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We study the effect of spatial anisotropy on polar flocks by investigating active q-state clock models
in 2D. Unlike the equilibrium case, we find that any amount of anisotropy is asymptotically relevant,
drastically altering the phenomenology from that of the rotationally-invariant case. All of the well-
known physics of the Vicsek model, from giant density fluctuations to micro-phase separation,
is replaced by that of the Active Ising model, with short-range correlations and complete phase
separation. These changes appear beyond a lengthscale that diverges in the q → ∞ limit so that
the Vicsek-model phenomenology is observed in finite systems for weak enough anisotropy, i.e.
sufficiently high q. We provide a scaling argument which explains why anisotropy has such different
effects in the passive and active cases.

Active matter, being made of energy-consuming units,
is well known to exhibit spectacular collective behav-
iors not permitted in equilibrium. Experimental exam-
ples include the defect dynamics of active nematics [1–3],
low Reynolds number turbulence [4, 5], motility-induced
phase separation [6–8] and, perhaps most famously, flock-
ing [9–13]. Although these phenomena appear in com-
plex, usually living, systems, most of our theoretical un-
derstanding comes from studying collections of identi-
cal active units evolving in pristine environments, often
with periodic boundary conditions. Recently acquired
evidence suggests, though, that active systems seem to
be fundamentally sensitive to quenched and population
disorder [14–20], and that even the nature of boundaries
can influence bulk properties [21].

The sensitivity of active systems to anisotropy, in
the form of fixed preferred directions in space, remains
largely unexplored. A basic result is available in the
context of polar flocks, i.e. collections of simple self-
propelled particles locally aligning their velocities. In two
space dimensions, comparing the Vicsek model (VM) [22]
to the active Ising model (AIM) [23] shows that the
symmetry of the order parameter controls the emerging
physics. In the VM, dynamics are rotation invariant,
i.e., have continuous symmetry, and the ordered phase
exhibits scale-free density and order fluctuations [24–28].
In the AIM, directed motion happens only along two op-
posite directions, hence the dynamics only has a discrete
symmetry, and the correlations are short ranged in the
ordered phase. Concomitantly, even though the transi-
tion to collective motion is akin to a phase-separation
scenario in both the AIM and the VM, their coexistence
phases are different [29]: models in the Vicsek class ex-
hibit microphase separation, typically in the form of a
smectic train of traveling dense bands [30], whereas the
AIM shows a single moving domain and macrophase sep-
aration [31].

Anisotropy is generically expected in experimental sys-
tems, due to weak external fields. The AIM, by restrict-
ing directed motion along one dimension, corresponds to
an extreme spatial anisotropy, whose relevance for real-
istic systems can be questioned. A natural question is
then whether polar flocks and the physics of the Vicsek
model are robust to weaker forms of anisotropy. In equi-
librium, the 2D XY model—which is the passive counter-
part of the VM—is in a sense both robust and sensitive
to the discreteness of spins: q-state clock models, which
break rotational invariance and interpolate between the
XY and the Ising models, exhibit a quasi-long-range or-
dered phase similar to that of the XY model below the
BKT transition for q > 4, but this critical phase gives
way to a region of long-range order below some finite tem-
perature that vanishes only when q →∞ [32–36]. Thus,
from the XY viewpoint, a new ordered phase emerges at
any q, but it is marginal, confined to T = 0, in the q →∞
limit.

In this Letter, we investigate the susceptibility of polar
flocks to weak anisotropy. Using a combination of nu-
merical simulations and analytical arguments, we study
q-state active clock models and their hydrodynamic the-
ories. We uncover a scenario qualitatively different from
the equilibrium one: the phenomenology of the rotation-
ally invariant Vicsek model disappears for any amount
of spin anisotropy, leaving only AIM-like phenomenology
with short-ranged correlations and macrophase separa-
tion. This, however, happens only asymptotically: at
fixed q, one still observes the Vicsek physics up to a typ-
ical scale ξq that diverges exponentially with q, which we
estimate using a mean-field theory and a scaling argu-
ment. The latter traces back the fundamental difference
with equilibrium to the presence of long-range order in
the isotropic active system.

