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Abstract: In recent years, there has been a considerable increase in interest in the use of transgenic
plants as sources of valuable secondary metabolites or recombinant proteins. This has been facilitated
by the advent of genetic engineering technology with the possibility for direct modification of the
expression of genes related to the biosynthesis of biologically active compounds. A wide range of
research projects have yielded a number of efficient plant systems that produce specific secondary
metabolites or recombinant proteins. Furthermore, the use of bioreactors allows production to be
increased to industrial scales, which can quickly and cheaply deliver large amounts of material in a
short time. The resulting plant production systems can function as small factories, and many of them
that are targeted at a specific operation have been patented. This review paper summarizes the key
research in the last ten years regarding the use of transgenic plants as small, green biofactories for the
bioreactor-based production of secondary metabolites and recombinant proteins; it simultaneously
examines the production of metabolites and recombinant proteins on an industrial scale and presents
the current state of available patents in the field.

Keywords: bioreactors; genetic manipulation; patents; recombinant proteins; secondary metabolites;
transgenic plant cultures

1. Introduction

The plant kingdom has always been closely linked with human society, serving as a
source of both food and various remedies [1,2]. Thanks to the progressive development of
science, the use of plants has grown in various industries [3,4]. In addition, the intensive
development of phytochemistry has allowed for more in-depth determinations of the in-
dividual compounds contained in plant organs, i.e., leaves, roots, and stems [5–7]. Many
molecules known to play an important role in the adaptation of plants to their environment
also constitute an important source of pharmaceuticals [8,9]. In recent decades, this un-
derstanding of plant biotechnology has been dramatically expanded by the development
of molecular biology. In vitro plant cultures have become an interesting research object
due to the possibility of more precise modification [10]. The use of genetic engineering in
particular has revealed multiple uses for plant cultures [11,12]. For example, by inserting
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appropriate genes into metabolic pathways, it is possible to dramatically increase the
production of secondary metabolites [12,13].

The most popular secondary metabolite production systems are hairy roots induced
by Rhizobium rhizogenes, as these offer good genetic stability together with the possibility to
obtain a large amount of material in a short time [14]. This solution has become frequently
used in the pharmaceutical industry for the production of valuable compounds such as
taxol, vinblastine, and camptothecin [15,16]. However, that system is not as useful due to
the need to culture in dark [17]. Another interesting approach is the use of plants to produce
high value recombinant proteins for industrial and clinical applications; this has become a
promising alternative to conventional expression systems (bacteria, yeast, or animal cells).
However, it should be remembered that the production of secondary metabolites as well as
recombinant or modified proteins is a complex procedure that requires an interdisciplinary
effort covering a wide range of scientific and technological disciplines [18,19].

Both presented systems offer several advantages over conventional strategies in terms
of the safety and availability of material, which shows that transgenic plants function as
small factories that produce secondary metabolites or recombinant proteins [20]. However,
to overcome their limitations, which are mainly related to the scale of production, plant mate-
rial is often cultivated in bioreactors, these being engineering systems capable of supporting
optimal conditions for aerobic or anaerobic biochemical processes. Such culture methods
are characterized by stability, ease of use, increased nutrient uptake ability, time, and cost
efficiency, as well as large biomass yields; as such, bioreactor culture is regarded as a suitable
alternative to conventional methods of plant tissue culture on an industrial scale [21,22].

Creating such an efficiently operating production system with a specific material or
under strictly-defined conditions may result in a potential patentable application [23,24].
As such, there are many patents of this type relating to the culture of transgenic material in
bioreactors for both secondary metabolites and recombinant proteins [25].

The main task of this review is to familiarize readers with the latest strategies used
when working with in vitro plant cultures to increase their productivity in terms of metabo-
lites and proteins with potential medical applications. In this review, we focus on the
use of bioreactors in the cultivation of various plant cultures in vitro. The applications
of the various types of bioreactors for the cultivation of plant material, examples of the
manipulation of metabolic pathways for increased productivity of secondary metabolites,
obtaining transgenic plant cultures in vitro for the production of recombinant proteins,
as well as a review of patented bioreactors that can be used to cultivate plant cells and
tissues under controlled conditions are presented here. This work may be an introductory
guide for researchers planning to conduct research in green biotechnology using a variety
of approaches to obtain desired products.

2. Criteria for the Selection of Experimental Articles in the Analyzed Subject

This paper reviews the current state of knowledge regarding in vitro transgenic plant
cultures in bioreactors aimed at the production of secondary metabolites and recombinant
proteins based on papers published in the last ten years (2010–2021).

The studies were selected from the electronic databases PubMed/MEDLINE, Scopus,
Web of Science, and Google Scholar. The following search terms were used: transgenic
plants, secondary metabolites, recombinant proteins, and bioreactors. The search included
published experimental studies reporting about various in vitro plant transgenic cultures
and focused on the production of various secondary metabolites and recombinant proteins
grown in bioreactors on an industrial scale as well as any patents relating to these studies.
Papers reporting on articles published in languages other than English, those with only an
abstract or lacking full text access, or published over ten years ago were excluded. Each
selected document was analyzed and the following data were extracted and presented in
a table: scientific species names, plant material used for transformation, vector used f+ or
transformation, type of metabolite, type of recombinant protein, bioreactor capacity, and final
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effect (Figure 1). The main text includes various studies, including examples of transgenic
cultures producing increased levels of secondary metabolites and recombinant proteins.
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3. Transgenic Plants—Brief History and Potential Industrial Use

Transgenic plants are desirable to industry. Although the first organisms to be geneti-
cally modified were bacteria, their potential commercial value was quite limited and were
of interest only as an initial model [27,28]. However, the development of transgenic plants
promised a completely different scale of production. Commercial interest in biotechnology
grew rapidly from the late 1970s to the early 1980s [29]. In 2019, 190.4 million hectares of
biotech crops were planted by 17 million farmers in 29 countries, an increase of more than
100-fold since the initial planting of 1.7 million hectares in 1996 [30].

As such, biotech crops are considered to be the most rapidly adopted culture tech-
nology in the history of modern agriculture. As of 2019, the United States is home to the
largest area of genetically-modified crops worldwide at 71.5 million hectares, followed by
Brazil with a little over 52.8 million hectares [31]. The most commonly-grown biotech crops
in 2019 were soybeans, corn, cotton, and canola [32]. While there was a 4% reduction in
biotech soybean planting, the high adoption rate of 48% of the world’s biotech crops, or
91.9 million hectares, was maintained [31]. This acreage accounted for 74% of the total
soybean production in the world in 2019 [33].

Generally, transgenic plants are defined as those whose DNA is modified by genetic
engineering techniques. Although they were arguably first implemented 10,000 years ago
in Southwest Asia, where humans first grew plants through artificial selection and selective
cultures [34,35], the first modern transgenic plants were developed in the early 1980s in an
experiment where bacteria and yeast genes were cloned into the Ti plasmid and then used
to create a plant containing those new sequences [36]. The results of the experiment and
the transgenic plant were published in April 1983 [37].

Transgenic plants contain an artificially inserted gene or genes. These sequences are
known as transgenes; they may originate from an unrelated plant or from an entirely
different species. The purpose of introducing a combination of genes into a plant is to make
it as useful and productive as possible, or for the addition of completely new features [38,39].
The development of molecular plant breeding has resulted in technological advances in
transformation methods, gene expression regulation, protein sorting and accumulation,
and the use of various crops as production platforms [40].

One of the most important factors in the plant genetic transformation procedure is the
type of explant. For example, the use of different sources of plant cells or tissues (e.g., seeds,
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roots, shoots, leaves, and shoot or root apical meristems) results in different degrees of
callus induction, and hence different levels of plant regeneration and genetic transformation
efficiency [41,42]. Many plants (such as soybean, corn, wheat, tomato, rice, etc.) have been
genetically modified to achieve higher yields, stress tolerance, and enhanced production of
high-value compounds such as recombinant proteins, antibodies, enzymes, and vaccines.
This makes them a promising alternative to conventional bioproduction systems, such as
bacteria, yeast, and cultured insect and animal cells [43]. An example of such a positive
modification was the nutritionally valuable “golden rice” and “golden bananas”, which
had elevated levels of β-carotene—a precursor of vitamin A [27,44,45]. Another example is
tomato fruit producing squalene, phytosterols, α-tocopherol, and carotenoids [46].

