Adaptive homotopy for organ segmentation

Nicolas Passat Université de Reims Champagne-Ardenne, France

Digital Topology and Mathematical Morphology for Medical Image Analysis – Special Session – CARS 8 June 2022

(□) (@) (E) (E) (E)

Preliminary remarks

This talk is about

- Digital topology: homotopic (possibly homeomorphic) transformations
- Medical imaging: segmentation

It presents strategies for embedding topological priors in "deformable model" paradigms for segmenting organs and tissues, possibly at different scales

This talk has mainly a tutorial value (the results are not new)

The proposed results derive from published work from two PhD theses:

- Loïc Mazo, Homotopic deformations in n-ary digital images, 2011
- Carlos Tor Díez: Automatic segmentation of the cortical surface in neonatal brain MRI, 2019

Segmentation (in medical imaging)

Image

- Image = mapping $I : \Omega \to \mathbb{V}$
- $\Omega = \text{space} = \text{subset of } \mathbb{Z}^d \text{ modeling a subset of } \mathbb{R}^d$
- $\mathbb{V} =$ values = subset of \mathbb{Z}^k modeling a subset of \mathbb{R}^k

Segmentation (in medical imaging)

Segmentation

Segmentation = partition $S = \{S_1, \ldots, S_p\}$ of Ω

- Binary: p = 2 and $S = \{S_0, S_1\} = \{B, F\}$ with F = foreground (object) and B = background
- Multilabel: $p \ge 3$ and $S = \{S_1, \dots, S_p\}$ with each S_i a given structure

Segmentation (in medical imaging)

Segmentation

Segmentation = partition $S = \{S_1, \ldots, S_p\}$ of Ω

- Binary: p = 2 and $S = \{S_0, S_1\} = \{B, F\}$ with F = foreground (object) and B = background
- Multilabel: $p \ge 3$ and $S = \{S_1, \dots, S_p\}$ with each S_i a given structure

Topology

"Object"

Object = topological space = subset $X \subset \mathbb{R}^d$ or \mathbb{Z}^d

Topology

Topology = the study of the structural properties of such objects, independently of their embedding in \mathbb{R}^d or \mathbb{Z}^d .

Topology

"Object"

 $\mathsf{Object} = \mathsf{topological space} = \mathsf{subset} \ X \subset \mathbb{R}^d \ \mathsf{or} \ \mathbb{Z}^d$

Topology

Topology = the study of the structural properties of such objects, independently of their embedding in \mathbb{R}^d or \mathbb{Z}^d .

Examples of such properties

- Connectedness
- Number of tunnels/handles
- Euler Characteristics
- Adjacency tree

< ロ > < 同 > < 回 > < 回 > < 回 > <

Topology in medical imaging

Why is topology important in medical image segmentation?

Topological properties are especially important for various tasks, e.g.:

- anatomical / biomechanical modelling
- biological / physiological simulation
- morphometric analysis and quantification
- longitudinal studies and interpatient comparison

Topology in medical imaging

Why is topology important in medical image segmentation?

Organ / tissue segmentation must be as accurate from various points of view:

- morphology: shape, position...
- geometry: size, border properties...
- topology: connectedness, cavities/holes, adjacency with other structures...

Important remarks

- Topology is natively designed for binary objects
- The topological properties of an object are intrinsic
 ⇒ (in theory) they do not depend of the scale of observation

< ロ > < 同 > < 回 > < 回 > < 回 > <

Two paradigms of topology in medical imaging

Paradigm 1 – Descriptive topology

Topology provides tools for **observing / measuring** structural properties of segmented organs / tissues.

Descriptive topology tools (examples)

- Low-level: Euler characteristics, connectedness...
- High-level: Homology groups and persistent homology

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Two paradigms of topology in medical imaging

Paradigm 2 – Constructive topology

Topology also provides tools for **modifying** an object **without topological modification**.