Active clock models. Particles i = 1, . . . , N carrying
a spin si ∈ {0, 1, . . . , q − 1} reside at the nodes R of
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FIG. 1. (a) Typical phase diagram in the (ρ0, T ) plane (q = 4), Transition lines are defined by the coexisting densities at a
given temperature T = 1/β, computed in systems of size 400× 20). (b,c): Snapshots of density field in the coexistence phase
in a long 800× 20 system suitable for the observation of many traveling bands (steady state, ρ0 = 10, q = 4 in (b), q = 10 in
(c)). (d) Number fluctuations 〈n2〉c vs 〈n〉 = ρ0`

2, the number of particles in a square box of linear size ` calculated in the
liquid phase of square 200× 200 systems (ρ0 = 10, β = 3.5). “Giant” anomalous fluctuations are observed for q = 10, but not
for q = 4. (e) Time series of Φ ≡ arg〈mk〉k, the orientation of the global polar order (parameters as in (d)).

a square lattice without occupation constraints. They
undergo biased diffusion by jumping to neighboring sites
with rate D(1 + εd ·ui) with d the direction of the jump
and ui = (cos θi, sin θi) the unit vector along the clock
angle θi = 2πsi/q. Spins can rotate to the previous or
next “hour” θ′i ≡ θi ± 2π

q at rate

wi,R = w0 exp
[
β

2ρR
mR · (u′i − ui)

]
(1)

where ρR and mR =
∑
j∈R uj are, respectively the num-

ber of particles and the magnetization at site R hosting
particle i, u′i is the new spin direction, and w0 is a con-
stant [37]. For q = 2, one recovers the AIM used in [31].
As shown in [38], in the isotropic q → ∞ limit, the spin
dynamics reduces to the Langevin equation

∂tθi = Ω∞ +
√

2D∞ξi (2)

where ξi is a Gaussian white noise of unit variance and
the torque and rotational diffusivity are given by Ω∞ =
4w0π

2β
q2

(
mR

ρR
· ∂ui∂θi

)
+O(q−3) and D∞ = 4w0π

2

q2 +O(q−3),
respectively. In order to have a well-behaved active XY
model in the q → ∞ limit, one must thus take w0 ∝ q2.
In the following, we set w0 = q2

4π2 to fix D∞ = 1 and
choose D = 1 without loss of generality. For simplicity,
we also fix the activity parameter ε = 0.9. [39]

The only parameters left to vary, in addition to q, are
thus the temperature T = 1/β and the global density
ρ0 = N/(LxLy), where Lx and Ly define a rectangular
domain with periodic boundary conditions. For numer-
ical efficiency, we use parallel updating, first performing
on-site spin rotations, then biased jumps.

Phase diagrams in the (ρ0, T ) plane at fixed q all resem-
ble those of the AIM or VM: the disordered gas present at
high T and/or low ρ0 is separated from the low-T/high-ρ0
polarly-ordered liquid by a coexistence phase (Fig. 1a).
The liquid and coexistence phases both have a finite
global magnetization m ≡ |〈mR〉R|. However, at fixed

system size, they display AIM-like or VM-like properties
depending on q: For large q, one observes giant num-
ber fluctuations in the polar liquid and microphase sep-
aration, as for the Vicsek model (Fig. 1c,d). At lower
q values, on the contrary, the liquid has normal fluc-
tuations and the system phase separates into a single
moving domain (Fig. 1b,d). The direction of global or-
der Φ ≡ arg〈mR〉R also behaves differently in the liquid
phase, hence distinguishing AIM-like and VM-like behav-
iors: Φ(t) wanders slowly at large q, whereas it is pinned
along a clock angle at small q (Fig. 1e). The results pre-
sented in Fig. 1 seem to suggest that active clock models
have different behavior at q = 4 and q = 10, similar to
the differences between the AIM and the VM. In fact
this is only true at finite size, as we now show in both
the liquid and phase-separated phases.