One of the best plant-based alternatives for the production of recombinant proteins
are plant-cell suspensions; this is a robust system involving a simple purification procedure
and easy downstream processing [47]. In turn, the transformed roots formed by infection
with R. rhizogenes have become an alternative for the production of secondary metabolites
and have been the subject of intensive research for several decades. They are characterized
not only by genetic stability but also by a fast growth rate, which translates into obtaining
a large biomass in a short time. In addition, this process allows us to obtain biologically
valuable compounds without destroying the entire plant and its habitat, which is extremely
important in the era of environmental protection [16,48,49]. Transgenic plants can also
represent a valuable industrial-scale source of bioactive secondary metabolites used in
many fields of pharmacology or medicine [50].

Modern biotechnology has led to a revival of interest in obtaining new active thera-
peutic compounds from plant sources. In turn, metabolic engineering has proven to be an
effective tool for manipulating biosynthetic pathways by increasing or decreasing selected
gene expression [51,52]. The advantage of transgenic plants over other expression systems
makes them an attractive alternative for producing secondary metabolites or recombinant
proteins [53–55].

The main advantages of transgenic plants are increased yields [56], resistance to dis-
eases and pests, and the possibility for growth under stress conditions [57], including
drought [58–60], heat [61], and frost [62]. In addition, foods can be given increased re-
sistance for transport over long distances: the plants are harvested early and can ripen
during transport, which ensures a longer shelf life. Even with extended shipping and
storage periods, the product reaches its destination without spoiling. In addition, the
producers of these crops promote them as the second “green revolution” in a world with
an ever-increasing population [63]. In the pharmaceutical sphere, transgenic cultures are a
platform for obtaining recombinant proteins and valuable secondary metabolites [50].

Unfortunately, transgenic plant production also has disadvantages. It has been sug-
gested that the antibiotic resistance genes present in these crops result in the wider devel-
opment of antibiotic resistance [62]. Another problem may be the emergence of super-pests
and the loss of biodiversity if these plants are used in an uncontrolled manner [27,64]. This
situation is of course not possible in the case of closed and controlled in vitro cultures.
Currently, transgenic plants are rationally used and have found versatile applications, par-
ticularly as bioreactors for the production of proteins and various biopharmaceuticals, such
as erythropoietin—used in the treatment of anemia—and insulin—used in the treatment of
diabetes [42,65].

The issues related to the genetic modification of organisms described in the article
obviously touch upon social and ethical problems. Arguments are often raised here about
the potential threats to human health and the natural environment, traditional agricultural
practices, or even corporate dominance from large biotechnology concerns. It is worth
emphasizing that, when assessing the possible benefits and potential threats, each case
should be assessed individually and holistically. It is important to bear in mind the
significant benefits of genetically modified plants, such as pest resistance, increased levels
of nutrients, and improved productivity. The arguments presented above are usually raised
in the case of field cultivation of genetically modified crops. For the examples described in
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our article, many of these arguments are not justified because these cultures are kept strictly
controlled and isolated from the environment in in vitro conditions. In such systems, the
possibility of a significant increase in the productivity or synthesis of completely new
compounds with a wide range of applications, including new and more effective therapies
for many human diseases, is the best rationale for many skeptics. The biggest mistake of
the scientific community in this field would be not using the tools available today that lead
to the development of many valuable technologies in the service of humanity.

4. Plant Tissue and Organ Cultures in Bioreactors

Products containing ingredients of plant origin have been indispensable elements
of food products, medicines, dietary supplements, or various types of cosmetics for cen-
turies [66–70]. It is well known that the biologically active compounds contained in plant
tissues have beneficial effects on health and beauty. As such, there is growing interest in
plant products as sources of extremely attractive ingredients in many products. However,
a greater awareness of climate change and the desire to reduce the use of chemical plant
protection products or to conserve water resources has forced the search for alternative
sources of phytochemicals, such as those from ginseng or aloe. One attractive course of
action may be the culture of plants in strictly controlled and optimal in vitro conditions.

Another important advantage of plant culture is the possibility of increasing the
scale of the entire culture process, and a number of new culture systems for plant in vitro
cultures have been developed [10,70–74]. Combining these culture strategies with the
use of special procedures, such as elicitation with biotic or abiotic elicitors, allows for the
large-scale production of the target biologically active compound [75]. As such compounds
are typically complex molecules, their chemical synthesis is often very complicated and
unprofitable. Given this, plant cells are now enjoying growing popularity as miniature
factories. Since the times of Gottlieb Haberlandt—who in 1902 initiated the use of plant
cell and tissue cultures—describing the process of plant regeneration from callus cultures,
there has been a revolution related to the possibilities of their laboratory and industrial
application. However, the turning point in bioreactor culture occurred in 1956 when
Routien and Nickell [76], in cooperation with Pfizer Inc., obtained the first patent for
a large-scale in vitro culture of plant cells for secondary metabolites. Subsequently, the
techniques of culturing plant cells and organs were improved through the mid-1950s,
with a significant achievement being the development of a complete medium for the
culture of plant tissues by Murashige and Skoog [77]. Since then, our understanding
of plant cells has changed significantly, and the current technological possibilities allow
even the most demanding cells and tissues to be cultivated, thus allowing the efficient
production of valuable biologically active compounds. Many technical solutions have
been developed to optimize the culture of plant material depending on its origin and
specificity. One such example is the bioreactor, most simply defined as a vessel in which a
biological reaction or change takes place, and which provides optimal conditions for the
culture of cells, tissues, or whole plants [21,78]. Such bioreactors can be very structurally
diverse. Laboratory conditions most often require the use of reactors with a smaller volume
and simpler structure, these are often tightly closed vessels with a stirrer, sprinkler, or
aeration nozzle, while the industrial ones are complex devices in which most parameters
are controlled digitally [79,80]; they are most often equipped with a microprocessor control
unit to monitor the pH, temperature, and density of the cultured cells. The selection of the
bioreactor and the process itself depend on the method of production, i.e., secretion into
the culture medium or accumulation in biomass. The most common process modes used in
such cultures are batch culture, fed batch culture, rapid feed batch culture, two-stage batch
culture, and continuous culture. As the optimum conditions for the growth of different
types of plant cells or tissues vary considerably, choosing the right bioreactor is not always
easy. The most common types of bioreactors are presented below.
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4.1. Bubble Column Bioreactors

This is a type of gas–liquid dispersion reactor. This is the simplest type of bioreactor
and consists of a cylindrical culture vessel and a sparger mounted on the bottom. The
culture medium in this type of bioreactor is mixed by air bubbles released from the bottom
of the vessel. As mechanical mixing is not used, this type of bioreactor is very often
used for the culture of plant tissue cultures. In the case of plant material, this type of
bioreactor’s aeration significantly reduces the exposure of the delicate cells to shear stress
while ensuring thorough mixing of the biomass to be grown. Of course, this type of
bioreactor has many advantages related to its simple construction, potential for increased
scale, and low construction costs. The main disadvantages include a relatively low degree
of mixing of the medium or high foaming [81].

4.2. Stirred Tank Bioreactors

Another extremely popular type of bioreactor for growing plant material is the stirred
tank reactor. These devices have a special stirrer that helps to maintain appropriate condi-
tions throughout the entire volume of the culture medium. It is worth noting that stirred
tank bioreactors perform better in the case of higher viscosity cultures due to the mini-
mization of microzones with poor mixing of the medium. In the case of plant material, the
mixing speed is usually low due to the high shear forces. This phenomenon, in the case
of hairy roots, often leads to the appearance of unfavorable callus tissue. For this reason,
technical solutions are used to separate the stirrer from the cultured cells [81,82] or by using
flat-blade turbine impellers. Such bioreactors were used in the cultivation of Vitis labrusca
cell suspension cultures [83].

4.3. Nutrient Mist or Sprinkle Bioreactors

In nutrient mist bioreactors, the cultured material is immobilized in a growth chamber,
while the culture medium is delivered to it in the form of an aerosol. This solution provides
good access to both oxygen and nutrients for the growing plant material. In addition, the
occurrence of dangerous shear forces is eliminated, which allows the culture of delicate
plant tissues without the need for additional protection. A similar culture strategy is also
provided by nutrient sprinkle bioreactors, in which the growing tissue can be immobilized
in a mesh, basket, or other matrix, most often made of stainless steel. The culture medium
is circulated with a peristaltic pump and the plant material is sprayed periodically or
continuously to provide nutrients. Depending on the needs, the spraying nozzle is located
above or below the plant tissue, or two nozzles are used. A very important parameter in
this bioreactor is to maintain the appropriate diameter of the formed droplets connected
with the flow without excessive fluid retention on the surface of the growing tissue. In
addition, the use of this type of bioreactor for the cultivation of high-density branched roots
significantly contributes to the achievement of good results. Large-volume cultures may be
a problem here, which generates limitations related to the preparation of a sufficiently large
column. The necessity to ensure an optimal distribution of the culture medium necessitates
a significant increase in the size of the entire device [82,84].

