
HAL Id: hal-03690713
https://hal.science/hal-03690713v1

Submitted on 8 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Chronicles for Representing Hierarchical Planning
Problems with Time

Roland Godet, Arthur Bit-Monnot

To cite this version:
Roland Godet, Arthur Bit-Monnot. Chronicles for Representing Hierarchical Planning Problems with
Time. ICAPS Hierarchical Planning Workshop (HPlan), Jun 2022, Singapore (Virtual), Singapore.
�hal-03690713�

https://hal.science/hal-03690713v1
https://hal.archives-ouvertes.fr

Chronicles for Representing Hierarchical Planning Problems with Time

Roland Godet,1,2 Arthur Bit-Monnot1

1 LAAS-CNRS, Université de Toulouse, INSA, CNRS, Toulouse, France
2 ENS Paris-Saclay, Université Paris-Saclay, France

rgodet@laas.fr, abitmonnot@laas.fr

Abstract

In temporal planning, chronicles can be used to represent
the predictive model of durative actions. Unlike the classical
state-oriented representation, the usage of chronicles allows a
rich temporal qualification of conditions and effects, beyond
the mere start and end times of an action.
In this paper we propose an extension of the standard chroni-
cle representation to support hierarchical problems. In partic-
ular, we show that the addition of temporally qualified sub-
tasks to chronicles makes them suitable to represent not only
primitive actions but also HTN methods.
We show how the set of solutions to a chronicle-based hier-
archical problem can be quite naturally represented as a Con-
straint Satisfaction Problem (CSP). To associate semantics to
this extended chronicle representation, we propose a set of
rules that must hold for any solution to the hierarchical prob-
lem, specified as constraints on the associated CSP.

Introduction
In Artificial Intelligence, planning with Hierarchical Task
Networks (HTNs) is an approach to automated planning
where actions are hierarchically structured (Erol, Hendler,
and Nau 1994; Höller et al. 2020) with compound tasks,
which can be broken down into subtasks. This hierarchy of
tasks allows the planning problem to be described at sev-
eral levels, starting with more abstract tasks and ending with
directly applicable primitive tasks.

In its simplest expression, an HTN (Erol, Hendler, and
Nau 1994; Höller et al. 2020) planning problem consists of
(i) an initial state, (ii) an initial task network describing the
aim, (iii) a set of actions, (iv) a set of compound tasks, and
(v) a set of methods.

A state defines the values of a set of state variables, each
describing a specific attribute of the environment (e.g. the
position of a truck).

A task network is a set of tasks and constraints. Each task
describes a particular operation to be fulfilled (e.g. bring a
package from A to B). It is composed of its name and a list of
parameters, which may be variables or constants. There are
two kinds of tasks: the actions (or primitive tasks), which
can be directly executed, and the compound tasks, that the
planner must refine into actions. The constraints might, e.g.,
restrict the value of some variables or the order of tasks.

An action consists of (i) a set of conditions over state vari-
ables, they characterize the set of states in which the action
is applicable, and (ii) a set of effects on state variables, that
update the state to reflect the consequences of the action.

A method is a pair m = (tc, tn), where tc is a compound
task and tn is a task network. It represents the fact that one
way to perform tc is to execute the tasks laid out in tn.

Given an initial state s0, an initial task network tn, a set of
actions, and a set of methods, a plan is a sequence of actions
〈a1, ..., an〉. To produce a plan, a planner must systemati-
cally replace any compound task in the initial task network
by the subtasks of a compatible method, repeating the pro-
cess until only primitive tasks remain. Along with ordering,
this approach defines the set of candidate plans as the ones
that can be decomposed from the initial task network. A can-
didate plan is a solution of the planning problem if the cor-
responding action sequence is applicable in the initial state.

