Drifting Fish Aggregating Devices (DFADs) as ecological traps: no evidence displayed by a long-term analysis of yellowfin tuna condition

Amaël Dupaix, Laurent Dagorn, Antoine Duparc, Aurélie Guillou, Jean-Louis Deneubourg, Manuela Capello

To cite this version:

Amaël Dupaix, Laurent Dagorn, Antoine Duparc, Aurélie Guillou, Jean-Louis Deneubourg, et al.. Drifting Fish Aggregating Devices (DFADs) as ecological traps: no evidence displayed by a long-term analysis of yellowfin tuna condition. 2022. hal-03690665v2

HAL Id: hal-03690665
https://hal.science/hal-03690665v2
Preprint submitted on 7 Sep 2022 (v2), last revised 4 Apr 2023 (v4)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1 Drifting Fish Aggregating Devices (DFADs)

2 ecological traps: no evidence displayed by a

3 long-term analysis of yellowfin tuna condition

4 Authors

5 Amaël Dupaix ${ }^{1 *}$, Laurent Dagorn ${ }^{1}$, Antoine Duparc ${ }^{1}$, Aurélie Guillou ${ }^{1}$, Jean6 Louis Deneubourg ${ }^{2}$, Manuela Cape11o ${ }^{1}$
$7{ }^{1}$: MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Sète, France
$8{ }^{2}$: Unit of Social Ecology, Université Libre de Bruxelles (ULB), Bruxelles,
9 Belgium
corresponding author: e-mail: amae1.dupaix@ens-1yon.fr

Abstract

 environmental changes. Drifting Fish Aggregating Devices (DFADs), used by14 industrial purse seine tropical tuna fisheries, significantly increased the number of floating objects with which tropical tuna associate, raising

Introduction

31 Floating objects (FOBs), such as logs or branches, are natural components 32 of the oceanic habitat of tropical tunas, which naturally associate with 33 them. If the reasons for this associative behavior are poorly understood, 34 fishers have traditionally used this behavior to find and capture of these fish (the so-called ecological trap hypothesis). Relying on a time-series of more than 25,000 length-weight samples collected in the western Indian Ocean (1987-2019), we reject the hypothesis that the body condition (Le Cren's relative condition factor K_{n}) of yellowfin tuna (Thunnus albacares) decreased concurrently with the increased number of DFADs. This result suggest the absence of negative long-term impacts of DFADs on the biology of tuna. However, as other factors may have counteracted possible negative effects of DFADs, we recommend a long-term monitoring of habitat, biological and behavioral parameters of tunas to detect any critical change.

Keywords

Indicator log, relative condition factor, Thunnus albacares, Indian 0cean, industrial tuna fisheries, floating objects associated fish (Freon and Dagorn 2000). In the early 1980s, industrial tropical tuna purse-seine fleets began to commonly deploy their own FOBs,
called drifting Fish Aggregating Devices (DFADs, Dagorn et al. 2013b). In the Indian Ocean (IO), deployment and use of DFADs began in the 1990s and has steadily increased since then, such that from 2012 to 2018, DFADs were demonstrated to represent more than 85% of the total floating objects in the western IO (Dupaix et al. 2021).

Soon after their wide-scale use began, it was hypothesized that DFADs may act as "ecological traps" for tropical tunas (see Figure 1) (Marsac et al. 2000; Hallier and Gaertner 2008). An ecological trap occurs when individuals select poor-quality habitats, being misled by cues that no longer correlate to habitat quality due to anthropogenic changes (Gilroy and Sutherland 2007). This decorrelation between habitat quality and habitat selection cues ultimately leads to a reduction in the fitness of individuals (Gilroy and Sutherland 2007; Swearer et al. 2021). The hypothesis of DFADs acting as ecological traps, as it was first formulated, relies on the assumption that tropical tunas and other associated species originally used floating objects to select good-quality habitats (the indicator-log hypothesis, see Freon and Dagorn 2000). The massive deployment of DFADs would modify the density and spatial distribution of floating objects, with potentially large numbers of artificial objects occurring in areas that are not optimal for tunas, creating the risk of an ecological trap. Hence, there is an urgent need to assess the likelihood of DFADs acting as ecological traps.

