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A B S T R A C T   

An aerospace structure is built from the assembly of structural sub-components involving joining technologies 
such as welding, mechanical fastening or adhesive bonding. 

The function of joints is to ensure load transfer between the structural sub-components. The integrity of the 
structure directly depends on strength of these joints. In order to design these critical structural areas, load 
transfer between structural sub-components must be assessed. The objective of this review paper is to present 
approaches for the simplified modelling and associated resolution schemes of single-lap adhesively bonded and 
hybrid (bolted/bonded) joints to predict load transfer. We show that the scope of available closed-form solutions 
is restricted, such that the use of semi-analytical schemes is suitable. Macro-element modelling is then presented. 
This technique allows the assessment of load transfer and associated stresses, especially in the adhesive layer 
regarded as a cohesive zone, while enabling the enrichment of the model, making it more representative of the 
physical reality.   

1. Introduction 

Assemblies remain compulsory in the design of aerospace structures. 
Numerous joining technologies are used in aerospace construction such 
as welding, mechanical fastening or adhesively bonded joints [1,2] for 
example. The main function of joints is to enable the physical existence 
of the structure, consisting of structural sub-components. In-service, the 
structure is subjected to external loads that it must be able to withstand 
while performing the expected functions. These external loads are then 
distributed through the structural sub-components in the shape of in-
ternal loads whose nature depends on the initial particular design 
choices. The structural sub-components are then sized to withstand 
these internal loads. The mechanical function of joints is then to ensure 
the balance of structural sub-components subjected to internal loads. 
Indeed, the fastening elements, such as an adhesive layer or a rivet, are 
thus subjected to the reaction of internal loads. These fastening elements 
experience deformation, resulting in a stress field to balance the applied 
internal loads. As a result, the deformation of fastening elements serves 
to balance structural sub-components, a phenomenon known as load 
transfer. This paper focuses on adhesive bonding – simply termed 
bonding. Only the commonly used design solution of the single-lap joint 

is addressed in this paper. Moreover, as aerospace structures are mainly 
built from thin shells reinforced by beams, the single-lap joint is 
assumed to be made of two slender and flat structural sub-components – 
simply termed adherends. 

The load transfer within a single-lap bonded joint is illustrated in 
Fig. 1(a–c). The adherends are subjected to a pair of tensile loads applied 
at both extremities. To simplify, the kinematics are restricted to longi-
tudinal displacements in the adherends. The relative difference between 
the longitudinal displacements of both adherend interfaces induces a 
shear deformation of the adhesive layer along the entire adhesive layer. 
This means that load transfer is performed by the shearing of the ad-
hesive layer, such as explicitly represented by de Bruyne in the figures 
labelled “cinema picture” [2]. If the adherends were infinitely rigid, the 
shear deformation in the adhesive layer would be constant along the 
overlap. But the adherends are deformable and induce a gradient of 
shear deformation in the adhesive layer along the overlap (Fig. 2 (a)). 
This load transfer mode is continuous because it is performed along the 
entire overlap [3]. This was mathematically described by Arnovljevic in 
1909 [4] and by Volkersen in 1938 [5] by considering the differential 
tension in the adherends due to the shear strain in the adhesive layer, 
termed shear-lag. It is interesting to note that, in their paper, Arnovljevic 
and Volkersen [4,5] developed an analogy to assess the bolt load transfer 
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Nomenclature and units 

Ai extensional stiffness (N) of adherend i 
A matrix of the governing system of ODEs 
Bi extensional and bending coupling stiffness (N.mm) of 

adherend i 
C vector of integration constants 
CF fastener stiffness (N.mm− 1) 
Cj stiffness (N.mm− 1) of the jth fastener 
Cu fastener stiffness (N.mm− 1) component in the x direction 
Cu1 first fastener stiffness (N.mm− 1) component in the x 

direction 
Cu2 second fastener stiffness (N.mm− 1) component in the x 

direction 
Cv fastener stiffness (N.mm− 1) component in the y direction 
Cθ fastener stiffness (N.mm) component around the z 

direction 
C stiffness (N.mm) 
De

− 1, D’e− 1 coupling matrices 
Di bending stiffness (N.mm2) of adherend i 
E adhesive peel modulus (MPa) 
Ea,min adhesive shear modulus (MPa) 
Ea,max adhesive shear modulus (MPa) 
Ei Young’s modulus (MPa) of adherend i 
Ef screw Young’s modulus (MPa) 
Er adherend Young’s modulus (MPa) 
Fe elementary nodal force vector 
Fs structural nodal force vector 
Fe,therm elementary nodal force vector equivalent to thermal load 
G adhesive shear modulus (MPa) 
Gi adherend shear modulus (MPa) of adherend i 
Ke elementary stiffness matrix 
Ke elementary stiffness of fastener ME 
Ks structural stiffness matrix 
Le, L’e coupling matrices 
Kbar,i elementary stiffness matrix of a bar element for the 

adherend i 
Kbeam,i elementary stiffness matrix of a beam element for the 

adherend i 
Kj integration constants (j = 1..13) 
L length (mm) of bonded overlap 
Mi bending moment (N.mm) in adherend i around the z 

direction 
MΔT

i thermal bending moment (N.mm) in adherend i around the 
z direction 

N truncation order 
Ni normal force (N) in adherend i in the x direction 
Ni,j normal force (N) in adherend i and bonded sandwich j in 

the x direction 
NΔT

i thermal normal force (N) in adherend i in the x direction 
QPi

i reduced modulus (MPa) along the x direction of the pi
th ply 

of adherend i 
Ri parameters (i = 1,2,3) 
S adhesive peel stress (MPa) 
T adhesive shear stress (MPa) 
Tav average adhesive shear stress (MPa) 
Tmax maximum adhesive shear stress (MPa) 
Tc critical adhesive shear stress (MPa) 
Ue elementary nodal displacement vector 
Us structural nodal displacement vector 
Vi shear force (N) in adherend i in the y direction 
b adherend half-width (mm) 
c overlap half-length (mm) 
ck integration constant 
dj abscissa (mm) of the jth fastener 

