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3D points acquisitions based on robust sensors such as tactile or laser sensors are true alternatives to computer vision for 3D object recognition. In real life scenarios where robots are equipped with such sensors to acquire 3D data, only few points can be iteratively collected in a reasonable amount of time. However, existing Point-cloud classifiers are extremely sensitive to sparse points, missing parts and noise. To compensate for the sparsity of the data, some Reinforcement Learning (RL) based approaches have been proposed to learn a sparse yet efficient exploration of the target object regarding the 3D recognition objective. However, existing RL approaches only focus on classification performances to guide the training of the active acquisition-and-classification frameworks, and thus fail to dissociate poor exploration strategy (missing parts, noisy points) from actual classifier mistakes on proper data. In this study, we proposed a new RL framework that was rewarded regarding both the classification performances and the exploration quality. Our trained framework outperforms existing State-Of-The-Art models on 3D geometric objects classification. We further showed that our trained framework learnt to alternate between (1) a clean and broad exploration strategy, suitable for easily distinguishable categories, and (2) a specific local exploration strategy, facilitating the discrimination of similar categories.

INTRODUCTION

Most existing deep learning architectures capable of reasoning about 3D point-cloud data are trained on offline/frozen datasets of dense and clean point-clouds [START_REF] Charles R Qi | Pointnet: Deep learning on point sets for 3d classification and segmentation[END_REF][START_REF] Charles R Qi | Pointnet++: Deep hierarchical feature learning on point sets in a metric space[END_REF][START_REF] Mikaela | Revisiting point cloud classification: A new benchmark dataset and classification model on real-world data[END_REF][START_REF] Saeid | Pointmask: Towards interpretable and biasresilient point cloud processing[END_REF][START_REF] Liu | Densepoint: Learning densely contextual representation for efficient point cloud processing[END_REF][START_REF] Li | Pointcnn: Convolution on xtransformed points[END_REF][START_REF] Wu | Pointconv: Deep convolutional networks on 3d point clouds[END_REF][START_REF] Liu | Relation-shape convolutional neural network for point cloud analysis[END_REF][START_REF] Poulenard | Effective rotationinvariant point cnn with spherical harmonics kernels[END_REF][START_REF] You | Pointwise rotation-invariant network with adaptive sampling and 3d spherical voxel convolution[END_REF]. A recent study [START_REF] Saeid | Robustpointset: A dataset for benchmarking robustness of point cloud classifiers[END_REF] proved that State-Of-The-Art (SOTA) point-cloud classifiers actually perform significantly worse on data including noise, missing parts and sparse points. On the contrary, many industrial applications require online/active acquisition of point-clouds, and often result in sparse and noisy data. Typical applications include environments where cameras are unoperable (e.g., dusty environments, poor luminosity conditions), requiring to use more robust data acquisition pipelines, such as iterative 3D points acquisitions using a laser sensor or a tactile sensor mounted on a polyarticulated robot. To maintain a decent pace in industrial context, only a limited number of points can be sampled for each object to process. To allow accurate 3D object classification from a limited number of actively sampled points, some recent works [START_REF] Fleer | Learning efficient haptic shape exploration with a rigid tactile sensor array[END_REF][START_REF] Riou | Seeing by haptic glance: Reinforcement learning based 3d object recognition[END_REF] proposed to simultaneously learn the active sampling strategy, namely the exploration strategy, and the classifier. The insight behind such approach is that the exploration strategy training should be guided by the classification performances, so that each point acquisition provides the most information for the 3D recognition task. Both models leveraged an online RL algorithm rewarded by the classification performances to learn the exploration strategy, coupled with a classification loss to train the classifier. Such strategy basically compensates for the sparsity of the data by maximizing the efficiency of the exploration. However, such strategy doesn't explicitly penalize (1) missing parts on the explored object, e.g., due to a too narrow exploration, nor (2) noisy points, due to exploration trials that missed the object. In other words, such approach doesn't dissociate miss-classifications deriving from poor exploration strategy, from the ones caused by classifier mistakes. This leads to a potential unstable and sample-inefficient training.

In this study, we investigate how an RL based framework can be used to learn an efficient active sampling strategy. We especially introduce a new exploration reward, that allows to improve the sampling strategy by providing cues on the exploration efficiency (exploration breadth, missing points) during training.

