JANAR=R VAR AtA( NS
Using Proposition 9.6 and the monoidality of ®r, 1, we deduce for any m > 1 an
isomorphism

O, 1,(Ch,(AD)) = @1, 1,(C) (V) ® Pr, 1, (C), (AL\))-
Now @1, 1,(C% (V2)) is described in Lemma 8.6, and <I>1“71u(C?n(At/\(A))) is described

in Proposition 10.20(1). Using these descriptions, Lemma 10.2 and (3.6), we deduce
the desired isomorphism

(Pr,1,(CO(AD)) i1 > 1) 22 (D (L) s > 1),
The isomorphism
(®1,,1.(Co (VD) :m > 1) = (D (A]) : > 1)

follows, using the same arguments as in the proof of Lemma 11.6.

Note that in case w € €, we have A/} = V2 so that both isomorphisms follow
from Proposition 10.20(2).

Finally we treat the general case. Given a reduced expression w = wsy - - S,
(with w € Q, s1,---,5, € S and r = ¢(w)), by Lemma 6.3(2) we have

AL ALFAL % %XAL, VA EVLFVL %% V.
Using Proposition 9.6 and monoidality of ®1, 1, we deduce isomorphisms
1,1, (G (A3)) = @11, (CL(AD) ® D1, 1, (C(AL)) ® -+ ® Dy, 1, (CL(AL),
O, 1,(C, (Vi) =2 @1, 1,(C,(V])) ® P, 1, (CL(VE)) ® - @ r, 1, (C), (V1))

We deduce the desired isomorphisms using the case of the elements w and s;,
together with Lemma 10.2 and (3.6). O

1%

Remark 11.8. Since ®7, 1, is an equivalence, Lemma 11.7 implies in particular that
the projective systems (C% (A%) :m > 1) and (C%,(V2) : m > 1) are isomorphic.
In other words, in the quotient P?u,lu one cannot see the difference between standard
and costandard objects.

11.8. Completion of the proof. We can finally complete the proof of Lem-
ma 11.4.

Proof of Lemma 11.4. From Lemma 11.5 and (11.5) we deduce (1) in case s € St.
Similarly, (2) follows from Lemma 11.5 and (11.6).

Finally, consider some s € S \. St, and recall the elements w, s’ chosen in §3.1.
Then by definition we have

=A N [l v
-:45,! == A’LU * .:S/_’! * Vw_l'
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Using Proposition 9.6 and monoidality of &1, 1, we deduce for any m > 1 an
isomorphism

P11, (C,(EL))) = @1, 1, (C),(AL) ® @1, 1, (C,(ED 1) ® P11, (C (V1)

us

Here we know that ®r,1,(C,(E0 ) = Dp(%). On the other hand, by Lem-

ma 11.7 we have isomorphisms

1,1, (C(A)) = D (), 1,1,(C (V1)) = D (1)

us w1

We deduce isomorphisms

®1,1,(Ch(E2))) 2= Dy () ® D (52) @ D (A1),

us

Using Lemma 10.2 and the definition (see (3.4)), one sees that the right-hand side
identifies with D,,(42), which concludes the proof. O

Remark 11.9. The objects Eg\ ; considered above have been defined in a canonical
way for s € S, and in this case the isomorphism in Theorem 11.2(1) is canonical.
But we do not know any canonical construction in case s € S\ St, and the objects
Al (w € Q) are defined only up to isomorphism. However, one can always fix some
obJectb EQen (s € 5) and AL (w € Q) in Tq | and identifications

Tr(EN) = B, Br(AL) =)

for s € S\ S and w € Q. Using Lemma 3.5 and monoidality of &1, we deduce
canonical isomorphisms

A,_ ~ AN, =N
(118) A/\ can /\ can A fim ~ ‘:w)s(jill

for any s € S and w € © One can then define the category Ty’ ’BS with

e objects the collections (w, s1, - ,s;) with w € Q and s1,---,8; € 5;
e morphisms from (w,s1,---,s;) to (W', s, -+ ,s}) given by
/\,_ —~ A, ~—A ~ ~—_A
HOIIITIA . (AA ,can /\can*. RE .-/\ can A can*‘_‘ /can*.“*‘:s/,can)
51 i

Using the isomorphisms (11.8) one can define on Tf\ ’?S a canonical monoidal struc-

ture, such that we have a canonical equivalence of monoidal categories

(11.9) TP =5 BSRep(Jp)

which is the identity on objects, where BSRep(J) is as in §3.3 (for G = G}/). We
also have a canonical fully faithful monoidal functor

A,BS A
Tn = T,

sending (w, s1,-- -, 8;) to AL % EL0 % X B and Tp, | identifies with the

Karoubian closure of the additive hull of TA BS

12. THE CASE OF Flg

We continue with the assumptions of Sections 10-11. In this section we briefly
indicate how the constructions of Sections 8, 10 and 11 can be adapted to give a
description of the more familiar category of tilting I,-equivariant perverse sheaves
on Flg.
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12.1. The case of G/B. We start with the analogue of Theorem 8.3. Recall the
categories Py p and POU7B considered in §10.12, and denote by H%,B :Pup — P(()J,B
the quotient functor. We can also consider the Verdier quotient of the category
Dy, p from the proof of Lemma 6.10 by the Serre subcategory generated by simple
perverse sheaves For%u(fcﬁw) with w € Wi \ {e}. The functor 70 from §5.3 is
t-exact, and it restricts to a functor DOU, 5= DOU,U; it therefore restricts to an exact
functor

(12.1) PY.e = Plu,

which is moreover fully faithful (because so is the restriction of 7' to perverse
sheaves). The same construction as for the convolution product Pxy; (see §8.1)
provides a left action of the category POU’U on P?J’ g, via a bifunctor also denoted

PiYand which is right exact on both sides.
On the other hand, consider the finite k-scheme

E=D XT]kv {6} = T]]g/ ><Tk\//VVf {6}

where the morphism D — T}’ is the projection on the second factor and e € T}/
is the unit element. The closed embedding E < D induces an exact fully faithful
functor

(12.2) Coh(E) — Coho(D).

We also have a natural left action of Cohg(D) on Coh(E), via a bifunctor denoted
®.

Theorem 12.1. There exists a canonical equivalence of abelian categories
®y,p : Py g = Coh(E)
such that the following diagram commutes up to isomorphism:

(12.1)

PY.5 PY
‘I)U,B\L? Z\L@U,U
Coh(E) — 22 Cohy(D).

Moreover, this equivalence intertwines the actions of P?LU on P?]’B and of Cohy(D)
on Coh(E) via the equivalence @y .

Proof. Recall the object = from §6.6, which is a projective cover of the simple object
0 in Py, g. The object H?],B(E!) is then the projective cover of the unique simple
object in PY; 5, so that the functor Homp?}’B(HOU’B(Eg), —) induces an equivalence
of abelian categories

PO = Mod®(Endpy _ (IT), 5(31))).

Now, a much simplified version of the proof of Lemma 8.2 shows that for any .% in
Py, s the morphism

Homp,, ,, (21, F) — Hompy | (II}; (1), 11 5(.F))
induced by H%’ p is an isomorphism. In particular, we have an algebra isomorphism

Endp,, , (51) = Endpy (11 5(Z1)).
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By [ , Corollary 9.2], the left-hand side identifies (via monodromy) with O(E),
which provides the desired equivalence ®y p.

The compatibility with &y ¢y can be checked using adjunction and (10.29). The
compatibility with the action of POU)U follows from (a simplified version of) the same
arguments as for the monoidality of @y . O

12.2. Description of the regular quotient. We now set
JE =E XD JD.

Since the fiber of Js; over the image of e in T,/ /W; is ZGkv(u), we in fact have
Jg 2 E x Zgy (u) as group schemes over E. We will consider the abelian category
Rep(Jg) of representations of Jg on coherent Og-modules. Pushforward along the
embeddings

{(e,e)} = E—D

provides exact and fully faithful functors
(12.3) Rep(Zgy (u)) — Rep(Jg) — Repy(Jp)

whose composition is (10.2). We also have a canonical left action of Repy(Jp) on
Rep(Jg), and a canonical right action of Rep(Zgy (u)) on Rep(Jg); the corresponding
bifunctors will be denoted ® and ® respectively. (The latter bifunctor is exact on
both sides, but the former one is only right exact on both sides.) Finally, we have
a natural exact fully faithful functor

(12.4) Coh(E) — Rep(Jg)

sending a coherent sheaf to itself with the trivial structure as a representation.