We first consider the behavior of correlation func-

10−2 10−1 100

100

101

102

103

104
S⊥

k‖

(a)

q = 4
q = 5
q = 6
q = 7
q = 8
q = 9
fit

4 6 8 10

100

101

ξq

q

(b)

k‖
k⊥
mean field
fit Lc⊥

FIG. 2. Liquid phase of active clock models (ρ0 = 5.5, β = 4,
system size 800 × 800): (a) S⊥(k) = 〈m⊥(k)m⊥(−k)〉 vs
k = (k‖, 0) for q ∈ J4, 9K. For q = 7 we show the fit to
the Ornstein-Zernicke function α/(1 + (ξk)2), (dashed line).
(b) Crossover length ξq. For red and blue symbols, ξq is ob-
tained by Ornstein-Zernicke fits of S⊥(k) using k = (k‖, 0)
and k = (0, k⊥), respectively. The green curve is the mean-
field prediction derived from Eq. (5). The black line corre-
sponds to Lc⊥(q), predicted by our scaling argument fitting
only the prefactor a in Eq. (9).



3

0 105
2×105

0

π
2

π
φ

t

(a)

1002

2002

4002

800× 20, q = 6 (b) 800× 20, q = 7

800× 40, q = 7 800× 40, q = 8

2 4 6 8 10

0.2

0.4

0.6

0.8
T

q

G

G+LI G+LV

LI LV

(c)

800×20

800×40

502

2002

FIG. 3. Transition from the Vicsek to the active Ising behavior as system size increases. (a): Direction of global order in the
liquid phase showing a transition between unpinned and pinned as system size increases. The dashed lines indicate the hours
of the clock. β = 4, ρ0 = 5.5, q = 8. (b): Snapshots of the density obtained after a long time t = 5× 105 starting from a large
ordered band. The transition is shifted to larger q as L increases. Same color code as in Fig. 1. β = 3.2, ρ0 = 5.5. (c): Phase
diagram in the q − T plane at ρ0 = 5.5. The line between macro- (G + LI) and micro-phase separation (G + LV ) is defined
as the transition between a single and multiple bands after time t = 106 at the system size indicated in the legend. The line
separating the two liquids (LI and LV ) is defined as the transition between pinned and unpinned order parameter orientation
after time t = 105.

tions in the liquid phase. In Fig. 2a, we show
the transverse magnetization structure factor S⊥(k) =
〈m⊥(k)m⊥(−k)〉 for wavelength k calculated in large
systems for various q values (the same behavior is ob-
served for the structure factor of the density field). For
sufficiently small q, S⊥ converges to finite values as
k → 0. This AIM-like behavior only happens, though,
beyond a crossover length scale ξq. For scales smaller
than ξq, the structure factor exhibits algebraic scaling,
as in the VM. The crossover scale ξq can be extracted
by fitting the structure factors to the Ornstein-Zernicke
function f(k) = α/(1 + (ξqk)2) [40]. This yields a typ-
ical scale ξq that increases exponentially rapidly with q
(Fig. 2b). Extrapolating these results, we expect that,
even for large q values, VM behavior will be observed in
the liquid phase up to (large) finite sizes, but that the
asymptotic behavior at the largest length scales is Ising-
like. Consistently, we observe a transition from unpinned
to pinned order parameter in the liquid phase as L in-
creases at fixed q (Fig. 3a).

Importantly, the crossover from VM to AIM phe-
nomenology is also observed in the phase-coexistence re-
gion. Systems with linear size L� ξq exhibit microphase
separation, as in the VM. On the contrary, for L � ξq,
the systems show full phase separation as in the AIM.
Fig. 3b illustrates this: the transition from microphase
to macrophase separation happens upon increasing the
transverse system size at fixed q, whereas the reverse
transition is seen upon increasing q at fixed system size.

