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Abstract  In this study we present a modified version of the 
commercially-available myoelectric prosthesis (Myobock©, 
Ottobock) with the aim of providing a Brain-Machine Interface 
BMI-based sensorimotor control of this device. The new system 
uses as input the ElectroEncephaloGraphy (EEG) signals of the 
user as well as vibrations produced by a bracelet containing 
vibrating motors whose frequencies are proportional to the 
forces measured by Force-Sensitive Resistors (FSR) installed on 
the fingertips of the prosthesis. Four combinations of three 
different feature extraction methods (CSP, WD, GSO) have 
been used to construct the feature vectors of the EEG signals 
collected by two different recording systems with different 
number of electrodes during the experiments performed with 
seven able-bodied and four amputee subjects. The 
classification/prediction performances of three machine 
learning algorithms (Artificial Neural Network, Support Vector 
Machine with linear and Radial Basis Function kernels) were 
then tested. The reported results provide a proof of concept for 
the use of a wireless BMI to control the main types of movement 
of myoelectric prostheses using an EEG system with less 
electrodes rather than a research-grade system. 

Keywords Brain-Machine Interface, Prosthesis, Feature 
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I. INTRODUCTION 

Upper-limb amputations account for around 20% of 
the total number of amputations throughout the world, 
estimated to be about 65 million people [1]. From those 20%, 
the World Health Organization (WHO) consider that only 
10% have access to prosthetic devices, mainly because of the 
high cost of the commercially available and certified devices 
and the lack of personnel and infrastructures [2]. 
Nevertheless, in a survey conducted by Biddiss & Chau 
regarding the factors of prosthesis abandonment [3] the team 
noted that 10 to 50% (depending on the age) of users of 
upper-limb prostheses have stopped to use their devices as it 
is considered inconvenient for daily-use, mainly because of 
the fatigue, the weight, the lack of comfort or because their 

also notice that the absence of sensory feedback in the 
prosthesis is a significant factor of rejection among users. It 
is indeed known that myoelectric prostheses - which are 
based on the use of surface ElectroMyoGraphy (EMG) 
electrodes to control movements on the device - come with 
some limitations, for example the stump on the arm of 
t78-1-6654-1337-4/22/$31.00 ©2022 European Union

user is subject to constant stress while in use and the sweat 
from the prosthesis socket can also make it difficult to 
properly catch the muscular activity. Those disadvantages 
offer room for the development of a new system that would 
go beyond the traditional myoelectric control of the 
prostheses, in order to improve both the dexterity and the 
robustness of prostheses for activities of daily living. 

Brain-Machine Interfaces (BMIs) - which allow a 
user to control various end effectors through the recording 
and decoding of its brain activity - possess what seems to be 
an ever growing popularity, evolving both in research and in 
the general population with great promises. Moreover, an 
important fraction of the research done on that matter focuses 
on medical applications of BMIs, particularly for 
neurorehabilitation in the case of motor impairment 
following a stroke [4-6] or a spinal cord injury [7,8]. 

The use of BMIs relies primarily on the good 
recording of the brain activity of a subject; it is commonly 
divided in three distinct categories: invasive, semi-invasive 
and non-invasive [9]. Invasive BMIs use microelectrode 
arrays implanted directly in the region of interest of the cortex 
(e.g. the Motor cortex for movement-related applications) 
that record the activity of a population of neurons [10]. 
Similarly, semi-invasive recording techniques use a grid of 
electrodes (also known as ECoG, for ElectroCorticoGraphy) 
implanted subdurally over the cortex and measure cortical 
field potentials [11,12]. While offering an excellent signal for 
BMI applications, those two techniques, as their name 
suggests, require an important surgical procedure with a 
decrease of performance over time due to the degradation of 
the signal coming from the electrodes [13-15]. Despite 
suffering from its own limitations (mainly a poor signal-to-
noise ratio and low spatial resolution of the signal, as well as 
a long preparation time on a subject), the non-invasive 
recording of brain activity with ElectroEncephaloGraphy 
(EEG) is widely common in research, from behavioural 
research on cognition processes [16] to medical diagnoses 
[17,18] or neurofeedback treatments [19,20] and even video 
games [21]. It is also probably the most exploited method for 
the development of Brain-Machine Interfaces applications 
thanks to its ease of use and good temporal resolution of the 
signal, which makes it a promising candidate for the control 
of prosthesis on a daily basis.  