On the other hand, recall from §4.7 the category D?ml, and the heart P?D’I of its
perverse t-structure. We have canonical exact and fully faithful functors

1,0
po, "y po T po

As explained in §4.7, we also have a natural right action of PY; on P{ ; (via a
bifunctor denoted *?, which is exact on both sides), and as for the construction
of the convolution product p*?u (see §5.2) we have a natural left action of P?u,lu
on P?ml, via a bifunctor also denoted p*?u (and which is also right exact on both
sides). We have a natural embedding G/B = Flg ., C Flg, which provides via
pushforward an exact and fully faithful functor

(12.5) Py s — P 1.

Theorem 12.2. There exists a canonical equivalence of abelian categories
®1,1:PL, 1 = Rep(JE)

such that the following diagrams commute (up to isomorphisms), where on the left-

hand side the lower horizontal row is as in (12.3):

0 Fory, 0 w0 0 0 (12.5) 0
PLI Iy,I PI\) Iy PU,B PIu,I

‘I’I,I\L? U P11 2\L‘I>1u,1u <1>U,Bll ZJ/CDIH,I

Rep(Zgy (u)) —— Rep(Je) — Repy(Jp), Coh(E) Rep(Jk)-

(12.4)
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Moreover, this equivalence intertwines the actions of P{ 1 and P{; on P} ; and of
Rep(Zgy (u)) and Repy(Jp) on Rep(Jg) via the equivalences @11 and

wlu-

12.3. (Sketch of) proof of Theorem 12.2. The same considerations as in §6.4
provide a left action of the category DIAmIu on D‘I)ml, via a bifunctor denoted 10, and
which satisfies

(12.6) 0 Z 0 g) = 73 (r109)
for any .7 in D 1, and ¢ in D?U,I. Taking 0-th perverse cohomology we then define
% as in the setting of P? 1.

One can deduce from Lemma 6.7 that the monodromy action of &(7,Y) on any
object in Py, 1 (induced by the T-action on Flg by multiplication on the left) factors

through an action of ¢(E). We can then define the functor @y, initially with
values in O (E)-modules, by setting

®1,1(F) = Hompy (I} 1(E1), 2" P20 7).

(Here TI7_1(Z)) is a honest object in Df, , and %" Pz’ .Z is an ind-object in D?. 1;
morphisms are taken in the category Ind—D(I)mI.) Using (12.6), exactness of 710,
adjunction and (10.29) one sees that for & in P?\“I we have a canonical isomorphism

Op, 1, (710(F)) =2 By, 1(F).

This implies that ®r, 1 is exact and takes values in finite-dimensional €'(E)-modules.
The same considerations as in §10.8 can be used to endow @y, 1(-#) with the struc-
ture of a representation of Jg, so that we have in fact constructed an exact functor

®1,1: P} | — Rep(Jg).

us

The considerations above show that the left-hand diagram in Theorem 12.2 com-
mutes. One can next check commutativity of the right-hand diagram as in Lem-
ma 10.19.

Using the comparison with ®1 1, we see also that ®; 1 is fully faithful. Es-
sential surjectivity can be checked as in §10.13: namely, using pushforward to D,
Lemma 10.26, and then pullback to E, one sees that any object in Rep(Jg) is a
quotient of an object of the form V @ O(E) with V' in Rep(Gy). This allows to
conclude since .

O, (Z(V)*'I, 1 (1) =V @ O(E).

Finally, compatibility with the actions can be checked by considerations similar

to those used to prove monoidality of ®1, 1, (see §10.6 and §10.14).

12.4. Description of tilting perverse sheaves. We finally explain how to adapt
Theorem 11.2 to the present setting. We will denote by Ty, 1 the subcategory of
tilting objects in the highest weight category Py, ;. We have a natural functor

Tt Tf\u,lu — TIu,Iu
and an action of the category TIAu 1, on Tr, 1 (via %), from which the functor 74 can

be recoved as the action on the object For%u (6). Standard considerations show that

Ty, 1 is the smallest additive full subcategory of Py, 1 that contains For%u (0) and is
stable under direct summands and the action of the objects =7, (s € S) and A]}
(we).

The following claim follows from | , Proposition 5.9(2)].
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Lemma 12.3. For any %,9 in TI 1, the functor m; induces an isomorphism

Homrp | (7,9) ®ory) k = Homr, ,(m:(F), m4(9)),

usTu

where the action of O(T}) is via monodromy associated with the right action of T
on Flg, and k is viewed as an O(T})-module via evaluation at e € T} .

On the other hand, we have a natural functor
Rep(Jp) — Rep(Jg)

given by restriction to E C D. We also have an action of Rep(Jp) on Rep(Jg) by
convolution (the corresponding bifunctor will once again be denoted ®), and the
functor above is given by the action on the skyscraper sheaf at the base point. We
will denote by SRep(Jg) the full additive subcategory of Rep(Jg) generated under
direct sums and direct summands by the image of SRep(Jg)) under this functor. In
other words, SRep(Jg) is the smallest Karoubian additive subcategory of Rep(Jg)
containing the skyscraper sheaf at the base point and stable under action by the
objects B, (s € S) and A, (w € Q).

Theorem 12.4. There exists a canonical equivalence of additive categories
T ! TIu,I :—> SRep(.,]]E)

which sends For%u (6) to the skyscraper sheaf at the base point and intertwines the
actions of T{ 1 on T, 1 and SRep(Jpy) on SRep(Jg) via the equivalence .

Proof. 1t is a standard fact that the quotient functor H?U’I is fully faithful on the
subcategory Tr, 1 (see [ , §2.1] for the similar claim on G/B). Since the equiva-
lence @9 | of Theorem 12.2 sends ForI (0) to the skyscraper sheaf at the base point,
to prove the theorem it therefore suffices to check that this functor satisfies

1, 1(E2, pAO F)2 B ® P 1(F), Pr,1(AL P20 7)) @ @1, 1(F)

us

for se€ S, weQand Z in P?{UI. However, J acts trivially on .%#. As in the proof
of Lemma 9.5, one can check that we have a canonical isomorphism

/\ p/\o NCO('—/\)p*? Z.

It follows that
1, 1(20, 7% F) = By, 1, (CUEL) ® Or, 1(F)
= Di(%4,) ® 1, 1(F) = B ® 01, 1(F),
which proves the first isomorphism. The second one can be checked similarly. [

Remark 12.5. Comparing Theorem 11.2 and Theorem 12.4, and using Lemma 12.3,
we see that for any M, N in SRep(Jy), there exists a canonical isomorphism

Homsgep(ip) (M, N) @ g(1yv) k = Homsgep (i) (Mg, NE)-

Such a property is standard in the usual theory of Soergel bimodules, see e.g. [R3,
Proposition 1.13].

13. APPLICATIONS

We continue with the assumptions of Sections 10-11-12, and assume furthermore
either that G = GL,, or that £ is very good for G.
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13.1. Parity complexes and /-Kazhdan—Lusztig polynomials. We consider
the category Dyy from §4.2, with its convolution product #1, and the notion of
parity complezes in this category from | ]. The full subcategory of Dy whose
objects are the parity complexes will be denoted Pary 1. This subcategory has a more
“concrete” description as follows. For any s € S, the simple perverse sheaf /%
is just the constant sheaf on the smooth variety Flg s, shifted by 1; in particular
it is a parity complex. On the other hand, if w € € then the orbit Flg ., is just a
point; in particular, #% is the skyscraper sheaf at that point, and is also a parity
complex. We will denote by ParEIS the category with

e objects the collections (s1,-,8;,w,n) with s;,---,s; € S, w € Q and
n € Z;
e morphisms from (s1,---,s;,w,n) to (s7,---,s%,w’,n') given by

Hompay, ((IEC) *1 -+ x1 IC,. 1 IC 0], J%SI,I X[ ¢ AT J%SI; *1 IE,[n']).
By definition there exists a canonical fully faithful functor
(13.1) Parp} — Di.
It is easily seen that for any w € €2 and s € S there is a canonical isomorphism

IC 51 IC 5 IC ., = IC!

sw—1-

Using this property one obtains that there exists a natural convolution product
(still denoted *1) on ParEIS which is defined on objects by
Wn') =

(317"' 782‘,&],”)*1 (817 75;‘7

/-1 /=1 / /
(81,70, 8wsiw ™, wsiw T ww' n+n')

and such that (13.1) is monoidal. For any n € Z the cohomological shift functor
[n] induces an autoequivalence of ParPy | which will again be denoted [n].

It is well known that the category ’DI,I is Krull-Schmidt, and that an object in
Dy 1 is a parity complex if and only if it is a direct sum of direct summands of objects
of ParEIS . In other words, the functor (13.1) identifies Parr; with the Karoubian

envelope of the additive hull of the category ParEIS .