4.4. Wave-Mixed Bioreactors

Wave-stirred bioreactors consist of a pillow-like culture bag that relies on the swaying
motion of the platform to produce a bubble-free agitation and aeration wave. The swing
angle and speed must be carefully adjusted to meet the required homogenization of the
culture and gas transfer through the headspace of the bag solution. Wave-stirred bioreactors
also monitor and control temperature, pH, and dissolved oxygen (DO). Wave bioreactors
are a specific type of reactor in which the movement of the culture medium is forced by
undulations caused by the movement of a culture bag. The bag can be only partly filled
with culture medium (up to 50%). Appropriate selection of the movement parameters
(speed and angle of inclination) allows the culture process to be optimized. This continuous
movement of the bag allows for thorough mixing of the culture and efficient gas exchange.
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Most such reactors use disposable bags that are disposed of after culture, thus reducing the
production costs. This type of bioreactor can be used to grow plant suspension cultures or
hairy roots [81,82,85–87].

4.5. Temporary Immersion System

TIS (Temporary immersion system) are automated platforms for controlled short-time
contact of the plant explants with a liquid medium in an aseptic environment, which could
be a particularly interesting option in terms of Rhizobium-mediated genetic transformation
techniques. This type of reactor allows the culture of various plant tissues and organs by
periodically immersing them in the culture medium. This type of reactor allows for a good
balance between the access of oxygen and nutrients, thus obtaining good biomass growth.
Moreover, optimization of the culture conditions is easily accomplished by manipulating
the frequency and time of immersion in a liquid medium. Most importantly, the tissues
and organs are not exposed to the destructive effects of shear forces occurring in the other
types of reactors. The top vessel is the rearing chamber; it is equipped with a water jacket
for precise temperature control and an integrated UV light source, which is mounted on
the top cover. The plant material is supported by a stainless-steel screen installed inside the
growing chamber. The bottom vessel is the nutrient tank; it is designed with two external
ports—one on the top end for air supply and one at the bottom end for media loading and
sampling.

The above examples are intended as a brief introduction to the most commonly used
reactors for the in vitro culture of plant material. It is important to note that each system
should be set up individually depending on the cultured cells, tissues, organs, or whole
plants. When used on an industrial scale, many approaches are based on combinations of
different strategies that are intended to ensure the maximum productivity of secondary
metabolites or recombinant proteins [23,88].

The types of bioreactors described previously are shown in Figure 2.
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5. Transgenic Plants Manipulated in Metabolic Pathways as a Source of Bioactive
Secondary Metabolites Grown in a Bioreactor

The World Health Organization defines any plant that contains a substance that can
be used for therapeutic purposes or that is a precursor to a new, semi-synthetic pharmaceu-
tical as a medicinal plant [89]. Over the course of evolution, plants gradually gained the
ability to synthesize various types of secondary metabolites with valuable medicinal prop-
erties [90]. Secondary metabolites are useful natural products synthesized by the secondary
metabolism of plants. The production of some secondary metabolites is associated with
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the induction of morphological differentiation and maturation in some cells during plant
growth [53]. Plant secondary metabolites are most often classified according to their biosyn-
thetic pathways. Individual compounds are synthesized via a variety of enzyme-catalyzed
reactions using simple building blocks. There are several major biosynthetic pathways in
plants, including the mevalonate pathway (joining three molecules of Acetyl-CoA) and
the non-mevalonate pathway—which both produce isopentenyl diphosphate (IPP) and
dimethylallyl diphosphate (DMAPP) (terpenes)— the shikimic acid (phenylpropanoids)
pathways, the 2-C-methyl-D-erythritol-4-phosphate (quinones) pathway, the amino acid
pathway (alkaloids), the acetate-malonate pathway (fatty acids, phenols, and quinones),
and the complex pathway (flavonoids) [13,91].

Generally, four groups of large molecules are recognized: phenols, steroids, terpenes,
and alkaloids. While phenols are involved in the synthesis of lignin and are characteristic
of all higher plants occurring in nature, other bioactive compounds, such as alkaloids,
are sparsely distributed in the plant kingdom and are much more specific to a particular
genus and species. This narrower distribution of secondary compounds forms the basis of
chemotaxonomy and chemical ecology [92,93].

Due to their high biological activity, plant secondary metabolites have been used in
traditional and folk medicine for the prevention of many diseases for centuries. Nowadays,
they are used on an industrial scale for the production of pharmaceuticals, cosmetics, fine
chemicals, and, recently, dietary supplements and nutraceuticals [94,95]. In the era of
the advancing chemical industry and the use of artificial synthetic compounds, plants
have once again become the subject of intensive research and are currently experiencing
a renaissance. This is mainly related to the acquisition of compounds with potentially
new biological properties and natural origins [96,97]. In particular, the interest in the
possibility of obtaining and increasing the production of bioactive secondary metabolites
in plants has resulted in the development of a new field of science, plant biotechnology.
Biotechnological production of valuable secondary metabolites in cultures of plant cells
or organs is an attractive alternative to the extraction of total plant material [98,99]. These
approaches have had varied commercial successes; this is largely related to the selection
of high-performance, stable cultures and the use of the poorly understood mechanisms of
regulation and synthesis of these compounds in metabolic pathways [100]. However, many
studies have confirmed the increased production of secondary metabolites from medicinal
plants based on a range of biotechnological strategies [101,102]. Some of these include
screening for high-throughput cell lines, media modification, precursor feeding, elicitation
with biotic or abiotic elicitors, large-scale bioreactor culture, hairy root culture, plant cell
immobilization, biotransformation, metabolic engineering, etc. [94,103,104].

One dynamically developing branch of plant biotechnology in recent decades is
metabolic engineering, which has yielded increases in the production of secondary metabo-
lites in plant cultures in vitro by interference in biosynthetic pathways [105]. The main
goal of metabolic engineering is to improve cellular activity by manipulating the cellu-
lar enzymatic, transport, and regulatory functions using recombinant DNA technology.
This approach typically involves the identification of enzyme-limiting activities by the
successful elucidation of the pathway and associated metabolites; these limiting steps can
be improved by the appropriate application of genetic transformation. The vast majority of
the strategies presented so far rely on the introduction of genes isolated from more efficient
organisms, promoters enhancing target gene expression, or antisense and co-suppression
techniques to achieve the desired properties [106–109]. The most common example of such
manipulation is Rhizobium rhizogenes-mediated transformation, which has the advantage of
being able to transfer any foreign gene of interest that is placed in a binary vector into the
plant genome. A number of other alternative transformation methods also exist, such as
microprojectile bombardment, direct protoplast transformation, microinjection, pollen-tube
pathway, or liposome-mediated transformation.