However little has yet been done on that topic, as the 
current focus concerns the increase of EMG electrodes to 
recognize muscular patterns of activation when performing 
different movements [22]. One can also note the use of the 
Targeted Muscle Reinnervation (TMR) procedure [23,24], 
which consists in using severed nerves of a patient by 
relocating them in a new muscular area (e.g. in the chest), 
giving more possibilities to control a device as well as 
reducing the pain coming from the injured peripheral nerves 
[25]. Nonetheless, despite the improvement in the control of 
prostheses this technique still requires a surgical procedure 
which reduce the possibilities of a large-scale 
implementation, leaving some space for the EEG to fill those 
gaps. 

Up until recently, the work from the laboratory was 
centred around the studies of invasive BMIs for the kinematic 
and dynamic control of robotic hand & arms [26,27]. The 
latest study (submitted) reports a performance analysis of 
mimicking grasp movements by two different robotic hands 
controlled by BMIs using invasively and non-invasively 
recorded brain activities as inputs. 

In this paper, we will present the preliminary data 
analysis and development results of our ongoing project 
conducted in collaboration with the international prosthesis 
manufacturer Otto Bock (Duderstadt, Germany) and the 
rehabilitation center Institut RMA, 
Valenton, France) aiming at the development of an EEG-
based BMI for the sensorimotor control of hand prostheses. 
In parallel to the design & development work seven healthy 
and four amputee subjects, wearing two different EEG caps, 
participated to the experiments during which they performed 
or imagined different types of grasp movements while their 
motor execution (ME) and motor imagery (MI) signals were 
respectively recorded. Movements of interest for the control 
of the prosthesis were then estimated using various 
combinations of feature extraction and decoding algorithms,
and the results of this first analysis phase of the project 
concerning the movement type estimation performance of the 
proposed BMI system using EEG signals in MI condition will 
then be reported.

II. MATERIALS & METHODS

The main role of the interface part of a BMI system 
is to decode what should have been coded in the recorded 
brain activity, the desired hand motion in our case, and it is 
composed of two main modules: a) Feature extraction of the 
recorded EEG signals and b) Estimation of the desired hand 
motion. On the other hand, a BMI system aiming to be 
employed for routine use does not only need to be robust, 
reliable and reproducible in prediction performance of the 
desired motion but it also needs to be ergonomic and easy to 
use. Therefore, the work on such systems should also 
consider an optimisation of the design parameters of the final 
product among which the number of EEG electrodes (which 
for example might be installed inside a baseball cap) as well 
as the training/calibration time of the used machine learning 
algorithms would be the most important ones. 

The critical issues which would affect the 
performance of a robust daily-life control of the myoelectric 
prosthesis can be grouped into three sets of 
problems/questions that need to be answered:

1) Recording of the brain activity: which type of 
EEG system is suitable for this application? Which brain 
regions should be recorded to get the highest prediction
performance? What is the minimum number of electrodes 
that we need to use to achieve a satisfying control level?

2) Feature Extraction & decoding of the brain 
activity: Which feature extraction and decoding algorithms 
and/or combination of these two can provide the best motion 
prediction performance? Here we will propose a feature 
extraction pipeline as well as classification algorithms that 
are offering promising performances regarding the control of 
the prosthesis.

3) Sensory Feedback: What is the contribution of the 
sensory feedback on the performance of the BMI system?

This study focuses particularly on the work on the 
signal processing, data analysis and training/learning 
processes in the aim of proposing solutions to the problems 
of the second group. 

A. Participants

Seven healthy participants (3 females and 4 males, 5 
Right-handed, 2 Left-Handed, 29.8 ± 13.3 years old,) 
composing the control group and four amputated subjects (4 
males, 2 transradial amputations of the left hand and 2 of the 
right hands, 58.25 ± 3.86 years old) participated in this first 
phase of experiments.  All participants were given 
information in oral and written forms before giving written 
informed consent to participate in the study. The protocol was 
performed in accordance with the Declaration of Helsinki.
The criteria of inclusion for the amputated subject were the 
following: person above 18 years old with a transradial
amputation and user of a myoelectric prosthesis. All 
amputees but Amputee #3 declared using their myoelectric 
prostheses - a polydigital hand (Michelangelo©, Ottobock) 
on a daily basis, the third amputee is using his prosthesis 
(Myobock SensorSpeed©, Ottobock) occasionally.

