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Introduction: DNNs are enabling major advances in solv-

ing hard scientific problems and processing complex data

on an unprecedented scale in many areas such as language

processing, fraud detection, healthcare, and so on. The design

of DNNs for commercial services requires a significant ex-

penditure of time, money, and human effort, from collecting

massive data to fine-tuning the model’s hyperparameters. Thus,

the commercial value of these models makes them impor-

tant intellectual property for companies, which incentivizes

adversaries to mount specific attacks in order to retrieve

their internal intelligence, gain knowledge about the sensitive

information being processed by them, or at least disrupt their

operation by intentionally injecting specific vulnerabilities [1].

These DNN models are typically kept confidential in a

black-box setup where the adversary is not privy to the

structure or parameters of the model, other than the output

predictions for the corresponding input. This setup has been

commercialized by several cloud service providers such as

Google, Amazon, Microsoft, and BigML, which have de-

ployed an end-to-end infrastructure for using DNNs as a

service. Despite its promise, the commercial value of DNNs-

as-a-service makes them susceptible to critical attacks by

adversaries. Our proposed taxonomy of attacks is illustrated in

Fig. 1. They are categorized based on several attributes, which

are grouped into three classes of the attacker’s knowledge and

capabilities. First, Black-Box DNNs (a.k.a. the oracle model)

requiring no knowledge about the model beyond the ability

to query it by inserting an input and obtaining the output

classification. Second, Gray or White-Box DNNs, in which

the attacker may have some degree of information about the

architecture of the model, the number of layers, the number

of neurons per layer, and even the hyperparameters used

to train the model. Third, Explainable DNNs. In fact, the

use of black-box DNNs is not without risks as endorsed by

their proven track record of unfair and wrong decisions. To

address these risks, the European parliament has an explicit

provision requiring meaningful explanations to provide users

with deeper insights into model reasoning and about the data.

These explanations can contain, however, hidden sensitive

knowledge that can be exploited for privacy attacks [2].

The above three classes are then further separated into two

sets of attack objectives. First, Confidentiality that consists in

exploiting specific data leakage disclosed intentionally (e.g.,

saliency maps, global explanations) and/or unintentionally

(e.g., power, timing, and electromagnetic traces) in order to

acquire proprietary information by querying the DNN system.

This attack’s objective is represented in Fig. 1 by arrows

coming out of the DNN model. Second, Integrity that consists

of intentionally injecting a perturbation, so that the DNN

system fails to perform correctly for some or all of the inputs

(e.g., causing a DNN-based malware classifier to misclassify

a malware sample as benign). This misclassification may be

non-targeted where the erroneous output is assigned to any

class or targeted where it is assigned to a specific class. This

attack’s objective is represented in Fig. 1 by arrows entering

the DNN model.

In the sequel, we will outline five key generative strategies

for attacking black-box DNNs.

Strategy 1: This poisoning strategy [1] assumed that the

attackers have the ability to contribute to the training data or

control it. In this way, the attacker aims to poison the training

data by injecting crafted malicious samples to influence the

outcome of the model training. There are many simple yet

effective techniques for attacking a training process. For

instance, the attacker can flip labels of some training instances.

Alternatively, we can inject legitimately labeled poison sam-

ples that seem normal to a user, but they comprise illegitimate

characteristics to trigger a targeted misclassification during the

inference process. An attacker can also generate an illegitimate

trained DNN that exhibits high classification accuracy on the

user’s private validation set in an attempt to gain its trust,

but the malicious DNN performs incorrectly on backdoor

instances.

Strategy 2: This invasion attack [1] aims to induce vul-

nerabilities in the inference phase in such a way that the

changes are almost invisible to the human eye, but very

noticeable from the DNN viewpoint. Typical attacks may

involve modifying the malicious sample’s features to evade

detection by the model. Effective attacks are particularly based

on the gradient method where attackers modify the original

input in the direction of the gradient of the loss function

relative to the clean input image. The small vector noise η

is generated as

η = ǫ sign (∇xJ (θ, x, y)) , (1)

where sign(:) is the sign function, ǫ is a small scalar value that

restricts the norm of the perturbation, x denotes a vectorized

clean input, and y is the label of the input. In addition, J (:, :, :)

is the cost used to train the neural network and ∇x is the

gradient of the loss function relative to the clean input x.
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Fig. 1. Taxonomy of key attack strategies against black-box DNNs.

Strategy 3: Here [3], we search for a substitute model with

functionality relatively close to the target black-box DNN (i.e.,

within 5% test accuracy of the target model). To make the

search tractable and efficient, the adversary reduces the search

space by considering the timing side-channels in the black-box

setting due to the dependence of the total execution time on

the total number of layers (i.e., DNN depth). From the total

execution time, an adversary can infer the total number of

layers of the target DNN using a regressor trained on the data

containing the variation of execution time with DNN depth of

several popular models (e.g., AlexNet, ResNet, Inception). To

efficiently search for the optimal Neural Network, an optimi-

sation problem is formulated and solved using Reinforcement

Learning based Neural Architecture Search.

Strategy 4: A distinctive approach is adopted in this

strategy [4], which involves using side channels to attack the

building block of advanced black-box setups, namely multi-

layer perceptrons consisting for instance of fully connected

layers commonly found in other advanced setups such as

CNNs. In this way, a combination of temporal and elec-

tromagnetic leakage is used to recover key parameters, i.e.,

the activation function, the pre-trained weights, the number

of hidden layers and neurons in each layer. This approach

is inspired by attacks against cryptosystems. Here, the DNN

weights are represented on 32 bits according to the IEEE 754

standard, where each byte is recovered individually according

to the divide-and-conquer approach. Two key approaches are

identified for this strategy. First, Profiled Attacks, wherein the

adversary can procure a copy of the victim device and uses

it to extract extensive leakage traces (in order to distinguish

different templates) given hypothesis on sensitive data (e.g.,

DNN weights). Next, the physical leakage of the victim device

is compared to the prior templates in order to determine the

most probable profile. Second, Non-Profiled Attacks, wherein

the attacker has only limited access to the target device such

that the similarity between measurements of the physical

leakage at the victim device and a hypothetical model is

quantified statistically based on specific distinguishers like

Pearson’s correlation and mutual information.

Strategy 5: Recent research has identified sophisticated

attacks [2] against sensitive knowledge hidden in explain-

able DNNs, such as model extraction attacks to reconstruct

parameters of proprietary models and infer the original data

from the target prediction (e.g., reconstructing a face from an

emotion prediction), membership inference attacks vulnerable

to inference phase to identify if users were part of a training

dataset, and explanation manipulation attacks leveraging post-

hoc explanations techniques to give the impression that the

black-box model exhibits some fair behavior (e.g., no discrim-

ination) while it might not be the case.

Conclusion: In this paper, we examined to what extent

and under what settings the confidentiality and integrity of

black-box DNNs—which are the most challenging setup of

DNNs—can be threatened. In this way, we proposed a com-

prehensive taxonomy of the key strategies developed in the

literature to attack black-box DNNs. We believe that a coherent

classification incorporating all key aspects is needed to orga-

nize the body of knowledge on research and methodologies

for understanding and securing black-box DNNs.
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