It is also possible to selectively alter certain secondary metabolites of plants or cause
their secretion by introducing genes that encode enzymes that catalyze certain hydrox-
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ylation, methylation, and glycosylation reactions [16,110]. An example of a gene for
secondary metabolism is the 6-β hydroxylase gene, which codes for a tropane alkaloid
used in medicine and was introduced into the hairy roots of Scopolia parviflora through
the R. rhizogenes binary vector system; the modified roots showed 8.12 mg greater scopo-
lamine per g dry weight [111]. Scopolamine that belongs to the anticholinergic class of
drugs is used to relieve post-operative nausea, vomiting, and motion sickness [112]. In
turn, Kowalczyk et al. showed that Senna obtusifolia transgenic hairy roots with an over-
expression of the PgSS1 gene from Panax ginseng contain a higher level of betulinic acid,
a triterpenoid saponin, than roots without the construct [113]. Betulinic acid has various
biological properties, including antioxidant, anti-inflammatory, and anti-cancer. The data
indicate that their anti-tumour effects are triggered by the induction of apoptosis via the
mitochondrial pathways in cancer cells [114]. Shim et al. revealed that the overexpression
of the ginsenoside’s biosynthetic pathway key gene PgSQS1, which can upregulate the
expression of squalene epoxidase, β-amyrin synthase, and cycloartenol synthase, resulted
in a twofold increase of phytosterols and a 1.6- to 3-fold increase of total ginsenosides, a
group of glycosylated triterpenes, in transgenic ginseng adventitious root cultures [115].
Ginsenosides also act as antioxidation and anti-inflammatory factors and have beneficial
effects on cardiac and vascular diseases [116]. In turn, Jian et al. noted that the expres-
sion of the tomato regulatory gene SlMYB75, an MYB-type transcription factor, promotes
anthocyanin accumulation in tomato fruits [117]. Overproducing of anthocyanins can be
an effective way to extend a tomato’s shelf life [118]. Elsewhere, Sitarek et al. showed a
significant increase in the production of phenolic acids, including neochlorogenic acid,
chlorogenic acid, caffeic acid, p-coumaric acid, and ferulic acid, in the transgenic roots of
Leonurus sibiricus through the overexpression of the AtPAP1 transcriptional factor [119].
Plant-derived phenolic acids are considered to be natural antioxidants with potential health
benefits [120]. Sun et al. showed that overexpression of the octadecanoid responsive Catha-
ranthus AP2-domain protein (ORCA3) and strictosidine glucosidase in the hairy roots of
Catharanthus roseus increased the production of terpenoid indole alkaloids by 47%, including
serpentine, ajmalicine, catharanthine, tabersonine, lochnericine, and hörhammericine—all
of which exhibit interesting pharmaceutical activities such as anticancer, antimalarial, and
antiarrhythmic functions [121]. Esposito et al. demonstrated that the transformed roots of
Taxus baccata with the overexpression of the TXS gene showed 265% greater diterpene and
taxane production after MeJA elicitor treatment [122]. The taxanes, paclitaxel and docetaxel,
act as anticancer agents by stabilizing the microtubules during cell division [123].

Clustered regularly interspaced short palindromic repeats (CRISPR) along with the
CRISPR-associated proteins (Cas) system that was found in various bacteria serves as a
defense mechanism against viruses. The potency of the technology enables the ability to
target any sequence throughout a cell. Thus, this can be a genome editing system that
may regulate secondary metabolism in plants [124]. The data showed that the contents
of phenolic acids, including rosmarinic acid and lithospermic acid B, as well as tanshione
synthesis were decreased in the knocked out rosmarinic acid synthase gene [125] and diter-
pene synthase gene [126] lines of Salvia miltiorrhiza, respectively. Arabidopsis thaliana and
its ubiquitin-protein ligase (HOS1) mutants are characterized by changes in phytoalexins
synthesis [127].

In addition, bioreactor cultures may also increase the secondary metabolite production
by increasing biomass, thus creating a fairly cheap system for the production of active com-
pounds. Of course, it should be remembered that the cultivation of cells, tissues, and plant
organs in a bioreactor also has some limitations, despite the huge advances in bioprocess
engineering. One of them is the time-consuming and labor-intensive procedures related
to the aging, inoculation, and cleaning of the entire system before and after cultivation.
Other disadvantages include the possibility of occasional intensive foaming, the presence
of shear forces in some types of reactors, or the provision of uniform culture conditions
throughout the volume without unduly limiting the viability of the plant cells. Fortunately,
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the vast majority of these limitations can be overcome with an optimal bioreactor design
and appropriate adjustment of the key parameters of the culture system [78].

Table 1 presents the selected examples of secondary metabolites obtained from trans-
genic plants that were cultured in bioreactors; including caffeic acid (CA) and chloro-
genic acid (CHA) from Leonurus sibiricus; vincamine from Vinca minor; protopanaxadiol
(PPD)-type ginsenosides from Nicotiana tabacum (N. tabacum); geraniol from N. tabacum;
swertiamarin, gentiopicroside, and sweroside from Centaurium maritimum; β-elemene from
Curcumae zedoariae; and betulinic acid from Senna obtusifolia. The details about the vectors
or genetic construct elements as well as the culture’s conditions in bioreactors are also
included.

Table 1. Examples of increasing the production of selected secondary metabolites by interfering with
metabolic pathways in transgenic cultures grown in bioreactors.

Plant
Species/Family

Type of
Culture

Vector/Genetic
Construct

Type of
Metabolites Bioreactor Medium Effect/Yield Ref.

Nicotiana tabacum
L./Solanaceae

suspension
culture

Panax ginseng
dammarenediol-II

synthase (PgDDS) and
Cytochrome P450 716A47
(CYP716A47) under the
control of the CaMV35

promoter

triterpenoid
saponins

(Protopanaxadiol
(PPD),

Dammarenediol-
II)

5 L balloon-type
bioreactor 2 L of

Murashige &
Skoog (MS)

medium
(working
volume)

2 L of MS
medium
(working
volume)

enhanced production of
Dammarenediol-II
(166.92 µg/g dry

weight (DW), 1.6 mg/L)
Protopanaxadiol

(980.85l µg/g DW,
9.4 mg/L)

[128]

Leonurus sibiricus
L./Lamiaceae roots

anthocyanin pigment 1
(AtPAP1) transcription
factor from Arabidopsis

thaliana/pCAMBIA1305.1-
AtPAP1
vector

phenolic acids 5 L sprinkle
bioreactor

2.5 L Schenk &
Hilde-brandt
(SH) medium
with 3% (w/v)

sucrose

the greatest increase in
DW (20.83 g/L) and

highest yields of
phenolic acids

(chlorogenic acid
448 mg/L and caffeic

acids 302 mg/L)

[129]

Senna obtusifolia (L.)
H.S.Irwin &

Barneby/Fabaceae
roots

Panax ginseng squalene
synthase 1 gene

(PgSS1)/pGFPGUSPlus-
PgSS1
vector

pentacyclic
triterpene

(betulinic acid)

10 L sprinkle
bioreactor

2 L of MS liquid
media with 3%
(w/v) sucrose

-an increase in the
content of betulinic acid

(38.125 mg/g DW),
compared to the SOA41

hairy root line
(4.213 mg/g DW)

[130]

Nicotiana tabacum L.
cv. Petit Havana
SR1/Solanaceae

hairy
roots

a plastid targeted geraniol
synthase gene originally
isolated from Valeriana

officinalis L.
(VoGES)/pBIN2.4VoGES1
vector under the control of

35S promoter

terpenoid indole
alkaloid

(geraniol)

20-L wave-mixed
bioreactor

2 L modified
Gamborg’s B5
liquid medium

-scale production batch
was successfully

completed, yielding
milligram quantities of

geraniol.

[131]

Centauries
maritimum (L.)

Fitch/Gentianaceae
hairy
roots

plasmid with GUS
construct

integrated into TL region
of pRiA4 plasmid/GUS
construct contains uidA
sequence under the 70S

promoter
(enhancer-doubled 35S

CaMV promoter),
followed by NOS

polyadenilation sequence.

secoiridoid
glycosides

(swertiamarin
(SM),

gentiopicrin
(GP), and

sweroside (SW))

RITA®

temporary
immersion
bioreactors

(TIBs)

200 of liquid MS
medium

-about 2–4 times higher
biomass production rate
and up to 8 times higher

total secoiridoid
glycosides production.

[132]

Curcumae zedoariae
L./Zingiberaceae.
(Christm.) Roscoe

(Rhizoma)

cell sus-
pensions

3-hydroxy-3-
methylglutaryl–coenzyme

A reductase (HMGR),
Farnesyl-diphosphate

synthase (FDS),
Germacrene A synthetase

GAS as well as terpene
synthase (ST02C) driven
by CaMV35S promoter,

were separately
introduced into the

Agrobacterium GV3101

sesquiterpenes
(β-elemene)

2 L stir-tank and
airlift bioreactor

liquid MS
medium

containing
28 g L−1 sucrose,
0.5 mg L−1 6-BA,

1.0 mg L−1

naphthylacetic
acid (NAA),

1.0 mg L−1 2,4-D

-highest β-elemene
content of 0.22% (w/v)

was detected in
ST02C-transformed

lines

[133]

Vinca minor
L./Apocynaceae

cell sus-
pensions

Tryptophan decarboxylase
(TDC) and strictosidine

synthase (STR) genes

monomeric
eburnamine-type

indole alkaloid
vincamine

5-L stirred tank
bioreactor

MS medium
with 2% sucrose

-only PVG3 line
registered a twofold

increase in total alkaloid
content (2.1 ± 0.1% DW)
and showed vincamine

presence (0.003 ±
0.001% DW) which was
further enhanced at the
bioreactor level (2.7 ±
0.3 and 0.005 ± 0.001%

DW, respectively)

[134]
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The presented examples showed that plant systems are good models for the production
of secondary metabolites.