METHOD

Our proposed active sampling setup, depicted in Figure 1, consists of a robot equipped with a laser-based distance sensor that allows to recover 3D points from the work-place where an unknown 3D object is placed. The robot, fixed on the roof on a circular track, can turn around the work-piece and disposes of several degrees of freedom to enable the acquisition of 3D points all over the 3D object. This section (1) details the active sampling setup with the associated simulator proposed and (2) describes the RL framework proposed to learn an active sampling strategy that allows the recognition of the 3D object from few 3D points acquisitions.

Simulation of the active sampling hardware

An in-house simulator was leveraged to simulate the target use case and facilitate training and validation of the proposed solution. Figure 2 illustrates the simulator operation. The simulator consists of a 3D environment where 3D objects can be loaded and placed at the origin "O". 3D objects can be placed with any rotation around Z axis. A simulated laser sensor is integrated to the environment to allow the acquisition of 3D points on the loaded object. The object can be actively explored by launching successive laser acquisitions in the environment. The active exploration of the object is thus managed by iteratively controlling the position and the orientation of the simulated laser sensor. To match the target use case, the laser sensor is revolvable around the 3D object. As depicted in Figure 2 c), the laser can be positioned anywhere on the side surface of a cylinder of which the diameter D is larger than the 3D object. The position of the laser sensor is noted P. P is defined with two variables, Zp and α, also depicted on Figure 2 c). Zp defines the height of the probe on the cylinder, between 0 and Zp max . α defines the revolution angle around the object, between 0 and 360°. The laser propagates from P, and by default points towards Z axis and propagates parallel to the ground. On Figure 2 b) and c), vectors -→ u 1 and -→ u 2 represents default laser propagation respectively before and after applying revolution angle α. Two more variables, φ and θ allow to deviate from the default orientation. φ, namely the "yaw angle", allows to deviate from the Z axis. After successively applying Zp, α and yaw angle φ in this order, the laser propagates as depicted by vector -→ u 3 on Figure 2. θ, namely the "pitch angle", allows to deviate from a propagation parallel to the ground. After suc-cessively applying Zp, α, φ and pitch angle θ in this order, the laser propagates as depicted by vector -→ u 4 on Figure 2 a). After receiving a query (Zp, α, φ, θ), the simulator propagates the laser with the query configuration ( -→ u 4 ), until it touches an object, or reaches its maximum propagation length. Knowing the position, orientation and distance feedback of the laser sensor, the simulator computes the 3D position of the point reached during the acquisition. The acquired 3D point is computed in the coordinate system (O, X, Y, Z). The simulator finally returns the 3D coordinates reached, Xt, Yt, Zt, plus an additional Boolean "T", indicating whether the acquisition reached or missed the object. 

RL based active sampling

Similar to [START_REF] Fleer | Learning efficient haptic shape exploration with a rigid tactile sensor array[END_REF] and [START_REF] Riou | Seeing by haptic glance: Reinforcement learning based 3d object recognition[END_REF], we propose a RL based framework to jointly learn active exploration and classification of 3D objects positioned in the workspace. The Figure 3 gives an overview of the framework. The framework is made of ( 1 

z k ∽ N (µ z k , σ 2 z k ), φ k ∽ N (µ φ k , σ 2 φ k ) α k ∽ N (µ α k , σ 2 α k ), θ k ∽ N (µ θ k , σ 2 θ k ) (1) 
The stochasticity of the action decision module allows to use state-of-the-art RL algorithms, such as Soft Actor Critic (SAC) [START_REF] Haarnoja | Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor[END_REF]. Finally, as illustrated in Figure 4, 3 sampling configurations are predicted at once, since the proposed framework explores the working-space 3 points by 3 points.

Reinforcement learning algorithm and reward

Reinforcement Learning is a category of machine learning algorithms adapted to sequential decision making problems. We use Soft Actor Critic (SAC) [START_REF] Haarnoja | Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor[END_REF] RL algorithm to learn our sequential 3D point sampling and object recognition task.

The objective of SAC is to maximize J(π), defined by Equation 2, where the policy π is the decision making agent, predicting the next action a t from the current state s t .

