No evidence from long-term analysis of yellowfin tuna condition that Drifting Fish Aggregating Devices act as ecological traps

Supplement 3

Amaël Dupaix^{1*}, Laurent Dagorn¹, Antoine Duparc¹, Aurélie Guillou¹, Jean-Louis Deneubourg², Manuela Capello¹

¹: MARBEC, Univ. Montpellier, CNRS, Ifremer, INRAE, IRD, Sète, France

²: CENOLI, Université Libre de Bruxelles (ULB), Bruxelles, Belgium

* corresponding author:

Amaël Dupaix

e-mail: amael.dupaix@ens-lyon.fr

ORCID number: 0000-0001-9925-5756

The transformed $T(K_n(i))$ was obtained as follows:

$$T(K_n(i)) = \frac{\overline{W_{th}} K_n(i) - \overline{W}}{\sqrt{\sigma_{th}^2 K_n(i)^2 - 2\rho\sigma \sigma_{th} K_n(i) + \sigma^2}}$$

where $K_n(i)$ is the relative condition factor of individual (i); \overline{W} is the mean measured weight, and σ its standard deviation; $\overline{W_{th}}$ is the mean theoretical weight, and σ_{th} its standard deviation. Geary (1930) demonstrated that $T(K_n(i))$ is normally distributed with mean zero and standard deviation unity.

Figure S9: Result of the Geary-Hinkley transformation performed on K_n(i).