No evidence from long-term analysis of yellowfin tuna condition that Drifting Fish Aggregating Devices act as ecological traps

Supplement 2

Amaël Dupaix^{1*}, Laurent Dagorn¹, Antoine Duparc¹, Aurélie Guillou¹, Jean-Louis Deneubourg², Manuela Capello¹

¹: MARBEC, Univ. Montpellier, CNRS, Ifremer, INRAE, IRD, Sète, France

²: CENOLI, Université Libre de Bruxelles (ULB), Bruxelles, Belgium

* corresponding author:

Amaël Dupaix

e-mail: amael.dupaix@ens-lyon.fr

ORCID number: 0000-0001-9925-5756

The power-law function $W = a FL^b$ was used to fit the fish weight as a function of the fork length data recorded throughout the study period (Figure S1), using a linear regression procedure of the log-transformed data (using the lm function of the package stats in R). The parameters presented in Table S3 were obtained.

Table S3: Values of the parameters fitted for the relation between Weight and Fork Length: $W = a FL^b$

	Value	Standard deviation	p-value
ln(a)	-10.658	7.5 10 ⁻³	<10 ⁻¹⁶
a	2.35 10 ⁻⁵		
b	2.976	1.6 10 ⁻³	<10 ⁻¹⁶

Hence, $W_{th} = 2.35 \ 10^{-5} FL^{2.976}$, $R^2 = 0.992$; where W_{th} is the predicted weight, in kilograms, and FL is the fork length, in centimeters.

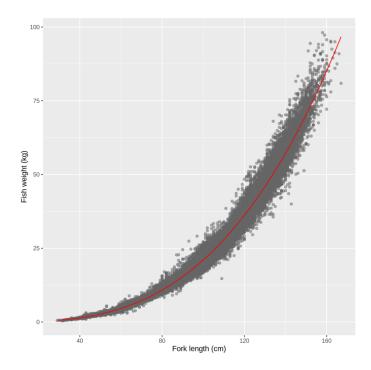


Figure S8: Relationship between fish weight and fork length.