B. Experimental Setups 

Two experimental setups (see Fig.1. A & B) were 
developed to perform experiments and recordings with 
healthy and amputee subjects using two EEG caps with 
different number of electrodes and different sampling rates
but placed following the 10 20 position system 
andreferenced to the CPz electrode for each system.



Fig.1. A) Experimental Setup for Healthy subjects: Continuous EEG data 
were collected from 63 actiCAP EEG electrodes (BrainProducts GmbH) 
mounted on an elastic cap using the PyCorder system on the recording 
computer and actiCHamp amplifiers (BrainProducts GmbH, Gilching, 
Germany) with a sampling rate of 2000 Hz. The second computer was 
running the experiment on a custom script written with MATLAB 2016b 
(Mathworks, Navick, MA) using the Psychophysics Toolbox [28]. B) 
Continuous EEG data were collected from 16 sintered EEG electrodes 
(OpenBCI, United States) mounted on an elastic cap using the BrainFlow 
library on the recording laptop and the Cyton+Daisy boards with a sampling 
rate of 125Hz. The recording laptop was also used to run the experiment via 
a custom C++ program written and compiled on the QT IDE (QT Creator 
4.13.3). C) Modified myoelectric prosthesis controlled by EEG signals and 
the sensory feedback devices. (from left to right: the vibration bracelet and 
force-sensing resistors). 

A modified Myobock hand prosthesis, allowing the 
control of the prosthesis via the EEG signals of the user, and 
a sensory feedback system (Fig.1.C), composed of force-
sensing resistors and vibration motors communicating via 
Bluno microcontrollers, were used during sessions with 
amputees.  

C.  Experimental Protocols 

The experiments with the amputees were realised in three 
sessions occurring in three different days (with at least ten 
days between two sessions) while the experiments with 
healthy subjects were composed only of the second phase 
experiments with ME and MI conditions of the first session 
done with amputees, but repeated three times.  

 
1) Protocol for amputated subjects 

a) First session: Subject dexterity prior to the use of the 
BMI system 

This session is composed of two phases. In the first 
phase the subjects were asked to do three tests with their own 
prosthesis in order to evaluate their dexterity prior to the use 
of the Myobock controlled by our BMI system. The first test 
is called the Box and Blocks Test (BB) and is widely used in 
rehabilitation to evaluate the object manipulation 
performance of the subject [29]. The setup is composed of an 
opened wooden box, divided in the middle with a board. One 
side of the box contains cubic wooden blocks (2.5 x 2.5 x 
2.5cm) and the subject is asked to move as many blocks as he 
can on the other side of the box in 1 minute. It is reminded 
that the subject has to move blocks one at a time and that if 
the subject moves two or more blocks at the same time, only 
one will be counted for the final result. The total number of 
blocks moved is used as the outcome score for the test. The 
second test is derived from [30] and is called the Cup 
Relocation Test (CUP), it consists in 11 plastic cups stacked 
on each other and placed bottom-up on a plank. The subject 
is asked to move 10 plastic cups (one cup at a time) from a 

position located 30 cm towards the contralateral side, as fast 
as possible. The time needed to move the 10 plastic cups is 
used as the performance score. The final task is called the 
Clothespin Relocation Test (CS) and is inspired from the 
work in [31]. The subject is asked to relocate four plastic 
clothespins from a horizontal position to a vertical position, 
the plastic clothespins could vary in the force needed to open 
them. The time needed to relocate the four pins is used as the 
performance score for the test. Each of the three test were 

repeated five times in order to have a more accurate measure 
 

In the second phase of this first session, we asked the 
subject wearing the EEG cap (OpenBCI) seating comfortably 
on a chair and looking at a computer screen to perform a 
sequence of movements using the same objects used in the 
first phase but following the visual and audio instructions sent 
by the computer according to the sequence seen in Figure.2 
and in two conditions: Motor Execution (ME), where the 
subject actively performs the movement with his own 
prosthesis, and Motor Imagery (MI), where the subject 
imagines of performing the movement. Based on the 
feedback of the first amputated subject we modified the 
experimental protocol for the MI condition by removing the 
random time windows (1 second for the Go step, and 2 
seconds for Move) and by reducing the time in the Grip step 
(2 seconds instead of 3). The experiment consisted in 30 trials 
with each object and for the two conditions, on which was 
added the recording of 10 trials of neutral/baseline activity 
where the subject was asked to simply look at the screen 
without performing or thinking of any movement. Finally, the 
subject was instructed to reduce as much as possible the eye 
blinks during the movement. 