The theory developed in | | provides a classification of the indecomposable
objects in Parpy. More specifically, for any w € W there exists a unique (up
to isomorphism) indecomposable object &, in Pary; which is supported on Flg, ,,
and whose restriction to Flg . is kg,  [f(w)]. Then the assignment (w,n) —
&w[n] induces a bijection between W x Z and the set of isomorphism classes of
indecomposable objects in Pary .

Recall the category BSK,qq constructed in §3.6, which we consider here in the
case when G = G}/ (with the usual choice of Borel subgroup and maximal torus).
In fact, we will rather consider the “right” variant of this category constructed as
in Remark 3.9, which we will denote BSK, ,qq4. It is a standard fact that we have
identifications

Hi (pt; k) = HE(pt; k) = S(k @z X*(T))

where S denotes the symmetric algebra (over k) and the right-hand side is seen
as a graded ring with k ®z X*(T) in degree 2. Moreover k ®z X*(T) identifies
canonically with the Lie algebra t of 7'; in this way, Hf (pt; k) identifies with the
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graded algebra € (t*) considered in §3.6. The category BSK, aqq is related to ParEIS
as follows.

Theorem 13.1. There exists a canonical equivalence of monoidal categories
BSK:.add = Parpy
which intertwines the shift functors (1) and [1], and is the identity on objects.

Proof. This theorem is essentially obtained as the combination of | , Theo-
rem 10.7.1] and the main result of | ]. More precisely, these references provide
a canonical equivalence of monoidal categories with the expected properties be-
tween the full subcategories in BSK; 544 and ParEIS whose objects are of the form
(1, ,8;,e) with s1,---,8; € S. However, it is easily seen that this equivalence
intertwines, for any w € €2, the equivalences given by

M FyxMxF,1 and F = ICx F %1 IC ..

Using this property one sees that the equivalence above can be “extended” to the
equivalence of the theorem. O

Remark 13.2. A different (and more direct) proof of Theorem 13.1 can be obtained
following the constructions in [ , §3]. We will not pursue this here.

We also have similar notions in the category Dy, 1; by definition, an object .% in
Dy is a parity complex if and only if For%u (&) is a parity complex. If we denote
by ParESJ the category with

e objects the collections (s1,-,8;,w,n) with s1,---,s; € S, w € Q and
n € Z;
e morphisms from (s1,---,s;,w,n) to (s1,---,s%,w',n') given by

Homp, (Fori(ﬂ%sll K] vk f‘ﬁ;ﬁ *1 IE€ ),
Forl (S}, %1+ %1 I}, %1 IE, [n’})) :

and by Pary_ 1 the full subcategory of Dy, 1 whose objects are the parity complexes,
then Pary, 1 identifies with the Karoubian envelope of the additive hull of the cate-
gory Parﬁ%.

The right action of the category D11 on Dy, 1 (by convolution) induces a right
action of ParEIS on Parﬁs‘:I7 and of Paryy on Parp, 1. The corresponding bifunctors
will again be denoted *;. For any n € Z the cohomological shift functor [n] induces
an autoequivalence of Parﬁs)l, which will again be denoted [n].

If D is one of the categories Dy 1, D1 I, ParEIS or Parﬁ%l and .9
are objects in D, then we will set

Homp (#,9) = @Homo(f,%[n]).

1, ParLI, ParI

us us

(Depending on the context, this space will be considered either as a graded vector
space, or a plain vector space.) We will see k as a graded H} (pt; k)-module concen-
trated in degree 0, in the standard way. The following lemma is a particular case
of [MR, Lemma 2.2].
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Lemma 13.3. For any #,¥ in Pari, the functor Foriu induces an isomorphism
of graded vector spaces

k ®s (ptx) Homp, | (F,9) = Homp  (Fory (F),Fory (4)).

Below we will use the following consequences of this lemma;:
(1) the category ParESJ identifies with the category whose objects are those of

ParEIS , and whose morphism space from .# to ¢ is given by the degree-0
part in
k @up (pt;x) Homp, ms (F, 9);

(2) for any w € W, the object For%u(&,) is indecomposable; as a consequence,
the assignment (w,n) — Foriu(é"w)[n] induces a bijection between W x Z
and the set of isomorphism classes of indecomposable objects in Parp, 1
(see [MR, Lemma 2.4]).
One possible definition of the ¢-Kazhdan—Lusztig polynomials attached to W is
as follows: for y,w € W we set

hyw(v) = dimH " (Flg y, Suiprg, ) - 0™

neEZ
(The fact that this definition coincides with that considered e.g. in [JW] follows from
the results of | , Part I1I]. In general, these are Laurent polynomials rather than

polynomials in the usual sense.)

Below we will use the following standard properties of these polynomials. (For
Item (1), see e.g. the proof of [JW, Proposition 4.2(4)]. For (2), see e.g. | )
Proposition 2.6].)

Lemma 13.4. (1) For any w,y € W we have ‘hy ,(v) = ‘hy—1 -1 (v).
(2) For any w,y € W we have
dim (Homg,,  (Fory (&,),Fory (&) = Y hzw(1) - ey (1).
zeW

13.2. A degrading functor. Recall the constructions of Remark 11.9. We will
denote by TES’I the category with

e objects the collections (w, s1, -+, ;) with w € Q and s1,---,8; € 5;
e morphisms from (w,s1,---,s;) to (W', s, , ) given by

Homr, (mi(AL % 20 % X ELO), 7y (A % EsA,l’C&n X% E;\;’Can)) .
In view of the comments in §12.4, we have a canonical fully faithful functor
(13.2) T = T
which identifies Ty, ; with the Karoubian closure of the additive hull of TIBHS,I.
Theorem 13.5. There exist a functors
v ParIBuS,I — TE%I,
and an isomorphism ¢ : v o [1] = v such that:

(1) for any F,9 in ParESJ, the functor v and the isomorphism € induce an
isomorphism

Hom;arIBsI (Z,9) = Homyes (v(F),v(9));
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(2) for any s1,---,8; €S, w € Q and n € Z we have
V(Sly o ,Si,W,ﬂ) = (wily Siyc e asl)'
Proof. Using Theorem 13.1 and the comments after Lemma 13.3 one obtains a
canonical equivalence between the category Parﬁs)l and the category BSK; aqq de-
fined as follows: its objects are those of BSK; sq4, and the morphisms from M to
M’ are given by the degree-0 part in

]k ®ﬁ(t*) Hom.BSKr,add (M, M/)

This equivalence is the identity on objects.

On the other hand, consider the category BSK”. Using the equivalences (3.15)
and (11.9) together with Lemma 12.3, we obtain a canonical equivalence between
TESJ and the category BSK” defined as follows: its objects are those of BSK”, and
the morphisms from M to M’ are given by

Homgskr (M, M") @ o((1y~) k.

Once again, this equivalence is the identity on objects.

As explained in Remark 3.9, we have a canonical equivalence of monoidal cate-
gories BSK; aaa — BSKaqq sending (s1,- -+ , 84, w) to (w™ 1, s, -+, s1). This equiva-
lence induces an equivalence between BSK; .44 and the category BSK, 4 which has
the same objects as BSK,qq, and morphisms from M to M’ defined as

ad (M, M’) ®6’(t*) k.
Therefore, to conclude the proof of Theorem 13.5 it suffices to construct a functor

(13.3) vesk : BSK, 44 — BSK"

Homgsk,

a

sending each collection (w, 81, -+ , s;,n) to (w, $1,-- - , $;) and an isomorphism vggk o
(1) = vgsk such that for any M, N in BSK, ,, these data induce an isomorphism
P Homgsk,,, (M, N(n)) = Homgskr (vesk (M), vesk (N).
ne”Z
This functor is obtained from Proposition 3.16 and Lemma 3.17. (]
Remark 13.6. Theorem 13.5 has a variant relating the categories ParEIS and Tf: ’is,
and involving the isomorphism appearing in Lemma 3.17. We leave it to the inter-
ested reader to formulate this statement, and modify the proof above accordingly.

13.3. Numerical consequence. In this subsection we discuss a “numerical” ap-
plication of Theorem 13.5. Recall that if .# belongs to Ty, and w € W, we
denote by (Z : AL), resp. (Z : V%), the number of occurrences of Foril (AL),

resp. For%u(vlw)7 in a standard, resp. costandard, filtration of .#. It is well known
that these numbers are well defined; in fact we have

(Z : Al)) = dimHom(Z,For| (V.)), (F :V.)=dimHom(For; (AL), %).
Using Verdier duality one also sees that for any .# in Ty, 1 and w € W we have
(13.4) (F:A)=(F:V)).