According to Table 1, various classes of secondary metabolites are produced by trans-
genic plants cultured in bioreactors. The exploring of their biological activity show that all
of them exert anti-cancer properties.

PPD is a triterpenoid saponin that belonged to ginsenosides, the major active com-
ponent of ginseng. This compound could affect cell cycle distribution and pro-apoptotic
signaling. Therefore, it is proposed that this compound might be a potent addition to the
current chemotherapeutic strategy against cancer [135].

CA and CHA belong to the phenolic compounds. They possess a vulnerable activity
for neutralizing reactive oxide species. Oxidative stress may activate a number of tran-
scription factors, which lead to the differential expression of some of the genes involved
in inflammatory pathways. Therefore, polyphenols have been proposed to be useful as
an adjuvant therapy for their anti-inflammatory effects and may be helpful for the de-
velopment of future antioxidant therapeutics and new anti-inflammatory drugs [136]. In
addition, phenolic compounds have anti-cancer properties via modulating key processes
such as oncogenic transformation of normal cells, growth and development of tumors, and
angiogenesis and metastasis [137].

Betulinic acid is a pentacyclic triterpenoid with a wide range of biological properties,
such as anti-inflammatory and anti-cancer. The activity of betulinic acid has been linked
to the induction of the intrinsic pathway of apoptosis in cancer cells. In contrast to cancer
cells, normal cells and tissues are relatively resistant to that compound. Given this, this
compound seems to be a promising experimental cancer therapeutic [138,139].

Another compound with anti-cancer activity is geraniol, a monoterpene alcohol. The
data indicate the preventive effects of geraniol on different types of cancers, including lung,
colon, breast, prostate, pancreatic, and hepatic cancer. This compound has a pleiotropic
effect on cancer hallmarks, including sustaining proliferative signaling, evading growth
suppressors, enabling replicative immortality, tumor-promoting inflammation, inducing
angiogenesis, genome instability and mutation, resisting cell death, and deregulating
cellular energetics. Moreover, geraniol sensitizes the tumor cells to selected chemotherapy
agents [140].

Swertiamarin is a seco-iridoid glycoside that meets all five of Lipinski’s rules for
drug-like properties. Therefore, it possesses many beneficial pharmacological properties,
including hepatoprotective, analgesic, anti-inflammatory, antiarthritis, antidiabetic, antiox-
idant, neuroprotective, and gastroprotective activities. Moreover, there have also been
recently reports of the anticancer activity of swertiamarin against different cancer cell
lines [141].

β-elemene is a sesquiterpene with potential anti-inflammatory and anti-cancer proper-
ties. This compound plays a role in macrophage infiltration and M2 polarization, regulates
the transcription factors NF-κB and STAT3 to alter inflammation, and tumorigenesis and
development. In addition, β-elemene modulates different inflammatory factors (such as
TNF-α, IFN, TGF-β, and IL-6/10) as well as oxidative stress in vivo and in vitro [142].
Apart from enhancing the immune system, β-elemene exerts its effects in cancer cells
by inhibiting cell proliferation, arresting the cell cycle, inducing cell apoptosis, exerting
anti-angiogenesis and anti-metastasis effects, and reversing multiple-drug resistance [143].

Vincamine is a monoterpenoid indole alkaloid with a vasodilatory property. Studies
indicate that vincamine increases the regional cerebral blood flow [144]. Moreover, it
was found that vincamine stimulated apoptosis and lowered mitochondrial membrane
potential. Vincamine was also found to neutralize hydroxyl free radicals and deplete iron
ions in cancer cells [145].

Selected metabolic pathways with research examples presented in Table 1 are given in
Figure 3. The up arrow indicates the increased production of those compounds.
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diphosphate synthase; G10H: geraniol 10-hydroxylase; GES: geraniol synthase; GPP: 
geranyl diphosphate; GT: glucosyltransferase; HCT: hydroxycinnamoyl-CoA shiki-
mate/quinate hydroxycinnamoyltransferase; HDR: 4-hydroxy-3-methylbut-2-enyl di-
phosphate reductase; HDS: 4-hydroxy-3-methylbut-2-enyldiphosphate synthase; HMGR: 
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Figure 3. Schematic of the selected secondary metabolite biosynthesis pathway of transgenic plants
with incorporated genes. The enzymes marked in red are expressed by plant species presented in
Table 1.

Abbreviations: 10HGO: geraniol 10-hydroxylase; 4CL: 4-coumarate-CoA ligase; C3H:
p-coumarate 3′-hydroxylase; C4H: cinnamate-4-hydroxylase; CMK: 4-diphosphocytidyl-2-
C-methyl-D-erythritol kinase; CSE: caffeonyl shikimate esterase; DDS: dammarenediol syn-
thase; DL7H: 7-deoxyloganic acid 7-hydroxylase; DMAPP: dimethylallyl diphosphate; DXR:
1-deoxy-d-xylulose-5-phosphate reductoisomerase; DXS: 1-deoxy-d-xylulose-5-phosphate
synthase; FPP: farnesyl diphosphate; FPS: farnesyl diphosphate synthase; G10H: geran-
iol 10-hydroxylase; GES: geraniol synthase; GPP: geranyl diphosphate; GT: glucosyl-
transferase; HCT: hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyltrans-
ferase; HDR: 4-hydroxy-3-methylbut-2-enyl diphosphate reductase; HDS: 4-hydroxy-3-
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methylbut-2-enyldiphosphate synthase; HMGR: 3-hydroxy-3-methylglutaryl-CoA reduc-
tase; HMGS: hydroxymethylglutaryl-CoA synthase; HQT: hydroxycinnamoyl-CoA quinate
hydroxycinnamoyltransferase; IPP: isopentenyl diphosphate; IRS: iridoid synthase; LAMT:
loganic acid O-methyltransferase; LS: lupeol synthase; MCT: 2-C-methyl-D-erythritol
4-phosphate cytidylyltransferase; MDS: 2-C-methyl-D-erythritol 2,4-cyclodiphosphate
synthase; MK: mevalonate kinase; MVD: diphosphomevalonate decarboxylase; MVP:
5-phosphomevalonate; MVPP: mevalonate-5-pyrophosphate; P450: cytochrome P450; PAL:
phenylalanine-ammonia-lyase; PMK: phosphomevalonate kinase; SE: squalene epoxidase;
SGD: strictosidine β-D-glucosidase; SLS: secologanin synthase; SS: squalene synthase;
ST02C: terpene synthase; STR: strictosidine synthase; TDC: tryptophan decarboxylase

6. Transgenic Plants as Green Biofactories for the Production of Recombinant Proteins
Grown in Bioreactors

Therapeutic recombinant proteins are exogenous proteins expressed in a producing
organism and used for the treatment or prevention of various diseases in humans or ani-
mals [146–148]. Unlike artificially synthesized drugs, recombinant proteins are generally
very large, complex molecules with specific mechanisms of action. Their size and com-
plexity make the chemical synthesis of proteins very difficult, so these new drugs must be
biologically produced using the protein synthesis machinery found in cells [146,149]. More
than 300 protein-based drugs have been approved in the US and Europe, with proteins
accounting for almost a third of all drugs under development. Almost half of the market
is made up of therapeutic proteins (e.g., enzymes, antibodies, vaccines, growth factors,
and cytokines), followed by industrial proteins (e.g., technical enzymes) and reagents (e.g.,
antibodies for protein detection and purification) [150–152]. Advances in recombinant
protein production technologies, including engineering of expression hosts, optimization of
upstream culture (e.g., bioreactor design and nutritional and physical parameters), and the
development of more efficient protein extraction and purification methods are important
market developments [19,153].

Production using a plant expression system is both profitable and scalable, and an
interesting alternative for the pharmaceutical industry; in addition, therapeutic protein
production in plants has proven to be an attractive alternative to other expression systems,
such as transgenic animals, cultures of mammalian cells, yeasts, and bacteria [47,154].
Plants have provided humans with useful bioactive compounds for many centuries, but
it has only been in the last few decades that it has become possible to use plants to
produce specific recombinant pharmaceutical proteins. Plant production systems are
extremely attractive due to the lack of risk of contamination of the final product with
human or animal pathogens (e.g., bacteria, viruses, and prions) as well as bacterial toxins.
One of the first pharmaceutically important proteins produced in plants was human
growth hormone, which was expressed in transgenic tobacco in 1986 [42,43]. However, the
structural authenticity of plant-derived recombinant proteins was confirmed in 1992, when
plants were first used to produce an experimental vaccine—hepatitis B virus (HBV) surface
antigen [149]. Recombinant proteins can be functionally expressed in a variety of plant
systems; however, it is imperative to identify a platform that offers the best conditions for
the expression and recovery of a particular protein [146,153].