e thickness (mm) of the adhesive layer 
ei thickness (mm) of the adherend i 
er thickness (mm) of the adherend 
f magnitude of applied tensile force (N) 
fc magnitude of critical applied tensile force (N) 
hi half thickness (mm) of adherend i 
hr half thickness (mm) of the adherend 
h difference (mm) between h1 and h2 
h+ sum (mm) of h1 and h2 
k’ parameter 
kGR bending moment factor according to Goland and Reissner 
kM bending moment factor 
klap stiffness (N.mm− 1) in the x direction of the overlap 
kjoint stiffness (N.mm− 1) in the x direction of the joint 
kj constant (j = 1..4) 
li length outside of the overlap (mm) of the adherend i 
n number of fasteners 
q parameter 
r, r’ real number in mm− 1 

r parameter 
s, s’ real number in mm− 1 

t, t’ real number in mm− 1 

uf total displacement (mm) of the joint in the x direction 
ui displacement (mm) of adherend i in the x direction 
u[i] nodal displacement (mm) of node i 
vi displacement (mm) of adherend i in the y direction 
w adherend width (mm) 
Δ overlap length (mm) of a macro-element 
ΔT temperature variation (K) 
Δj characteristic parameter (N2.mm2) of adherend i 
φA fundamental matrix of A 

αi coefficient of thermal expansion (K− 1) of adherend i 
αPi

i coefficient of thermal expansion (K− 1) of the pi
th ply 

adherend i 
β characteristic argument 
δu1 axial displacement (mm) limiting the first phase of a 

fastener bilinear law 
φ applied tensile flow (N.mm− 1) 
φj parameter associated with the jth fastener 
φc critical tensile flow (N.mm− 1) 
η characteristic argument (mm− 1) 
κ parameter (mm.MPa− 1) involved in the shear correction 

factor 
λ characteristic argument 
ν adhesive Poisson’s ratio 
νf screw Poisson’s ratio 
νr adherend Poisson’s ratio 
θi bending angle (rad) of the adherend i around the z 

direction 
τj bolt load transfer rate of the jth fastener 
ξ adherend stiffness unbalance parameter (− ) 
ξα adherend thermal expansion unbalance parameter (− ) 
χ adherend stiffness unbalance parameter (− ) 
ω characteristic argument (mm− 1) 
(x,y,z) global reference system of axes 
CZM cohesive zone model 
DoF degree of freedom 
FE Finite Element 
HBB hybrid (bolted/bonded) 
ME macro-element 
ODE ordinary differential equation 
TEPS Taylor expansion in power series 
1D one-dimensional 
2D two-dimensional 
3D three-dimensional  
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rate within a bolted joint. For the purposes of comparison, the shear 
deformation of fasteners allows for load transfer within a single-lap 
bolted joint (Fig. 1(d–f)). Contrary to bonded joints, this load transfer 
mode is discrete as it occurs at the fastener location [3]. In the context of 
research projects led by NACA and published in 1946 and 1947 [6–8], it 
was shown that load transfer is not uniformly distributed on the fas-
teners similarly to bonded joints (Figs. 1 and 2). 

Modelling consists in idealizing the physical reality by choosing 
simplifying hypotheses. These simplifying hypotheses are then trans-
lated into a set of mathematical equations and must be solved. A purely 
analytical resolution, leading to a closed-form meaning ready-to-use 
equation, could be possible if the simplifying hypotheses are suffi-
ciently strong. If these hypotheses are too strong however, in other 
words out of phase with the physical reality, the results could be 
significantly different from the experimental results observed. When 
formal treatment by hand of equations is not possible, this is due to the 
hypotheses that are less strong. A semi-analytical approach can then be 
employed, consisting in a resolution scheme based on more or less 
elementary numerical schemes. The results are obtained through a 
dedicated computer program. Finally, when a choice reasonably rele-
vant to the physical reality can no longer be made, advanced numerical 
methods such as the Finite Element (FE) method can be used. If suitably 
applied, these numerical methods can give results close to experimental 
measurements, after processing times longer than analytical and semi- 
analytical methods. Even though computer performance is continu-
ously being improved, the simplified analyses, which gather the models 
associated with analytical or semi-analytical resolution schemes, remain 
attractive. Indeed, they offer the ability to make quick decisions at low 
cost and can be embedded in the framework of iterative computation 
processes such as those used to take into account nonlinearities and to 
feed optimization and/or probabilistic computation loops. 

Based on existing theories available in the literature – often devel-
oped for aerospace applications, but also for applications in the field of 
the civil construction or electronic devices – the objective of this paper is 
to provide a comprehensive review of modelling approaches for the 
simplified analysis of single-lap bonded joints in connection with the 
associated resolution schemes. The simplified analysis of bonded joints 
can be sorted into two families. In the first family, the adherends are 
seen as bars, beams or plates in cylindrical bending linked by an elastic 
foundation modelling the adhesive layer; this family thus consists of 
one-dimensional models. The model by Arnovljevic [4] or Volkersen [5] 
belongs to this family. 

Considering the adhesive layer as an elastic foundation allows the 
deformation and the stress of the adhesive to be expressed as a function 
of the displacement and rotation of adherends. In other words the ad-
hesive layer is seen as a coupling of the kinematics of adherends, so that 
the local equilibrium of the adhesive is not taken into account. The 
models belonging to the second family consider the sandwich as a plane 
continuum elastic medium, such that the local equilibrium of the ad-
hesive layer is included. The effort in the mathematical processing 

associated with the one-dimensional (1D) models of the first family 
appears to be less significant than the one required of the potentially 
two-dimensional (2D) models of the second family. However, this paper 
will show that the ability to write a closed-form solution for the models 
using an elastic foundation for the adhesive is not always possible, in 
particular when the kinematics of adherends include in-plane and out- 
of-plane components. Finally, a particular semi-analytical method, 
called macro-element (ME) modelling, is emphasized and applied to a 
more complex configuration: the single-lap hybrid (bolted/bonded), 
quoted HBB, joint, combining an adhesive layer and fasteners. 