It is a standard fact that if .%#,% belong to Ty, 1 we have

dim Hom(.#,¥) = Z (F:AL) (9:V)),
weW



146 R. BEZRUKAVNIKOV AND S. RICHE

which in view of (13.4) implies that

(13.5) dimHom(Z,%) = Y (Z:A})- (4 :Al).
weW

If Z belongs to T{ ; and w € W, we will similarly denote by (F : A7),

resp. (& : V2 ), the number of occurrences of A\, resp. V4, in a standard, resp. co-

standard, filtration of .%. To see that these numbers are well defined, one simply
notices that if % is in Tﬁ,l\, the object m4(.#) is a tilting perverse sheaf, and that
for w € W we have

(13.6) (F AN = (mF:AL), (F:Vh)=(n1F : V).

w

These equalities and (13.4) also show that
(F:AL) = (7 : VD)

for any w € W.
Recall the object 7, and 7/ defined in §4.2 and §6.3 respectively.

Corollary 13.7. For any w,y € W we have
(T AD) = "hyw(1).

Proof. Passing to Karoubian closures of additive hulls, the functor v of Theo-
rem 13.5 induces a functor
ParIu,I — TIu,I

(still denoted v) which is a “degrading functor” in the sense that it satisfies prop-
erty (1) of Theorem 13.5. By construction we have

(13.7)  v(Fory (JECL #1 -+ %1 ICL 1 ICL)) 2 (AL FED %+ % ED )

for any w € Q and s1,---,s; € S. For any w € W, the finite-dimensional graded
ring

HornE,arIu R (For%u (Ew), For%u (&w))

has a local degree-0 part; it is therefore local as an ungraded ring, see [G(G]. This
observation and the “degrading” property of v show that v(Foril(éaw)) is indecom-
posable. Once this fact it known, it is not difficult to deduce from (13.7) that for
any w € W we have

V(FOI’%U (Ew)) & Ty-1.
We deduce that for any w,y € W we have
dim (Homg,,,  (Fory (&,), Fory (&,))) = dim(Homy, ,(Z-1, Z,-1)).

Comparing Lemma 13.4(2) and (13.5), one then deduces (by induction on w, and
then by induction on y for fixed w) that for any w,y € W we have

(yw : A;) = ehy—lﬁw—l(l).

Finally, the formula of the corollary follows, using Lemma 13.4(1) and (13.6). O
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13.4. Koszul duality. Another application of Theorem 13.5 is to an alternative
construction of the “modular Koszul duality” of | ], in the special case of
affine flag varieties. This construction, based on the ideas of an earlier construction
in the setting of ordinary flag varieties of reductive groups | ], gives more than
the methods of | ]: it also allows to construct a “forgetful functor” relating
the “mixed perverse sheaves” of | ) | to ordinary perverse sheaves.

Recall that following [ | we define the “mixed derived category” of k-sheaves
on Flg by setting

mix .__ b
DIU,I = K ParIl”I.

This category admits a “Tate twist” autoequivalence (1) defined as {—1}[1] where
{—1} is the autoequivalence induced by the negative cohomological shift in the
category Parp, 1, while [1] is the cohomological shift in the homotopy category. The
constructions of | , Section 2] endow Dﬁl’f with a “perverse t-structure” whose
heart is a finite-length abelian category, stable under (1), and which will be denoted
P}“"f By [ , §3.2 and Section 4] the category P}“"f admits a natural structure
of graded highest weight category, defined by some families of “standard objects”
(Amix ;o € W) and “costandard objects” (VI : w € W). In particular there
is a notion of tilting objects in Pﬂi”f, and the indecomposable tilting objects are
parametrized in a natural way by W x Z; see | , Proposition A.4]. Forw € W we
will denote by 7™ the indecomposable tilting object associated with (w,0); then
for any n € Z the object corresponding to (w,n) is Z,™*(n). Any object in Pary, 1

mix

can also be seen as an object in DI}, by identifying it with a complex concentrated

in degree 0. In particular, the image of For%u(zg’w) will be denoted &M,
As terminology and notation suggest, one wants to think of Dﬁl’f as a “mixed

version” of the category Dr, 1, and in fact the results of | , ] show that this
category has properties similar to those of the category of mixed Q,-sheaves in the
sense of Deligne (or, more precisely, a modification considered in [ ). However,

from its construction we do not have a priori any formal relation between Dfm’f and
D1, 1. Point (2) of the following theorem exactly compensates this discrepancy.

Theorem 13.8. (1) There exists an equivalence of triangulated categories
e DE % DY
which satisfies ko (1) =2 (—1)[1] o k and

K(Agix) o~ mix H(V$1X> o~ mix

w1 w1
mix\ ~v emix mixy\ ~v mix
K(gw ) — Qw1 /i(gw ) - ‘7.11)*1

for any w e W.
(2) There exists a functor

. Mmix
v DIu,I — DIU,I

and an isomorphism of functors vo (1) = v such that for any F,¥9 in Df“”f
the induced morphism

@ Hompgix (#,9(n)) — Homp, ,(v(F),v(¥))

neZ
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s an isomorphism. Moreover v is t-exact for the perverse t-structures, and

satisfies
v(ARR) 2 Ay, v(VET) 2V,
V(TP = g, p(EM) =4,
for any w e W
Proof. The proofs are identical to those of | , Theorem 5.4 and Proposition 5.5],
starting from Theorem 13.5 instead of the main result of | ] d

13.5. Application to the Finkelberg—Mirkovié conjecture. We now explain
that the results of this paper allow to give a proof of a weak form of the conjecture
formulated by Finkelberg—Mirkovié in [FM], which has had an important influence
on recent work regarding the representation theory of reductive groups. Here for
simplicity we assume that G is semisimple of adjoint type, i.e. that X*(T) is the
root lattice of (G,T). We assume in addition that ¢ > h where h is the Coxeter
number of G, and that ¢ # 19, resp. £ # 31, in case R has a component of type Ez,
resp. Eg. These assumptions ensure in particular that those of Sections 10-11-12
are satisfied.

We let G be a (simply-connected) semisimple algebraic group over k whose Frobe-
nius twist is GY. We also denote by B, resp. T, the Borel subgroup, resp. maximal
torus, whose Frobenius twist is By, resp. 7,Y. We identify the lattice of characters
of T with X*(7}Y) = X.(T) in such a way that the morphism X*(7)Y) — X*(T)
induced by the Frobenius morphism is given by A — ¢A. Then the simple objects in
the category Rep(G) of finite-dimensional G-modules are classified, via their high-
est weight, by the dominant weights of (G, B, T), i.e. by X7 (T). The simple object
attached to A will be denoted L(\).

The affine Weyl group of G in the sense of [Ja] is the subgroup W’ of W generated
by S, i.e. the semidirect product of W; with the coroot lattice of (G, T) (see §4.3).
We consider the action -4 of W’ on X*(T) defined by

(taz) e p=z(p+p) —p+ LA
for A in the coroot lattice and x € We, where p is the halfsum of the positive roots
of G. We will denote by Repy(G) the Serre subcategory of Rep(G) generated by the
simple objects L(A) with A € (W’ -, 0) N X (T). It is a basic observation that the
map w — w ¢ 0 defines a bijection between the subset of W’ consisting of elements
w which have minimal length in Wrw and (W' -, 0) N X (7).

The category Rep(G) admits a natural structure of highest weight category with
underlying poset X} (T') (with the order <), with standard, resp. costandard, object
attached to A the Weyl module, resp. induced module, of highest weight A\. These
objects will be denoted M()) and N(\) respectively. In particular we have a notion
of tilting objects in this category, and the indecomposable tilting objects are classi-
fied by X (T) (via their highest weight). The indecomposable tilting module with
highest weight A will be denoted T(\). The linkage principle shows that Repy(G)
is a direct summand in Rep(G). In particular, the standard, resp. costandard,
resp. indecomposable tilting, modules whose highest weight is in (W', 0) N X (T)
belong to Repy(G). We will denote by Tiltg(G) the subcategory of Repy(G) whose
objects are the tilting modules.