 

 
Fig. 2. Sequence of phases during the EEG recording. It is composed of 6 
successive steps, the 1st and 6th steps are fixation crosses lasting 1 second 
each where the subject has no action to perform/imagine.  The 2nd step (Go) 
instructs the subject to go to the object represented on the screen, a random 
time window (1 to 2 seconds following this spacing: 1s, 1.25s, 1.5s, 1.75s, 
2s) is used to alleviate the habituation effect coming from the repetition of 
the sequence. The 3rd step (Grip) asks the subject to grasp the object with his 
prosthesis and lasts 3 seconds. The 4th step (Move) asks the subject to move 
the object to his right or to his left (depending on the previous motion done). 
Similarly to the Go step the Move step contains a random time window of 2 
to 3 seconds. The 5th step (Release) asks the subject to release the object and 
to go back to his/her initial position. This step lasts for 2 seconds. The 
asterisk * indicates that one of the three objects presented on the right of the 
figure was used in the corresponding phases. 

b) Second session: ME and MI   
The second session consists in experiments with EEG 

recording identical to the ones presented in the first session 
but with an important difference in the ME condition; instead 
of using his original prosthesis the subject uses a modified 
Myobock prosthesis that is connected to the computer. The 
PC is controlling the opening and closing of the hand in the 
Grip (Closing) and Release (Opening) steps during the 
experiment. This ME, that we call MEP (for Motor Execution 
with Prosthesis), recording is thus changing into a hybrid (or 



intermediate) condition between the classic ME condition 
and the MI condition as the subject is now seeing his 
prosthesis being opened or closed without the motor 
command coming from the EMG electrodes. 

At the end of the recording session, the sensory 
feedback is tested for a few minutes on the subject to give 
her/him an idea of the content of the third recording session. 

 
c) Third session: Sensory feedback 

The third recording session is identical to the second (MEP 
and MI) except for the addition of the sensory feedback 
system in the MEP condition, which adds sensory 
information to the user during the Grip, Move and Release 
steps of the sequence.  

2) Protocol for control subjects 
The sequence of movements and number of trials for control 
(able-bodied) subjects are identical to the ones defined in the 
first session of the experimental protocol for amputated 
subjects (Fig.2.) in ME and MI conditions. At this phase of 
the study the control subjects did not perform the experiments 
of the second and third session using the apparatus allowing 
them to control a prosthesis with their EEG signals and with 
or without sensory bracelet.  

 

D.  EEG Signal Processing 

1) Preprocessing 
EEGLAB functions were used to segment the trials and 

retrieve the data from the Grip and Release steps from the 
EEG files recorded with the ActiCHamp system [32]. To 
speed up the computation time, each trial was downsampled 
from 2000Hz to 250Hz. Similarly, the OpenBCI data were 
segmented but the sampling rate was kept at 125Hz (internal 
limitation of the system). We only kept the first second of 
each trial after the stimulus onset on which an infinite impulse 
response notch filter set at 50Hz and a 4th order Chebyshev 
type II bandpass filter between 8 and 30Hz was applied, to 
minimize noises and artefacts on the trials.  In order to 
increase the size of the dataset and minimize the effect of 
imbalanced classification, the analogy method from [33] was 
used so that each class now contains 90 trials. The method 
consists in computing a ratio between two trials of the same 
class (using its principal components) and applying this ratio 
to a third trial of the class to create a new and artificial trial. 
We considered the movement Close (full closure of the hand) 
as the motion type of the Grip step of both the BB and CS 
objects while the movement Half (half closure of the hand) 
was considered as the motion type only of the Grip step of 
the CUP object. The Open movement (full opening of the 
hand) is a state in common for the Release steps of BB, CS 
and CUP. Finally, the neutral/baseline condition is 
considered to be Rest. Then the z-score of each trial was 
computed and used as the starting point for the feature 
extraction pipeline. 