Approach Rather than this state-oriented view, another
representation for planning follows a time-oriented view, as
proposed with chronicles (Ghallab, Nau, and Traverso 2004;
Bit-Monnot 2018) or timelines (Smith, Frank, and Jónsson
2000). Several works have considered the introduction of
hierarchies for time-oriented planners, notably FAPE (Bit-
Monnot et al. 2020) and CHIMP (Stock et al. 2015). The
ANML language is also a very relevant proposal, but lacks
clearly defined semantics (Smith, Frank, and Cushing 2007).

In this paper, we introduce hierarchical chronicles, an ex-
tension of the chronicles proposed by Bit-Monnot (2018) for
generative planning. This is done by associating a chronicle
with the task it achieves as well as the subtasks it requires.
We show this to be sufficient for chronicles to represent HTN
methods, in addition to HTN actions.

While conceptually simple, our formalization of the re-
sulting problem as a CSP allows for advanced temporal fea-
tures (e.g. intermediate conditions and effects) and closely
relates to the time-oriented representation of scheduling
problems which we hope will facilitate the application of
scheduling techniques to hierarchical planning.

Hierarchical Chronicles
A type is defined by a set of values. It can be either a set of
domain constants (e.g. the type Truck = { R1, R2 } defines
two truck objects R1 and R2) or a discrete set of numeric

values. A type of particular interest for this formalization is
the set of timepoints that we assume to be a discrete set of
evenly spaced numeric values representing absolute times at
which events can occur.1 A decision variable is related to a
type which defines its initial domain (i.e. possible values).

A state variable describes the progression of a specific
attribute of the environment over time. It is generally pa-
rameterized by one or multiple domain objects. For instance
loc(R1) denotes the evolution of the position of the truckR1

over time. A state variable expression is often parameterized
by variables, in which case the particular state variable it
refers to depends on the value taken by its parameters, e.g.,
loc(r) will correspond to loc(R1) or loc(R2) depending on
the value taken by the variable r of type Truck.

A task denotes a particular operation to be fulfilled in the
environment over time. It is generally parameterized by one
or multiple domain objects. For instance [5, 10]Go(R1, L1)
denotes the operation of moving the truck R1 to the loca-
tion L1 over the temporal interval [5, 10]. A task might be
parameterized by variables, in which case the particular task
it refers to depends on the value taken by its parameters.

A chronicle can be thought of as defining the requirements
of a process in the planning problem, and in particular the
process of executing an action or carrying out a method. A
chronicle is a tuple C = (V, τ,X,C,E, S) where:
• V is a set of variables appearing in the chronicle, parti-

tioned into a set of temporal variables VT whose domains
are timepoints and a set of non-temporal variables VO.

• τ is the task achieved by the chronicle. It is of the form
[s, e]task(x1, . . . , xn) where s and e are temporal vari-
ables in VT , task(x1, . . . , xn) is the parameterized task
(with each xi ∈ VO). s and e respectively denote the start
and end instants at which the chronicle is active, and we
will refer to them as start(C) and end(C) respectively.

• X is a set of constraints over the variables in V .
• C is a set of conditions, Each condition is of the form

[s, e]var(p1, . . . , pn) = v where s and e are variables
in VT , var(p1, . . . , pn) is a parameterized state variable
(with each pi ∈ VO) and v is a variable in VO. A con-
dition states that the state variable var(p1, . . . , pn) must
have the value v over the temporal interval [s, e].

• E is a set of effects. Each effect is in the form of
[s, e]var(p1, . . . , pn) ← v where s and e are variables
in VT , var(p1, . . . , pn) is a parameterized state variable
(with each pi ∈ VO) and v is a variable in VO. An ef-
fect states that the state variable var(p1, . . . , pn) takes
the value v at time e. Over the temporal interval]s, e[,
the state variable is transitioning from its previous value
to v, and has an undetermined value.

• S is a set of subtasks. Each subtask has the form
[ts, te]task(x1, . . . , xn) where ts and te are temporal
1While this definition assumes a discrete time representation, it

could be equally interpreted with a continuous time representation.
Also note that discrete time is no less expressive when instanta-
neous changes are forbidden, as common in temporal planning in
general and PDDL in particular (Cushing 2012). In general how-
ever the computational complexity might differ between a discrete
and a continuous time representation.

variables in VT and task(x1, . . . , xn) is a parameterized
task (with each xj ∈ VO). It denotes a required task that
must be achieved by another chronicle over [ts, te].