59 A proxy which can be used to assess tuna fitness is physiological 60 condition. Tunas caught at DFADs are considered to be in poorer condition 61 than those caught in free-swimming schools which infers a negative biological consequence from the association with DFAD (Marsac et al. 2000; Hallier and Gaertner 2008). Robert et al. (2014) also found a difference between the condition of associated and non-associated tunas, but in an area (the Mozambique Channel, Indian Ocean) that was rich in natural floating objects and thus only marginally modified by the addition of DFADs. Hence, it is possible that the association with a floating object results in a poorer condition, but that the evolutionary advantage of the associative behavior would not be related to short-term trophic benefits. Tunas could recover faster after associating because they are in a more productive area or in larger schools. This led us to consider the ecological trap hypothesis over a long period of time, to examine the condition of tuna before and after the use of DFADs.

74 The objective of this study was to test the hypothesis that the body temporal evolution of the body condition of yellowfin tuna (Thunnus albacares) from 1987 to 2019 in the Indian 0cean. We expected, that the

81 (Figure 1).

82 Material and Methods

83 Biological data

84 A total of 25,914 yellowfin tuna (Thunnus albacares) were sampled from 1987 85 to 2019 in the Indian Ocean Tuna canning factory (IOT) in Victoria, 86 Seychelles (Guillou et al. 2021). All the sampled fish were caught by purse 87 seine vessels in the western IO (details of the sample sizes are provided 88 in Table S1). The total weight (W) of the individuals and their fork length 89 (FL) were measured. For each sampled tuna, the fishing vessel and the
divided in three intervals, defining size classes (SC): small (<75cm), medium ($75-120 \mathrm{~cm}$) and large ($>120 \mathrm{~cm}$).

Relative condition factor

To calculate the theoretical weight of individuals ($W_{t h}$), FL and W measures were used to estimate the parameters of the length-weight allometric relationship, using the theoretical power-law equation: $W_{t h}=a \operatorname{FL}{ }^{b}$. Details on the fit of this power-law are presented in Supplementary Material 1. Secondly, for each individual fish, the relative condition factor (Le Cren 1951) was calculated as follows:

$$
K_{n}(i)=\frac{W(i)}{W_{t h}(i)}
$$

where $W_{t h}(i)$ is the theoretical weight of individual i calculated from length-weight allometric relationship coefficients according to FL(i), and W(i) is the measured total weight. By definition, $K_{n}(i)$ measures the deviation of an individual from the weight of a mean individual of the same length. For the remainder of the text, the relative condition factor of one individual is denoted as $K_{n}(i)$. The mean relative condition factor, denoted K_{n}, calculated for a group of individuals is denoted as K_{n}.

Statistical analysis

In order to determine if K_{n} decreased with the concurrent increase in DFAD numbers during the study period, a Generalized Additive Model (GAM) was
performed considering $\mathrm{K}_{\mathrm{n}}(\mathrm{i})$ as the dependent variable, with a Gaussian link function to account for explanatory variables. Explanatory variables were chosen to assess the effect of the fishing year (Y), season (fishing quarter, Q), size of the individuals (size class, SC), and fishing location (longitude, Lon; latitude, Lat). Longitude and latitude were included in the model as a smoothed term, and other variables were considered as factors. No precise time-series of DFAD number exist in the IO over 19872018, but the deployment of DFADs increased during that period, hence we considered the fishing year as a proxy.

Because K_{n} is the ratio of two correlated random variables (Pearson' s correlation coefficient between W and $W_{t h}$, Pearson' $s \rho=0.99$), it did not follow a normal distribution and displayed overdispersion. For this reason, and because it did not change the interpretation of the GAM results, we transformed the $K_{n}(i)$ using a Geary-Hinkley transformation before performing the GAM (Geary 1930, see Supplementary Material 2). The Generalized Additive Model was performed on the transformed $K_{n}(i)$, noted $T\left(K_{n}(i)\right)$. A complementary analysis showed that size class and its interaction with other explanatory variables did not impact the main results of the study (see Figure S3).

As the exact geographic coordinates were not available for most of the sampled fish, a bootstrap process was applied: a dataset was generated by sampling one set of coordinates from all the fishing sets of the trip for
each individual and a GAM was then performed. This operation was repeated 1,000 times and for every model built, we selected the most parsimonious explanatory variables based on the Akaike information criterion (AIC), using a stepwise selection procedure and a threshold of 2. The iterated GAM coefficients of the explanatory variables considered as factors (Y, Q and SC) were averaged over the bootstrap replica and their standard deviation calculated.