Constructive topology tools (examples)

- Low-level: Region-growing (connectedness preservation)...
- High-level: Homotopy, homeomorphisms

Homotopic (or homeomorphic) segmentation in medical imaging

Choices

We focus on the constructive side of topology:

How to carry out segmentation via a homotopic (or homeomorphic) deformable model paradigm?

Related works

Topic widely investigated in the literature, but most often with restrictions:

- Binary segmentation
- Topology determined as a prior
- Monotonic transformations

▲ 同 ▶ → 三 ▶

Analysis of these topological restrictions

Binary segmentation

Continuous / digital topology is

- natively defined on binary sets
- not easy to extend to *n*-ary partitions

Topology determined a priori

Most of topological concepts, e.g.

- simple points / sets (in ℤⁿ)
- collapse sequences (in complexes)

are designed to let the topology unchanged, not to control / modify it.

Simple points: a way to handle homotopy (and homeomorphism)

Simple points (in \mathbb{Z}^n , n = 2 or 3)

A simple point *p* is:

- a point in \mathbb{Z}^n
- a cell in cubical complexes

that can be added (removed) to (from) a digital object / a complex X without modifying its homotopy type.

Simple points and homotopy

• n = 2: p is a simple point $\Leftrightarrow \exists$ a homotopy between X and $X \setminus \{p\}$

n = 3: p is a simple point ⇒ ∃ a homotopy between X and X \ {p}
 (Additional constraints for homeomorphism...)

Simple points: a way to handle homotopy (and homeomorphism)

Simple points (in \mathbb{Z}^n , n = 2 or 3)

A simple point *p* is:

- a point in \mathbb{Z}^n
- a cell in cubical complexes

that can be added (removed) to (from) a digital object / a complex X without modifying its homotopy type.

Simple points and homotopy

• n = 2: p is a simple point $\Leftrightarrow \exists$ a homotopy between X and $X \cup \{p\}$

• n = 3: p is a simple point $\Rightarrow \exists$ a homotopy between X and $X \cup \{p\}$ (Additional constraints for homeomorphism...)

Simple points: algorithmic aspects

Simple points and homotopic transformation (algorithmic sketch)

- Input: $X \subset \mathbb{Z}^n$
- Output: $Y \subset \mathbb{Z}^n$
- $Y \leftarrow X$
- Repeat
 - Choose a simple point $x \in \mathbb{Z}^n$

•
$$Y \leftarrow \begin{cases} Y \setminus \{x\} & \text{if } x \in Y \\ Y \cup \{x\} & \text{if } x \notin Y \end{cases}$$

Until a termination criterion is satisfied

Simple point characterization

Local characterization (connectedness) \Rightarrow Constant time complexity

Main weakness

Only works for binary objects

N. Passat

Multilabel simple points (Mazo et al. 2012)

From binary to multilabel

- Binary object $X = \text{partition } \{B, F\}$ with X = B and $F = \Omega \setminus X$
- Multilabel object $X = \text{partition } \{S_1, \dots, S_k\}$

In particular, for k = 2, both models are compliant.

From multilabel to binary

- Set of proto-labels $L = \{1, \ldots, k\}$
- $\forall \ell \in L$, the set S_ℓ is composed by the points of proto-label $\ell \in L$
- Let $\Lambda = 2^L$ the power-set induced by the protolabels of L
- Each element $\lambda \in \Lambda$ is a label

In particular, a multilabel image of k proto-labels induces 2^k binary images.

イロト 不得下 イヨト イヨト 二日

Multilabel simple points (Mazo et al. 2012)

Example of label set (k = 3)

- 3 protolabels: α, β, γ
- $2^3 = 8$ labels, including
 - the k = 3 "protolabels" $\{\alpha\}, \{\beta\}, \{\gamma\}$
 - other composite labels, from \emptyset to $\{\alpha,\beta,\gamma\}$
- Each label λ defines one specific binary object X_λ = U_{ℓ∈λ} S_ℓ from the multilabel image

Multilabel simple points (Mazo et al. 2012)

Multilabel simple point (definition)

Equivalence of the two statements:

- p is a simple point in a multilabel object $X = \{S_1, \ldots, S_k\}$ induced by the protolabels L
- $\forall \lambda \in \Lambda = 2^{L}$, p is a simple point for the binary image X_{λ}

Less formally

A simple point in a multilabel image is a point that is simple for all the induced binary images.

