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Introduction

Many computer vision applications rely on the comparison of local features between images. For instance, object pose estimation [START_REF] Lowe | Distinctive image features from scaleinvariant keypoints[END_REF], image stitching [START_REF] Brown | Multi-image matching using multi-scale oriented patches[END_REF] or image classification [START_REF] Zhang | Local features and kernels for classification of texture and object categories: A comprehensive study[END_REF] are quite often based on either descriptor matching or clustering. In a comparative study [START_REF] Mikolajczyk | A performance evaluation of local descriptors[END_REF], SIFT-like descriptors [START_REF] Lowe | Distinctive image features from scaleinvariant keypoints[END_REF] have proven to be the most effective and robust methods for image matching. Such descriptors consist of several histograms of gradient orientation, and the comparison of two descriptors boils down to the comparison of one-dimensional circular 1histograms. Observe that many other features based on one-dimensional circular histograms can be found in the literature, such as hue histograms [START_REF] Venkatesh Babu | Robust tracking with motion estimation and local kernelbased color modeling[END_REF].

In practice, "bin-to-bin" distances, like the Euclidean distance [START_REF] Lowe | Distinctive image features from scaleinvariant keypoints[END_REF][START_REF] Mikolajczyk | A performance evaluation of local descriptors[END_REF] or the χ 2 distance [START_REF] Belongie | Shape matching and object recognition using shape contexts[END_REF][START_REF] Zhang | Local features and kernels for classification of texture and object categories: A comprehensive study[END_REF], are considered as the simplest way to measure quickly the dissimilarity between two histograms at a low computational cost.

However, these distances are obviously not robust to histogram quantization. Therefore, the number of bins of gradient orientation histograms for original SIFTs [START_REF] Lowe | Distinctive image features from scaleinvariant keypoints[END_REF] is limited to N = 8 to make a compromise between the discriminative power of the descriptor and the robustness of the representation.

This quantization problem can be avoided by using cross-bin distances, such as the Earth Mover's Distance, initially proposed by Rubner [START_REF] Rubner | The Earth Mover's distance as a metric for image retrieval[END_REF] as a metric for multidimensional histograms. This distance, often used to compare image signatures, is known to be more robust than bin-to-bin distances, but is computationally far more expensive. A nice variant of this distance is proposed in [START_REF] Ling | An efficient Earth Mover's distance algorithm for robust histogram comparison[END_REF] by Ling et al. in order to speed up the comparison. However, this measure remains too expensive to be applied to the matching problem when the number of features increases (see Section 3) and does not address the circularity of orientation histograms.

These limitations led us to propose a new dissimilarity measure, called CEMD, specifically designed to compare one-dimensional circular histograms (see Section 2). This measure, based on the Earth Mover's Distance (as a solution of a transportation problem), is computationally efficient. We show in Section 4 that it behaves well with respect to histogram quantization and outperforms classical bin-to-bin distances for the comparison of SIFT-like features.

Circular Earth Mover's Distance (CEMD)

Let f = (f [i]) i=1...N and g = (g[i]) i=1...N be two discrete histograms with samples on N bins and normalized, in the sense that

N i=1 f [i] = N i=1 g[i] = 1.
The Earth Mover's Distance between f and g is defined in [START_REF] Rubner | The Earth Mover's distance as a metric for image retrieval[END_REF] as EMD(f, g) := min (αi,j )∈M N i=1 N j=1 α i,j c(i, j), [START_REF] Belongie | Shape matching and object recognition using shape contexts[END_REF] where M = {(α i,j ); α i,j ≥ 0,

j α i,j = f [i],
i α i,j = g[j]} and where c(., .) is a ground distance between bins.

The distance EMD(f, g) can be understood as a transportation cost. The value c(i, j) measures the cost of moving a unit mass from bin i to bin j, and α i,j is the amount of mass carried from i to j. This definition can be used in any dimension, but histograms of dimension larger than 2 involve heavy computations.