The crossover from VM to AIM behavior can be sum-
marized in the (q, T ) phase diagram at fixed global den-
sity. The three expected phases are present, but one
can, at a given system size, define boundaries between
Ising and Vicsek behavior within the coexistence and the
liquid-phase regions, as shown in Fig. 3c and described in
its caption. These boundary lines are displaced to higher
and higher q values as the system size is increased. Ex-
trapolating to the infinite-size limit, VM-like behavior

is singular, confined to the infinite-q (active XY) limit.
Note that the transitions in the coexistence and liquid
phases happen at different system sizes in Fig. 3c. We
believe this to be due to the peculiar and poorly under-
stood mechanism by which the Vicsek-type long-range
correlated fluctuations break the phase separation into a
microphase separation [29]. This need not happen at the
same system size as the pinning of the order parameter in
the liquid although the underlying physics —a cross-over
from Ising-like to Vicsek-like physics—is the same.
Effective continuous description. In equilibrium, clock

models are sometimes described at the field-theoretical
level as continuous spins subjected to an anisotropic po-
tential Vq(φ) [32], where φ parameterizes the local di-
rection of order. While usually postulated on symmetry
grounds, we have derived this potential at large q using
a mean-field approximation [38], which yields

Vq(φ) = −2ρ

β

Iq(β|m|/ρ)

I0(β|m|/ρ)
cos(qφ) (3)

with m and ρ the local magnetization and density, φ =
arg(m), and In(x) the modified Bessel function of the
first kind. Equation (3) is only the leading order con-
tribution at large q, but direct comparisons with simula-
tions of the fully connected clock model show that it is
already a good approximation for q = 4 [38].

We now demonstrate that we can understand the be-
havior of our microscopic active clock model using the
mean-field hydrodynamic description of its isotropic, q =
∞ limit complemented by the anisotropic potential (3).
This hydrodynamic theory, derived in [38] with standard
techniques akin to those used for the AIM [31], reads

∂tρ =D∆ρ− v∇ ·m (4a)

∂tm =
(
β
2−1− β2

8ρ2m
2
)
m +D∆m− β

ρ ∂φVq(φ)m⊥

+ βv
4ρ (m⊥∇ ·m⊥ −m∇ ·m)− v

2∇ρ , (4b)

where m⊥ ≡ (−my,mx).
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FIG. 4. Simulations of the PDE with noise (a) Structure
factor S⊥(k) = 〈m⊥(k)m⊥(−k)〉 vs k = (k‖, 0) in the ordered
phase for several q values (system size 200 × 200). (b) Time
series of the orientation of global order Φ in the ordered phase
showing a transition between unpinned and pinned dynamics
as the system size increases (q = 9). (c) Simulations with
the additional density-dependent term necessary to observe
band solutions [38]. As in Fig. 3 (b), snapshots of the density
after a long time t = 5 × 105 starting from a large ordered
band. Parameters: β = 4, D = 1, v = 1.8, ρ0 = 5.5 (a,b) and
ρ0 = 1.85 (c).

Consider a perturbation of the homogeneous ordered
state m = (m0 + δm‖, δm⊥). To linear order, using
sin qφ ≈ qφ ≈ qm⊥/m‖, we obtain for the m⊥ field

˙δm⊥ = D∆δm⊥ + {drift terms} − αqδm⊥ (5)

with αq = 2q2
Iq(βm0/ρ0)
I0(βm0/ρ0)

. When αq = 0, there is no mass
onm⊥. This happens happens when q →∞, as expected
from the continuous rotational symmetry. With αq > 0
however, a mass damps the fluctuations ofm⊥ and there-
fore pins the direction of order. The typical length scale
on which this damping occurs is ξ =

√
D/αq, which com-

pares well to the crossover length ξq measured in the
microscopic model (Fig. 2b) albeit—unsurprisingly—not
quantitatively. To account for the structure factor re-
ported in Fig. 2 for the microscopic model, we comple-
ment Eq. (4b) with an isotropic centered Gaussian white
noise field η(r, t) of unit variance. The structure fac-
tor of m⊥, shown in Fig. 4a, is found to be qualitatively
similar to that of Fig. 2. Moreover a pinning transition
occurs when L is increased (Fig. 4b), as in Fig. 3a for the
microscopic models.