2) Feature Extraction 
In the following we first present the feature extraction 

techniques we used in constructing the input vector contents 
to the classification algorithms. We then study the effect of 
the use of different combinations of those techniques in the 

classification performance of the two decoding algorithms 
used in the current version of the proposed system. 

a) Common Spatial Patterns (CSP) 
The Common Spatial patterns technique is probably 

the most commonly used spatial filtering technique in BMIs 
[34-36]. This method is applied mainly to binary 
classification; it consists in computing a transformation 
matrix W that is maximizing the variance of the signal for one 
class while minimizing it for the other [37]. Finding the 
optimal transformation matrix W requires to solve: 

        (1)  

                         (2) 
 being an estimate of the spatial covariance matrix of 

class . Using the Generalized Eigen Value Decomposition 
(GEVD), the solution to this optimization problem is the 
transformation matrix composed of the eigenvectors 
corresponding to the maximal and minimal eigenvalues 
obtained from  and .This technique is applied here to 
four movements (Open, Close, Half, Rest) using a One-vs-
One approach, leading to the computation of six different 
transformation matrices W ( (n*(n-1))/2 = 6, with n = 4, the 
number of movements to classify). 6 pairs of CSP filters were 
kept using the setup with healthy subjects while 8 pairs were 
kept in the setup with amputee subjects, thus giving a matrix 
size of (m, n, 90) for each of the projection (with m = 248, 
124 and n = 12, 16 for the ActiCHamp and OpenBCI EEG 
systems respectively)[37]. 
 

b) Wavelet Decomposition (WD) 
The EEG signal is known to be non-stationary 

meaning that its properties are changing with time, thus by 
applying traditional techniques such as the Fast Fourier 
Transform (FFT) it is possible that one can miss relevant 
information regarding the movements. Applying the Wavelet 
Decomposition method allows to retrieve Time-Frequency 
information on the original signal [38]. For this operation a 
function called the Mother Wavelet  which starts at zero, 
briefly oscillates and comes back to zero  is scaled and 
translated to create a set of wavelets on which the signal is 
convoluted with. Here a Daubechies 4 mother wavelet has 
been used. Two filters are used to convolute the signal: a low-
pass filter (LPF) and a high-pass filter (HPF). Following the 
convolution, a downsampling is done on the two filtered 
signals and the approximation coefficients  and details 
coefficient  are obtained. To continue the decomposition to 
further levels, the approximation coefficients are considered 
as the base signal for the next decomposition. As the WD 
technique keeps frequency information of the signal it is 
possible to choose the decomposition level based on the 
frequency band of interest of the signal, for this article we 
chose a 2-level decomposition for the OpenBCI EEG system 
and 3-level decomposition for the ActiCHamp EEG system 
to fall approximately in the 0-32Hz frequency band. We 
decided to use the approximation and detail coefficients from 
the last level  sufficient for the reconstruction of the original 
signal with inverse WD  for the next step of the feature 
extraction process. After the CSP computation, we obtain 12 
signals as each of the 6 transformation matrices is used to 
project the signals of 2 different classes, we thus apply the 
WD on those 12 signals which gives us a matrix size 



and n = 12, 16 for the ActiCHamp and 
OpenBCI system). 

 
c)  Gram-Schmidt Orthonormalization (GSO) 
From the features vectors composed of the wavelet 

coefficients, a basis  (with , corresponding to the 
numbers of comparisons signals and  the number of filters 
kept after the CSP step)  is obtained by orthonormalization 
following the Gram-Schmidt procedure [39]. For each of the 

comparisons and  filters a projection matrix  is 
computed from the  bases and used to project the feature 
vectors obtained during the previous step. As we are 
comparing two different classes, we also use the projection 
matrix  of the first class to project the feature vector from 
the other class. Finally, for each projection the logarithm of 
the variance is calculated and the values obtained are used to 
build the input vectors for the classification algorithms. 