On the other hand, consider the I,-equivariant derived category Di_ r+¢ of con-
structible k-sheaves on Grg. This category admits a natural perverse t-structure,
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whose heart will be denoted Py +c. Let also Grg be the connected compo-
nent of Grg containing the base point, and denote by Dy, ;+g o C Dy, r+¢ and
P1..z+G,0 C P1, 1+¢ the subcategories of objects supported on Grg. The I-orbits
on Grg are in a natural bijection with the subset W’ C W’ consisting of elements
w € W' which have minimal length in wWs. (This bijection sends w to the image
of Flg 4 in Grg.) We will denote by A,,, resp. V,,, resp. F€ ., the l-pushforward,
resp. *-pushforward, resp. intermediate extension, of the constant local system on
the orbit attached to w, shifted by its dimension. In fact, the orbit attached to
w € W' is isomorphic to an affine space (of dimension ¢(w)), which implies that
A, and V,, are perverse sheaves. Moreover .#%,, is the image of the unique (up to
scalar) nonzero morphism A,, — V,,, and the map sending w to the isomorphism
class of .#€,, provides a bijection between W’ and the set of isomorphism classes
of simple objects in Py 1+ .. The classical results of [ , §§3.2-3.3] ensure that
Py, 1+¢,0 admits a canonical structure of highest weight category with underlying
poset W't (endowed with the restriction of the Bruhat order on W'), with stan-
dard, resp. costandard, object attached to w the perverse sheaf A, resp. V.. In
particular we can consider tilting objects in this category, and the indecomposable
tilting objects are classified by W’f. The indecomposable tilting object attached
to w will be denoted .7 ,,.

There exists a canonical (left) action of the monoidal category (Df | ,%) on
D1,.L+¢, defined by a procedure similar to that used for the action on Di.,,1~ The
corresponding bifunctor will also be denoted *.

The following statement is the promised weak form of a conjecture formulated
in [FM].

Theorem 13.9. There exists an equivalence of categories
P1,.L+G.0 = Repy(G)

matching, for w € W', the object Ay, resp. Vi, resp. ICw, resp. T, with
M(w=t -, 0), resp. N(w™! -, 0), resp. L(w™! -4 0), resp. T(w™! -, 0).

Proof. Consider the full subcategory Parf IS o of ParEIS whose objects are the se-
quences of the form (si,---,s;,e,n). Let also Parro be the Karoubian envelope
of the additive hull of Par?ﬁ o; then Paryi, identifies with the category of parity
objects in the subcategory of Dy consisting of complexes supported on the con-
nected component of the base point in Flg. We will denote by PiarLLo the category
which has the same objects as Pary 1, and whose morphism space from % to ¢ is
the quotient of HomE,arLI (Z,9) by the subspace consisting of sums of homogeneous
morphisms factoring through objects of the form FE} *- - -x1 #€ [n] with s; € Si.

For any s € S we can choose a weight us on the wall of the fundamental alcove
attached to s which does not belong to any other wall (see [Ja, §I1.6.3]). Then we
have translation functors T and T , and we set ©4 := T\ oT}"*. (The definition
of this functor requires some choices, but its isomorphism class is well defined;
see e.g. | , §3.2] for details.) It has been conjectured in [ ], and proved
independently in [BR2] and [Ci], that there exists a right action of the monoidal
category Pargi - on Rep,(G) such that the object .#€" acts via a functor isomorphic
to Oy for any s € S. As explained in | , Theorem 5.2.1], once this statement is
known one obtains an equivalence of additive categories

(13.8) Pariro = Tilto(G)
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sending an object to its action on the trivial module k = L(0).

On the other hand, consider the subcategory Ty, 1. of Tr, 1 consisting of tilting
objects supported on the connected component of the base point in Flg, and de-
note by Tilt;, ;+¢ o the full subcategory of Py, j+¢g o, consisting of tilting objects.
It is a standard fact that pushforward under the natural morphism Flg — Grg

sends tilting perverse sheaves to tilting perverse sheaves. (In fact the proof of the

corresponding fact for Qg-perverse sheaves given in [Yu, Proposition 2.4.1] applies
in the present setting also.) We deduce a canonical functor
TIu,I,o — TIu,L+G,o~

It is easily seen that this functor sends each =, with s € Sf to 0. As a consequence,
the composition
Partio = Tr, 10 = T, 2460

(where the first functor is obtained from the composition of For%u with the functor of
Theorem 13.5 by passing to Karoubian envelopes of additive hulls) factors through
a functor

(139) mI,I,o — TIU,L‘*'G',O

which for any s € S intertwines right convolution (via x1) with #%7 on the left-
hand side and left convolution (via %) with Z* on the right-hand side. In view
of (13.8), (13.9) provides a functor

Tilto(G) — T, .+ 0

which is easily seen to send T(w™! -, 0) to 7, for any w € W"E.

The general theory of highest weight categories implies that the triangulated
category DPRep,(G), resp. D1,.0+G,0, identifies with the bounded homotopy cate-
gory of Tilto(G), resp. Ty, r+g.o- From the functor above we therefore deduce a
triangulated functor

(13.10) DPRepy(G) = Dy, 1+ o-

We claim that for any w € W"f the functor (13.10) sends the module M(w~"-,0),
resp. N(w=1+,0), to A, resp. V,,. We will prove this claim in the case of standard
objects; the other case is similar. The proof proceeds by induction on ¢(w). The
case f(w) = 0, i.e. w = e, is clear since M(0) = T(0) and A, = .7.. Then choose
w € W' and s € S such that £(sw) = £(w) — 1 (which implies that ws € W"f) and

assume the claim is known for sw. Using adjunction and [Ja, Proposition I1.7.11]
one sees that we have

(13.11) dim Hom(M(w™'s - 0), O M(w ™ *s -, 0)) = 1,

and by [Ja, Proposition I1.7.12] there exists an exact sequence

M(w s 4 0) = OM(w s, 0) = M(w™t -, 0)

where, by (13.11), the first morphism can be chosen to be any nonzero morphism.
Now, consider a nonzero morphism § — #%[1] in Par;. (Such a morphism exists,
and is unique up to scalar.) Consider the image of this morphism under the com-
position of the functor of Theorem 13.5 and For%u7 and convolve on the right with
Agp. We deduce a nonzero morphism Ay, — 7, *1 Ay =2 T % Ay, which fits in
an exact sequence

Row < TP T B — B,
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These considerations show that the morphism § — .#%[1], acting on M(w~!s-,0),
is sent by (13.10) to a nonzero morphism Ay, — J/ % Ag,; the latter morphism
is therefore also nonzero, and its cone (isomorphic to M(w=! -, 0)) is sent to A,
which finishes the proof of our claim.

Once this claim is proved, we deduce by standard arguments that (13.10) is an
equivalence of categories. Namely, for w,y € W"f we have

1 ifw=yandn=0;

dimH M(w™t -, 0),N@y L0 =
1m OmeRep‘)(G)( (W™ 0),N(y™" ¢ )[n}) {O otherwise

and

dim Homp Zw, vV, [n]) =

IU,L+G,<>(

= 1 ifw=yandn=0;
0 otherwise.

Fix w € W"f, and consider a nonzero morphism M(w~!-,0) — N(w~!-,0). The cone
of this morphism belongs to the triangulated subcategory generated by the objects
M(y~1-,0) with £(y) < £(w); the image of this morphism under (13.10) is therefore a
morphism A,, — V,, whose cone belongs to the triangulated subcategory generated
by the objects A, with £(y) < ¢(w), hence is nonzero. These arguments show that
our functor induces, for any w,y € W’ and n € Z, an isomorphism
I—IOInDbRepO(G)(IMI(wi1 4 0)7 N(yil 4 O)[n]) = HomDI Aw’ Vy[n])a

u,L+c,o(

by Beilinson’s lemma it is therefore fully faithful. This property implies that the
essential image of this functor is a triangulated subcategory of Dy, 1+¢ o; since it
contains all the standard perverse sheaves it must coincide with Dy, r+¢ o-

The equivalence (13.10) is t-exact since it sends standard, resp. costandard, rep-
resentations to standard, resp. costandard, perverse sheaves. It therefore restricts
to an (exact) equivalence Repy(G) = Py r+g.o. By exactness this equivalence
sends the image of a nonzero morphism M(w~! -, 0) — N(w~! -, 0) to the image of
a nonzero morphism A,, — V,,, i.e. it sends ]L(w_1 ¢0) to € .,. Tt must also send
indecomposable tilting modules to indecomposable tilting perverse sheaves, and by
consideration of highest weights we see that it more precisely sends T(w™! -, 0) to

?w, which finishes the proof. O

Remark 13.10. (1) In addition to the properties stated in Theorem 13.9, the
conjecture in [FM] requires a compatibility of the equivalence with the
Satake equivalence S; see e.g. | , §1.2] for details. This compatibility
is important for some applications, see e.g. | ]. We expect to obtain a
proof of this stronger version in the third part of this project.
(2) In the course of the proof of Theorem 13.9 we have seen that the functor
of Theorem 13.5 induces an equivalence of additive categories

ParLLo — TIu,L‘*'G,o'

On the other hand, consider the category PAa/rLLo whose objects are those of
Par; 1 and whose morphisms are obtained from those in Dy by quotient by
morphisms factoring through an object of the form S *1 - x1 IE. [n]
with s; € Sf. Recall the category Dzyy 1 considered in the course of the
proof of Lemma 10.17. We have a notion of parity complexes in this cat-
egory (see e.g. | , §11.2]), giving rise to a full subcategory Parzyy 1 C
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Dzw.1. Considering objects supported on the connected component con-
taining the base point, we obtain subcategories Parzyy 10 C Dz 1o. As
explained in | , Theorem 11.7.1], the averaging functor D11 — Dzw 1
induces an equivalence of categories

ParLLo 1) PaI’IWJ’o.

