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ABSTRACT

3D points acquisitions based on robust sensors such as
tactile or laser sensors are true alternatives to computer vi-
sion for 3D object recognition. In real life scenarios where
robots are equipped with such sensors to acquire 3D data,
only few points can be iteratively collected in a reasonable
amount of time. However, existing Point-cloud classifiers are
extremely sensitive to sparse points, missing parts and noise.
To compensate for the sparsity of the data, some Reinforce-
ment Learning (RL) based approaches have been proposed
to learn a sparse yet efficient exploration of the target object
regarding the 3D recognition objective. However, existing
RL approaches only focus on classification performances to
guide the training of the active acquisition-and-classification
frameworks, and thus fail to dissociate poor exploration strat-
egy (missing parts, noisy points) from actual classifier mis-
takes on proper data. In this study, we proposed a new RL
framework that was rewarded regarding both the classifica-
tion performances and the exploration quality. Our trained
framework outperforms existing State-Of-The-Art models on
3D geometric objects classification. We further showed that
our trained framework learnt to alternate between (1) a clean
and broad exploration strategy, suitable for easily distinguish-
able categories, and (2) a specific local exploration strategy,
facilitating the discrimination of similar categories.

Index Terms— Active point-clouds acquisition, 3D ob-
jects recognition, Reinforcement Learning

1. INTRODUCTION

Most existing deep learning architectures capable of
reasoning about 3D point-cloud data are trained on of-
fline/frozen datasets of dense and clean point-clouds
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. A recent study [11] proved
that State-Of-The-Art (SOTA) point-cloud classifiers actually
perform significantly worse on data including noise, missing
parts and sparse points. On the contrary, many industrial
applications require online/active acquisition of point-clouds,
and often result in sparse and noisy data. Typical applications
include environments where cameras are unoperable (e.g.,
dusty environments, poor luminosity conditions), requiring to

Fig. 1: Our RL based approach.

use more robust data acquisition pipelines, such as iterative
3D points acquisitions using a laser sensor or a tactile sensor
mounted on a polyarticulated robot. To maintain a decent
pace in industrial context, only a limited number of points
can be sampled for each object to process. To allow accurate
3D object classification from a limited number of actively
sampled points, some recent works [12, 13] proposed to
simultaneously learn the active sampling strategy, namely the
exploration strategy, and the classifier. The insight behind
such approach is that the exploration strategy training should
be guided by the classification performances, so that each
point acquisition provides the most information for the 3D
recognition task. Both models leveraged an online RL algo-
rithm rewarded by the classification performances to learn
the exploration strategy, coupled with a classification loss
to train the classifier. Such strategy basically compensates
for the sparsity of the data by maximizing the efficiency of
the exploration. However, such strategy doesn’t explicitly
penalize (1) missing parts on the explored object, e.g., due
to a too narrow exploration, nor (2) noisy points, due to
exploration trials that missed the object. In other words, such
approach doesn’t dissociate miss-classifications deriving
from poor exploration strategy, from the ones caused by
classifier mistakes. This leads to a potential unstable and
sample-inefficient training.



In this study, we investigate how an RL based framework
can be used to learn an efficient active sampling strategy. We
especially introduce a new exploration reward, that allows to
improve the sampling strategy by providing cues on the explo-
ration efficiency (exploration breadth, missing points) during
training.

2. METHOD

Our proposed active sampling setup, depicted in Figure 1,
consists of a robot equipped with a laser-based distance sensor
that allows to recover 3D points from the work-place where
an unknown 3D object is placed. The robot, fixed on the roof
on a circular track, can turn around the work-piece and dis-
poses of several degrees of freedom to enable the acquisition
of 3D points all over the 3D object. This section (1) details
the active sampling setup with the associated simulator pro-
posed and (2) describes the RL framework proposed to learn
an active sampling strategy that allows the recognition of the
3D object from few 3D points acquisitions.