 (d) 

 (e) 

 (f) 

Fig. 1. Load transfer in a single-lap bonded (bolted) joint (a(d)) initial configuration, (b(e)) final configuration with infinitely rigid adherends, (c(f)) final config-
uration with deformable adherends. 

 

Fig. 2. Load transfer in a single-lap bonded (a) joint (a) and in a single-lap 
bolted joint (b). 
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2. Fundamental models 

2.1. Shear-lag approach 

2.1.1. Simplifying hypotheses and governing equations 
The model presented by Arnovljevic or Volkersen [4,5] for the 

analysis of a single-lap bonded joint subjected to tensile load quoted f at 
one extremity and clamped at the other one (Fig. 3) is a shear-lag model. 
The simplifying hypotheses are:  

i. Under quasi-static loading;  
ii. Homogeneous linear elastic isotropic materials;  

iii. The adherends are seen as bars;  
iv. The adhesive layer is seen as a homogeneous elastic foundation at 

one parameter associated with shearing and linking both adher-
end interfaces;  

v. The geometrical parameters are constant. 

The geometric and material parameters are free and assumed strictly 
positive to have a physical meaning. This set of simplifying hypotheses 
implies that all the components of the adherend (adhesive) stress tensor 
can be neglected compared to the normal (shear) component. The model 
framework is then called 1D-bar. Moreover, the adhesive shear compo-
nent is constant through the layer thickness. From these hypotheses, the 
constitutive equations and the local equilibrium equations of adherends 
(Fig. 3) lead to the governing system of first-order ordinary differential 
equations (ODEs) written as follows: 

⎧
⎪⎪⎨

⎪⎪⎩

dNi

dx
= (− 1)i2bT

dui

dx
=

Ni

Ai

i = 1, 2 (1)  

where Ni and ui are the unknown functions denoting, for the adherend i, 
for the normal force and the longitudinal displacement of a point located 
before deformation at the abscissa x on the neutral line. Ai is the 
membrane stiffness of the adherend i and w=2b is the width of each 
adherend. The adhesive shear stress T couples the constitutive and local 
equilibrium equations. This takes the following shape: 

T =
G
e
(u2 − u1) (2)  

where G is the adhesive shear modulus and e is the adhesive layer 
thickness. 

2.1.2. Resolution 
The governing system of equations in Eq. (1) can be analytically 

solved. The expressions for the adherend longitudinal displacements 
involve four integration constants c1, c2, c3 and c4: 

(
u1(x)
u2(x)

)

=
1
2

(
1 x − (1+ χ)e− ηx − (1+ χ)eηx

1 x (1 − χ)e− ηx (1 − χ)eηx

)

⎛

⎜
⎜
⎝

c1
c2
c3
c4

⎞

⎟
⎟
⎠ (3)  

where: 

Fig. 3. Kinematics, parameterization and local equilibrium of the single-lap bonded joint under 1D-bar modelling.  



5

η2 =
G
e

1 + ξ
e2E2

=
G
e

(
1

e1E1
+

1
e2E2

)

(4)  

χ =
1

e1E1
− 1

e2E2
1

e1E1
+ 1

e2E2

=
ξ − 1
ξ + 1

(5)  

ξ=
e2E2

e1E1
(6) 

and ei and Ei are respectively the thickness and the Young’s modulus 
of the adherend i. Due to the constitutive equations of the adherend, the 
expression for the adherend normal forces depends solely on c2, c3 and 
c4: 

(
N1(x)
N2(x)

)

=
1
2

(
0 A1 η(1 + χ)A1e− ηx − η(1 + χ)A1eηx

0 A2 − η(1 − χ)A2e− ηx η(1 − χ)A2eηx

)

⎛

⎜
⎜
⎝

c1
c2
c3
c4

⎞

⎟
⎟
⎠ (7) 

The length of the overlap is denoted 2c. Considering that the normal 
force of adherend 2 is equal to 0 in x=0 and is equal to f in x=2c, as well 
as that the global equilibrium relationship N1+N2=f for every x, the 
expressions for c2, c3 and c4 are: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

c2 = (1 + χ) f
A2

c3 =
1
η

1 + ξe2ω

4 sinh 2ω
f

A2

c4 =
1
η

1 + ξe− 2ω

4 sinh 2ω
f

A2

(8)  

where: 

ω= ηc =

̅̅̅̅̅̅̅̅
G2bc

e

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

1+ξ
E22be2

c

√ (9) 

The expression for the adhesive shear stress as a function of the 
average shear stress along the overlap <T > 2c = Tav=f/(2b.2c) requires 
c3 and c4 only to be established and is such as: 

T =
ω

1 + ξ

(
1 + ξe2ω

2 sinh 2ωe− ηx +
1 + ξe− 2ω

2 sinh 2ωeηx
)

Tav (10) 

As expected, the displacement field given in Eq. (3) is known within 
the constant c1. In the case of the single-lap bonded joint, the longitu-
dinal displacement of adherend 1 in x=0 is equal to (f/A1)l1, so that: 

u1(0)=
f

A1
l1=

1
2
[c1 − (1+χ)(c3+c4)]⇒c1=

[
2ξl1

c
+

ξ
1+ξ

(
1+ξcosh2ω
2ωsinh2ω

)]
f

A2
c

(11)  

where l1 is the length of the adherend 1 outside the overlap. 