J(π) = E τ ∽π T t=0 γ t R(s t , a t , s t+1 ) + αH(π(•|s t )) (2) 
Fig. 4: Classifier, action prediction and critic architectures.

In our target use case, the state s t is defined by the collected point cloud at time t. We define the action a t as the concatenation of (1) the configurations of the next 3 samplings and (2) the classification probabilities. The whole framework represented in the left side of the Figure 3 and detailed in the previous section thus defines the policy. The SAC objective is divided in 2 terms, balanced by a tradeoff coefficient α : the reward R(s t , a t , s t+1 ), that will be detailed thereafter, and the entropy of the policy H(π(•|s t )), that encourages exploration of diverse policy strategies. The reward R is a function that represents the usefulness of a transition (s t , a t , s t+1 ) with regard to the target task. 

D(A) = |A| i=0 i-1 j=0 d e (A i , A j ), (3) 
with d e (A i , A j ) being the euclidean distance between A i and A j . A first version of r e is introduced as the ratio :

r e = D(G t ) D(G t ∪ R t ∪ B t ) (4) 
This both encourages to sample points on the object and to broaden the exploration on the object. Moreover, to further encourage the exploration of the borders of the object, we further introduce an additional term, D out to give credit to samplings that missed but brushed the object. Let (d k ) be the sampling line defined by (P k , -→ u 4 k ), -→ u 4t being a direction vector of the sampling line and P k a point on the sampling line, as defined on Figure 2. For each (d k ) corresponding to missed sampling, D out takes into account the closest point to

(d k ) in (G t ∪ B t ), namely A min ((d k )) : A min ((d k )) = argmin A∈(Gt∪Bt) (d c (A, (d k )), (5) 
with d c (A, (d k )) = || -→ P A ∧ -→ u 4 k || || -→ u 4 k || (6) 
D out aims to give credit to missed samplings (d k ), regarding their value in terms of exploration breath if it reached corresponding A min ((d k )) points, but normalized by the distance

d c (A min ((d k )), (d k )).
The intuition is that missed samplings that brush the object may be interesting to explore the limits of the object, while samplings missing the object with a large margin are not interesting in terms of object delineation. The set of missed samplings that generated R t is denoted as M Rt , and D outt is defined as :

D outt = (di)∈M R t A∈(Gt∪Bt) d e (A min ((d i )), A) d c (A min ((d i )), (d i )) , (7) 
The final version of r e , including D out term, is defined as :

r e = D(G t ) + D outt D(G t ∪ R t ∪ B t ) (8) 
Note that on Figure 3, Rc k and Re k correspond to the classification and exploration rewards after collecting the last three points (k, k+1, k+2). The last uncovered part of our framework is the critic network. SAC is an algorithm that concurrently learns an actor, the policy, and a critic, that tries to predict the sum of discounted future rewards from a given state-action pair. SAC especially leverages the double-Q trick from TD3 RL algorithm [START_REF] Fujimoto | Addressing function approximation error in actor-critic methods[END_REF]. We use the Stable-Baselines-1 [START_REF] Hill | Stable baselines[END_REF] implementation of SAC, which also needs a value-function prediction. This means that the trained framework needs an independent network to model two Q functions and one value function. The structure of the critic network is presented in the bottom part of the Figure 4.