2.1. Simulation of the active sampling hardware

An in-house simulator was leveraged to simulate the target
use case and facilitate training and validation of the proposed
solution. Figure 2 illustrates the simulator operation. The
simulator consists of a 3D environment where 3D objects can
be loaded and placed at the origin ”O”. 3D objects can be
placed with any rotation around Z axis. A simulated laser
sensor is integrated to the environment to allow the acquisi-
tion of 3D points on the loaded object. The object can be
actively explored by launching successive laser acquisitions
in the environment. The active exploration of the object is
thus managed by iteratively controlling the position and the
orientation of the simulated laser sensor.
To match the target use case, the laser sensor is revolvable
around the 3D object. As depicted in Figure 2 c), the laser
can be positioned anywhere on the side surface of a cylinder
of which the diameter D is larger than the 3D object. The
position of the laser sensor is noted P. P is defined with two
variables, Zp and α, also depicted on Figure 2 c). Zp de-
fines the height of the probe on the cylinder, between 0 and
Zpmax. α defines the revolution angle around the object, be-
tween 0 and 360°. The laser propagates from P, and by default
points towards Z axis and propagates parallel to the ground.
On Figure 2 b) and c), vectors −→u1 and −→u2 represents default
laser propagation respectively before and after applying revo-
lution angle α.
Two more variables, φ and θ allow to deviate from the de-
fault orientation. φ, namely the ”yaw angle”, allows to devi-
ate from the Z axis. After successively applying Zp, α and
yaw angle φ in this order, the laser propagates as depicted by
vector −→u3 on Figure 2. θ, namely the ”pitch angle”, allows to
deviate from a propagation parallel to the ground. After suc-

cessively applying Zp, α, φ and pitch angle θ in this order,
the laser propagates as depicted by vector −→u4 on Figure 2 a).
After receiving a query (Zp, α, φ, θ), the simulator propagates
the laser with the query configuration (−→u4), until it touches an
object, or reaches its maximum propagation length. Knowing
the position, orientation and distance feedback of the laser
sensor, the simulator computes the 3D position of the point
reached during the acquisition. The acquired 3D point is com-
puted in the coordinate system (O, X, Y, Z). The simulator
finally returns the 3D coordinates reached, Xt, Yt, Zt, plus
an additional Boolean ”T”, indicating whether the acquisition
reached or missed the object.

(a) (b)

(c)

Fig. 2: Illustration of an object loaded in the simulator from
3 views ((a) Side; (b) Top; (c) 3D).

2.2. RL based active sampling

Similar to [12] and [13], we propose a RL based framework
to jointly learn active exploration and classification of 3D
objects positioned in the workspace. The Figure 3 gives an
overview of the framework. The framework is made of (1) a
point cloud storage (collected points), stacking the 3D points
sampled from the workspace; (2) a Point Cloud Feature Ex-
tractor, that encodes the point cloud into a permutation invari-
ant latent representation; (3) an action prediction module, that
infers the configurations of the next points acquisitions (Zp,
α, φ, θ) from the latent representation; and (4) a classifier,
predicting the class of the object explored, from the latent rep-
resentation. The whole framework is trained end-to-end using
an offline RL algorithm, so that the learnt exploration strategy
ensures the success of the 3D object recognition. The follow-
ing sections detail (1) the modules of the proposed framework
and (2) the RL algorithm and the proposed reward.



Fig. 3: Overview of the proposed policy network (left) and proposed reward function terms (right).