Results

Mean relative condition factors (K_{n})

The mean relative condition factor value $\left(K_{n}\right)$ was 1.01 ± 0.088 and mean annual K_{n} values varied between 0.93 ± 0.064 (in 1987) and 1.07 ± 0.079 (in 2012). The relative condition factor displayed annual variations, with low K_{n} values in 1987-1990 and around 2006, and the highest K_{n} values observed around 2012 (Figure 2A). The mean annual K_{n} displayed similar variations per size class as when all the sampled fish were considered together (Figure 2A). No clear trend in K_{n} variations were observed.

Yearly variations of K_{n}

The most parsimonious model, selected using the AIC, included year (Y), quarter (Q), size class (SC) and the smoothed term for longitude and latitude. The selected model explained 29.2% of the deviance. The residuals

160 displayed no spatial autocorrelation and their distribution was not 161 significantly different from a Gaussian distribution (Figure S4). The GAM 162 performed on the transformed relative condition factor, $T\left(K_{n}(i)\right)$, showed 163 that strongest $T\left(K_{n}(i)\right)$ variations were significantly correlated with 164 fishing year (Figure 2B; Figure S5 \& S6). The annual GAM coefficients 165 displayed a non-monotonous trend which was non-decreasing in time, with 1661987 being the year with the lowest coefficient (-0.475 ± 0.007) while 2012 167 was the year with the highest coefficient (0.673 ± 0.006; Figure 2B). The

171 The main hypothesis tested in this study was that the introduction of DFADs 172 would have negatively impacted the condition of tunas, following roughly 173 three decades of DFAD deployment in the ocean (Figure 1). Under the 174 hypothesis that DFAD number increased during the study period, we expected observed patterns were similar to those displayed when considering only the mean annual K_{n} (Figures 2A\&B). a monotonous decrease of yellowfin tuna condition throughout the years. The relative condition factor $\left(\mathrm{K}_{\mathrm{n}}(\mathrm{i})\right)$ values obtained here did not display any clear temporal trend over the study period (Figure 2), which goes against the tested hypothesis. Hence, the present study concludes that under the conditions encountered by yellowfin tuna in the Indian Ocean during the
last three decades, the addition of DFADs to the pelagic environment has not led to the creation of an ecological trap for this species.

However, several precautions must be considered when interpreting this result. Sampling was not uniformly distributed across size classes and years, which could have influenced the results (Table S1 \& Figure S7). However, Wang et al. (2002) found no relationship between the size and the condition factor of yellowfin and bigeye tunas. Also, when performing a GAM on data of each size class independently, no decreasing trend of physiological condition was observed (Figure S3). Therefore, we are confident that the methodology used here did not suffer from any bias induced through the uneven sampling.

Also, morphometric indices, such as K_{n} used here, should be used with caution as they do not always reflect the energy compounds in the tissues (Lloret et al. 2014). Hence, further efforts are needed to validate them against proper benchmarks (Lloret et al. 2014), which could be achieved through the development of experimental studies. However, these morphometric indices can be informative (Hallier and Gaertner 2008), and are often the only available metrics as it was the case in this study (no long-term time-series of biochemical indices exist for tuna).

Furthermore, the habitat change induced by DFADs could also impact other biological processes, such as natural mortality, growth rate (Hallier and Gaertner 2008), or reproduction (Zudaire et al. 2014), that could not be
assessed through our biological index. For example, if the growth rate of tunas is negatively altered by DFADs (see Hallier and Gaertner 2008), a tuna of a given size in the 1980s could be younger than a tuna of the same size in the 2010-2020s, with the two individuals having a similar physiological condition.

Our study is based on the assumption that, since the late 1980s, the number of DFADs increased in the western IO. While assessing a time-series of the exact density of DFADs is cumbersome, studies suggest that the number of DFADs in the Indian 0cean continued to increase throughout the study period (Dupaix et al. 2021). The conditions leading to an ecological trap might also have only been reached in recent years, without being detectable in our study. This highlights the need to keep developing long-term monitoring programs, collecting data on DFAD densities and standardized physiological indices, to study the impact of DFADs on tuna physiology.