There are essentially three strategies for producing recombinant proteins in plant
systems: first, the use of cell culture-based systems that are equivalent to mammalian,
microbial, and insect cell models; second, the transient expression of foreign genes in plant
tissues, which are transformed by agro-injection or viral infection; and thirdly, the develop-
ment of transgenic plants carrying stably integrated transgenes. The presented systems
enable for high production efficiency through simple manipulation, thus enabling quick
validation of the expression constructs and production of large amounts of recombinant
protein in a short time [155,156]. The general strategy of obtaining transgenic plants, cells,
or tissue cultures expressing recombinant proteins in bioreactors is shown in Figure 4.
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Most research involving the production of recombinant proteins in plants has focused
on early-stage goals, such as expression verification, optimization of production, and
purification to some extent, and completion of initial functional tests without any cultivating
trials on an industrial scale [152,157–159]. For example, Lim et al. examined the expression
and glycosylation pattern of a recombinant therapeutic protein—GA733-FcK in transgenic
N. tabacum seedlings [160]. Kang et al. showed high expression levels of a prostate
cancer antigen with fusion of the Fc fragment of human IgG1 to the glycoprotein GA733
(PAP-IgA Fc and PAP-IgA FcK) and a high level of dimerized proteins in N. tabacum
leaves [161]. In turn, Lu et al. revealed the expression of the colorectal cancer vaccine
candidate GA733 and the antigen–antibody complex protein GA733-Fc in tobacco plant
expression systems. Additionally, fusion of the Fc fragment of human IgG to the C-terminus
of GA733 and the ER retention KDEL in GA733-FcK-generating oligomannose glycosylated
proteins can be an ideal strategy to easily purify the recombinant GA733 vaccine candidate
proteins and to enhance accumulation of the recombinant proteins with oligomannose for
comparable immunogenicity of the non-KDEL-tagged mammalian-derived proteins in a
plant expression system [162]. Jez et al. noted that there were expression levels up to 85 mg
recombinant human erythropoietin (rhEPO)/kg in fresh leaves of Nicotiana benthamiana (N.
benthamiana) [163]. In another example, Thomas and Walmsley showed that the transient
expression of human epidermal growth factor (hEGF) in N. benthamiana is capable of
producing large amounts of recombinant protein in combination with a P19 silencing
inhibitor and codon optimized constructs [164]. Finally, Luchakivskaya et al. reported a
higher activity of human interferon alpha-2b in young leaves of Daucus carrota plants (up
to 50.7 × 103 IU/g FW) compared to mature leaves, probably due to the susceptibility of
this protein to degradation. Additionally, they reported that the taproot expression system
could also provide sufficient protein (up to 16.5 × 103 IU/g FW) and can optionally be
used to produce interferon alpha-2b protein for the prevention and treatment of infectious
diseases [165].

Additionally, recombinant protein production may be modulated via the CRISPR/Cas9
system. Two proteins named β(1,2)-xylose and α(1,3)-fucose were reduced in N. tabacum
BY-2 suspension cells, knocking-out β(1,2)-xylosyltransferase and α(1,3)-fucosyltransferase,
two genes that are responsible for the addition of plant-specific glycans and result in glyco-
proteins without plant-specific glycans [166]. The N. benthamiana dicer-like protein 2 and 4
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double-knockout genes might produce higher amounts of human fibroblast growth factor
1 [167].

Table 2 presents selected examples of proteins obtained from transgenic plants that
were cultured in bioreactors, including recombinant human butyrylcholinesterase (BChE),
human cytotoxic T-lymphocyte antigen 4-immunoglobulin (hCTLA4Ig), human granulocyte-
macrophage colony-stimulating factor (hGM-CSF), mouse granulo-cyte-macrophage colony
stimulating factor (mGM-CSF), recombinant human serum albumin (rHSA) from Oryza
sativa; isoform 1 of the human growth hormone (hGH1) from Brassica oleracea; protein A
(OspA) from Borrelia burgdorferi, human monoclonal anti-body M12—a vaccine antigen—
fragment C of tetanus toxin (TetC)/green fluorescent protein (GFP+), green fluorescent
protein-hydrophobin fusion (GFP-HFBI) from N. tabacum; recombinant protein containing
a fusion of rabies glycoprotein and ricin toxin B chain (rgp–rtxB) from Solanum lycopersicum;
factor H (FH) and FH-related proteins (FHRs) from Physcomitrella patens; and human tissue-
plasminogen activator (t-PA) protein from Cucumis melo. The details about the vectors
or genetic construct elements, as well as the culture’s conditions in bioreactors, are also
included. The presented examples showed that plant systems are good models for the
production of recombinant proteins.

Table 2. Overproduction of recombinant proteins in transgenic cultures grown in bioreactors.

Name of the
Species/Family

Type of
Culture

Vector/Genetic
Construct Elements

Recombinant
Protein

Type of
Bioreactor

Medium/
Elicitors Used Effect/Yield Ref.

Oryza sativa L./
Poaceae

suspension
culture

metabolically-
regulated promoter,

rice alpha-amylase 3D
(RAmy3D)

recombinant human
butyrylcholinesterase

(BChE),

5-L stirred-tank
bioreactor

-half-strength
sucrose of the

culture medium

-the method significantly
improved the maximum

accumulation level, purity,
and productivity of the

recombinant protein

[168]

Oryza sativa L./
Poaceae

suspension
culture

metabolically-
regulated promoter,

rice alpha-amylase 3D
(RAmy3D)

recombinant human
butyrylcholinesterase

(BChE),

40-L
stainless-steel
stirred tank

bioreactors (STB)
bioreactor

-NB + S medium
contains 30 g

sucrose/L, while
NB + 0.5xS

contains 15 g
sucrose/L

-maximum total active
rrBChE production level of

46–58µg/g fresh weight
(FW) in four cycles over

82 days
-overall volumetric oxygen

mass transfer coefficient
(kLa) in the pilot-scale STB to
be equivalent to the lab-scale
STB volumetric productivity

to 85µg/g FW and
387µg/L/day

[169]

Oryza sativa L./
Poaceae

suspension
culture

α-amylase 3D
(RAmy3D) promoter

N-glycosylation of
recombinant human

butyryl-
cholinesterase

(BChE)

5 L bioreactor

-using normal
sugar-free (NB-S)

media with no
kifunensine
treatment

-total active rrBChE
production level of 79 ± 2
µg/g FW or 7.5 ± 0.4 mg/L

in the presence of
kifunensine

[170]

Oryza sativa L./
Poaceae

suspension
culture

alpha amylase 3D
(RAmy3D)

tetrameric form of
recombinant bu-

tyrylcholinesterase
(BChE

5 L bioreactor -fresh liquid NB
+ S medium

-maximum yield of 1.6 mg
BChE/L of culture during

the second expression phase
[171]

Oryza sativa L./
Poaceae

suspension
culture RAmy3D promoter

human cytotoxic
T-lymphocyte

antigen
4-immunoglobulin

(hCTLA4Ig)

3-L
multi-bioreactor

-AA medium
(1.4 L), except the
volume of amino

acid solution

-total protein concentration
was at levels from 301.0 to

782.8 mg/L
[172]

Oryza sativa L./
Poaceae

suspension
culture RAmy3D promoter

human cytotoxic
T-lymphocyte

antigen
4-immunoglobulin

(hCTLA4Ig)

stirred-tank
reactors (5-L

STR)

-AA medium
(2.1 L) except

10% (v/v) amino
acid mixture

-the results in both
disposable bioreactors

presented similar values of
the maximum cell density
(11.9 g DCW/L and 12.6 g

DCW/L), the doubling time
(4.8 and 5.0 days) and the

maximum hCTLA4Ig
concentration (43.7 and

43.3 mg/L).

[173]

Oryza sativa L./
Poaceae

suspension
culture RAmy3D promoter

human cytotoxic
T-lymphocyte

antigen
4-immunoglobulin

(hCTLA4Ig)

7-L bioreactor,
15-L stirred-tank

bioreactor
AA medium

(2.3 L)
-maximum hCTLA4Ig level

was 76.5 mg/L at day 10 [174]
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Table 2. Cont.

Name of the
Species/Family

Type of
Culture

Vector/Genetic
Construct Elements

Recombinant
Protein

Type of
Bioreactor

Medium/
Elicitors Used Effect/Yield Ref.