2.1.3. Particular results 
Stiffness. Owens and Lee-Sullivan [9] provided a semi-analytical 

approach for the determination of the stiffness of single-lap bonded 
joints. This model is inspired by the model for the assessment of bolt load 
transfer rate developed at NACA in the 1940s [6–8]. Indeed, the bonded 
overlap is regarded as the series of elementary cells, each composed by 
one spring representing each of both adherends and two springs for the 
adhesive layer. The relative displacement of each elementary cell is 
computed using the Adams and Peppiatt [10,11] simplified 1D-bar 
analysis of bonded joints, which includes adherend shearing. In 2004, 
Xiao et al. [12] provided an analytical formula for the stiffness of a 
double-lap joint, allowing out-of-plane displacement to be neglected and 
assuming a constant shear strain along the bonded overlap. The 
deformability of adherends then appears negligible (Fig. 1(b)). In 2018, 
Li et al. [13] derived an analytical formula for the stiffness of quadruple 

bonded overlap taken into account for the elasticity of both the adhesive 
layer and adherends following the model of Arnovljevic or Volkersen. In 
a manner similar to Li et al. and from the given in the previous section 
attached to the shear-lag model of Arnovljevic or Volkersen, the stiffness 
of a single-lap bonded joint can be determined. The relative displace-
ment of the overlap is then written as: 

u2(2c) − u1(0)=

⎡

⎢
⎢
⎣1+

1
2

⎛

⎜
⎜
⎝

2 +

(
1+ξ2

ξ

)

cosh 2ω

2ω sinh 2ω

⎞

⎟
⎟
⎠

⎤

⎥
⎥
⎦

(
ξ

1 + ξ
f

A2

)

2c (12) 

The stiffness of the overlap klap under a tensile load f is then: 

klap =

⎡

⎢
⎢
⎣1 +

1
2

⎛

⎜
⎜
⎝

2 +

(
1+ξ2

ξ

)

cosh 2ω

2ω sinh 2ω

⎞

⎟
⎟
⎠

⎤

⎥
⎥
⎦

− 1

(
1 + ξ

ξ

)(
A2

2c

)

(13) 

The longitudinal displacement of the application point of f is termed 
uf. It represents the total displacement of the joint in the x-direction. As 
uf-u2(2c)= (f/A2)l2, where l2 is the length of the adherend 2 outside the 
overlap, the expression for uf is given by: 

uf =

⎡

⎢
⎢
⎣ξl1 +

ξ
1 + ξ

⎛

⎜
⎜
⎝1+

1
2

⎛

⎜
⎜
⎝

2 +

(
1+ξ2

ξ

)

cosh 2ω

2ω sinh 2ω

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠2c+ l2

⎤

⎥
⎥
⎦

(
f

A2

)

(14) 

The stiffness of the joint, quoted kjoint, is then given by: 

kjoint =

⎡

⎢
⎢
⎣

ξl1 + l2

2c
+

ξ
1 + ξ

⎛

⎜
⎜
⎝1 +

1
2

⎛

⎜
⎜
⎝

2 +

(
1+ξ2

ξ

)

cosh 2ω

2ω sinh 2ω

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠

⎤

⎥
⎥
⎦

− 1

(
A2

2c

)

(15) 

These formulae allow the creation of a simple model of the single-lap 
joint with simple springs. There is only one spring if kjoint is used or 3 
springs if klap is used, as illustrated in Fig. 4. 

Load transfer and adhesive stress. The shear-lag model solution 
shows that the load transfer is not uniformly distributed along the 
overlap (Fig. 2(a)). Adhesive peak shear stresses are located at both 
overlap extremities with values given by: 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

T(0) =
ω

1 + ξ

(
1 + ξ cosh 2ω

sinh 2ω

)

Tav

T(2c) =
ω

1 + ξ

(
cosh 2ω + ξ

sinh 2ω

)

Tav

(16) 

This means that the load transfer is more intense at both overlap 
extremities. It is useful to note that the area under the shear stress dis-
tribution along the overlap is equal to the tensile flow φ = f/2b to be 
transferred by the bonded joint; this result comes from the integration 
along the overlap length of the local equilibrium equation of adherends 
in Eq. 1. 

In the case where the joint is balanced, meaning that both adherends 
have a membrane stiffness (ξ = 1), the adhesive shear stress distribution 
is symmetrical with respect the centre of the overlap (see Fig. 5). The 
values of the stress peaks are the same, such that the ratio between the 
maximal stress Tmax with the average shear stress reads: 

Tmax

Tav
=

ω
tanhω (17) 

The parameter ω drives the adhesive shear stress distribution along 
the overlap. It is formed by the ratio between a term relative to the 
adhesive layer shear stiffness with a term relative to the membrane 
stiffness of both adherends. For a prescribed average applied shear stress 
Tav, the maximal adhesive shear stress Tmax is a strictly increasing 
function of ω. When ω tends towards 0 (e.g. flexible adhesive layer) Tmax 
tends towards Tav, meaning that the shear stress distribution tends to be 
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uniform along the overlap leading to a linear distribution of the load 
transfer from 0 to f. The Thick Adherend Shear Test (ISO 11003-2:2019) 
[14], aims to provide an experimental measurement of the adhesive 
shear stress strain curve and of an adhesive critical shear stress Tc, which 

benefits from this behaviour at small ω. When ω tends towards infinity 
(e.g. rigid adhesive layer) Tmax tends towards infinity. If it is assumed 
that a failure criterion for the adhesive layer consist in ensuring that 
Tmax is lower than Tc, it is not possible to indefinitely stiffen the joint 

Fig. 4. Spring models of a single-lap bonded joint.  

Fig. 5. Normalized shear stress as a function of normalized abscissa in the case of a balanced joint. The maximum shear stress from the Arnovljevic or Volkersen 
model (Eq. (17)) is taken to normalize the shear stress distribution. Parameters used: e1 = e2 = 2 mm, 2c = w = 25 mm, E1 = E2 = 70 GPa, ν1 = ν2 = 0.33, G/e =
11950 MPa mm− 1, f = 5 kN. 
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without leading to the failure of this latter. Moreover, from the equation 
Eq. (17), Volkersen [15] showed that the critical tensile flow to be 
transferred at failure quoted φc=fc/2b, is given by: 

φc =
f c

2b
= 2

tanhω
η Tc (18)  

where fc is the critical load. The critical tensile flow appears to increase 
strictly with the overlap length 2c and is bounded by 2Tc/η. In other 
words, the increase in overlap length increases the load level, which can 
be transmitted up to a fixed asymptotical value. 