EXPERIMENTS

Similar to [START_REF] Fleer | Learning efficient haptic shape exploration with a rigid tactile sensor array[END_REF], we built a dataset containing 4 3D geometric objects, represented in Figure 1. The objects were randomly chosen and loaded in the simulator at the origin with random rotation R z around Z axis.In this study, we consider N=4 iterative acquisition steps, leading to a final point-cloud density of 12 points (similar to [START_REF] Riou | Seeing by haptic glance: Reinforcement learning based 3d object recognition[END_REF]). We compared our proposed framework with state-of-the-art LSTM based tactile exploration model [START_REF] Fleer | Learning efficient haptic shape exploration with a rigid tactile sensor array[END_REF], adapted to our use case, which we denote "LSTM" model. We further compared our approach to (1) a lower-bound case, denoted "Rand. Explo + PointNet", where state-of-the-art point-cloud classifiers were fed with points randomly sampled from the simulator and (2) an upper-bound case, denoted "Hom. Explo + PointNet", where state-of-the-art point-cloud classifiers were fed with points homogeneously sampled on the 3D object. For the homogeneous sampling, θ and φ were fixed to 0, and Zp and α were uniformly chosen between their minimum and maximum values. The ideal homogeneous exploration, with all points on the object, was only manageable in the simulated setup, because the object position is fixed at the origin, and because we know the minimum dimensions of our objects. We chose PointNet [START_REF] Charles R Qi | Pointnet: Deep learning on point sets for 3d classification and segmentation[END_REF] as state-of-the-art point-cloud classifier, as it proved to be robust to sparse and noisy point clouds [START_REF] Saeid | Robustpointset: A dataset for benchmarking robustness of point cloud classifiers[END_REF]. Four independent point-cloud classifiers were trained for both Random and Homogeneous exploration, using respectively 3, 6, 9 and 12 points. Compared to our approach, the independent classifiers have the advantage of being density-specific, while our model must handle all 3, 6, 9 and 12 points densities. An additional experiment was thus performed to directly compare the exploration efficiency of our trained framework to the exploration efficiency of random and homogeneous approaches. We used our trained framework to sample points from the simulator, and fed them to 4 PointNet classifiers, handling respectively 3, 6, 9 and 12 points densities. The experiment was denoted as "Ours + PointNet". Our framework was trained using the stable-baselines-1 [START_REF] Hill | Stable baselines[END_REF] SAC implementation, with default hyper-parameters, except for a batch size of 512. The LSTM model was trained with default hyper-parameters proposed in [START_REF] Fleer | Learning efficient haptic shape exploration with a rigid tactile sensor array[END_REF], except for a batch size of 512. PointNet models were all trained on 80 epochs, using 22000 training point clouds, balanced between the 4 classes. All models were evaluated by computing the accuracy of the best version obtained during training over 1400 objects per class. The resulting accuracies, after different number of probes are summarized in the Table 1. Our proposed framework outperforms the LSTM model at each probes. It even outperforms the "Hom. Explo + PointNet" approach after the 6th probe, but performs slightly worse after 9th and 12th probes. Performances after 3rd glance are not comparable, since the first 3 points are pre-defined in our framework. However, our pro- Fig. 5: Visualisation of 3D points sampled by our trained agent (red dots), projected on corresponding meshes.

posed framework learns an exploration strategy that appears to be more efficient than the homogeneous one, as training PointNet classifiers from point clouds sampled by our trained framework shows the best overall accuracies, at each probes. Finally, the Figure 5 shows the points sampled by our trained framework, projected on the corresponding 3D objects. When there was no ambiguity on the class (sphere and cube), the sampled points broadly explored the surface of the objects. However, for similar classes, triangle and quarter-round, the exploration focused on relevant areas, such as the potential edges of a triangle in area "1", or the top surface of the objects (areas "2" and "3"), of which the curvature discriminates the two classes. Area "4" even showed that missed points are acceptable if they are useful to delineate critical parts of the 3D object.

CONCLUSION

In this work, we proposed a new RL based framework associated with a hand-crafted reward function, that enables a robot to efficiently sample few points in its workspace to recognize the 3D object presented. Our model learnt an exploration strategy that broadly explores the objects and avoids missed samplings, but is also able to focus on relevant local parts that allows to discriminate similar objects. Our model achieved better accuracy than existing models on end-to-end exploration-and-classification task. Moreover, the learnt exploration strategy enables to acquire points that, when fed to a SOTA point-cloud classifier, lead to better classification accuracy than the homogeneous exploration strategy.
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 1 Fig. 1: Our RL based approach.

Fig. 2 :

 2 Fig. 2: Illustration of an object loaded in the simulator from 3 views ((a) Side; (b) Top; (c) 3D).

  ) a point cloud storage (collected points), stacking the 3D points sampled from the workspace; (2) a Point Cloud Feature Extractor, that encodes the point cloud into a permutation invariant latent representation; (3) an action prediction module, that infers the configurations of the next points acquisitions (Zp, α, φ, θ) from the latent representation; and (4) a classifier, predicting the class of the object explored, from the latent representation. The whole framework is trained end-to-end using an offline RL algorithm, so that the learnt exploration strategy ensures the success of the 3D object recognition. The following sections detail (1) the modules of the proposed framework and (2) the RL algorithm and the proposed reward.