Multilabel simple point: "hard" definition

A simple point in a multilabel image is a point that is simple for **all** the induced binary images.

Multilabel simple point: alternative

A simple point in a multilabel image is a point that is simple for **some of** the induced binary images.

Partial preservation of the topology

By choosing a subset labels, one can ensure their topology preservation whereas relaxing topological constraints on the other labels.

A 🖓

Corollaries of this strategy

By considering:

- multilabel simple points
- only certain labels to topologically preserve

one can:

- select the structures to topologically control
- modify these choices depending on the "point of view"

Towards adaptive, multiscale homotopy

This opens the way to more flexible (partial) homotopic transformations dedicated to specific structures and evolving wrt the scale of observation / resolution of the image

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Input

Segmentation of brain structures from 3D MR images.

- Image $I : \mathbb{Z}^3 \to \mathbb{Z}$
- 3 protolabels: α (White Matter), β (Grey Matter), γ (Cerebrospinal Fluid)
- $2^3 = 8$ induced labels
- 3 scales of observation \simeq 3 resolutions of the MRI

Topological constraints

- Initial model 3 nested layers:
 - α (simply connected)
 - β (hollow sphere)
 - γ (hollow sphere)
- First level of observation (scales 1 / 2): topological preservation of
 - $\{\alpha\}$, $\{\beta\}$ and $\{\gamma\}$ (+ side effects)
- Second level of observation (scales 2 / 3): topological preservation of
 - $\{\alpha\}$ (simply connected)
 - $\{\alpha, \beta\}$ (simply connected)
 - $\{\beta, \gamma\}$ (hollow sphere)
 - $\{\gamma\}$ (hollow sphere) (+ side effects)
 - \Rightarrow the GM is no longer a hollow sphere

8 June 2022

-47 ▶

20 / 23

Adaptive homotopy for organ segmentation

8 June 2022

< ∃⇒

▲ 伊 ▶ ▲ 三

Adaptive homotopy for organ segmentation

▲ 同 ▶ → 三 ▶ 8 June 2022

< ∃ >

20 / 23

э

∃ ⇒

Discussion

Positive points

- Inherits the correcteness of binary topology tools (simple points)
- Multilabel topology (many tissues)
- Topology viewed as a multiscale descriptor

Negative points

- Computational cost (mitigated by multiscale)
- Point-wise homotopy can induce deadlocks

As a conclusion

Multilabel simple points, coupled with multiscale analysis, constitute a promising framework for the design of segmentation of many tissues and organs.

< /□ > < Ξ

Conclusion

Take-home message

- Topology is crucial for many medical image analysis tasks
- (High-level) topological features are generally costly to compute
 → Need to find strategies to reduce that cost
- Useful topological information depends on the scale of observation
 → Consider the targeted resolution(s) to choose the right scale(s)
- Useful topology information depend on the structure(s) of interest \rightarrow Define the **relevant (clusters of) tissues** to be studied
 - \rightarrow Determine the topological information of interest (not all, in general)

Thank you for listening!

Contact

nicolas.passat@univ-reims.fr https://crestic.univ-reims.fr/fr/nicolas.passat

Literature related to these results

- L. Mazo et al. Topology on digital label images. JMIV, 2012
- L. Mazo. A framework for label images. CTIC, 2012
- C. Tor-Díez et al. Multilabel, multiscale topological transformation for cerebral MRI segmentation post-processing. ISMM, 2019

Funding

This work was supported by the French *Agence Nationale de la Recherche* (Grants ANR-18-CE45-0014, ANR-18-CE45-0018, ANR-20-CE45-0011).