2.1.4. Enrichment of the model 
Combined mechanical and thermal loading. In the 1970s, Hart- 

Smith [16] enriched the 1D-bar model by considering a combined 
thermal and mechanical loading. In 1979, Chen and Nelson [17] pro-
vided a solution under the shear-lag approach of a three-layer assembly 
submitted to a pure thermal loading. The thermal expansion of 

adherends may lead to additional adhesive shear stress if these adher-
ends have different thermal expansion coefficients. If adhesive thermal 
expansion is neglected and under uniform temperature variation ΔT, the 
expression for the adhesive shear stress takes the following shape:  

where αi is the thermal expansion coefficient of the adherend i and ξα =
α2/α1. This solution highlights the particular shapes of adhesive shear 
stress distribution. If both adherends are the same, then the adhesive 
shear stress distribution takes the shape of hyperbolic cosine. Moreover, 
the contribution due to the temperature variation vanishes. If the 
adherends are not the same, with or without temperature variation, the 
adhesive stress consists of a linear combination of hyperbolic cosine and 
hyperbolic sines. When the mechanical loading vanishes, only the hy-
perbolic sine component remains, ensuring an area under the adhesive 
shear stress distribution equal to zero. 

Adherend shear stress. In 1998, Tsaï et al. [18] introduced in the 
1D-bar model a linear variation of the shear stress through the adherend 

Fig. 6. Kinematics, parameterization and local equilibrium of the single-lap bonded joint under 1D-bar modelling with a linear shear stress through the adher-
end thickness. 

T =
ω

sinhωTav cosh
(

ω
[x
c
− 1
])

+
η

2b
1

coshω

⎡

⎢
⎢
⎣

(
1
2
−

ξ
1 + ξ

)

f +

(

1 − 1
ξα

)

1 + ξ
A2α2ΔT

⎤

⎥
⎥
⎦sinh

(
ω
[x
c
− 1
])

(19)   
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thickness. The longitudinal displacement field is not constant through 
the thickness anymore, but rather parabolic (Fig. 6). The solution by Tsaï 
et al. is obtained from the that of Arnovljevic or Volkersen [4,5] by 
simply correcting the adhesive shear modulus value with a correction 
factor 1/(1+κ) such as: 

G→
1

1 + κ
G (20) 

with: 

κ=
1
3

(
e1

G1
+

e2

G2

)

(21)  

Where Gi is the shear modulus of the adherend i. The adhesive shear 
stress then tends to be reduced compared to the initial shear-lag model 
(Fig. 5). The more the adhesive shear modulus is elevated, the more the 
reduction is significant. It should be noted that this simple modification 
can be applied to derive the related expressions for joint stiffness or 
adhesive shear stress under a combined mechanical and thermal 
loading. Besides, Demarkles [3] also assumed a linear variation of the 
shear stress through the thickness. The correction factor employed by 
Demarkles is 1/(1+3κ/2) instead of 1/(1+κ). On the one hand, Tsaï et al. 
computed the adherend normal force from a normal stress which is not 
constant through the adherend thickness, since it is obtained from the 
displacement field after integration of the adherend shear strain. On the 
other hand, Demarkles kept the normal stress as constant through the 
thickness leading to the difference between correction factors. 

Based on Demarkles’ approach, Adams and Pepiatt [10] considered 
the Poisson effect in the adherends on the adhesive shear stress and 
provided the expressions for the transverse shear stress induced by 
adherend Poisson strain. A closed-form solution is provided for a 
simplified governing set of ODEs, while it is indicated that a resolution 
scheme based on finite difference can be employed to solve the exact set 
of ODEs. Finally, Suhir [19–21] provided analytical formulae for the 
interface shear stress distribution of a multi-layered thermoset subjected 
to uniform temperature variation. The approach is based on the bimetal 
effect, for which the interface has it owns compliance, creating an 
additional normal strain at the interface dependent on the applied 
interface stress. The interface compliance is related to the Ribière so-
lution for the longitudinal displacement field in a narrow strip subjected 
to a shear stress at the interface [22]; this solution is expanded in trig-
onometric series. In other words, the use of the Suhir approach allows 
for the inclusion of shear stress through the adherend thickness. When 
an adhesive layer owing its own interface compliance is taken into ac-
count, the shear correction factor is 1/(2/3+κ) [21]. 

2.1.5. Concluding remarks 
The shear-lag model is likely not sufficiently complex to take into 

account the local behaviour of adherends and adhesive. The free edge of 
the adhesive layer is free from stress, so that the adhesive shear stress 
should vanish at both overlap ends instead of being the location of 
maximal stresses according to the 1D-bar analysis. The restrictions 
assumed on the stress tensors of adherends and of the adhesive do not 
allow for the representation of the physical stress state at both overlap 
ends [23,24]. These areas are subjected to high stress gradients, which 
promote the initiation then nucleation of micro-cracks and crack prop-
agation. Moreover, according to Hart-Smith [16], the cohesive strength 
of the adhesive layer depends on its ability to deform by shearing. The 
choice of an elasto-plastic adhesive material would serve to increase the 
level of tensile flow to be transferred. In such a case, a nonlinear analysis 
associated with a dedicated resolution scheme could be more suitable. In 
addition, the strength of the adhesive layer is restricted by the presence 
of adhesive peeling stresses as shown by Hart-Smith [16,25]. The ad-
hesive peeling stress arises from the eccentricity of the load path 
inducing the bending of adherends. To account for the peeling stress in 
the case of a single-lap joint under tension, in-plane and out-of-plane 

displacements must be introduced into the set of hypotheses. 

2.2. More representative kinematics 

2.2.1. Goland and Reissner’s model 
In 1944, Goland and Reissner [26] provided an analytical solution 

for the adhesive shear and peel stress along the overlap as well as a 
methodology for deriving the solution. In the case of relatively flexible 
joints, the hypotheses are as follows:  

i. Quasi-static loading;  
ii. Homogeneous linear elastic materials; 

iii. The adherends are seen as Kirchhoff-Love plates undergoing cy-
lindrical bending;  

iv. The adhesive layer is seen as a homogeneous elastic foundation 
with two parameters associated with shearing and peeling, link-
ing both adherend interfaces;  

v. The geometrical parameters are constant. 