A planning problem defines a set of chronicle templates T
where each template can be instantiated into a chronicle in-
stance by substituting all variables in the template with fresh
variables. We typically consider two types of chronicles tem-
plates: action chronicles that have effects but no subtasks,
and method chronicles with subtasks but no effects.

Considering a method template Deliver ∈ T that delivers
a package p from a position ls to a position le with a truck r,
it can be instantiated as the method chronicle C1

Deliver where:
• τ = [ts, te]Deliver(p, le), i.e., this chronicle should re-

sult in delivering the package p to le over the temporal
interval [ts, te].

• C = { [ts, ts]loc(p) = ls, [ts, ts]loc(r) = ls }, i.e., the
package p and the truck r have to be at the starting loca-
tion ls at the beginning of the method.

• E = ∅, this is a method chronicle, with no direct effects.
• S = { [tLs , t

L
e] Load(p, r), [tMs , t

M
e] Move(r, ls, le),

[tUs , t
U
e] Unload(p, r) }, i.e., to achieve this delivery ac-

tion, the following tasks have to be done: loading the
package in the truck, moving the truck from ls to le, and
unloading the package.

• VO = { p, r, ls, le } are the parameters of the method
(package, truck, start and end location) and VT =
{ ts, te, tLs , tLe , tMs , tMe , tUs , tUe } where ts, te are time-
points representing the start and the end of the method
(from τ), and tLs , . . . , t

U
e are the corresponding start/end

of subtasks.
• X = { te ≤ ts + 10, ls 6= le, t

L
e ≤ tMs , . . . }, e.g.,

impose that the method should take no more than 10 units
of time, the two locations must be different and the Move
subtask has to be executed after the Load subtask.

Considering the action template Move ∈ T that moves
a truck r from ls to le, it can be instantiated as a chronicle
CMove with the following effects:E = { [ts, te]loc(r)← le },
i.e., the truck r will be at the ending location le at the end
of the action, but its position is unknown during the action
execution. This chronicle CMove achieves the eponymous task
[ts, te]Move(r, ls, le).

We distinguish an initial chronicle C0 encoding the initial
state as effects and the objectives of the planning problem as
conditions and subtasks. It might also specify the anticipated
evolution of the environment outside the planner’s control,
e.g., that a bus will pass at 6pm. This chronicle is the only
one not associated to a meaningful task τ . For instance, the
problem where the package P1 is initially in location L0 and
must be brought to location L1 or L2 before time 50, can be
described by the following initial chronicle C0:
• VO = { l }, VT = { ts, te }
• X = { t < 50, l = L1 ∨ l = L2 }, constraints restricting

the solution set.
• C = { [te, te]loc(R1) = l }, specifying the goals.
• E = { [0, 0]loc(P1)← L0, [0, 0]loc(R1)← L0 }, effects

specifying the initial state.

C0
t1 t2

m1
2m1

1 m2
1 m2

2

Figure 1: Decomposition graph resulting from the expansion
of two tasks t1 : t(x) and t2 : t(y)

• S = { [ts, te]Deliver(P1, l) }, subtasks specifying spe-
cific tasks to be achieved by a solution plan.

A planning problem is the association (C0, T) of an initial
chronicle, defining the initial state and objectives, with a set
of chronicle templates which can be instantiated, defining
usable actions and methods.

Planning Problem as a CSP
Problem Instantiation
At this point we have defined the initial chronicle (repre-
senting the problem) and a set of chronicle templates (rep-
resenting possible actions and methods). We now introduce
the procedure to build a set of chronicle instances Π that can
be used to represent a solution.