Our hydrodynamic description also captures the na-
ture of the coexistence region. Complementing Eq. (4b)
with the density-dependent coefficients needed to account
for inhomogeneous profiles [38], we show in Fig. 4c that
increasing q at a given system size leads from macro-

to micro-phase separation whereas the converse hap-
pens when increasing L at fixed q. Again, the VM
phenomenology is observed at large q and small sizes,
whereas AIM physics is found to be the asymptotic be-
haviour at large L.
Scaling argument. All in all, anisotropy is thus always

relevant asymptotically. This is markedly different from
what happens in equilibrium where, for q > 4, there is a
range of temperature over which the anisotropy is irrel-
evant asymptotically, and one observes quasi-long-range
order, as for a continuous spin. The argument used to
derive a crossover length from the linearized hydrody-
namic equation in Eq. (5) therefore fails in equilibrium.
Indeed, there is no homogeneous ordered state to per-
turb from, only a quasi-ordered state with algebraically
decaying correlations. This difference is essential, as is
clear from looking at the scaling with system size of the
energyHq =

∫
d2r cos(qθ(r)) due to the “clock potential”.

Let us then compare the scaling with L of 〈Hq〉0, where
the average is taken in the unperturbed system without
Hq, in equilibrium and in the active case. Of course, we
do not actually have a Hamiltonian in this last case, but
this argument should roughly capture the effect of the
potential in the equation of motion (4). In equilibrium,
the unperturbed state can be described by the spinwave
Hamiltonian H0 =

∫
d2rK2 [∇θ(r)]2 with stiffness K. The

perturbation is then evaluated as

〈Hq〉0 ≈
∫
d2r〈eiqθ(r)〉0 =

∫
d2re−

q2

2 G(0) (6)

where G is the Green function of the Laplacian in infinite
space. In Fourier space Ĝ(k) = T

Kk2 , which, in 2D, gives
G(0) = T log(L/Λ)/(2πK) for a system of size L, with Λ
a short distance cut-off. Inserting this into Eq. (6) yields

〈Hq〉0 ∼ L2− q2T
4πK . (7)

Equation (7) predicts anisotropy to be relevant as L→∞
whenever T < Tq ≡ 8πK

q2 and irrelevant otherwise. If
Tq < TBKT ≡ πK

4 , which happens for q > qc = 4, one ob-
serves a quasi-long range ordered phase where anisotropy
is irrelevant for Tq < T < TBKT, and a long-range ordered
phase where anisotropy is relevant for T < Tq.

In the active case, the ordered state of the unperturbed
system is long-range ordered. Assuming that θ(r) shows
Gaussian fluctuations with variance σ2 around its mean
value θ0 leads to 〈eiqθ(r)〉0 = e−q

2σ2/2. In turn, Eq. (6)
becomes

〈Hq〉active0 ≈
∫

d2r〈eiqθ(r)〉0 = L2e−q
2σ2/2 (8)

Anisotropy is thus always relevant when L � Lq ≡
eq

2σ2/4, so that 〈Hq〉active0 � 1. For L � Lq, on the
contrary, anisotropy is exponentially suppressed by q and
Vicsek physics may be observed.
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The argument above qualitatively explains the differ-
ent responses to anisotropy observed in the active and
passive cases. In equilibrium, it has been made more rig-
orous using renormalization group calculations [32, 33].
In the active case, its essential conclusions hold within
a dynamical renormalization group analysis [24, 27]
which shows that the lengthscale Lc⊥ beyond which the
symmetry-breaking field changes the physics obeys [41]

Lc⊥(q, σ) = a exp
[
q2σ2/(2z)