Contrary to the shear-lag model, the adherends must be the same in 
terms of membrane and bending stiffnesses. Another limitation is that 
the joint has to be simply supported at both extremities, leading to a 
statically determinate configuration to solve (Fig. 7 and Fig. 8). Here-
after, we have chosen to explain the Goland and Reissner model by 
modifying the third hypothesis by “the adherends are seen as Euler- 
Bernoulli rectangular beams”. This choice only implies (i) to consider 
the adherend bending stiffness Dr = D1 = D2 = Erer

3w/12 instead of 
Erer

3/12/(1- νr
2), where Er is the adherend Young’s modulus, er is the 

adherend thickness and νr is the adherend Poisson’s ratio and (ii) to 
work in force f instead of in flow φ=f/w. As a result, there is no loss of 
generalities. 

The methodology presented by Goland and Reissner consists of a first 
step determining the shape of adhesive shear and peel stress as a func-
tion of integration constants by analysing the bonded overlap, termed 
sandwich, and of a second step assessing the integration constants ac-
cording to the external load applied to the sandwich boundary (Fig. 7). 
Similarly to the shear-lag approach, the sandwich analysis starts with 
the constitutive equations and the local equilibrium equations of 
adherends. The governing system of equations then consists of twelve 
first-order ODEs and reads: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dNi

dx
= (− 1)iwT

dVi

dx
= (− 1)i+1wS

dMi

dx
= − Vi − hrwT

dui

dx
=

Ni

Ar

dvi

dx
= θi

dθi

dx
=

Mi

Dr

i = 1, 2 (22a)  

where S is the adhesive peeling stress, h1 = h2 = hr is the half thickness of 
the adherend, A1 = A2 = Ar=Ererw is the adherend membrane stiffness 
and vi, θi, Vi and Mi are respectively the deflection, the bending angle, the 
shear force and the bending moment of the adherend i. Similarly to the 
shear-lag model, the adhesive stresses S and T allow for the coupling of 
the governing system of ODEs in Eq. (22); they are defined by: 
⎧
⎪⎪⎨

⎪⎪⎩

T =
G
e
(u2 − u1 − h2θ2 − h1θ1)

S =
E
e
(v1 − v2)

(23a) 
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where E is the adhesive peel modulus. The adhesive may appear 
confined between two stiffer adherends. Hart-Smith suggests an 
assessment of the peel modulus which includes the transverse tensile 
stiffness of the adherends [16]. The use of the effective Young’s modulus 
under one or two fixed strains is another approach to assess the peel 
modulus [27]. Besides, the mechanical state of the adhesive layer is 
spatially dependent [28]; along the free edges the adhesive layer is in a 
state of plane stress, while being in a plane strain state sufficiently far 
away from the edge. 

Under the hypotheses set by Goland and Reissner, the manipulation 
of the governing system of ODEs leads to seven integration constants. 
These integration constants are then assessed by six equations expressed 
at overlap ends linking adhesive stresses and loads and 1 equation 
related to the load transfer through the adhesive layer. To determine the 
external loads applied to the sandwich, Goland and Reissner assumed 

that the flexibility of the adhesive layer can be neglected, so that the 
joint has a single variable cross-section and neutral line. Moreover, 
Goland and Reissner wrote the equilibrium of this beam in its deformed 
configuration to assess the internal loads. This leads to expressions of 
shear forces and bending moments at both sandwich ends, which depend 
non-linearly on the applied tensile load f. This non-linear dependency is 
included through a bending moment factor kGR such as: 

kGR =
1

1 + 2
̅̅̅
2

√
tanh

(

c
̅̅̅̅̅̅

f
8Dr

√ ) (22b)  

when the length of adherends outside the overlap is sufficiently large. 
The closed-form expression for the adhesive shear and peel stresses is 
then obtained under the following shape:  

Fig. 7. Modelling principle of a single-lap bonded joint under in-plane and out-of-plane kinematics.  

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T =
1
4

⎡

⎢
⎢
⎣3(1 − kGR) + β

c
er
(1 + 3kGR)

cosh
(

βc
er

[x
c
− 1
])

sinh
(

βc
er

)

⎤

⎥
⎥
⎦

(
f

w2c

)

S =

⎡

⎢
⎢
⎢
⎣

(
1
2
R2λkGR + k

′

cosh(λ)cos(λ)
)

cosh
(

λ
[x
c
− 1
])

cos
(

λ
[x
c
− 1
])

+

(
1
2
R1λkGR + k

′

sinh(λ)sin(λ)
)

sinh
(

λ
[x
c
− 1
])

sin
(

λ
[x
c
− 1
])

⎤

⎥
⎥
⎥
⎦

λ
R3

(er

c

)2
(

f
wer

)

(23b)   
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where: 

β =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅

8
G
Er

er

e

√

(24)  

λ =
c
er

̅̅̅̅̅̅̅̅̅̅̅̅̅̅

6
E
Er

er

e
4

√

(25)  

R1 = cosh(λ)sin(λ) + sinh(λ)cos(λ) (26)  

R2 = sinh(λ)cos(λ) − cosh(λ)sin(λ) (27)  

R3 =
1
2
(sinh(2λ) − sin(2λ)) (28)  

k
′

= kGR
c
er

̅̅̅̅̅̅̅̅̅̅̅̅

3
φ

erEr

√

(29) 

An illustration of the distribution along the overlap of the adhesive 
shear and peel stress normalized by the normal tensile stress applied f

erw 

is provided in Fig. 9. Elevated gradients of adhesive peel and shear stress 

are highlighted at both overlap ends. In addition to access to the adhe-
sive peel stress, considering the bending tends to increase the shear 
stress concentration at both overlap ends. Consequently, it is deduced 
that the load appears to be transferred along a very small length at both 
overlap ends. 