We initially set Π = { C0 }, i.e., limited to the initial
chronicle. Suppose the initial chronicle C0 contains two sub-
tasks t1 : t(x) and t2 : t(y) and that the task t(·) can be
achieved by one of two methods m1 and m2 (i.e. the task
of m1/m2 are of the form [·, ·]t(·)). As the first task t1
might be achieved by either m1 or m2, we add two fresh
instantiations m1

1 and m1
2 to Π. We record the motivation

for the introduction of both chronicles in a lookup-table
decomposes(m1

1) ← t1 and decomposes(m1
2) ← t1. Sim-

ilarly, we introduce two distinct chronicle instances m2
1 and

m2
2 to represent the possible refinements of t2. This process

can be seen as creating a decomposition graph such as the
one in Figure 1.

We refer to this process as chronicle expansion. More for-
mally, for each subtask t of a chronicle instance C ∈ Π, and
each chronicle template Ti ∈ T whose task is unifiable with
t, we instantiate a new chronicle instance T k

i and add it to
Π. Each instantiated chronicle is uniquely associated to the
task it was introduced to decompose with the decomposes
lookup table, effectively defining a decomposition tree. Any
chronicle instance added to Π as a result of expansion will
need to be expanded itself, making this a recursive process.
In the case of cyclic HTN problems, the depth of resulting
decomposition tree might not be bounded. For practical pur-
pose – e.g. to encode the problem in a CSP solver – one
might decide to bound the depth of the tree to obtain a finite
number of chronicles.

Of course, it is not the case that each chronicle instance
will be part of the solution plan. In Figure 1, the m1

1 and
m2

1 chronicle instances are mutually exclusive as only one
method can be used to decompose the t1 task. To capture

this fact, we associate each a chronicle instance C ∈ Π to a
boolean variable present (C) that is true (>) if C is present
in the solution plan and false (⊥) otherwise. Note that the
initial chronicle must always be present, so present (C0) is
always true.

With this process, we have created a set of chronicle in-
stances Π, representing all possible methods and actions
that might appear in the plan. Each such chronicle instance
C ∈ Π is associated with a boolean variable present (C)
that represents whether it is part of a solution, and a task
decomposes(C) that it might decompose. We now ought to
define what are the constraints that must hold for this set of
optional chronicle instances to form a solution to the original
planning problem. Before doing so, we introduce a synthetic
representation for conditions, effects and tasks that will al-
low us to specify their behavior independently of the context
in which they appear.

Core structures
Considering a planning problem Π, the core structures to
express the constraints it must fulfill are described here.

Condition Token Given a chronicle instance C ∈ Π, each
condition in C is associated to a condition token:

present (C) : [s, e]var(p1, . . . , pn) = v

This token states that, if C is present in the solution plan
(present (C) = >), then the state variable var(p1, . . . , pn)
must have the value v over the temporal interval [s, e]. The
set of condition tokens in Π is denoted CΠ.

Effect Token Given a chronicle instance C ∈ Π, each ef-
fect in C is associated to an effect token:

present (C) : [s, e, t]var(p1, . . . , pn)← v

Note the new temporal variable t ∈ VT . This token states
that, if C is present in the solution plan (present (C) = >),
then the state variable var(p1, . . . , pn) is undefined over the
temporal interval]s, e[and has the value v over the temporal
interval [e, t]. The expansion with the new timepoint t allows
us to encode a minimal persistence of the effect until a later
time t. The set of effect tokens in Π is denoted EΠ.

Task Token Given a chronicle instance C ∈ Π, each sub-
task in C is associated to a task token:

present (C) : [s, e]task(x1, . . . , xn)

This token states that, if C is present in the solution plan
(present (C) = >), then the task task(x1, . . . , xn) must be
achieved over the temporal interval [s, e]. The set of task
tokens in Π is denoted ΓΠ.

Token Characteristics Effect tokens here address the
evolution of state variables over time. Each (present) ef-
fect token forces another value to its state variable, which
is compelled to be maintained within a given temporal in-
terval, thus encoding the state evolution. Condition tokens
put requirements on the state evolution by imposing a state
variable to have a given value over a temporal interval.

