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Split-component PML absorbing conditions for SS-TLM

S. Le Maguern,y and M. M. Ney

GET/ENST Bretagne/D !eepartement MO, CNRS LEST (Laboratory of Electronics and Systems for Telecommunications),

CS 83818, 29238 BREST Cedex 3, France

Known as alternate direct implicit (ADI) or split-step (SS) schemes, a new class of time-domain algorithms
has recently been proposed. Their salient feature concerns their numerical stability, regardless the time-step
used. Thus, significant computational advantages can be obtained when non-uniform mesh is used. To
study open structures or determine S-parameters, absorbing boundary conditions (ABC) have to be used.
The perfectly matched layers (PML) technique based on split field component is implemented for the SS-
TLM algorithm. The complete set of updating equations is provided and the new PML is validated. It is
shown to provide high accuracy even better than that of classical PML-TLM scheme. In addition, it is
found that using a high time-step does not seem to degrade significantly the accuracy of PML. Thus, the
PML technique is very well adapted to SS-TLM as confirmed by various applications. Finally, unlike all
classical TLM-PML schemes, the technique is found to be stable.

KEYWORDS: transmission line matrix (TLM); split step (SS); unconditional stability; absorbing boundary
conditions (ABC); perfectly matched layers (PML); antenna

1. INTRODUCTION

Full-wave electromagnetic modelling has become a required step towards the design of RF,

microwave and millimetre-wave passive and active components. Indeed, it has become the

essential tool for optimizing structures and circuits in some rigorous manner and hence,

reducing the design time. However, as models are based on Maxwell’s field equations, the

computer cost required is still very high and generally this prevents the use of such models

directly in an optimization procedure.

The current challenge is to develop new numerical procedures that can speed up simulation

time for relatively complex structures. Hence, time-domain volumic methods such as FDTD,

TLM, etc. have attracted researchers’ attention and have undergone some substantial

development during recent years. Rather known as slow numerical procedures they benefit

from the constant increase of computer power. However, this is compensated by the increase of
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systems complexity. In addition, constraints on the time-step due to mesh refinement that is

required to reduce coarseness error, still constitutes a drawback for these methods.

As a result, new algorithms known as ADI ‘Alternate Direction Implicit’ [1, 2] or SS ‘Split-

Step’ [3, 4] have been recently proposed. They have the advantage to alleviate the constraint on

the maximum usable time-step. This property provides some very important advantage when

using irregular meshing. However, if they are unconditionally stable, time-step is an important

parameter that has some impact on the algorithm velocity error [3]. But when irregular meshing

is used, one order of magnitude reduction in computer cost can be obtained [4].

Although some work was presented on SS-TLM [3, 4], theoretical foundation of the basic

algorithm is still required. In addition, other required procedures such as absorbing boundary

conditions (ABC) have to be developed. These conditions are necessary for structures open to

free-space (antenna, RCS) or for S-parameter computation. The objective of the paper is to

present a PML-type ABC for the new SS-TLM algorithm.

2. SS-TLM BASIC ALGORITHM

SS-TLM algorithm is based on a modification of the time-sampling procedure in Maxwell’s field

curl equations. Unlike the basic TLM scheme, the technique splits the basic equations into two

successive steps. For instance, the time-dependence of the x-electric field component Ex;
Maxwell–Ampere relation is divided into two sub-equations:
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where e0 the permittivity of free space, ex the relative permittivity in the x-direction and sex the

electric conductivity in the same direction. According to the theory of split algorithms [5],

Equations (1) and (2) have to be solved one after the other in the iterative process to obtain an

unconditionally stable algorithm. Furthermore, to get a coherent spatial mapping of field

components the scheme is divided in two-steps as follows: the first step is obtained by an

approximation of Equation (1) between ðn� 1
2
ÞDt and nDt (Dt being the time-step) and

an approximation of Equation (2) between nDt and ðnþ 1
2
ÞDt: The second step is obtained by an

approximation of Equation (2) between ðnþ 1
2
ÞDt and ðnþ 1ÞDt and an approximation of

Equation (1) between ðnþ 1ÞDt and ðnþ 3
2
ÞDt: These approximations are performed using the

approach proposed by Pe *nna and Ney [6].

However, unlike basic TLM algorithm, SS-TLM is no longer purely explicit. It includes an

initial implicit solution which is solved by matrix inversion. This procedure must be performed

once before the time-iteration procedure begins. The overtime brought by the implicit procedure

is, generally, largely compensated by the gain when irregular meshing is used. Indeed, the time-

step enforced by the smallest mesh size with the non-split algorithm can be chosen the same as

the one related to the largest cell with SS-TLM. By using this adequate meshing strategy [3, 4],

substantial reduction in terms of computer cost can be achieved for comparable accuracy.