2.2.2. Concluding remarks 
Like the shear-lag approach, the Goland and Reissner approach was 

improved to support a linear variation of shear stress through adherend 
thickness by Tsaï et al. [18]. Chen and Nelson [17] analysed a sandwich 
made of two dissimilar isotropic linear elastic adherends under cylin-
drical bending under a pure thermal load; this analysis makes use of the 
Goland and Reissner equilibrium. The solution is presented under 
closed-form but is not ready-to-use since the roots of the ODE charac-
teristic equation are not explicitly given. The Suhir approach can be 
extended to the assessment of interface peel stress using dedicated 
interface compliances [29]. Zhang applied the Suhir approach to a 
three-layer model to take into account the thermal expansion of the 
adhesive layer [30]. Finally, the two-step methodology for the stress 
analysis presented by Goland and Reissner has subsequently been 

Fig. 8. Kinematics, parameterization and local equilibrium of the single-lap bonded joint following under in-plane and out-of-plane kinematics.  
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applied by many authors. 

3. Enrichment of fundamental theories including in- and out-of- 
plane displacements 

The objective of this section is to highlight the restrictions to the 
scope of the closed-form solution when the set of simplifying hypotheses 
is less restrictive to be more representative of the physical reality. This 
section is based on existing theories in the literature. There is no attempt 
here to deliver an exhaustive literature review and the reader can refer 
to dedicated publications [31–35]. 

3.1. Beam or cylindrical bending plate on elastic foundation models 

3.1.1. Analysis of the entire joint 
For this section, the changes in terms of simplifying hypotheses 

compared to the Goland and Reissner model are highlighted. In the 
1970s, Hart-Smith modified the linear elastic approach of Goland and 
Reissner by taking into account the adhesive thickness layer in the local 
equilibrium equation in moment [25]. Contrary to Goland and Reissner, 
both adherends are individually involved in the assessment of the 
bending moment factor allowing for the consideration of the adhesive 
layer shear strain. Moreover, a coefficient is introduced in the expression 
for the adherend bending stiffness to simply represent the eventual 
lamination of adherend materials. Closed-form solutions are obtained 
for the adhesive shear and peel stresses by neglecting the shear forces at 
both overlap ends, meaning that the area under the adhesive peel stress 
distribution along the overlap remains equal to zero. Finally, an 
elasto-plastic adhesive material behaviour is introduced and requires a 
semi-analytical resolution scheme. Ojalvo and Eidinoff [36] modified 
the Goland and Reissner model by considering that the adhesive longi-
tudinal displacement and defection vary linearly through the adhesive 
thickness, while ensuring the compatibility of displacements at both 
interfaces. The presented model leads to a constant peel stress and a 
linear shear stress through the adhesive thickness. In particular, the 
adhesive shear stresses at both adhesive-to-adherend interfaces are not 
the same. A closed-form solution is provided for both the shear and peel 
stresses. In the 1990s, Oplinger [37,38] modified the Hart-Smith anal-
ysis by taking into account for the deflection of the overlap neutral line 
within the assessment of the overlap bending. The shape of the bending 
moment factor is significantly modified. In addition to the closed-form 

solution of the adhesive peel and shear stresses, a new expression for 
the bending moment factor is provided. In 1994, Tsaï and Morton [39] 
confronted the results from the closed-form solutions by Goland and 
Reissner, Hart-Smith and Oplinger with the results of geometrically 
non-linear dedicated FE models. It was shown that the bending moment 
factor by Hart-Smith (Oplinger) is the most suitable for shorter (larger) 
overlap lengths. In addition, they showed that the peel and shear stress 
distributions along the overlap given by Goland and Reissner remain in 
acceptable agreement for short and large overlap lengths. Between 2007 
and 2009, Luo and Tong [40–42] chose a local equilibrium equation of 
adherend – modelled as Euler Bernoulli or Timoshenko laminated 
beams, possibly including the coupling bending membrane stiffness – 
which allows for the coupling of the bending moment with the normal 
forces. By construction, the governing ODEs tends to approximate the 
deformed configuration along the entire joint. For similar adherends, 
closed-form solutions for the adhesive peel and shear stresses are given. 
These solutions are closer to the results from a geometrically non-linear 
FE model than those by Goland and Reissner, Oplinger or Hart-Smith. In 
2009, Wang and Zhang [43] published a three-parameter elastic foun-
dation model allowing for the drop of adhesive shear stress to zero at 
both overlap ends. The adherends can be dissimilar and are modelled as 
Timoshenko isotropic beams. Contrary to the local equilibrium of 
adherends of Goland and Reissner, each of the adherends is subjected to 
a different peel stress at the adhesive interface. Three constitutive 
equations for the adhesive are then used: one for the shear stress and one 
for each of the peel stresses. These constitutive equations are compatible 
with the local equilibrium of the adhesive layer and induce the 
consideration of the adhesive shear force to ensure the global equilib-
rium of the joint. The external loads at the sandwich ends are computed 
as per Cheng et al. [44], who extended the Goland and Reissner 
assessment of the bending moment factor to the case where both 
adherends are dissimilar. The expressions for the adhesive shear and 
peel stresses are analytical but not ready-to-use. As such, a computer 
program is required to reach the results. It is shown that this model al-
lows the adhesive shear stresses to vanish at both overlap ends. 