As stated above, the study is valid only for the conditions experienced by yellowfin tuna in the western $I 0$ in the last three decades. Aside from the increase of DFAD density, other long-term phenomena could also impact the physiology of tropical tuna. Since the 1980s, climate change has already impacted tuna habitat, by inducing changes in sea surface temperature or oxygen concentration, for example (Erauskin-Extramiana et al. 2019). Erauskin-Extramiana et al. (2019) projected that yellowfin tuna will become more abundant under a climate change scenario (the authors used the

RCP8. 5 and expect the same projected changes of abundance under other scenarios until 2050). Hence, a potential negative impact of increasing DFAD density may have been concealed by other phenomena like climate change.

Ecological traps are likely to become more common as human-induced environmental changes increase, and they have important implications for the management of animal populations (Swearer et al. 2021). The hypothesis that DFADs could act as ecological traps was developed over 20 years ago (Marsac et al. 2000). It suggests that, by modifying the density and spatial distribution of FOBs, the massive deployment of DFADs could retain or transport individuals to areas that are ecologically unsuitable for them (Marsac et al. 2000). By demonstrating the absence of any decreasing trend in yellowfin tuna condition concurrent to the observed increasing DFAD density in the Indian Ocean during the past three decades, this study rejects the ecological trap hypothesis as it was originally formulated. However, DFADs can impact the biology of tuna in a variety of complex ways, and this impact can be intertwined with the effects of other factors such as climate change. Therefore, it is necessary to establish long-term monitoring programs to track (i) habitat changes, (ii) temporal variations of behavioral features in tuna, such as large-scale movements and schooling behavior, and (iii), temporal variations of physiological parameters in tuna.

246 Declaration of Competing Interest

247 The authors declare that they have no known competing financial interests 248 or personal relationships that could have appeared to influence the work 249 reported in this paper.

250 Data availability statement

251 Data used in this study is available in Guillou et al. (2021).

252 All analyses were performed using R software v.4.0.3, and the scripts used 253 for the study are available on GitHub:

254 https://github. com/adupaix/Historical_YFT_condition

255 https://doi.org/10. 5281/zenodo. 6123417

256 A preprint version of the article is available at:

257 https://hal. archives-ouvertes. fr/hal-03690665

259 The authors sincerely thank IRD's 0b7-"Observatoire des Ecosystèmes 260 Pélagiques Tropicaux Exploités "- in charge of the observer data 261 collection, processing, management, and for sharing the data used in this study; M. Simier for her inputs on statistical analyses; J.D. Filmalter for 263 his proofreading.

Dagorn, L., Holland, K. N., Restrepo, V., and Moreno, G. 2013. Is it good or bad to fish with FADs? What are the real impacts of the use of drifting FADs on pelagic marine ecosystems? Fish Fish. 14(3): 391415. doi:10.1111/j. 1467-2979. 2012.00478. x.