Each token (condition, effect, and task) is present in the
solution plan if and only if its associated chronicle instance

is present in the solution plan. Given a token (condition, ef-
fect, or task) ω from a chronicle instance C ∈ Π, we have
present (ω) = present (C).

Constraints
Considering a planning problem Π, the constraints used to
encode the consistency of a plan are described here.2

Coherence Constraint A state variable cannot take sev-
eral values at the same time. This implies that for two dis-
tinct effect tokens ε and ε′ in EΠ to be coherent, they may
not concurrently impose a value or transition to the same
state variable.

Given
{
ε = 〈p : [s, e, t]var(p1, . . . , pn)← v〉 ∈ EΠ

ε′ = 〈p′ : [s′, e′, t′]var(p′1, . . . , p
′
n)← v′〉 ∈ EΠ

the constraint coherent (ε, ε′) is defined as:
p ∧ p′ =⇒ t ≤ s′ ∨ t′ ≤ s ∨ p1 6= p′1 ∨ · · · ∨ pn 6= p′n

By forcing two effect tokens to be non overlapping (over the
presence p, time [s, t] and the state variable var(p1, . . . , pn)
dimensions), this constraint ensures that a state variable will
be given at most one value at any timepoint.

Support Constraint A condition token β ∈ CΠ is said
supported by an effect token ε′ ∈ EΠ if this effect estab-
lishes the value required by β and this value persists for the
span of β.

Given
{
β = 〈p : [s, e]var(p1, . . . , pn) = v〉 ∈ CΠ

ε′ = 〈p′ : [s′, e′, t′]var(p′1, . . . , p
′
n)← v′〉 ∈ EΠ

the constraint supported-by (β, ε′) is defined by:
p′ ∧ e′ ≤ s ∧ e ≤ t′ ∧ p1 = p′1 ∧ · · · ∧ pn = p′n ∧ v = v′

A condition token β ∈ CΠ is said supported if it is sup-
ported by at least one effect token in EΠ. More formally, the
constraint supported (β) is defined by:

present (β) =⇒
∨

ε∈EΠ

supported-by (β, ε)

Refinement Constraint A task token γ ∈ ΓΠ is said re-
fined by a chronicle instance C ∈ Π if (i) C was introduced
as a potential decomposition of γ, (ii) it is part of the solu-
tion and (iii) the task it achieves is identical to the one of γ.
Given

γ = 〈p : [s, e]task(x1, . . . , xn)〉 ∈ ΓΠ

and C ∈ Π whose achieved task is of the form,
task(C) = 〈[s′, e′]task(x′1, . . . , x

′
n)〉

the constraint refined-by (γ, C) is defined by:
p ∧ decomposes(C) = id(γ) ∧ s = s′ ∧ e = e′

∧ x1 = x′1 ∧ · · · ∧ xn = x′n
where id(γ) uniquely identifies the task associated to γ.

A task token γ ∈ ΓΠ is said refined if it is refined by
a chronicle instance in Π. More formally, the constraint
refined (γ) is defined by:

present (γ) =⇒
∨

C∈ΓΠ

refined-by (γ, C)

2Note that the coherence and support constraints are identical to
the ones of Bit-Monnot (2018) and repeated here for completeness.

Motivation constraint For an HTN problem it is normally
the case that a method or action is only allowed to be part
of the solution if it derives from the initial task network. In
a sense, it means that the presence of a chronicle must be
motivated by the achievement of a task higher up in the hi-
erarchy.

Consider a chronicle instance C ∈ Π that was introduced
to decompose a task γ (i.e. decomposes(C) = id(γ)). Then
the motivated (C) constraint is expressed as:

present (C) =⇒ present (γ) ∧ refined-by (γ, C)∧
C′∈siblings(C)

¬present (C′)

where siblings(C) is the set of all other chronicle instances
C′ that were introduced as a potential decomposition of the
same task γ. This constraint effectively enforces that, if
present, a chronicle instance uniquely achieves a task higher-
up in the hierarchy.