Furthermore, only the six fields components at the centre of the cell need to be stored. Thus, a

memory gain of a factor 3 is obtained compared to the classical TLM scheme (SCN).
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3. PML BOUNDARIES

3.1. PML formulation

Much work has been reported on ABC for TLM computation. For instance, PML [7], generally

recognized as the most efficient technique, was reported with implementation in TLM-SCN [8].

It can be mentioned that, because of the presence of parasitic modes generated by the SCN

scheme, some stability problem was reported. However, an interesting observation can be made

from the dispersion analysis of SS-TLM node: No parasitic solutions were found [9].

Consequently, it is expected that the PLM scheme when implemented in the SS-TLM algorithm

will not produce any instabilities.

The implementation of the so-called PML may be carried out using several formulations: the

PML split components originally proposed by B!eerenger [7] and the PML ‘unsplit’ approach

proposed by Gedney [10]. Since an extended version of the first approach is already available

with TLM [8], this technique has been chosen to be first implemented in SS-TLM. Thus,

consistent comparison between SS-TLM and TLM can be shown.

In the PML layer, field components are split into two sub-components. For instance

considering Ex field components:

Ex ¼ Exy þ Exz ð3Þ

The time-domain evolution of these sub-components is governed by the following equations:
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where sey is a new electrical conductivity in ðoyÞ direction (propagating waves absorption) and

ay a coefficient greater than unity (evanescent waves damping in the same direction).

3.2. SS-TLM implementation

The implementation for SS-TLM computation is not straightforward. Equations (4) and (5)

need to be split as shown with Equation (1) and (2). But, as only one space derivative is present

in the right-hand side of (4) and (5) instead of two for Maxwell equations a problem arises. The

only solution is to split Equation (4) as follows:
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Equation (5) is split using the same technique:
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To keep the same spatial mapping of fields than with SS-TLM, one needs to solve first (6) and

(9), then (7) and (8). The resulting scheme is very similar to the classical SS-TLM one. Only few

impedance terms are changed in the matrices involved in the implicit process. For instance, if Dt

is the time-step, one can approximate (7) and (8) using the technique described in Reference [4],

and the TLM space discretization depicted in Figure 1. If this approximation is enforced

between nDt and ðnþ 1
2
ÞDt; one can easily obtain:

2DxEðnÞ
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2 � ZexzDyH
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with:
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; s ¼ 2c0Dt

where Dx; Dy and Dz are the cell dimension and Z0 the impedance of free space. Field

components subscripts from the right-hand part of (10) and (11) correspond to port numbers as

defined by Johns [11]. Thus, by adding (10) and (11) and using the property described in (3)

yields to:
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This expression can be compared to the corresponding equation of the non-PLM SS-TLM

scheme:
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As expected the only change in the right-hand side is the impedance Zex which is replaced by Zexz:
Then, the implementation of the PML scheme in a SS-TLM code is straightforward. The

complete set of updating equations is presented in Tables I and II. Finally, 12 field sub-
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Figure 1. SS-TLM fields samples in the ðyozÞ plane with respect to Johns’ notation [11].
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components per cell need to be stored which represents a memory economy of a factor 2

compared to the standard PML-TLM scheme (24 voltages per cell).

4. RESULTS

PML are tested as wideband matched load of the rectangular waveguide depicted in Figure 2.

The waveguide is excited by the TE10 mode over a wide frequency band: from 0 to 30 GHz: This
corresponds to the upper dispersion limit of the TLM method generally used ðDl=l � 0:1Þ: This
canonical case is very relevant in testing absorbing conditions. Indeed, the TE10 mode can be

Table I. Summary of PML SS-TLM updating equations for step 1.

Explicit part (from ðn� 1
2
ÞDt to nDt)

2DxEðnÞ
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Aexy

þ
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þ
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seen as superposition of plane waves at all cases of incidence. In addition, since evanescent

waves are generated below cutoff ABC are also tested in the presence of such waves. The wide-

band reflection coefficient on PML layers is calculated in a single run using the technique

described in Reference [12].

4.1. Profile optimization

The SS-TLM PML scheme is first tested at maximum time-step of TLM ðDtmaxÞ to obtain an

optimized layer. Thus, optimal conductivities (i.e. sez and smz) and az profile have to be

Table II. Summary of PML SS-TLM updating equations for step 2.