Dupaix, A., Capello, M., Lett, C., Andrello, M., Barrier, N., Viennois, G., and Dagorn, L. 2021. Surface habitat modification through industrial tuna fishery practices. ICES J. Mar. Sci. 78(9) : 3075-3088. doi:10. 1093/icesjms/fsab175.
Erauskin-Extramiana, M., Arrizabalaga, H., Hobday, A. J., Cabré, A., Ibaibarriaga, L., Arregui, I., Murua, H., and Chust, G. 2019. Large - scale distribution of tuna species in a warming ocean. Glob. Change Biol. 25(6) : 2043-2060. doi:10.1111/gcb. 14630.
Freon, P., and Dagorn, L. 2000. Review of fish associative behaviour: toward a generalisation of the meeting point hypothesis. Rev. Fish Biol. Fish. 10: 183-207. doi:10. 1023/A:1016666108540.
Geary, R.C. 1930. The Frequency Distribution of the Quotient of Two Normal Variates. J. R. Stat. Soc. 93 (3): 442. doi:10. 2307/2342070.
Gilroy, J., and Sutherland, W. 2007. Beyond ecological traps: perceptual errors and undervalued resources. Trends Ecol. Evol. 22(7) : 351-356. doi:10. 1016/j. tree. 2007. 03. 014.
Guillou, A., Bodin, N., Chassot, E., Duparc, A., Fily, T., Sabarros, P., Depetris, M., Amande, M. J., Lucas, J., Diaha, C., Floch, L., Barde, J., Pascual Alayon, P. J., Baez, J.C., Cauquil, P., Briand, K., Bach, P., and Lebranchu, J. 2021, December 31. Tunabio: biological traits of tropical tuna and bycatch species caught by purse seine fisheries in the Western Indian and Eastern Central Atlantic Oceans. doi:10. 17882/73500.
Hallier, J.-P., and Gaertner, D. 2008. Drifting fish aggregation devices could act as an ecological trap for tropical tuna species. Mar. Ecol. Prog. Ser. 353: 255-264. doi:10. 3354/meps07180.
Le Cren, E. D. 1951. The Length-Weight Relationship and Seasonal Cycle in Gonad Weight and Condition in the Perch (Perca fluviatilis). J. Anim. Ecol. 20(2): 201. doi:10. 2307/1540.
Lloret, J., Shulman, G.E., and Love, R.M. 2014. Condition and health indicators of exploited marine fishes. Wiley Blackwell, Chichester, West Sussex; Hoboken, NJ.
Marsac, F., Fonteneau, A., and Ménard, F. 2000. Drifting FADs used in tuna fisheries: an ecological trap? Pêche Thonière Dispos. Conc. Poissons 28: 537-552.
Robert, M., Dagorn, L., Bodin, N., Pernet, F., Arsenault-Pernet, E. -J., and Deneubourg, J.-L. 2014. Comparison of condition factors of skipjack tuna (Katsuwonus pelamis) associated or not with floating objects in
an area known to be naturally enriched with logs. Can. J. Fish. Aquat. Sci. doi:10. 1139/cjfas-2013-0389.
Swearer, S.E., Morris, R.L., Barrett, L.T., Sievers, M., Dempster, T., and Hale, R. 2021. An overview of ecological traps in marine ecosystems. Front. Ecol. Environ. 19(4): 234-242. doi:10. 1002/fee. 2322.
Wang, S.-B., Chang, F. -C., and Wang, S.-H. 2002. Some Biological Parameters of Bigeye and Yellowfin Tunas Distributed in Surrounding Waters of Taiwan. p. 13.
Zudaire, I., Murua, H., Grande, M., Pernet, F., and Bodin, N. 2014. Accumulation and mobilization of lipids in relation to reproduction of yellowfin tuna (Thunnus albacares) in the Western Indian Ocean. Fish. Res. 160: 50-59. Elsevier.

Figure 1: Schematic representation of the ecological trap hypothesis applied to Fish Aggregating Devices and tropical tuna. FOB: Floating object of any kind; DFAD: Fish Aggregating Device; NLOG: Natural floating object. Under this hypothesis, before DFAD introduction, when only NLOGs
were present (1), floating objects were distributed in productive areas (2), hence tunas, which associate with floating objects, preferred high quality habitats (3). Since DFAD introduction (1'), the distribution of floating objects has been modified and is no longer correlated with habitat quality (2'). Hence, tunas, which still associate with floating objects, do not select high quality habitat anymore (3'). As a consequence of this habitat modification, the physiological condition of tunas would have decreased since the 1980s (4). Preference is defined here as the likelihood of a resource being chosen if offered as an option with other available options.

280 Figure 2: No observed trend in yellowfin tuna condition: (A) Mean relative 281 condition factor per year. The K_{n} is represented for all individuals (all, black circles), for small individuals ($\langle 75$, red circles), medium-size

283 individuals (75-120, blue triangles) and large individuals (>120, green 284 diamonds). Values are represented only when more than 50 individuals of the 285 given class were measured. Error bars represent the standard error of the 286 mean. (B) Coefficients of the fishing year in the Generalized Additive 287 Model. Each coefficient represents the mean deviation of $T\left(K_{n}\right)$ from the 288 values for a year of reference (2019, represented by a black dot). The 289 shape of the points represents the distribution of the values obtained with 290 the bootstrap process. Numbers in grey in the upper part of the panels 291 represent the percentage of the models generated in the bootstrap for which 292 a given category was significantly different from the category of 293 reference.