2.2.1. Framework details

The framework is trained to sample the workspace 3 points
by 3 points, and to classify the object after each acquisition
of 3 new points (empirical choice). N acquisition steps are
performed successively, leading to a total of 3*N points sam-
pled on the workspace at the end of the exploration. At the
very beginning of the exploration, the point cloud storage is
initialized with 3*N ”empty points”, filled with zero values.
The exploration starts by requesting 3 pre-defined/hard-coded
samplings to the simulator : (Zp0:2, α0:2, φ0:2, θ0:2). The
point cloud is then updated with the 3 first acquired points :
(X0:2, Y0:2, Z0:2, T0:2).
From this configuration, for each step k ∈ {3n, n ∈ [1, N ]},
the framework (1) tries to classify the object; (2) predicts the
next three samplings (Zpk:k+2, αk:k+2, φk:k+2, θk:k+2) and
requests them to the simulator, and (3) stores the three new
points acquired (Xk:k+2, Yk:k+2, Zk:k+2, Tk:k+2) in the point
cloud. The whole process is illustrated on the left side of Fig-
ure 3.
The point cloud feature extraction module is a light version
of the ”Per point Context Aware Representation” proposed in
[13]. It leverages ”Context Aware” (CA) and ”Self-Attention
Context Awareness” (SACA-A) operations from PointGrow
[14] architecture, that allow to relate each of the collected
points to the preceding ones. SACA-A takes the 3*N point-
cloud as input, and outputs 3*N embeddings, each reflecting
the global context of the previous sampled points. SACA-
A processes each point independently through Multi-Layer
Perceptrons (MLP) and aggregates global context information
from previous points using average pooling, a permutation in-
variant operation, which means that every permutation of the
input point cloud should result in the same latent encoding.
In other words, the sampling order doesn’t impact the latent
representation.
The classifier and the action prediction module both lever-

age the latent point cloud representation to predict respec-
tively the class probabilities and the next sampling configu-
ration. Both classifier and action prediction module architec-
tures, illustrated in Figure 4 (top and middle), are similar to
the PCRN-FC classifier proposed in [13] : several per-point
MLP, followed by a point-wise average pooling which aggre-
gates point-cloud information while maintaining permutation
invariance, completed by several fully connected layers (FC).
The classifier ends with a softmax layer to predict class prob-
abilities.
The action prediction module is made stochastic by predict-
ing the parameters µ and σ of a Gaussian distribution for each
sampling parameters, instead of deterministically predicting
their values :

zk ∽ N (µzk , σ
2
zk
), φk ∽ N (µφk

, σ2
φk

)

αk ∽ N (µαk
, σ2

αk
), θk ∽ N (µθk , σ

2
θk
)

(1)

The stochasticity of the action decision module allows to
use state-of-the-art RL algorithms, such as Soft Actor Critic
(SAC) [15].
Finally, as illustrated in Figure 4, 3 sampling configurations
are predicted at once, since the proposed framework explores
the working-space 3 points by 3 points.

2.2.2. Reinforcement learning algorithm and reward

Reinforcement Learning is a category of machine learning
algorithms adapted to sequential decision making problems.
We use Soft Actor Critic (SAC) [15] RL algorithm to learn
our sequential 3D point sampling and object recognition task.
The objective of SAC is to maximize J(π), defined by Equa-
tion 2, where the policy π is the decision making agent, pre-
dicting the next action at from the current state st.

J(π) = E
τ∽π

[
T∑

t=0

γt

(
R(st, at, st+1) + αH(π(·|st))

)]
(2)



Fig. 4: Classifier, action prediction and critic architectures.

In our target use case, the state st is defined by the collected
point cloud at time t. We define the action at as the concate-
nation of (1) the configurations of the next 3 samplings and
(2) the classification probabilities. The whole framework rep-
resented in the left side of the Figure 3 and detailed in the
previous section thus defines the policy. The SAC objective is
divided in 2 terms, balanced by a tradeoff coefficient α : the
reward R(st, at, st+1), that will be detailed thereafter, and the
entropy of the policy H(π(·|st)), that encourages exploration
of diverse policy strategies.
The reward R is a function that represents the usefulness of a
transition (st, at, st+1) with regard to the target task. For the
task of joint exploration and recognition of a 3D object, the
reward is defined as the sum of a classification reward rc with
an exploration reward re.
rc is representative of the ultimate goal of the framework:
the 3D object recognition. Concretely, at each timestep t ∈
[1, N ], the policy tries to classify the object explored, from
the collected point cloud. If it succeeds, rc = +1. If it
fails, rc = 0. rc thus ensures that (1) the classifier learns its
recognition task; (2) the point cloud feature extraction mod-
ule learns a representation that facilitates the discrimination of
the objects geometries from few points; (3) the action predic-
tion module learns to sample points as efficiently as possible
regarding the classification task.
Additionally, re facilitates the training by providing informa-
tion on the quality of the exploration strategy, by focusing on
2 aspects that are proven to affect the performances of 3D
point-clouds classification : missing parts and noisy points
(samplings that missed the object). Let Bt, Gt and Rt be
respectively the set of 3 initial points, the set of points that
touched the object and the set of points that missed the ob-
ject. The 3 sets are respectively represented by Blue, Green
and Red points on the right side of Figure 3. We define the
sum of inter-points distances on a set of points A as