 
3) Input vectors 
With this article we aim at comparing different feature 

extraction methods by using a combination of the three 
processing techniques we described. The first method is 
CSP+WD, the application of CSP then WD in the FE, leading 
to 6 binary classification model with inputs sizes of 180 x 12 
or 180 x 16, for the ActiCHamp or OpenBCI systems 
respectively (90 trials for the first class and 90 for the 
second). The second method is CSP+GSO, it gives 12 binary 
classification models with once again inputs sizes of 180 x 12 
or 180 x 16 for the two system. The third method is 
WD+GSO, for this one we obtain 12 models and the input 
size is either 180 x 63 or 180 x 16 as we decided to keep all 
the electrodes during the FE. Finally, the last method is 
CSP+WD+GSO, the application of the three techniques, it 
leads to 12 binary models with inputs sizes of 180 x 12 or 180 
x 16, similar to the CSP+GSO method. 

 
4) Classification 
The training performance has been obtained offline on 

Matlab 2021a using three different classification algorithms: 
An Artificial Neural Network (ANN) with a 
Training/Validation/Test split of 70%-15%-15%, and two 
Support Vector Machines (SVM) with a Training/Test split 
of 80%-20% using a Linear and a Radial Basis Function 
(RBF) kernels. The Accuracy, Precision and F1-score metrics 
were computed for all the models and for the three 
classification algorithms. 

 

III.  RESULTS 

As our BMI control system uses classification 
algorithms that need to be trained by the user, one of the most 
important issues concerning the easy use of the final product 
would be to get the amount of data necessary to train the 
classification algorithm in a reasonably short time. In 
machine learning, extending the training dataset by adding to 
the originally recorded signals an artificial data set is 
commonly used to increase the amount of data without 
increasing its collection, especially in image classification 
[40]. Fig.3. shows the standard deviations of original and 
artificial data obtained for seven different pairs of electrodes 
using the data augmentation method described in II.D.1.. 

 
Fig. 3. Distribution of the standard deviation for the trials obtained from the 
recording using the object noted as CUP (a plastic cup) with the OpenBCI 
EEG system. The Original (in blue) and Artificial (in red) trials are here 
represented for several pairs of electrodes. The results are presented here for 
the first amputee. 
 

Following the order of the critical issues evoked in 
session II and particularly the second group, we first wanted 
to explore the training performance of different combinations 
of the 3 feature extraction techniques (namely CSP, WD and 
GSO) described respectively in section II.D.2. Four different 
combinations, namely CSP+WD+GSO, CSP+WD, 
CSP+GSO and WD+GSO, have been studied. Fig.4. shows 
the distribution of the log variances corresponding to the first 
and last variables of the input vector (1st and 12th for 
CSP+WD+GSO, CSP+WD & CSP+GSO, and 1st and 63rd for 
WD+GSO for two extreme types of hand movements (Close 
and Rest), which can be controlled on the Myobock. As it can 
easily be seen in Fig. 4., results obtained by using CSP+WD 
are the most promising ones.  
 

We then studied the accuracies of the classification 
performance of four different types of desired hand positions 
obtained by different classification algorithms. Table 1, Table 
2 and Table 3 represent respectively the accuracies of the 
ANN and SVMs classification results for several 
combinations of the Feature Extraction techniques described 
in II.D.2 obtained from the first session in Motor Imagery 
with the control and amputee groups. 
 



 
Fig. 4. Distribution of the log variances of the input vectors for the 
comparison between the movement Close and Rest when using different 
combination of feature extraction techniques. 

The use of a fast and efficient Feature Extraction 
method in constructing the inputs to the 
classification/prediction algorithm is also critical for such 
applications with real-time processing needs. For the first 
part, we showed in Table 1 that the combination of CSP & 
WD gives the most promising results both for the two groups 
of subjects (above 90% of accuracy for the Control group, 
and above 70% for the amputees). While the Feature 
Extraction could probably have given similar results if it 
stopped after the application of the CSP technique, the 
addition of WD allows a reduction of the size of the signal, 
as only the coefficients from the last level of the 
decomposition were kept. This is of course not so important 
for a research work (offline study) aiming at searching for the 
best feature extraction method but it will reveal of extreme 
importance when we will tackle a real-time control of the 
prosthesis, as we need to continuously process data and thus 
need that processing to be done as fast as possible. Even 
though the addition of the GSO was found to be interesting 
we selected the CSP+WD as the feature extraction method to 
be used for the remaining part of the study by taking into 
account those aspects. Figure 4 also confirms those results by 
representing how the partitioning of the features space by the 
two classes is more clear/distinct for the combination of 
CSP+WD comparing to the other possible combinations. 