Fig. 3 :

 3 Fig. 3: Overview of the proposed policy network (left) and proposed reward function terms (right).

  2.2.1. Framework detailsThe framework is trained to sample the workspace 3 points by 3 points, and to classify the object after each acquisition of 3 new points (empirical choice). N acquisition steps are performed successively, leading to a total of 3*N points sampled on the workspace at the end of the exploration. At the very beginning of the exploration, the point cloud storage is initialized with 3*N "empty points", filled with zero values. The exploration starts by requesting 3 pre-defined/hard-coded samplings to the simulator : (Zp 0:2 , α 0:2 , φ 0:2 , θ 0:2 ). The point cloud is then updated with the 3 first acquired points : (X 0:2 , Y 0:2 , Z 0:2 , T 0:2 ). From this configuration, for each step k ∈ {3n, n ∈ [1, N ]}, the framework (1) tries to classify the object; (2) predicts the next three samplings (Zp k:k+2 , α k:k+2 , φ k:k+2 , θ k:k+2 ) and requests them to the simulator, and (3) stores the three new points acquired (X k:k+2 , Y k:k+2 , Z k:k+2 , T k:k+2 ) in the point cloud. The whole process is illustrated on the left side of Figure 3. The point cloud feature extraction module is a light version of the "Per point Context Aware Representation" proposed in[START_REF] Riou | Seeing by haptic glance: Reinforcement learning based 3d object recognition[END_REF]. It leverages "Context Aware" (CA) and "Self-Attention Context Awareness" (SACA-A) operations from PointGrow[START_REF] Sun | Pointgrow: Autoregressively learned point cloud generation with self-attention[END_REF] architecture, that allow to relate each of the collected points to the preceding ones. SACA-A takes the 3*N pointcloud as input, and outputs 3*N embeddings, each reflecting the global context of the previous sampled points. SACA-A processes each point independently through Multi-Layer Perceptrons (MLP) and aggregates global context information from previous points using average pooling, a permutation invariant operation, which means that every permutation of the input point cloud should result in the same latent encoding. In other words, the sampling order doesn't impact the latent representation. The classifier and the action prediction module both lever-age the latent point cloud representation to predict respectively the class probabilities and the next sampling configuration. Both classifier and action prediction module architectures, illustrated in Figure4(top and middle), are similar to the PCRN-FC classifier proposed in[START_REF] Riou | Seeing by haptic glance: Reinforcement learning based 3d object recognition[END_REF] : several per-point MLP, followed by a point-wise average pooling which aggregates point-cloud information while maintaining permutation invariance, completed by several fully connected layers (FC). The classifier ends with a softmax layer to predict class probabilities. The action prediction module is made stochastic by predicting the parameters µ and σ of a Gaussian distribution for each sampling parameters, instead of deterministically predicting their values :

  For the task of joint exploration and recognition of a 3D object, the reward is defined as the sum of a classification reward r c with an exploration reward r e r c is representative of the ultimate goal of the framework: the 3D object recognition. Concretely, at each timestep t ∈ [1, N ], the policy tries to classify the object explored, from the collected point cloud. If it succeeds, r c = +1. If it fails, r c = 0. r c thus ensures that (1) the classifier learns its recognition task; (2) the point cloud feature extraction module learns a representation that facilitates the discrimination of the objects geometries from few points; (3) the action prediction module learns to sample points as efficiently as possible regarding the classification task.Additionally, r e facilitates the training by providing information on the quality of the exploration strategy, by focusing on 2 aspects that are proven to affect the performances of 3D point-clouds classification : missing parts and noisy points (samplings that missed the object). Let B t , G t and R t be respectively the set of 3 initial points, the set of points that touched the object and the set of points that missed the object. The 3 sets are respectively represented by Blue, Green and Red points on the right side of Figure3. We define the sum of inter-points distances on a set of points A as

Table 1 :

 1 Accuracies of point-cloud classifiers with different exploration approaches.

	Sampled Points	3	6	9	12
	Rand. Explo + PointNet 58.48 71.52 78.68 83.20
	Hom. Explo + PointNet 70.29 86.48	100	100
	LSTM	56.31 81.10 87.07 90.30
	Ours	90.52 98.85 99.92 99.95
	Ours + PointNet	90.67 99.44	100	100