The obvious “degrading” functor F/’\a/rLLo — Parp1, therefore provides a
functor

Parrw 10 — T1,.1+G0
with properties similar to those stated in Theorem 13.5. This provides

a version of the construction of | , §7.2] involving “true” perverse
sheaves rather than their mixed versions, and also explains the relation
between the approach to Tiltg(G) proposed in | ] and the one that is

suggested by the Finkelberg—Mirkovié¢ conjecture.

(3) From Theorem 13.9 and standard arguments (involving in particular the
considerations in [Wi, §1.13]*) one can obtain yet another proof of Lusztig’s
conjecture on characters of simple modules in Repy(G) [Lu] in large char-
acteristic, which bypasses the comparison of characters of simple and inde-
composable tilting modules (see | , §1.8]).

APPENDIX A. VERDIER QUOTIENTS, SERRE QUOTIENTS, AND T-STRUCTURES

A.1. Quotient categories. If A is an abelian category, recall that a Serre subcate-
gory of A is a nonempty strictly full subcategory which is stable under subquotients
and extensions. Given a Serre subcategory B C A, one can form the quotient cate-
gory A/B and the exact functor @ : A — A/B which satisfy the universal property
that given an abelian category A’ and an exact functor F' : A — A’ such that
F(M) =0 for any M in B, there exists a unique functor G : A/B — A’ such that
F = G o Q. (Moreover, in this situation G is exact.)

Remark A.1. There exist at least two different constructions of A/B: the initial
construction of Gabriel given in [ , §ITL.1], and the construction as a localization
explained in [SP, Tag 02MN]. Since these constructions provide categories satisfy-
ing the same universal property, the corresponding categories must be canonically
equivalent.

Now, let D be a triangulated category, and E C D a full triangulated subcategory.
Then one can form the quotient category D/E and the quotient functor IT: D — D/E
using a localization procedure as in [SP, Tag 05RA]. This category satisfies the
following universal properties (see [SP, Tag 05RJ]):

(1) for any triangulated category D’ and any triangulated functor F : D — D’
such that F(M) = 0 for any M in E, there exists a unique functor G :
D/E — D’ such that F' = G o IT; moreover G is triangulated;

(2) for any abelian category A and any cohomological functor H : D — A such
that H(M) = 0 for any M in E, there exists a unique functor H' : D/E — A
such that H = H' o II; moreover H' is a cohomological functor.

4Note that the combinatorial statement due to Kato discussed in this reference can also be
proved geometrically by translating in the Grothendieck group the main result of [ ] in the
case of characteristic-0 coefficients. (This case was first proved by the first author with Arkhipov,
Braverman, Gaitsgory and Mirkovié).


https://stacks.math.columbia.edu/tag/02MN
https://stacks.math.columbia.edu/tag/05RA
https://stacks.math.columbia.edu/tag/05RJ
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Another property which is checked similarly is that given a triangulated bifunctor
F :DxD — D’ such that F'(X,Y) = 0 if either X or Y isin E, there exists a unique
bifunctor G : (D/E) x (D/E) — D’ such that F = G(II(—),II(—)), and moreover G
is triangulated.

A.2. Verdier quotient and t-structures. Let D be a triangulated category
equipped with a bounded t-structure (D<g, D>¢). We will denote by A the heart of
this t-structure, and by (H™ : n € Z) the associated cohomology functors. Recall
that a bounded t-structure is automatically non-degenerate; in particular we have

Do = {X €D | Vn € Zso, H'(X) = 0};
Duo = {X €D | Vi € Ziy, H(X) =0},
see [ , Proposition 1.3.7].

Let also B C A be a Serre subcategory, and denote by Dg the full triangulated
subcategory of D generated by B; it is easily seen that

De={XeD|VneZ, H*(X) € B}.

We set
D' := D/Dg,
and denote the quotient functor by IT: D — D'.
Lemma A.2. (1) There exists a unique t-structure on D' such that 11 is t-
exact.

(2) This t-structure is bounded, and given explicitly by
Dy ={X €D'|Vm € Zso, H"(X) € B};
DLy ={X eD'|Vm e Z, H"(X) € B},
where we identify the objects of D and D’.

(8) If A’ is the heart of this t-structure, then the restriction of Ilp to A, seen as
a functor A — A, factors through an equivalence of categories A/B =5 A’.

Proof. We define the full subcategories D’SO and D’20 as in the statement of the
lemma, and then set D, := D’.j[-n] and D%, := D% y[—n] for n € Z; we also have
D, ={XeD'|VmeZs,, H"(X) € B};

S, ={XeD'|VmeZ.,, H"(X) € B}.

First, let us show that (D’.y, D%) is a t-structure on D'.

The first axiom we have to check is that if X € DL, and Y € D%, we have
Homp/(X,Y) = 0. Recall that a morphism f : X — Y in D’ is the equivalence
class of a diagram

x&zhy
where Z € D, g, h are morphisms in D, and the cone C of g belongs to Dg. Since
X e D/§07 the long exact sequence in cohomology associated with the distinguished
triangle
z4Hx o

shows that H"(Z) € B for any n > 0. It follows that the canonical morphism
@ : T<0Z — Z is such that II(p) is an isomorphism. Similarly the canonical
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morphism ¢ : Y — 7>1Y is such that II(¢)) is an isomorphism. We deduce that f
can be written as the composition

(g)~* ()" ()~
T

“Z ()

11(h) T(4)

X Z A Y Y.

TZIY

Now ) o ho ¢ = 0 since (D<g, D>g) is a t-structure on D, hence f = 0.
It is clear that we have DL, C D, and D%, O D%, so that our data satisfy
the second axiom of a t-structure. Finally, for any X € D’, considered as an object

1
in D, the canonical triangle 7<o X — X — 751X u> in D induces a distinguished
triangle

(<0 X) — T(X) — H(rs, X)

in D’, proving that the third axiom is also satisfied.

It is clear that the t-structure constructed above is bounded, and that II is t-
exact. The unicity of a t-structure on D’ such that II is t-exact follows from the
standard claim that two t-structures on a given triangulated category such that the
nonpositive part of the first one is contained in the nonpositive part of the second
one and the nonnegative part of the first one is contained in the nonnegative part
of the second one must coincide.

Let us now denote by A’ the heart of the t-structure on D’. Since II is t-exact it
restricts to an exact functor A — A’. Tt is clear that this functor sends all objects of
B to 0; by the universal property of the Serre quotient it therefore factors through
an exact functor

(A1) A/B — A

On the other hand, consider the quotient functor @ : A — A/B, and the cohomo-
logical functor Q o H : D — A/B. It is clear that this functor sends all objects of
Dg to 0; it therefore factors through a cohomological functor D’ — A/B, which by
restriction to A’ provides an exact functor

(A.2) A — A/B.

It is clear that (A.1) and (A.2) are quasi-inverse to each other, so that (A.1) is an
equivalence of categories. 0

A.3. Quotients of derived categories. Let now A be an abelian category, and
B C A be a Serre subcategory. We consider as in §A.2 the full triangulated sub-
category Dg of DP(A) generated by B. Consider the Serre quotient A/B, and the
quotient functor @ : A — A/B. The following statement is [Mi, Theorem 3.2].

Proposition A.3. The functor
D(Q): DP(A) — DV (A/B)
factors through an equivalence of triangulated categories
DP(A)/Dg = D"(A/B).

By uniqueness, in this particular setting the t-structure obtained using Lem-
ma A.2 from the standard t-structure on DP(A) is just the standard t-structure on
DP(A/B).
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APPENDIX B. FLAT MODULES IN CATEGORIES

B.1. Modules in categories. Let k£ be a commutative ring, R be a k-algebra,
and A be a k-linear abelian category. Recall (see [I{5, §8.5]) that an R-module in A
is a pair (X, &x) where X is an object in A and £x : R — Enda(X) is a k-algebra
morphism. The R-modules in A are the objects in a k-linear abelian category
Mod(R,A), where morphisms from (X,{x) to (Y,&y) are defined as morphisms
f: X = Y in A which satisfy fo&x(r) = & (r) o f for any r € R. Usually the
morphism £x will be omitted from notation. Note that if X € Mod(R,A) and
Y € A the k-module Homa(X,Y) admits a natural structure of right R-module,
where 7 € R acts on a morphism f: X — Y by sending it to f o {x(r).
Given a right R-module M and an object X € Mod(R, A), if the functor

Y — Homper (M, Homa(X,Y))
is representable we denote by M ®r X the object that represents it. This condition
is automatic in the following cases:

(1) A admits inductive limits, see [[XS, Proposition 8.5.5(a)]. (In particular, this
condition is satisfied in case A = Ind-C with C a k-linear abelian category,
see [IXS, Theorem 8.6.5(iii)].)