Table 1. Mean accuracies across participants for the two groups of subjects 
with four feature extraction techniques using an ANN.  

 

Table 2. Mean accuracies across participants for the two groups of subjects 
with four feature extraction techniques using a linear SVM.

 
 
Table 3. Mean accuracies across participants for the two groups of subjects 
with four feature extraction techniques using a RBF SVM.  
 

 
 

Finally, the three different classifiers we used in this 
work to decode the desired motions provided very close 
prediction performances without any statistically significant 
difference, confirming the results we reported in our 
previously published [26] and submitted work. Moreover, 
among these three classifiers, the two SVMs were the fastest 
to train (around 2 minutes) while the ANN (around 10 
minutes) presented significantly longer training time. This 
allowed us to designate the SVM with a linear kernel as the 
potential decoding algorithm in the future work, being the 
fastest classifier to train and the simplest one to use in a real-
time application.  

 
From the results summarized above, we can say that 

the use of a wireless EEG system, with less electrodes rather 
than a research-grade system, can give satisfying results 
when looking at the classification performances of the four 
movements, which are the movements that can be performed 
by this type of prosthesis. Indeed, the results reported on the 
fig. 5 show how the classification performance in the Control 
and Amputee groups evolves in the same range for the 
different binary classification models, a range that is much 
higher than the chance level in the case of binary 
classification (50%) when we match the electrodes on the two 
recording systems.  
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Fig. 5. Comparisons of the performance between the Control group (in black) 
and the Amputees (in pink) using three different classification algorithms 
(ANN, SVM Linear & SVM RBF, respectively the circle, square and triangle 
symbols) after feature extraction with CSP+WD, using the same locations of 
electrodes for the two EEG systems. 

IV. DISCUSSION 

This study investigates the use of a Brain-Machine 
Interface to control a commercially-available myoelectric 
prosthesis (Myobock©, Ottobock). Even though the current 
research project is being conducted on the three groups of 
problems evoked in II, due to difficulties concerning the 
recruitment of both able-bodied and amputee subjects for the 
experiments with the Covid-19 pandemic conditions, the 
results reported in this article are the ones obtained by 
processing the EEG signals recorded during the first session 
of the experimental protocol for both groups.  

One of the first aim of this work is to propose to the 
potential users of the BMI system a reduced calibration time, 
comprising both the recording of the EEG signals and their 
processing. The data augmentation technique we used [33], is 
a promising solution to answer to such needs. The results 
presented in Fig. 3. confirm that the original and artificial data 
sets occupy the same feature space, which supports the use of 
this technique. Therefore we always used the augmented 
dataset in the remaining steps of this study.  

 
The final evaluation step of the project will be the 

comparison of the scores obtained during the three tests (BB, 
CUP, CS, described in the first session of the experimental 
protocol for the amputee subjects) with the scores of these 
subjects obtained while they use the modified prosthesis. 
Only one amputee among four could finish the three sessions 
and realized a first trial of using the modified prosthesis 
together with the vibrating bracelet to perform a CUP test. 
Therefore, the ongoing development and research phase of 
our project focuses particularly on performing the 
experiments with more amputee subjects for all three 
sessions. Secondly we aim to be able to perform the 
experiments of the three sessions also with the control 
subjects, by allowing them to use a copy of the modified 
prosthesis and control it with their own EEG signals and use 
the vibrating bracelet.  

Nonetheless, we are well aware that the results 
presented here are only preliminary ones and that we require 
more subjects in both the control and amputee groups to bring 

answers to the various issues we raised in this article. In 
particular, there is a need to analyze the potential changes on 
the control performances which, would occur with the 
amputees all along the three sessions: would the training of 
the task give higher performance? or does it stay the same 
over time for the two groups? Can we see distinct activation 
patterns on the EEG recordings? Does the addition of the 
sensory feedback change anything on the decoding and 
control performances?  

We will be obtaining more clear and concrete 
answers to those questions as the experiments go by, but the 
presented results show a promising proof of concept for the 
efficiency of the use of BMIs for the control of myoelectric 
prostheses for amputees. 
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