Internal Chronicle Consistency Considering a chronicle
C ∈ Π, all its constraintsX must be verified if C is part of the
solution. It is represented by the constraint consistent (C):

present (C) =⇒
∧
x∈X

x

Any requirement regarding a chronicle structure should
be explicitly or implicitly encoded in the set X of chronicle
constraints. In particular, a common requirement for hierar-
chical problems is that a method spans exactly the same time
interval as its subtasks, i.e., that for any method chronicle C
with a non-empty set of subtasks subtasks(C):

start(C) = min
st∈subtasks(C)

start(st)

end(C) = max
st∈subtasks(C)

end(st)

Likewise, a method chronicle with no subtasks should be
instantaneous (i.e. start(C) = end(C)).

Formulation as a CSP Finally, a planning problem Π can
be encoded as a CSP with variables VΠ and constraints XΠ

where:
VΠ = { V | (V, τ,X,C,E, S) ∈ Π }

∪ { present (C) | C ∈ Π }
XΠ = { coherent (ε, ε′) | (ε, ε′) ∈ E2

Π, ε 6= ε′ }
∪ { supported (β) | β ∈ CΠ }
∪ { refined (γ) | γ ∈ ΓΠ }
∪ { motivated (C) | C ∈ (Π \ { C0 }) }
∪ { consistent (C) | C ∈ Π }

Solution and Plan Extraction A solution to a hierarchi-
cal planning problem Π is an assignment to all variables in
VΠ that satisfies all constraints in XΠ. The decision process
involved in building the assignment will effectively impose
the presence of methods and actions (through presence vari-
ables) as well as their instantiation (through parameter vari-
ables) and orderings (through temporal variables). We say
that a chronicle C ∈ Π is present in the solution if its pres-
ence variable present (C) evaluates to true given the assign-
ment.

From a solution assignment, it is straightforward to ex-
tract a solution plan: any action chronicle C ∈ Π present in
the solution corresponds to an action in the plan. The value
of its parameters as well as start and end times are given by
the value of the corresponding variables in the assignment.

Likewise, the assignment encodes a full decomposition
from the initial task network into the solution plan as the re-
finement and motivation constraints ensure that, for any sub-
task of a chronicle present in the solution, there is exactly
one refining chronicle (action or method) present in the so-
lution.

It should be noted that setting the presence variable of
a chronicle to false has the same effect as not including
it in the set Π of chronicles considered in the CSP. This
suggests that bounding the depth of a decomposition tree
should be interpreted as a decision restricting the set of solu-
tion. To maintain the completeness of a decision procedure,
this bound should be reconsidered (i.e. increased) when it is
shown that no solution exists within a given depth.

Discussion and Related Work
To the best of our knowledge all existing temporal HTN
planners, including FAPE (Bit-Monnot et al. 2020), CHIMP
(Stock et al. 2015) and SIADEX (Castillo et al. 2006), inter-
pret HTN planning as a constructive process: they start from
an initial task network that is iteratively expanded into a so-
lution, each expansion bringing its own new subtasks, ac-
tions and additional constraints. This proposal adopts a dif-
ferent interpretation of hierarchical planning as a constraint
satisfaction problem. While the two interpretations remain
compatible, a key feature of the CSP interpretation is its
proximity with the representation of scheduling problems. In
particular, the notion of optional time intervals in scheduling
solvers such as CPOptimizer (Laborie et al. 2018) brought
many modeling capabilities that have a clear mapping with
the structure of HTN problem (e.g. the alternative and span
constraints of Laborie and Rogerie, 2008).

The closest formalism is the one used by FAPE (Bit-
Monnot et al. 2020) that supports both hierarchical and gen-
erative planning. In FAPE this is allowed by annotating some
actions as task-dependent, meaning that they can only be in-
troduced as a refinement of an existing task. Unlike FAPE,
this proposal focuses on pure hierarchical (HTN-like) plan-
ning allowing to remove this distinction. The addition of ex-
plicit temporal variables representing the end of the persis-
tence of an effect is a subtle change that avoids an explicit
handling of causal-links and threats (threats being particu-
larly problematic for scalability as they might involve any
combination of two effects and one condition, leading to a
cubic number of constraints).