(2) M is of finite presentation, see [I{S, Remark 8.5.7].

If we denote by Mod,(R) the category of right R-modules, then in case (1) we
therefore obtain a canonical bifunctor

(=) @r (=) : Mod,(R) x Mod(R,A) — A,

which is additive and right exact on both sides. It is clear that if S is another k-
algebra, M is an (S, R)-bimodule and N is a right S-module, then if X € Mod(R, A)
the object M ®pr X has a canonical structure of S-module in A, and moreover we
have a canonical isomorphism

(B.1) N®s (M ®rX) =2 (NosM)®r X.

If we assume that R is right noetherian and denote by I\/Iodfg(R) the category of
finitely generated right R-modules, then in view of (2) above we similarly have a
canonical bifunctor

(B.2) (=) ®r (=) : Mod™®(R) x Mod(R,A) — A

which again is additive and right exact on both sides and satisfies (B.1) when M
is finitely generated as a right R-module and N is finitely generated as a right
S-module. Concretely, given a free presentation

RE" L Rom 5 a1 0,

the morphism f, seen as a matrix with coefficients in R, defines via {x a morphism
X% X9 and M ®g X is canonically isomorphic to the cokernel of this map.

Lemma B.1. Let X € A, Y € Mod(R,A) and M € Mod,(R), and assume that the
tensor product M @rY is defined. Then Homa(X,Y) has a canonical structure of
left R-module, and there exists a canonical morphism of k-modules

M ®p Homa(X,Y) — Homa(X, M ®rY).
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Proof. The R-module structure on Homa (X, Y) is defined so that an element r € R
acts on a morphism f by sending it to £y (r) o f. By the standard adjunction for
tensor products of R-modules, to construct a morphism as in the lemma we need
to define a morphism of right R-modules

M — Homy (Homa (X,Y), Homa(X, M ®r Y)).

In other words, given m € M and a morphism f : X — Y, we need to construct
a morphism X — M ®pr Y. By the Yoneda lemma, to construct such a morphism
one needs to define, for any Z € A, a morphism

Homa(M ®rY,Z) — Homa(X, Z)
functorial in Z. Now by definition we have
Homa(M ®r Y, Z) = Hompge» (M, Homa (Y, Z)).
To a morphism ¢ : M — Homa (Y, Z) one can associate the morphism
p(m)of: X — Z,
which provides the desired construction. ([l

Remark B.2. (1) One can define in a similar way the notion of right R-module
in A, and the tensor product X ®z M if X is a right R-module in A and
M is a left R-module. In practice, we will only consider this construction
in case R is commutative, so that left and right R-modules are the same.
We will choose the most convenient notation among X ® g M and M ®r X,
depending on the context.
(2) In case A is the category of k-modules, then an R-module in A is nothing
but a left R-module in the usual sense. Moreover, the above definition of
the tensor product coincides with the usual definition.

B.2. Flatness. Let again k be a commutative ring, A a k-linear abelian category,
and R a k-algebra. We will assume in addition that R is right noetherian. We will
say that an object X € Mod(R,A) is R-flat (or simply flat if R is clear from the
context) if the functor

(=) ®r X : Mod®(R) — A
is exact, i.e. if for any injection M; < Ms of finitely generated R-modules the
induced morphism M; ®r X — My ®r X is injective.

Remark B.3. In view of [SP, Tag 00HD], this definition is equivalent to the usual
definition of flatness for R-modules in case R is commutative® and A is the category
of k-modules (see Remark B.2(2)).

The next lemma states that this notion satisfies the usual properties of flat
modules.

Lemma B.4. (1) Consider a short exact sequence
0-Xi —>Xo—> X320
in Mod(R,A). If X3 is R-flat, then for any M in Mod®(R) the induced
sequence
0 >MerX1 - MerXo > M®rX3—0

5This assumption is probably not necessary, but we were not able to find an appropriate
reference where this condition is omitted.


https://stacks.math.columbia.edu/tag/00HD
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s a short exact sequence.
(2) Consider a short exact sequence

0—-X1 >Xo—>X3—0
in Mod(R,A). If X1 and X3 are R-flat, then so is X5.

Proof. (1) Assume that X3 is flat, fix M in Mod®(R), and consider an exact se-
quence

0—->M — My —>M—0

in Modﬁg(R), where M; is free. Then we obtain a commutative diagram

0

}

My ®@r X1 —— M, ® Xo —— M ®p X3 ——0

} / }

0—— My ®pr X1 —— My ®r X9 —— My ®p X3 ——0

: : :

MRIpX] —MRrXo —> MR Xg—>0

| J |

0 0 0

in which all rows and columns are exact. Applying the snake lemma to the first
two lines we obtain that the first map on the third line is injective, which proves
the desired claim.

(2) Assume that X; and X3 are flat, and consider an injective morphism M; —
M, in Mod®(R). Then using (1) and our assumptions we obtain a commutative
diagram

0 0

J }

00— M ®r X1 — M ®pr Xo —= M; ®p X3 ——0

J } }

OHM2®RX1HM2®RX2HM2®RX3HO

with exact rows and columns. The four-lemma implies that the morphism on the
middle column is injective, proving that X5 is flat. [l

APPENDIX C. INFINITESIMAL FLATNESS

Let k be a commutative ring, and let H be an affine group scheme over Spec(k).
Let I C O(H) be the ideal defining the unit in H, i.e. the kernel of the augmentation
morphism &(H) — k in the k-Hopf algebra ¢ (H). Following [Ja, §1.7.9], we will
say that H is infinitesimally flat if the quotient &(H)/I™ is a finite projective
module (equivalently, is finitely presented and flat, see [SP, Tag 00NX]) over k for
any n > 1. This notion behaves well under flat base change, as explained in the
following lemma.

Lemma C.1. If H is infinitesimally flat, then for any flat morphism k — k' the
group scheme Spec(k') Xgpecry H over k' is infinitesimally flat.


https://stacks.math.columbia.edu/tag/00NX
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Proof. The claim is obvious from the fact that the ideal of the unit in the &’-group
scheme Spec(k’) Xgpec(r) H is k' @1 I C K @ O(H). O

The main interest of this notion comes from the following statement, copied
from [Ja, Lemma 1.7.16], where we denote by Dist(H) the distribution algebra of
H (sce [Ja, §1.7.7]).

Lemma C.2. Assume that H is infinitesimally flat, noetherian, and integral. Then
for any H-modules M, M’ such that M' is projective over k, the natural morphism

Hompy (M, M") — Homp;sq(pry (M, M)
is an isomorphism.
This notion is related to that of regular immersion (see [SP, Tag 063J]) as follows.

Lemma C.3. If the embedding of the unit Spec(k) — H is a regular immersion,
then H is infinitesimally flat.

Proof. If the embedding Spec(k) — H is a regular immersion, then by [SP, Tag
063K] and [SP, Tag 063M] the quotient I/I? is a finite projective k-module, and
for any n > 1 we have an isomorphism Sym} (I/I?) = I"/I"*1. Now the left-hand
side is finite and projective by [SP, Tag 01CK]. Hence each &'(H)/I™ is an extension
of finite projective modules, and is therefore finite and projective. O

We deduce the following property, in case k is a k-algebra for some field k.

Corollary C.4. Assume that Spec(k) is smooth overk, and that H is smooth over
k. Then H is infinitesimally flat.