Oryza sativa L./
Poaceae

suspension
culture RAmy3D promoter

human granulocyte-
macrophage

colony-stimulating
factor

(hGM-CSF)

2-L bioreactor,
5-L stirred-tank

bioreactor

-N6 medium
0.2 mg/L kinetin,
2 mg/L, 2mg/L

2,4-D, 30 g/L
sucrose

-induction using sugar free
media produced 33% more

hGM-CSF
-using buffer exchange when
CM-Sepharose was used as a

cationic exchange resin,
optimal pH for binding was
4.8 and adsorption yield was

77%.
-DEAE-Sepharose was used
as an anionic exchange resin,

it was 5.5 (74%).
-without buffer exchange,
optimal pH was 4.6 (84%).

[175]

Brassica oleracea
var. italica
(broccoli)/

Brassicaceae

hairy
roots

pCAMBIA1105.1
binary vector

isoform 1 of the
human growth

hormone (hGH1)

1.5-L mesh airlift
bioreactor

-1.25 L of Schenk
& Hildebrandt
(SH) medium
supplemented

with sucrose 30
g/L and

(NH4)2SO4 300
mg/L.

-the production of hGH1
was 5.1 ± 0.42 µg/g dry

weight (DW) for flask
cultures and 7.8 ± 0.3 µg/g

DW for the bioreactor, with a
capacity of 0.68 ± 0.05 and 1,

5 ± 0.06 µg/g DW days

[176]

Nicotiana
tabacum cv Petit

Havana/
Solanaceae

suspension
cul-

ture/leaves
pOA:YFP4411

protein A (OspA)
from Borrelia
burgdorferi

immersion
bioreactors

(TIBs) using
AlkaBurstTM

-1-L and 0.3-L
Murashige &
Skoog (MS)

media

-OspA expression up to 7.6%
TSP with a maximum OspA

yield of about 108 mg
[177]

Oryza sativa L./
Poaceae

suspension
culture

a-amylase gene aAmy8
promotor/Gateway-
compatible binary

T-DNA destination
vector

mouse granulocyte-
macrophage colony
stimulating factor

(mGM-CSF)

2-L bioreactor -1.5 L of N6
medium

-the highest yield of
rmGM-CSF was 24.6 mg/L [178]

Nicotiana
tabacum L./
Solanaceae

suspension
culture

BY-2

binary vector
pTRAkc-MTAD

human monoclonal
antibody M12

200-L
Orbitally-Shaken

Disposable
Bioreactor, 20-L

Nalgene
polycarbonate
carboy vessels

-MSN medium

-final cell fresh weights of
300–387 g/L and M12 yields

of 20 mg/L
-resulting in an overall M12

recovery of 75–85% and a
purity of >95%

[179]

Oryza sativa L./
Poaceae

suspension
culture RAmy3D promoter

recombinant human
butyryl-

cholinesterase
(BChE)

5-L stirred-tank
bioreactor

-3 L of NB +
Smedium

-maximum total active
rrBChE (77 µg/g FW) and

1.6-fold increase of total
active

rrBChE specific productivity
(86 µg/g DW/day)

compared to the two-stage
batch cultures.

[180]

Solanum
lycopersicum L./

Solanaceae
hairy
roots CaMV35S promoter

recombinant protein
containing a fusion

of rabies
glycoprotein and

ricin toxin B
chain (rgp–rtxB)

5 L bioreactor
Bench-top
fermenter

(Bioflo-3000)

-the quantity of
2.5 L of 1/2 MS

medium with B5
vitamins and 3%

sucrose

-biomass yield 197.4 (g/L)
-RGP RTB 7.84 (µg/g)
-the efficiency of the
bioreactor in terms of

protein expression remained
relatively lower than that of
the shake flask, which may

be due to callogenesis of the
root tissues in the bioreactor.

[181]

Nicotiana
tabacum L./
Solanaceae

suspension
cultures

(and
calli)/leaves

Plasmid pFMGFP

a vaccine antigen,
fragment C of
tetanus toxin
(TetC)/green

fluorescent protein
(GFP+)

2 L bioreactor
MS medium

supplemented
with 0.1 lM TDZ

-GFP+ yield reached 660
mg/L of bioreactor (33%

TSP), and TetC accumulated
to about 95 mg/L (8% TSP)

[182]

Oryza sativa L./
Poaceae

suspension
culture

α-amylase gene
promoter,

RAmy3Dp/αAmy3p

recombinant human
serum albumin

(rHSA)

2-L airlift and a
2-L stirred tank

bioreactor
MS medium

-rHSA production has been
enriched to 45 mg/L in plant

culture
[183]

Nicotina
tabacum L./
Solanaceae

suspension
cell

cultures
BY-2

vector pCaMterX
enhanced virus 35S

promoter

green fluorescent
protein-

hydrophobin fusion
(GFP-HFBI)

30-L bioreactor,
600-L standard

stirred tank
bioreactor

MS-medium

-HFB-fusion technology in
large-scale tobacco BY-2
suspension cell culture,

formation of protein bodies
and efficient purification of

GFP-HFBI fusion by
aqueous two-phase
separation (ATPS)
-GFP-HFBI titer

reached a level of 0.30 ±
0.018 g/L, corresponding to
16.5% of TSP (total soluble

protein)

[184]
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Table 2. Cont.

Name of the
Species/Family

Type of
Culture

Vector/Genetic
Construct Elements

Recombinant
Protein

Type of
Bioreactor

Medium/
Elicitors Used Effect/Yield Ref.

Physcomitrella
patens (Hedw.)

Bruch &
Schimp/

Funariaceae

whole
plant MFHR1 construct

factor H (FH) and
FH-related proteins

(FHRs)
5-L bioreactor

-fresh medium
with the addition

of 5 µM naph-
thaleneacetic
acid (NAA)

-it was obtained 17 mg of
MFHR1 protein [185]

Cucumis melo
L./

Cucurbitaceae
hairy
roots

binary plasmid p221
that included

cauliflower mosaic
virus 35S promoter,
tobacco etch virus

(TEV) leader sequence
and 35S terminator

human
tissue-plasminogen

activator (t-PA)
protein

18 L bioreactor

-MS, Woody
Plant Me-dium

(WPM), B5
medium

-biomass accumulation
615.4 g/FW in MS medium,
457.6 g/FW in B5 medium
and 621.8 g/FW in WPM

medium
-the maximum content of
t-PA 0.46 µg mg TSP was
obtained in the cultures

grown on the B5 medium,
and then the content of t-PA
0.33 and 0.40 µg mg TSP in
the cultures grown on the

MS and WPM medium

[186]

A common protein produced by transgenic plants is butyrylcholinesterase (BuChE),
an enzyme in the serine hydrolase family that catalyzes the hydrolysis reaction of both
choline and non-choline esters, including acetylcholine. Acetylcholine is an important
neurotransmitter released by cholinergic neurons. Moreover, BuChE enhances the activity
of proteases, including trypsin. In the human brain, its expression takes place in substantial
populations of neurons and might be related to their growth during the development of
the nervous system. Their enzymatic properties are altered in Alzheimer’s disease [187].
Besides somatic growth, growth hormone also has an effect on brain function. The recep-
tors are present in areas underlying cognitive function. Growth hormone treatment can
stimulate growth and improve cognition in deficient children [188,189].

There are also a group of proteins related to immune system action that could be
produced by plant systems. For example, T lymphocyte antigen-4 (CTLA-4) plays an
important role in the initial phase of the immune response via inhibition of T-cell effector
function. Ctla4 knockout mice exhibit lymphocyte infiltration into various organs and early
lethality. Therefore, human monoclonal antibodies that target CTLA-4 increase T cell func-
tion as well as antitumor responses in cancer patients [190,191]. Granulocyte-macrophage
colony-stimulating factor (GM-CSF) also plays an important immune modulatory role by
enhancing the function of circulating neutrophils, monocytes, and lymphocytes during
host defense as well as crucial hematopoietic growth factor. Neutrophils are also activated
by a protein named protein A (OspA) expressed by Borrelia burgdorferi [192,193].

The crucial part of the human immune system is the complement system, which is
negatively regulated by inter alia factor H (FH). FH was produced for the first time by
Physcomitrella patens in a moss bioreactor. Improper FH activity results in severe kidney and
eye diseases [185]. Transgenic plants are also able to produce therapeutic antibodies, which
are important for treating various autoimmune, infectious, and metabolic diseases, as well
as many types of cancers [147]. Monoclonal antibodies conjugated with blocked ricin, also
produced by plants, create a potent immunotoxin and their role in cancer treatment is under
investigation [194]. In addition, tetanus neurotoxin, also related with plant production, can
possess therapeutic properties by preventing abnormal muscular concentrations [195].