For non-circular and one-dimensional histograms, if

c(i, j) = |i -j|/N , it is known [8] that EMD(f, g) equals 1 N N i=1 |F [i] -G[i]|
, where F and G are the cumulative histograms of f and g. The generalization of this formula to circular histograms is not straightforward (remark that in this case c(i, j) = min{|i -j|/N , 1 -|i -j|/N }). Observe in particular that if f is a circular histogram, one can build as many cumulative histograms as there are bins in f (any bin can be chosen as a starting point). However, if f and g are circular and one-dimensional, it can be shown (the proof of this result is omitted in this paper for lack of space) that the Earth Mover's Distance between them equals

CEMD(f, g) = min k∈{1,...,N } 1 N N i=1 | F k [i] -G k [i] | , (2) 
where, ∀ k ∈ {1, . . . , N } (the definition is similar for G k by replacing f by g),

F k [i] =              i j=k f [j] if i ≥ k N j=k f [j] + i j=1 f [j] if i < k .
This means that the distance CEMD(f, g) is the minimum in k of the L 1 distance between F k and G k , the cumulative histograms of f and g starting at the k th quantization bin.

Comparing local features

In this section, we first briefly recall the classical way to compare SIFT-like features by using bin-to-bin distances, and then explain how to apply the CEMD introduced in the previous section to the comparison of such local features.

Let us recall [START_REF] Lowe | Distinctive image features from scaleinvariant keypoints[END_REF][START_REF] Mikolajczyk | A performance evaluation of local descriptors[END_REF] that a SIFT-like descriptor a consists of M circular histograms a m of gradient orientations, weighted by the gradient magnitude and computed for different subregions of a location grid around an interest point. Thus, the comparison of two descriptors a and b boils down to the comparison of histograms a m and b m . We suppose here that each histogram is quantized to N bins and that the whole descriptor a = (a 1 , . . . , a M ) is normalized to have unit weight [START_REF] Lowe | Distinctive image features from scaleinvariant keypoints[END_REF].

Bin-to-bin distances The most classical way to compare SIFT-like descriptors is simply to use the L p distance as in Formula (3), usually with p = 2 (Euclidean distance) [START_REF] Lowe | Distinctive image features from scaleinvariant keypoints[END_REF]. Applying this distance requires a global L p normalization of descriptors a and b. Other bin-tobin distances that are used to compare local features include the χ 2 distance, as in [START_REF] Zhang | Local features and kernels for classification of texture and object categories: A comprehensive study[END_REF] or the Jeffrey divergence. The definitions of these distances in the framework of SIFT-like descriptors are recalled in Formula ( 4) and ( 5) respectively.

D L p (a, b) := M m=1 N i=1 | a m [i] -b m [i] | p 1 p (3) D χ 2 (a, b) := M m=1 N i=1 (a m [i] -b m [i]) 2 a m [i] + b m [i] (4) 
D J (a, b) := M m=1 N i=1 a m [i] log 2 a m [i] a m [i] + b m [i] + b m [i] log 2 b m [i] a m [i] + b m [i] (5) 
Applying CEMD to local features In order to apply CEMD to SIFT-like features, Formula (2), designed to compare normalized histograms, should be applied to the comparison of each histogram pair a m and b m . In practice, however, it is by far more robust to globally normalize SIFT-like features to unit weight (as in [START_REF] Lowe | Distinctive image features from scaleinvariant keypoints[END_REF]) than to normalize each histogram a m individually. Therefore, Formula ( 2) is applied to nonnormalized histograms.

In order to combine distances corresponding to different subregions (different values of m) we choose to use the following distance between two descriptors,

D CEMD (a, b) := M m=1 CEMD(a m , b m ). (6) 
Other dissimilarity measures could have been chosen (such as CEMD(a m , b m ) 2 or max CEMD(a m , b m )). However, we observed experimentally that the distance ( 6) is more robust.

Implementation and computational cost Let

X k [i] = F k [i] -G k [i]
be the difference of the cumulative histograms computed in Formula (2). X k can be written as a function of X 1 (with the convention

X 1 [0] = 0), ∀ k ∈ {1, . . . , N } X k [i] = X 1 [i] -X 1 [k -1] if i k 1 X 1 [i] -X 1 [k -1] + X 1 [N ] if i < k
Observe that X 1 [N ] = 0 when f and g are two normalized histograms. Thus, CEMD only necessitates the computation of histograms F 1 and G 1 (just like EMD in the non-circular case), and the minimization of X k 1 according to k. The complexity of the CEMD computation is therefore approximately N times the complexity of the Euclidean distance computation, where N is the number of bins of each local histogram (N = 8 for classical SIFT).