Proof. The schemes Spec(k) and Spec(H ) are smooth over k, hence regular by [SP,
Tag 056S]. Using [SP, Tag 0E9J] this implies that the immersion Spec(k) — H is
regular, so that H is infinitesimally flat by Lemma C.3. O

APPENDIX D. COMPLEMENTS ON THE PERVERSE T-STRUCTURE ON THE
COMPLETED CATEGORY

D.1. Statement. In this section we consider the setting of | , Part 1], in its
étale variant. Namely, we consider an algebraically closed field F, an F-torus A,
and a (Zariski locally trivial) A-torsor 7 : X — Y where X,Y are algebraic varieties
over F. We assume we are given a finite stratification

Y = |_| Y,
seS
where each Y is isomorphic to an affine space, and the restriction of w to X, :=
771(Ys) is a trivial torsor. For any s € S we denote by
JeY, =Y, joiXe— X

the embeddings.
We fix an algebraic closure k of a finite field of characteristic different from
char(IF). We will assume that for any s,t € S and any n € Z the sheaf

A ()" (52) Ky, )
is constant. By base change this implies that each " ((j:)*(js)«ky,) is constant
too, and these conditions guarantee that the formalism of perverse sheaves applies
in the category D2(Y,k) of bounded complexes of k-sheaves .# on Y such that


https://stacks.math.columbia.edu/tag/063J
https://stacks.math.columbia.edu/tag/063K
https://stacks.math.columbia.edu/tag/063K
https://stacks.math.columbia.edu/tag/063M
https://stacks.math.columbia.edu/tag/01CK
https://stacks.math.columbia.edu/tag/056S
https://stacks.math.columbia.edu/tag/0E9J
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H((51)*F) is constant of finite rank for any n, s, and in the category D2(X, k)
of bounded complexes of k-sheaves .# on X such that 5#"((js)*.%) is constant of
finite rank for any n, s.

We consider the “completed category” Dg (X[ A k) as defined in | , Defini-
tion 3.1]; this category is a certain full subcategory in the category of pro-objects
in D2(X,k). (This construction, as well as those considered below, and the proofs
of their properties, are initially due to Yun, see [BY, Appendix A].) This category
is triangulated, and as explained in | , §5.2] it admits a (bounded) “perverse”
t-structure (pﬁg(X/ A k)=0, *Dg (X /] A, k)=°). We can of course consider the sim-
ilar constructions for each variety X, endowed with the trivial stratification; the
corresponding completed category will be denoted lA)g(Xs JJ A, k). For each s, the
(derived) functors (js)«, (js), j¥, j. induce triangulated functors

(D.-1) (je)ss ()1 + Ds(Xof A k) = Ds(X [ A, ),
(D.2) J5 it Ds(XJA k) — Ds(X, /] AK).
Our goal in this section is to prove the following claim.

Proposition D.1. The functors (js)«, (js)h in (D.1) are t-exact with respect to the
perverse t-structures.

This proposition will be deduced from the fact that the similar functors
(D.3) (jS)*7<jS)! : DE(XS/AJ() - Dg(X/Avk)
are t-exact with respect to the perverse t-structures, since js is affine (see | ,
Corollaire 4.1.3]). The other ingredient is a result from [BY, Appendix A]; since the
proof of this claim is somewhat sketchy, and since the construction of the perverse

t-structure in [ | is slightly different from the original construction in [BY], we
provide an explicit proof of this result in our setting.

D.2. Preliminaries on R/-modules. As in | | we denote by R4 the group
algebra of the cocharacter lattice X,(A) over k, and by R/} the completion of
R4 with respect to the natural augmention ideal my C R4. We will denote by
Mod™!(R/}) the full subcategory of Mod(R/) whose objects are the nilpotent R/}-
modules, i.e. the modules such that any element is annihilated by a power of m4.
We will also denote by Mod®™!(R}) the full subcategory of Mod™®(R%) whose
objects are the modules which are both finitely generated and nilpotent. (These
modules are necessarily finite-dimensional.)

Lemma D.2. For any M in Modnﬂ(RQ\), there exists an injective R’y-module N
which belongs to Mod™ (R)) and an embedding M < N.

Proof. Choose an injective R/;-module N’ and an embedding M < N’. Since M
is nilpotent, this embedding necessarily factors through the submodule

N ={neN'|(ms)* -n=0for k> 0}
Now N is an injective R/;-module by [SP, Tag 08XW]. O
Asin [ , §3.1.7], this lemma implies that the canonical functor
D"Mod™!(R) — D"Mod(R})

is fully faithful, and that its essential image consists of complexes all of whose
cohomology objects belong to Mod™!(R%).
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Now, we consider a bounded complex M of finitely generated R’;-modules. Then
we can consider for any n > 0 the complex

(R4/(ma)™ - RY) ®py M € D"Mod™ (R}),
and also the derived tensor product
L .
(RA/(ma)" - R}) ®ry M € D"Mod™ (R)).
(Note that R’} has finite global dimension, so that this complex is indeed bounded.)

Lemma D.3. The pro-objects in D’Mod™ (R}})

L
“lhm” (R)/(ma)" - RS) @y M and  “lim” (R} /(ma)" - R}) Oy M

n

are canonically isomorphic.
Proof. There exists for any n a canonical morphism
L
(RA/(ma)"™ - RY) @py M — (R /(ma)" - RY) @py M;

we will prove that these morphisms define an isomorphism between the pro-objects
under consideration. For that, by definition we need to show that for any N €
DPMod™!(R/) the induced morphism

@Hom((Rg/(mA)n ‘R}) @y M, N) - hﬂHom((Rf)‘/(mA)” ‘R)) @y M, N)

is an isomorphism.

Fix a bounded below complex N*® of injective and nilpotent R’;-modules whose
image in D*Mod™!(R/) is N. (Such a complex exists by Lemma D.2.) Then for
any bounded complex M’ of finitely generated R’;-modules, we observe that we
have a canonical isomorphism

liny Hom®,, ((Rg/(mA)n ‘R}) ®ns M/,N-) 5 Homs, (M/,N®),

where Hom}zg denotes the complex of morphisms of R/;-modules between two com-
plexes of modules. Taking 0-th cohomology, and by exactness of filtrant direct
limits, we deduce a canonical isomorphism

@HomeMod(RQ) ((Rﬁ/(mqu’ . Rg) ®Rg ,2\4-/7 N) l> HomeMod(Rg) (M/, N)
Applying this with M’ = M we obtain an isomorphism

lim Hom pomoq(ry ((RQ/(WA)H “R}) ®py M, N) = Hompupod(ry) (M, N).
n

On the other hand, applying this isomorphism with M’ a bounded projective res-
olution of M we obtain an isomorphism

. n L ~
liny Hom poa ey (RA/(ma)" - RA) @y M, N ) = Hom proa ) (M, ).
n

This provides the desired identification. O
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In | , 84.1] we consider a certain subcategory E(Rﬁ) of the category of pro-
objects in DPMod™ (R’}). We show in | , Proposition 4.5] that the functor

“1s 9 A n A L
M = “lim” (R} /(ma)" - R}) @py M

induces an equivalence of categories
DPMod®(R)) = D(R)).

Lemma D.3 shows that the image of a complex M of finitely generated R/;-modules
can also be described as

“lim” (R /(ma)" - RY) @y M,

In particular, if for some m the complex M satisfies H (M) = 0 for i > m, resp. for
i < m, then its image in D(R/) can be written as “ Wm ”M, where each M,
satisfies H'(M) = 0 for i > m, resp. for i < m.

D.3. Proof of Proposition D.1. The following statement is [BY, Lemma A.6.2].

Proposition D.4. Let F € Ds(X[JA,k). Then F belongs to PDs(X [] A,k)=0,
resp. to plA)S(XiA, k)Z0, if and only if there exists a projective system (F, : n >
0) of objects in PD2(X,k)=<0, resp. in PD2(X,k)=°, and an isomorphism F =
“ 1&17,/” yn‘

Proof. The proof of the “only if” direction is given in [BY, Lemma A.6.2]. It
proceeds by induction on the number of strata in the support of .%, the base case
(one stratum) being given by the comments at the end of §D.2. The “if” direction
can be deduced as follows. Assume given a projective system (%, : n > 0) of
objects in PD2 (X, k)<Y such that “ Jim Fn, belongs to ﬁS(Xi A, k). To prove that
Z belongs to PDs(X /] A, k)<Y it suffices to prove that for any ¢ in PDs(X J A,k)=!
we have Hom(.#,%) = 0. Now, by the “only if” direction, there exists a projective
system (%, : n > 0) of objects in PD2(X,k)=! such that & = « lim ”%,. We then
have

Hom(%#,9) = @@Hom(ﬁm,gn) =0
n m

since Hom(.%,,,,%,,) = 0 for any n,m. The case of pﬁg(X/A, k)=0 is similar. O
Using this proposition we can give the proof of Proposition D.1.

Proof of Proposition D.1. Formal properties of the “recollement” formalism show
that (js)1 is right t-exact and (js)s is left t-exact. The fact that (js) is also left
t-exact and that (js). is also right t-exact follows from the t-exactness of the func-
tors (D.3), together with Proposition D.4 (applied in the “only if” direction on Xj,

and in the “if” direction on X). O
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