Another example of plant-derived proteins are albumins, which are important carrier
proteins for various substances produced in the liver. They are believed to maintain normal
capillary permeability by modulating inflammation and preventing oxidative damage. The
usage of albumin has been documented in various clinical situations [196,197]. Another
protein that can be produced by plants is tissue plasminogen activator, a protein that
converts plasminogen to plasmin—which is then followed by blood clot lysis—providing
a valuable treatment for stroke patients [198]. As well, hydrophobins, which is another
protein produced by planets, may have a role in medical applications such as drug delivery
by creating hydrophobic surfaces [199].
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7. Recent Patents Relating to Bioreactors for the Culture of Plant Cultures

Recent research has provided many new strategies for increasing the synthesis and/or
accumulation of attractive and valuable secondary metabolites. In addition, the optimiza-
tion of gene transfer into plant cells has facilitated the production of genetically modified
cells, organs, or organisms that synthesize completely new recombinant proteins with a
wide range of applications. The creation of strategies for increasing the productivity of plant
cultures in vitro have led to the design of highly efficient systems that produce valuable
secondary metabolites or recombinant proteins. A satisfactory effect is most often obtained
using a combination of several different techniques and treatments, such as transgenesis,
elicitation, or large-scale culture. The growth of knowledge regarding cellular processes
and factors regulating biosynthetic pathways has allowed for the design of highly efficient
plant in vitro cultures, the products of which can be used on an industrial scale. Recently,
there has been a significant increase in the number of studies and patents related to the
culture method and the use of biologically active compounds of plant origin. A good
example is PhytoCellTec ™ by Mibelle Biochemistry, which consists of plant stem cells
derived from callus tissue and are used as a starting point for the culture of stem cells in
large-scale bioreactors. In 2008, the company registered the first Malus domestica preparation
containing stem cell extract derived from a rare variety of Swiss apple tree (Patent number:
EP1985280A2). These products are used as additives to cosmetics with anti-aging and
anti-cellulite properties and are believed to protect against UV-A and UV-B radiation. In
addition to the properties of various plant cells (Alp rose, Vitis vinifera, Symphytum, or
Goji), the company has recently examined the potential of moss culture. Another example
can be seen in the products of Innova BM. These use a range of cell suspension bioreactor
cultures, including Rosa damascena, Haberlea rhodopensis, and Calendula officinalis. Their
properties are used to protect epidermal stem cells against internal and external stress
factors and delay the aging process. Increasing numbers of cosmetic and pharmaceutical
companies have turned to plant compounds, seeing them as satisfying the demand for
modern pharmaceutical and cosmetic products with exceptional properties.

In addition, an anti-aging or antioxidant composition including compounds derived
from a ginseng cambium derived plant stem cell line as an active ingredient has been
patented by Unhwa Corp. (Patent number:US9095532B2). The product is designed to
minimize the side effects associated with existing anti-aging agents and antioxidants,
making it safe for the skin. It also has antioxidant properties, inhibiting reactive oxygen
species caused by exposure to UV radiation, which is the main cause of skin aging. Another
example is TEUPOL 10P or 50P, which is an extract from Ajuga reptans cell suspension
cultures introduced by ABResearch srl. The active ingredient is teupoliside (standardized
at 10% or 50%) and is used in testosterone-related disorders. The same manufacturer
also introduced Echinan 4P extract of Echinacea angustifolia, which has a wide range of
neuroprotective, anti-aging, and immunomodulatory effects [11,124,200–202].

In addition to the many patented ingredients in cosmetics, dietary supplements, and
drugs, intensive work is also underway on the technical solutions that allow for the simple
and cheap culture of plant cells on a larger scale. Table 3 below shows some examples of
patented bioreactors in which such cultures can be carried out.
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Table 3. Selected examples of patents relating to bioreactors for the culture of plant material.

Patent/Patent
Application No Assignee Type of Plant Culture Year

WO2012044239A1 - Tissue cultures 2012

CN102408991B Bright Oceans Corp. (Shaanxi,
China) Cells, tissues and organs 2014

CN103120126B
Nanjing University

Nanjing University of Science
and Technology

Plant tissue culture 2014

US20140026260A1 Worcester Polytechnic Institute Tissues and organs,
whole plants 2014

WO2015066779A1 - Tissue culture 2015

EP2674479B1 Eppendorf AG (Hamburg,
Germany) Cell culture 2015

CN103270946B
Nanjing Biofunction Biological
Science & Technology Co Ltd.

(Nanjing, China)
Plant tissue culture 2016

WO2016092098A1 - Cell or tissue cultures 2016

CN104770304B Nanjing Biofunction Biological
Science & Technology Co Ltd. Plant tissue culture 2017

EP3069591B1 Fibria Celulose SA (Sao Paulo,
Brazil) Plant tissue culture 2018

CN104379722B Eppendorf AG (Hamburg,
Germany) Cell culture 2018

USD822223S1 University of Guelph Tissue culture 2018

EP3502229A1 Evologic Technologies GmbH
(Vienna, AT) Hairy root cultures 2019

US20190282983A1 Life Technologies Corp
(Carlsbad, CA) Cell culture 2019

CN208857314U
PURUIKANG

BIOTECHNOLOGY CO Ltd.
(Shenzhen, China)

plant cell, organ 2019

CN111226794A Beijing Forestry University Mature somatic embryos 2020

CN212247083U Zhejiang University of
Technology ZJUT Cell culture 2020

ES2763637B2 Institut Recerca i Tecnologia
Agroalimentaries IRTA

Plant tissues, organs,
seeds and/or plant cells 2020

US20200032185A1 Oklahoma State University Cell culture 2020

US20200230568A1 ABEC Inc. Cell culture 2020

US20200339931A1 Sartorius Stedim Biotech GmbH
(Goettingen Germany) Cell culture 2020

US20210130765A1 Ori biotech Ltd. (London, United
Kingdom) Cell culture 2021

US20210214668A1 Membio Inc (Mississauga, ON,
Canada) Cell or tissue culture 2021

8. Conclusions

The intensive development of biotechnological techniques, and thus also of transgenic
plants, has had a huge impact on human life and will continue to do so. Transgenic plants
offer a new approach to the production of not only specific secondary metabolites through
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manipulation in biosynthetic pathways, but also recombinant proteins through expression
systems that greatly improve protein yield. Further increases in the amount of the desired
compounds/proteins on the industrial scale have been facilitated by specially-designed
bioreactors. To improve the efficiency and profitability of production, there is a great
need to focus on the potential application character (patents), which complements the
developed system focused on the production of specific compounds/proteins in strictly
defined culture conditions. The novelty of this study is in the collection of research showing
the use of transgenic cultures as small biofactories to obtain secondary metabolites and
recombinant proteins in bioreactors in the biomedical industry. However, further research
is needed to improve plant systems aimed at overproducing certain metabolites or proteins
on an industrial scale.

9. Future Prospects

Intensive research related to increasing the productivity of plant cultures in vitro, de-
spite the extensive knowledge and biotechnological tools, does not always allow to achieve
satisfactory efficiency in the production of secondary metabolites or recombinant proteins.
The key factors that still remain are a comprehensive understanding of metabolic pathways
or an attempt to introduce complete metabolic pathways into transgenic plants cells. A
promising tool with great potential for interference in the plant genome is the CRISPR/Cas9
system [203,204], which can enable manipulation that leads to the increased productivity
of plant systems, especially in combination with cultivation in optimal conditions—even
on a large scale—and the use of elicitation with various factors. In addition, intensive
technical progress, consisting of increasing the computational capacity of microprocessors
supervising the work of fully automated breeding systems, as well as the progressive minia-
turization and reduction of power consumption thanks to the use of nanotechnology, will
allow, in the near future, for the further improvement of the processes and increase their
profitability and environmental friendliness. The new technical solutions will probably be
based on natural cell–cell interactions in order to maximize the imitation of those occurring
in living tissues, which is ensured, for example, by a microfluidic bioreactor [79]. Moreover,
the constantly increasing number of products, such as dietary supplements or cosmetics
containing components derived from plant in vitro cultures, will, in the future, further
limit the exploitation of natural resources, allowing the preservation of biodiversity while
increasing the supply of the desired phytochemicals.
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