The notion of tokens (including the effect persistence) is
inspired by the homonymous tokens of timeline-based plan-
ners such as Europa (Barreiro et al. 2012) or CHIMP (Stock
et al. 2015). Unlike timeline-based planners however, we do
maintain a distinction between conditions and effects and
use an action-centric formalism.

Several hierarchical planners such as SIADEX (Castillo
et al. 2006) or SHOP2 extensions (Goldman 2006) have
enabled temporal features in a state-progression setting by

timestamping states. Relationships with these state-oriented
representations are less obvious as this paper adopts a time-
oriented view where the evolution of each state variable is
handled independently of the others.

Conclusion
In this paper, we introduced a constraint-based representa-
tion for hierarchical planning under temporal constraints.
This encoding assumes a time-oriented view and a fully
lifted representation. Its foundation on previous chronicle
approaches allows leveraging their temporal expressiveness
with a very limited increase in complexity.

While the paper is restricted to the discussion of the
planning formalism, our current work is focused on the
exploitation of this formalism and associated encoding in
a constraint-based planner that leverages scheduling tech-
niques.

References
Barreiro, J.; Boyce, M. E.; Do, M. B.; Frank, J. D.; Iatauro,
M.; Kichkaylo, T.; Morris, P. H.; Ong, J. C.; Remolina, E.;
Smith, T. B.; and Smith, D. E. 2012. EUROPA: A Platform
for AI Planning, Scheduling, Constraint Programming, and
Optimization.
Bit-Monnot, A. 2018. A Constraint-Based Encoding for
Domain-Independent Temporal Planning. CP.
Bit-Monnot, A.; Ghallab, M.; Ingrand, F.; and Smith, D. E.
2020. FAPE: a Constraint-based Planner for Generative and
Hierarchical Temporal Planning. ArXiv, abs/2010.13121.
Castillo, L.; Fdez-Olivares, J.; Garcı́a-Pérez, Ó.; and Palao,
F. 2006. Temporal Enhancements of an HTN Planner. In
Marı́n, R.; Onaindı́a, E.; Bugarı́n, A.; and Santos, J., eds.,
Current Topics in Artificial Intelligence, 429–438.
Cushing, W. A. 2012. When is Temporal Planning Really
Temporal? Ph.D. thesis, Arizona State University.
Erol, K.; Hendler, J.; and Nau, D. 1994. HTN planning:
Complexity and Expressivity. AAAI, 2.
Ghallab, M.; Nau, D. S.; and Traverso, P. 2004. Automated
Planning: Theory and Practice. Morgan Kaufmann.
Goldman, R. P. 2006. Durative Planning in HTNs. In ICAPS.
Höller, D.; Behnke, G.; Bercher, P.; Biundo, S.; Fiorino, H.;
Pellier, D.; and Alford, R. 2020. HDDL: An Extension
to PDDL for Expressing Hierarchical Planning Problems.
AAAI.
Laborie, P.; and Rogerie, J. 2008. Reasoning with Condi-
tional Time-Intervals. In FLAIRS Conference.
Laborie, P.; Rogerie, J.; Shaw, P.; and Vilı́m, P. 2018. IBM
ILOG CP Optimizer for Scheduling. Constraints.
Smith, D. E.; Frank, J.; and Cushing, W. 2007. The ANML
Language.
Smith, D. E.; Frank, J. D.; and Jónsson, A. K. 2000. Bridg-
ing the gap between planning and scheduling. The Knowl-
edge Engineering Review, 15: 47 – 83.
Stock, S.; Mansouri, M.; Pecora, F.; and Hertzberg, J. 2015.
Hierarchical Hybrid Planning in a Mobile Service Robot. In
KI.

	Introduction
	Hierarchical Chronicles
	Planning Problem as a CSP
	Problem Instantiation
	Core structures
	Constraints

	Discussion and Related Work
	Conclusion