Ling and Okada in [START_REF] Ling | An efficient Earth Mover's distance algorithm for robust histogram comparison[END_REF] proposed a faster implementation of EMD, called EMD-L 1 , with the L 1 ground distance in the multidimensional case. In one of their experiments, EMD-L 1 is used to compare SIFT descriptors, considered as 3-dimensional histograms (coding both orientation and localization). However, they do not address the circular aspect of orientation histograms. Moreover, this distance remains empirically too expensive to be applied to large descriptors databases: computing EMD-L 1 is empirically 720 times slower than the Euclidean distance, according to Table VII in [START_REF] Ling | An efficient Earth Mover's distance algorithm for robust histogram comparison[END_REF]. As an order of magnitude, performing the same evaluation as in Section 4 with EMD-L 1 would require more than one year on a standard 2.5 GHz computer.

Experiments

This section compares the performances of the different distances defined in Section 3, when used for the matching of SIFT-like descriptors. These descriptors are obtained in a way similar to the original SIFT [START_REF] Lowe | Distinctive image features from scaleinvariant keypoints[END_REF], except that they are extracted from circular masks divided in M = 9 subregions. In order to estimate the robustness of the distances to histogram quantization, each circular histogram is computed twice, first with N = 8 then with N = 12. The performances of the different distances are compared on a set of 732 images 2 and 3.1 million descriptors. Each image A of the database is compared to an image A , obtained by applying an affine transform (see Figure 1) and adding Gaussian noise (with σ = 5 for 8bit coded images) to A. Since our purpose is to compare distances, and since each descriptor a of A should have at most one correct match in A , we choose the simplest criterion to match descriptors: a query descriptor a of A is matched with its nearest neighbor a in A if D(a, a ) is smaller than a threshold τ . of each image. Thus, for each distance defined in Section 3, performances are evaluated on the set of 732 images and 3.1 10 6 descriptors (involving approximately 25.10 9 descriptor comparisons). In Fig. 3, the efficiency of the L 1 and L 2 distances, Jeffrey divergence, and χ 2 distance are compared with the proposed CEMD, for two different quantization steps (N = 8 and N = 12). The average ROC curves clearly show the advantage of CEMD for all quantization choices. Moreover, one observes that increasing N systematically increases the quality of the matching when using CEMD. The number of bins is therefore only driven by computational complexity. This is of course not the case for classical bin-to-bin distances, for which using too many bins yields inefficient comparisons between histograms.

Conclusion

In this paper, we propose a new dissimilarity measure called CEMD between circular histograms, relying on an adaptation of Earth Mover's Distance to the circular case. We show, when applied to SIFT descriptors, that this distance clearly outperforms other classical bin-to-bin distances on a large database, while involving low time complexity.
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 1 Figure 1. Example of affine original image A (left) and its affine transform A (right).

Figure 2 .Figure 3 .

 23 Figure 2. Example of three images and ROC curves from the 732 image database. The red curve corresponds to CEMD, the blue one to the L 1 distance and the green one to the L 2 distance. Now, a match is declared false (i.e. false positive) or correct (i.e. true positive) depending on some spatial tolerance (following exactly the same protocol as in [5]) on the relative position of a and a . For each image A of the database and for each distance D, we obtain a ROC curve showing the ratio of correct matches as a function of the ratio of false matches for different values of the threshold τ on the dissimilarity measure D. More precisely, the ratios of correct matches and false matches are defined as correct matches ratio = #correct matches #possible matches , false matches ratio = #false matches #total number of matches .Some images and associated ROC curves are shown in Figure2-for the sake of clarity, only CEMD, L 1 and L 2 distances are represented, respectively in red, blue and green continuous lines. We can see on these curves that results can be quite different from one experiment to the other. In order to compare the performances of the different distances on the whole database, we choose to draw average ROC curves, obtained by averaging all 732 ROC curves, weighted by the number of descriptors2 Images available at: http://www.tsi.enst.fr/~rabin/ICPR08/

Circular means that the first and the last bins of the histogram are neighbors.
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