Explicit part (from ðnþ 1
2
ÞDt to ðnþ 1ÞDt)

2DxEðnþ1Þ
xz

Aexz

þ
2DxEðnþ1Þ

xy

Aexy

¼ ½ðDxEx
2 þ ZexzDyH

y

2 Þ þ ðDxEx
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y

9 Þ�
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3Þ þ ðDyE

y
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¼
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x
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þ
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2Z0

DyH ðnþ1Þ
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%DDyxAmyx
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2 þ ZmyzDyH

y

2 Þ � ðDxEx
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y

9 Þ�
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DyH ðnþ1Þ
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DyH ðnÞ
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þ
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Implicit part (from ðnþ 1ÞDt to ðnþ 3
2
ÞDt) Coefficients
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A0
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z
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z
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2DyEðnþ1Þ
yz

A0
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þ
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y
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x
4 Þ þ ðDyE

y
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x
8 Þ�
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y
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4
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x
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y
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4� Rmij

2Z0
DyH ðnþ1Þ
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Z0mi
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DzH ðnþ1Þ
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%DDzy
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z
12Þ þ ðDxEx

1 þ ZmzyDzH
z
1Þ�

ðnþ3=2Þ s ¼ 2c0Dt
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determined to obtain the best absorption. Note that, in the following, the PML layer

is characterized by its theoretical reflection coefficient at normal incidence ðRpropÞ and Fz
a coefficient that represents damping added to evanescent waves (for further details see

Reference [8]).

The first test is performed without additional evanescent wave damping ðFz ¼ 1Þ for several

values of Rprop: The conductivity profile used is parabolic since it is known as providing the best

absorption (see for instance Reference [8]). Results depicted in Figure 3 are decomposed into

two parts: propagating and evanescent waves. The limit between both parts corresponds to the

cutoff frequency ð3:75 GHzÞ where the reflection coefficient computed is 0 dB because waves

impinge on the layer with an angle of 908: One can observe that with Rprop ¼ �40 dB; a

reflection coefficient better than �60 dB is achieved for propagating waves. This is due to the

attenuation added by the Z0 impedance that terminates the PML layer mesh. Furthermore, the

reflection level decreases with Rprop value down to �80 dB: For lower values, reflection starts to

increase because of the numerical reflection due to high values of conductivity at the interface
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TE10

4
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 ∆
 l

Z0 termination

x

zo

PMLPML

Figure 2. Geometry of the numerical test: a rectangular waveguide (cross-section 40� 20Dl; Dl ¼ 1 mm)
truncated with a 20 cells PML and wideband excited with the TE10 mode (cutoff frequency: 3:75 GHz).

PML are terminated with Z0 impedance.
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Figure 3. Reflection coefficient in a rectangular waveguide (Figure 2). Fz ¼ 1 and several
Rprop values (parabolic profile).
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between the classical and the PML medium. Thus, the optimal profile is achieved with Rprop ¼

�80 dB and the corresponding reflection is around �100 dB:
From a physical point of view, the computed reflection coefficient for evanescent waves rather

corresponds to a perturbation of the spatial repartition of stored energy. The optimal PML

layer should then provide a value of this perturbation as low as possible. Since the layer tested in

Figure 3 does not add any attenuation to evanescent energy the perturbation observed is mainly

produced by the layer truncation. Note that the perturbation can be reduced by using thicker

layers as evanescent waves are naturally damped. However, more computational effort is

required in this case.

Optimal layer performance is obtained by adding evanescent wave damping (i.e. values of Fz
larger than unity). The corresponding az profile used is defined in Reference [8]. As shown by

Figure 4, evanescent waves perturbation decreases down to �80 dB with Fz equal to 4. On the

other hand, since az acts as a sub-permittivity term, the dispersion of the technique increases and

the reflection of propagating waves follows the same trend. Thus, the optimal profile is obtained

with Rprop and Fz equal to �80 dB and 4, respectively. This achieves a reflection coefficient of

�80 dB with both propagating and evanescent waves.

4.2. Comparison with TLM

TLM PML and SS-TLM PML are compared at TLM maximum time-step. The profile used is

the optimum one obtained with SS-TLM. Results are depicted in Figure 5. It should be noted

that SS-TLM provides less reflection than TLM: a 20-dB improvement is achieved for

evanescent waves, and the same reduction is observed for propagating waves at the centre of the

band. However, both techniques provide the same level of reflection in the upper part of the

spectrum.
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Figure 4. Reflection coefficient in a rectangular waveguide (Figure 2). Several Fz
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4.3. Time-step effect

Finally, since SS-TLM is to be used at a time-step larger than that of TLM ðDtmaxÞ; the optimal

layer is tested in these conditions. One can note from results shown in Figure 6 that the layer

performances decrease slowly with time-step. Even with a time-step four times larger than Dtmax;
the performance are still excellent (�65 dB for evanescent waves and �80 dB for propagating
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Figure 5. Reflection coefficient in a rectangular waveguide (Figure 2). Fz ¼ 4 and Rprop ¼ �80 dB
(parabolic profile) with TLM and SS-TLM schemes.
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TLM classical scheme).

9



waves). This result is very surprising because SS-TLM dispersion has been shown to rapidly

increases with the time-step [4]. It can be concluded that this dispersion slightly

affects the efficiency of PML layers. As a consequence, PML layer is very well-adapted to

SS-TLM.