D(A) =

|A|∑
i=0

i−1∑
j=0

de(Ai, Aj), (3)

with de(Ai, Aj) being the euclidean distance between Ai and
Aj . A first version of re is introduced as the ratio :

re =
D(Gt)

D(Gt ∪Rt ∪Bt)
(4)

This both encourages to sample points on the object and to
broaden the exploration on the object.

Moreover, to further encourage the exploration of the bor-
ders of the object, we further introduce an additional term,
Dout to give credit to samplings that missed but brushed the
object. Let (dk) be the sampling line defined by (Pk,

−→u4k ), −→u4t

being a direction vector of the sampling line and Pk a point
on the sampling line, as defined on Figure 2. For each (dk)
corresponding to missed sampling, Dout takes into account
the closest point to (dk) in (Gt ∪Bt), namely Amin((dk)) :

Amin((dk)) = argmin
A∈(Gt∪Bt)

(dc(A, (dk)), (5)

with dc(A, (dk)) =
||
−→
PA ∧ −→u4k ||
||−→u4k ||

(6)

Dout aims to give credit to missed samplings (dk), regarding
their value in terms of exploration breath if it reached corre-
sponding Amin((dk)) points, but normalized by the distance
dc(Amin((dk)), (dk)). The intuition is that missed samplings
that brush the object may be interesting to explore the limits
of the object, while samplings missing the object with a large
margin are not interesting in terms of object delineation. The
set of missed samplings that generated Rt is denoted as MRt

,
and Doutt is defined as :

Doutt =
∑

(di)∈MRt

∑
A∈(Gt∪Bt)

de(Amin((di)), A)

dc(Amin((di)), (di))
, (7)

The final version of re, including Dout term, is defined as :

re =
D(Gt) +Doutt

D(Gt ∪Rt ∪Bt)
(8)

Note that on Figure 3, Rck and Rek correspond to the classi-
fication and exploration rewards after collecting the last three
points (k, k+1, k+2).

The last uncovered part of our framework is the critic net-
work. SAC is an algorithm that concurrently learns an actor,
the policy, and a critic, that tries to predict the sum of dis-
counted future rewards from a given state-action pair. SAC
especially leverages the double-Q trick from TD3 RL algo-
rithm [16]. We use the Stable-Baselines-1 [17] implementa-
tion of SAC, which also needs a value-function prediction.
This means that the trained framework needs an independent
network to model two Q functions and one value function.
The structure of the critic network is presented in the bottom
part of the Figure 4.



