No evidence from long-term analysis of yellowfin tuna condition that Drifting Fish Aggregating Devices act as ecological traps

Supplement 1

Amaël Dupaix ${ }^{1 *}$, Laurent Dagorn ${ }^{1}$, Antoine Duparc ${ }^{1}$, Aurélie Guillou ${ }^{1}$, Jean-Louis Deneubourg ${ }^{2}$, Manuela Capello ${ }^{1}$
${ }^{1}$: MARBEC, Univ. Montpellier, CNRS, Ifremer, INRAE, IRD, Sète, France
${ }^{2}$: CENOLI, Université Libre de Bruxelles (ULB), Bruxelles, Belgium

* corresponding author:

Amaël Dupaix
e-mail: amael.dupaix@ens-lyon.fr
ORCID number: 0000-0001-9925-5756

16 Table S1: Number of sampled yellowfin tuna per school type per year.

Year	FOB-associated	Free school	Unknown	Total
1987	0	0	659	659
1988	0	0	664	664
1989	0	0	401	401
1990	279	119	407	805
2003	78	75	343	496
2004	0	82	691	773
2005	235	10	979	1,224
2006	105	337	3,339	3,781
2007	61	34	1,524	1,619
2008	9	27	926	962
2009	513	100	2,008	2,621
2010	433	123	944	1,500
2011	629	591	604	1,824
2012	233	510	2,688	3,431
2013	381	36	944	1,361
2014	523	178	402	1,103
2015	598	37	425	1,060
2016	0	0	294	294
2017	114	0	140	254
2018	165	0	251	416
2019	0	0	666	666
Total	4,356	2,259	19,299	25,914

17

18 Table S2: Number of sampled yellowfin tuna per size class per year.

Year	$<\mathbf{7 5} \mathbf{~ c m}$	$\mathbf{7 5} \mathbf{- 1 2 0} \mathbf{c m}$	$>\mathbf{1 2 0} \mathbf{c m}$
1987	13	423	223
1988	11	254	399
1989	19	189	193
1990	804	1	0
2003	0	166	330

Year	$<\mathbf{7 5} \mathbf{~ c m}$	$\mathbf{7 5} \mathbf{- 1 2 0} \mathbf{c m}$	$>\mathbf{1 2 0} \mathbf{c m}$
2004	0	157	616
2005	0	1,089	135
2006	0	2,670	1,111
2007	0	960	659
2008	0	163	799
2009	158	1,244	1,219
2010	331	304	865
2011	31	752	1,041
2012	16	1,781	1,634
2013	189	462	710
2014	678	272	153
2015	751	229	80
2016	230	4	60
2017	197	24	33
2018	342	74	0
2019	640	26	0
Total	$\mathbf{4 , 4 1 0}$	$\mathbf{1 1 , 2 4 4}$	$\mathbf{1 0 , 2 6 0}$

Figure S1: Coefficients of the Generalized Additive Models considering a subset of data. Only small fish ($<75 \mathrm{~cm}$, red circles), only medium fish ($75-120 \mathrm{~cm}$, blue triangles) or only large fish ($>120 \mathrm{~cm}$, green squares). Coefficients of the fishing year (A) and of the quarter (B). Each coefficient represent the mean deviation of $T\left(\mathrm{~K}_{\mathrm{n}}\right)$ from the values at a given level of reference. The error bars represent the standard deviation. Considered categories of reference: Y: 2017; Q: Q1. The year 2017 was chosen as the reference year because it is the most recent year with all size classes measured.

26 Figure S2: Coefficients of the Generalized Additive Model with fishing mode as an explanatory variable. Coefficients of the fishing year (A), of the quarter (B), of the size class (C) and of the fishing
mode (D). Please note that each coefficient represents the mean deviation of $T\left(K_{n}\right)$ from the values for a given category of reference. The shape of the point represents the distribution of the obtained values. The numbers in grey in the upper part of the panels represent the percentage of the models generated in the bootstrap for which the given category was significantly different from the category of reference. Considered categories of reference, represented by a black dot: Y: 2015; Q: Q1; SC: <75 cm, FM: FOB. 2015 was chosen as the reference year because it is the most recent year with both FOB-associated and FSC tuna, as only FOB-associated tuna were sampled in 2016 and 2017. The $T\left(K_{n}\right)$ of FSC was significantly higher than that of FOB-associated tuna in all the models generated in the bootstrap (see panel D).

Figure S3: Coefficients of the Generalized Additive Models considering only fish caught in FOBassociated schools. Coefficients of the fishing year (A) of the quarter (B) and of the size class (C). Each coefficient represent the mean deviation of $\mathrm{T}\left(\mathrm{K}_{\mathrm{n}}\right)$ from the values for a given category of reference. The shape of the point represents the distribution of the obtained values. The numbers in grey in the upper part of the panels represent the percentage of the models generated in the bootstrap
for which the given category was significantly different from the category of reference. Considered categories of reference: Y: 2018; Q: Q1; SC: <75 cm.

Figure S4: Diagnostic plots of the residuals of 4 randomly picked Generalized Additive Models performed. (A-D) Quantile-quantile plots of the residuals. (E-H) Plot of the Moran's I in the data, in blue, and in the model residuals, in red. Distances on x axis is the distance used to define two

Figure S5: Coefficients of the Generalized Additive Model presented in the main manuscript. Coefficients of the fishing year (A) (same as panel B of Figure 2), of the quarter (B) and of the size class (C). Each coefficient represents the mean deviation of $T\left(K_{n}\right)$ from the
values for a category of reference. The shape of the points represents the distribution of the values obtained with the bootstrap process. Numbers in grey in the upper part of the panels represent the percentage of the models generated in the bootstrap for which a given category was significantly different from the category of reference. Considered category of reference, represented by a black dot: Y: 2019; Q: Q1; SC: <75 cm.

55 Figure S6: Spatial prediction of the Generalized Additive Models. (A) Mean predicted
56 value of K_{n}. (B) Mean number of samples in the data used as input in the model. Dark grey
cells represent cells in which no tuna was sampled. Considered categories of reference for the 58 prediction: Y: 2019; Q: Q1; size class: <75 cm.

Figure S7: Boxplot of the fork length of sampled tuna per year. The uneven distribution of the sampling is mainly due to the fact that data comes from different research projects, which do not always aim at studying the same size class.