4.4. Stability

A key issue of the PML technique in TLM is the stability of the layers. A lot of work has already

been driven to achieve long-term stability of the layers [8, 13, 14]. Many authors have suspected

the presence of TLM spurious modes to be at the origin of the problem. Since it can be shown

that spurious modes do not exist with SS-TLM [9], one may conclude that the associated PML

technique will be stable. A theoretical proof of the stability is rather involved and can be done

only numerically. Thus, a numerical experiment is preferred as it can be chosen for relevant

cases where numerical instabilities occurred with standard TLM algorithm (see, for instance

References [8] and [13]). For instance, consider the benchmark geometry depicted in Figure 7. It

is composed of a rectangular waveguide terminated in one end by a perfect electric wall and in

the other end by a PML layer without additional evanescent waves damping ðFz ¼ 1Þ: The layer
is backed with a perfect electric conductor. The waveguide is excited by the TE10 mode. Between

the excitation plane and the PML layer, a capacitive iris is inserted. Thus, the problem is a full

3D simulation. This configuration is highly unstable with TLM (see Reference [8]) since the

instability appears after 600 iterations.

The same simulation performed with SS-TLM using up to 105 iterations shows no instability.

Numerous simulations involving complex structures have further confirmed this observation.

This corroborates the assertion that spurious modes have a predominant role in the instabilities

observed with standard TLM-PML schemes.

PML layer

Capacitive Iris

Cavity

y

x
z

o

20 ∆ l

10 ∆ l

20 ∆ l

3 ∆ l

3 ∆ l
30 ∆ l

5 ∆ l

Figure 7. Test configuration for PML scheme stability ðDl ¼ 1 mmÞ: PML parameters: Rprop ¼ �80 dB;
parabolic profile, Fz ¼ 1; backed with a perfect electric wall.
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4.5. Antenna simulation

The last validation example was performed by simulating a class of miniaturized microstrip

antennas [15] with inhomogeneous substrate (Figure 8).

It is composed of an air-like dielectric substrate that guaranties optimum radiation efficiency.

By inserting a piece of higher permittivity substrate underneath the patch, the size of the

antenna can be reduced. It should be noted that this kind of geometry requires a full 3D

technique which can be easily provided by volumic techniques such as TLM.

This antenna was already simulated using TLM (see Reference [8]). However, to obtain the

result in a reasonable time, the 50-mm polypropylene film that is needed to stick the conductor

on the substrate was ignored. If one wants to take into account this film, a high-density variable-

mesh has to be used. The basic cell-size chosen is Dl ¼ 0:8 mm: Hence, the density of the mesh

has to be 16 times larger to correctly approximate the polypropylene film.

The simulation was performed both with SS-TLM and SCN-TLM. The volume was

discretized by 25� 47� 91 cells using irregular mesh. The PML layers were 15 cells thick

(parabolic profile, Rprop ¼ �80 dB; Fz ¼ 3). Using the meshing strategy described in Reference

[4], the SS-TLM time-step was based on the largest cell size. Note that a time-step 32 times

smaller was required for SCN-TLM computations as the smallest cell imposes the maximum

time-step. The reflection coefficients obtained are depicted in Figure 9 where they are compared

to measurement.

Results show that SS-TLM is in excellent agreement with measurements (for bandwidth,

resonance frequency and matching). Also, TLM provides a rather large error (more than 4% for

resonance frequency). This is due to the fact that a large part of the mesh is computed at a time-

step much smaller than the maximum time-step that normally prevails. Thus, dispersion is

increased (see Reference [4]) and significantly affects the accuracy of the results. It is noteworthy

to mention that the above results were made using the shortest excitation possible to reduce

TLM computation time. Still, it requires a simulation 17 times longer than SS-TLM.

Figure 8. One half of the microstrip antenna on a locally non-homogeneous substrate.
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In addition, if the thin propylene film is ignored, TLM results are far more accurate (see

Reference [8]) but not as accurate as SS-TLM results provided here. Hence, to get an accurate

result by taking into account the film with classical TLM, one has to use a much smaller basic

cell consequently increasing both the memory and the CPU time required.

5. CONCLUSION

An extended PML formulation based on Berenger’s work has been implemented for the

SS-TLM scheme. Results show that the new PML technique provides low reflection level for

both propagating and evanescent waves. A comparison with classical PML-TLM was carried

out showing SS-TLM advantages. Furthermore, the accuracy of the new scheme does not seem

to degrade significantly when the time-step increases. This provides a great advantage over

standard TLM when irregular meshing is used. In addition, long-term stability seems to be

achieved which is a key feature in TLM simulation with PML. Finally, the SS-TLM method is

applied to the analysis of a complex antenna showing a gain in CPU time larger than one order

of magnitude compared to SCN-TLM.
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