3. EXPERIMENTS

Similar to [12], we built a dataset containing 4 3D geometric
objects, represented in Figure 1. The objects were randomly
chosen and loaded in the simulator at the origin with random
rotation Rz around Z axis.In this study, we consider N=4 iter-
ative acquisition steps, leading to a final point-cloud density
of 12 points (similar to [13]).
We compared our proposed framework with state-of-the-art
LSTM based tactile exploration model [12], adapted to our
use case, which we denote ”LSTM” model. We further com-
pared our approach to (1) a lower-bound case, denoted ”Rand.
Explo + PointNet”, where state-of-the-art point-cloud classi-
fiers were fed with points randomly sampled from the simu-
lator and (2) an upper-bound case, denoted ”Hom. Explo +
PointNet”, where state-of-the-art point-cloud classifiers were
fed with points homogeneously sampled on the 3D object.
For the homogeneous sampling, θ and φ were fixed to 0, and
Zp and α were uniformly chosen between their minimum and
maximum values. The ideal homogeneous exploration, with
all points on the object, was only manageable in the simu-
lated setup, because the object position is fixed at the origin,
and because we know the minimum dimensions of our ob-
jects. We chose PointNet [1] as state-of-the-art point-cloud
classifier, as it proved to be robust to sparse and noisy point
clouds [11]. Four independent point-cloud classifiers were
trained for both Random and Homogeneous exploration, us-
ing respectively 3, 6, 9 and 12 points.
Compared to our approach, the independent classifiers have
the advantage of being density-specific, while our model must
handle all 3, 6, 9 and 12 points densities. An additional ex-
periment was thus performed to directly compare the explo-
ration efficiency of our trained framework to the exploration
efficiency of random and homogeneous approaches. We used
our trained framework to sample points from the simulator,
and fed them to 4 PointNet classifiers, handling respectively
3, 6, 9 and 12 points densities. The experiment was denoted
as ”Ours + PointNet”.
Our framework was trained using the stable-baselines-1 [17]
SAC implementation, with default hyper-parameters, except
for a batch size of 512. The LSTM model was trained with
default hyper-parameters proposed in [12], except for a batch
size of 512. PointNet models were all trained on 80 epochs,
using 22000 training point clouds, balanced between the 4
classes. All models were evaluated by computing the accu-
racy of the best version obtained during training over 1400
objects per class.
The resulting accuracies, after different number of probes are
summarized in the Table 1. Our proposed framework outper-
forms the LSTM model at each probes. It even outperforms
the ”Hom. Explo + PointNet” approach after the 6th probe,
but performs slightly worse after 9th and 12th probes. Perfor-
mances after 3rd glance are not comparable, since the first 3
points are pre-defined in our framework. However, our pro-

Table 1: Accuracies of point-cloud classifiers with different
exploration approaches.

Sampled Points 3 6 9 12
Rand. Explo + PointNet 58.48 71.52 78.68 83.20
Hom. Explo + PointNet 70.29 86.48 100 100

LSTM 56.31 81.10 87.07 90.30
Ours 90.52 98.85 99.92 99.95

Ours + PointNet 90.67 99.44 100 100

Fig. 5: Visualisation of 3D points sampled by our trained
agent (red dots), projected on corresponding meshes.

posed framework learns an exploration strategy that appears
to be more efficient than the homogeneous one, as training
PointNet classifiers from point clouds sampled by our trained
framework shows the best overall accuracies, at each probes.
Finally, the Figure 5 shows the points sampled by our trained
framework, projected on the corresponding 3D objects. When
there was no ambiguity on the class (sphere and cube), the
sampled points broadly explored the surface of the objects.
However, for similar classes, triangle and quarter-round, the
exploration focused on relevant areas, such as the potential
edges of a triangle in area ”1”, or the top surface of the ob-
jects (areas ”2” and ”3”), of which the curvature discriminates
the two classes. Area ”4” even showed that missed points are
acceptable if they are useful to delineate critical parts of the
3D object.

4. CONCLUSION

In this work, we proposed a new RL based framework as-
sociated with a hand-crafted reward function, that enables a
robot to efficiently sample few points in its workspace to rec-
ognize the 3D object presented. Our model learnt an explo-
ration strategy that broadly explores the objects and avoids
missed samplings, but is also able to focus on relevant local
parts that allows to discriminate similar objects. Our model
achieved better accuracy than existing models on end-to-end
exploration-and-classification task. Moreover, the learnt ex-
ploration strategy enables to acquire points that, when fed to
a SOTA point-cloud classifier, lead to better classification ac-
curacy than the homogeneous exploration strategy.
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