]
. (9)

where a is a microscopic length and z a dynamic exponent
whose most recent numerical estimate is z ' 1.33 [28].
After measuring σ in a microscopic simulation [42], we
show in Fig. 2b that the prediction of Eq. (9) is consistent
with the observed crossover length.
Conclusion. We have shown that polar flocks are

strongly altered, at large scales, by spatial anisotropy.
This is reflected by the suppression of hallmark features
of the Vicsek model: in the liquid phase the correlations
are short ranged, not scale free, the direction of order
is pinned, not wandering; and one has macrophase in-
stead of microphase separation at coexistence. Interest-
ingly, these changes occur only beyond a characteristic
lengthscale that diverges for vanishingly small anisotropy
and large q. In the liquid and coexistence regions, the
crossover from VM to AIM physics can be understood
using a hydrodynamic description where anisotropy is ac-
counted for by an effective potential. In the liquid phase,
the difference with the passive case can be explained us-
ing a scaling argument, which shows that the presence
of long-range order is sufficient to render the anisotropy
relevant asymptotically for any value of q and T .

Our study calls for understanding spatial anisotropy
in other active-matter systems, like active nematics. Fi-
nally, the absence of any effect of the anisotropy of the
lattice used in our clock model —our results hold for an
off-lattice version— is almost surprising. Whether lat-
tice anisotropy couples to the aligning dynamics at larger
scales than those considered here surely deserves further
study.

We thank Mourtaza Kourbane-Houssene for his early
involvement in this work, and Benoît Mahault for a crit-
ical reading of the manuscript. This work was partially
supported by the French ANR through projects NeqFlu-
ids to HC and THEMA to JT.

[1] T. Sanchez, D. T. Chen, S. J. DeCamp, M. Heymann,
and Z. Dogic, Nature 491, 431 (2012).

[2] H. Li, X.-q. Shi, M. Huang, X. Chen, M. Xiao, C. Liu,
H. Chaté, and H. Zhang, Proceedings of the National
Academy of Sciences 116, 777 (2019).

[3] G. Duclos, R. Adkins, D. Banerjee, M. S. Peterson,
M. Varghese, I. Kolvin, A. Baskaran, R. A. Pelcovits,

T. R. Powers, and A. Baskaran, Science 367, 1120
(2020).

[4] H. H. Wensink, J. Dunkel, S. Heidenreich, K. Drescher,
R. E. Goldstein, H. Löwen, and J. M. Yeomans, Pro-
ceedings of the National Academy of Sciences 109, 14308
(2012).

[5] V. A. Martinez, E. Clément, J. Arlt, C. Douarche,
A. Dawson, J. Schwarz-Linek, A. K. Creppy, V. Škultéty,
A. N. Morozov, and H. Auradou, Proceedings of the Na-
tional Academy of Sciences 117, 2326 (2020).

[6] I. Buttinoni, J. Bialké, F. Kümmel, H. Löwen,
C. Bechinger, and T. Speck, Physical Review Letters
110, 238301 (2013).

[7] D. Geyer, D. Martin, J. Tailleur, and D. Bartolo, Phys-
ical Review X 9, 031043 (2019).

[8] M. N. Van Der Linden, L. C. Alexander, D. G. Aarts,
and O. Dauchot, Physical Review Letters 123, 098001
(2019).

[9] A. Cavagna, A. Cimarelli, I. Giardina, G. Parisi, R. San-
tagati, F. Stefanini, and M. Viale, Proceedings of the
National Academy of Sciences 107, 11865 (2010).

[10] A. Bricard, J.-B. Caussin, N. Desreumaux, O. Dauchot,
and D. Bartolo, Nature 503, 95 (2013).

[11] D. Geyer, A. Morin, and D. Bartolo, Nature materials
17, 789 (2018).

[12] J. Deseigne, O. Dauchot, and H. Chaté, Physical Review
Letters 105, 098001 (2010).

[13] N. Kumar, H. Soni, S. Ramaswamy, and A. Sood, Nature
communications 5, 1 (2014).

[14] O. Chepizhko, E. G. Altmann, and F. Peruani, Physical
Review Letters 110, 238101 (2013).

[15] J. Toner, N. Guttenberg, and Y. Tu, Physical Review
Letters 121, 248002 (2018).

[16] J. Toner, N. Guttenberg, and Y. Tu, Physical Review E
98, 062604 (2018).

[17] Y. B. Dor, E. Woillez, Y. Kafri, M. Kardar, and A. P.
Solon, Physical Review E 100, 052610 (2019).

[18] Y. Duan, B. Mahault, Y.-q. Ma, X.-q. Shi, and H. Chaté,
Physical Review Letters 126, 178001 (2021).

[19] B. Ventejou, H. Chaté, R. Montagne, and X.-q. Shi,
Physical review letters 127, 238001 (2021).

[20] S. Ro, Y. Kafri, M. Kardar, and J. Tailleur, Physical
Review Letters 126, 048003 (2021).

[21] Y. B. Dor, S. Ro, Y. Kafri, M. Kardar, and J. Tailleur,
arXiv preprint arXiv:2108.13409 (2021).

[22] T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, and
O. Shochet, Physical Review Letters 75, 1226 (1995).

[23] A. P. Solon and J. Tailleur, Physical Review Letters 111,
078101 (2013).

[24] J. Toner and Y. Tu, Physical Review Letters 75, 4326
(1995).

[25] J. Toner and Y. Tu, Physical Review E 58, 4828 (1998).
[26] J. Toner, Y. Tu, and S. Ramaswamy, Annals of Physics

318, 170 (2005).
[27] J. Toner, Physical Review E 86, 031918 (2012).
[28] B. Mahault, F. Ginelli, and H. Chaté, Physical Review

Letters 123, 218001 (2019).
[29] A. P. Solon, H. Chaté, and J. Tailleur, Physical Review

Letters 114, 068101 (2015).
[30] H. Chaté, F. Ginelli, G. Grégoire, and F. Raynaud, Phys-

ical Review E 77, 046113 (2008).
[31] A. P. Solon and J. Tailleur, Physical Review E 92, 042119

(2015).
[32] J. V. José, L. P. Kadanoff, S. Kirkpatrick, and D. R.



6

Nelson, Physical Review B 16, 1217 (1977).
[33] S. Elitzur, R. Pearson, and J. Shigemitsu, Physical Re-

view D 19, 3698 (1979).
[34] J. Tobochnik, Physical Review B 26, 6201 (1982).
[35] C. M. Lapilli, P. Pfeifer, and C. Wexler, Physical Review

Letters 96, 140603 (2006).
[36] Z.-Q. Li, L.-P. Yang, Z.-Y. Xie, H.-H. Tu, H.-J. Liao,

and T. Xiang, Physical Review E 101, 060105 (2020).
[37] These rates are chosen such that, for isolated sites, the

dynamics would satisfy detailed balance with steady-
state probabilities PR = exp[−βHR] and HR =
−m2

R/(2ρR).
[38] See supplementary information online.

[39] For the AIM, the same phenomenology is found for any
activity ε > 0 [31]. We have no reason to suspect a
different behavior in our active clock model.

[40] While this fit cannot be perfect, since the structure factor
of the isotropic model is expected [24–27] to scale like
k−ν‖,⊥ with neither ν‖ nor ν⊥ equal to 2, both exponents
are close enough to 2 that this fit suffices to give a good
estimate of ξq.

[41] A. Solon, H. Chaté, J. Tailleur, and J. Toner, In prepa-
ration.

[42] We measure σ in the active XY model (i.e. with q =∞)
by fitting the distribution P (θR − 〈θ〉) with θR the local
orientation on site R to a normal distribution. We find
σ2 ≈ 0.22 for the parameters of Fig. 2c.


	Susceptibility of Polar Flocks to Spatial Anisotropy
	Abstract
	Acknowledgments
	References