3.1.2. Analysis of the sandwich 
The determination of external loads at the sandwich may appear 

complicated and require the use of advanced numerical methods such as 
the FE method. Several authors have thus focused on the analysis of the 
sandwich, assuming the external loads to be known. In 1975, Williams 

Fig. 9. Normalized adhesive stress as a function of the normalized abscissa along the overlap following the Goland and Reissner approach. Parameters used: er = e1 
= e2 = 1.6 mm, 2c = w = 25 mm, Er = E1 = E2 = 70 GPa, ν1 = ν2 = 0.33, E/e = 19280 GPa mm− 1, G/e = 6880 MPa mm− 1, f = 3.2 kN. 
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[45] provided a closed-form solution for the adhesive shear and peel 
stresses as a function of external loads at the sandwich end considering 
the Goland and Reissner sandwich with two dissimilar Euler-Bernoulli 
isotropic beams. In 1977, Renton and Vinson [46] assumed two dis-
similar laminated adherends in plane strain and including shear and 
normal strain through the thickness, along with thermal expansion. In 
particular, a parabolic variation of the adherend shear stress is assumed. 
The resolution scheme is semi-analytical and leads to adhesive shear 
stress vanishing at both overlap ends. In 1981, Delale et al. [47] 
considered two dissimilar adherends, possibly laminated and considered 
as Mindlin Reissner plates. The adhesive longitudinal strains were 
considered from the average of adherend longitudinal strains at the in-
terfaces and introduced in the peel strain thanks to the Poisson effect. 
The local equilibrium of Hart-Smith was applied. A closed-form solution 
was provided according to the external loads at the sandwich ends. In 
1989, Bigwood and Crocombe [48] provided the expressions for 
maximal adhesive shear and peel stresses as a function of external loads 
at the sandwich ends made of dissimilar adherends and using the 
Hart-Smith local equilibrium. In 1990, Bigwood and Crocombe [49] 
used a finite difference scheme to numerically solve the set of nonlinear 
equations, assuming the adhesive material to have a nonlinear behav-
iour. From 2004, Högberg [50] then Alfredsson and Högberg [51] 
provided a closed-from solution of adhesive peel and shear stress dis-
tributions as a function of the conditions at the sandwich ends expressed 
in terms of displacement or loads. In their analysis, the adherends were 
dissimilar and seen as Euler-Bernoulli isotropic beams and the Goland 
and Reissner local equilibrium was used. In 2014, Weiβgraeber et al. 
[52] presented a semi-analytical resolution for the adhesive peel and 
shear stress distributions. The adherends were seen as Mindlin-Reissner 
laminated plates including the coupling membrane bending stiffness. 
The local equilibrium of adherends according to Hart-Smith was chosen. 
The same year, a semi-analytical resolution was provided by Liu et al. 
[53] as function of displacement or loads applied at sandwich ends. The 
adherends were dissimilar and modelled as Timoshenko laminated 
beams including the coupling membrane bending stiffness under the 
Goland and Reissner local equilibrium. 

3.2. Plane continuum media models 

The second category of simplified analysis of single-lap bonded joints 
consists of plane continuum media models. Allman [54] and Chen and 
Cheng [55] added the local equilibrium of the adhesive to the local 
equilibrium of adherends. It is assumed that the shear stress remains 
constant through the adhesive thickness. The application of local equi-
librium equation in conjunction with constant adhesive shear stress 
through the thickness leads to a linear variation of the adhesive peel 
stress through the thickness and a normal adhesive stress equal to zero 
along the entire overlap. Consequently, the slope of the adhesive shear 
stress with respect to the overlap length coordinate is equal to the ratio 
between the differences between both peel stresses acting on the 
adherends at the interface divided by the thickness of the adhesive layer. 
Moreover, the normal stress is assumed to vary linearly through the 
adherend thickness and the stresses are continuous at both 
adherend-to-adhesive interfaces. The stress state in the adherends can 
then be expressed as functions of adhesive stresses at the interface and of 
adherend internal load making use of the local equilibrium equations of 
Goland and Reissner. Closed-form solutions in the form of ready-to-use 
equations are provided for the case of the single-lap bonded joint where 
(i) the adherends are similar and (ii) the external loads at the sandwich 
ends are those of Goland and Reissner. To support various geometrical 
and material conditions, a dedicated numerical resolution scheme is 
required, whose presentation is referred to in RAE Tech Report no. 
76024. According to the Allman model, it is found that the adhesive 
shear stresses at both overlap ends vanish. A comparison of adhesive 
peel and shear stress distributions along the overlap according to the 
Goland and Reissner theory and the Allman theory is provided in Fig. 9. 

It is shown that both adhesive peel stress distributions are very close 
each other. Moreover, it is obvious that the adhesive shear stress peaks 
cannot occur at the same location along the overlap. The drop to zero 
stress is characterized by an elevated gradient, so that the peak is slightly 
shifted within the overlap. Finally, both values of adhesive shear stress 
peaks appear as different, considering that the area under the adhesive 
shear stress distribution is set to the applied tensile flow. In 1992, Adams 
and Mallick [56] developed a model under plane stress or plane strain 
for which the adhesive and adherend normal stresses vary linearly 
through the thickness. The adhesive shear stress is thus no longer con-
stant through the thickness. According to Allman, the integration of 
local equilibrium equations associated with the continuity of stresses at 
the adherend-to-adhesive interfaces is performed thanks to a dedicated 
numerical scheme inspired by the FE method and based on a meshing. 
The resolution scheme developed can be introduced into an iterative 
procedure with consideration of nonlinear adhesive material. In 2010, 
Nemes and Lachaud [57] focused on the case of a symmetrical double 
joint neglecting the out-of-plane displacement under plane stress state. 
The adhesive normal stress is assumed to vanish at every point. It is 
imposed that the adhesive and adherend stresses are such as the local 
equilibrium equations, the free edge conditions and continuity at the 
adherend-to-adhesive interface. Application of the complementary 
strain-energy theorem leads to the resolution of a unique fourth-order 
linear ODE whose solution is not provided in closed-form. In 2012, 
Chen and Qiao [58] modelled the adherends as Timoshenko beams and 
the adhesive as a simplified plane continuum medium. It is assumed that 
the adhesive normal displacement varies linearly through the thickness 
similarly to a beam model; it is defined from the normal displacement 
along the adhesive neutral line and the first derivative of the transverse 
displacement, assumed to be dependent on the overlap length coordi-
nate only. The Poisson effect is then neglected. According to Suhir, 
interface compliances are used to write the continuity of displacements 
at both adherend-to-adhesive interfaces. An eighth-order linear ODE is 
then obtained associated with eight boundary conditions expressed in 
terms of internal loads. The roots and integration constants are not 
determined in closed-form manner. Jiang and Qiao [59] in 2015 and Du 
et al. [60] in 2019, improved the Chen and Qiao model by assuming that 
the transverse displacement of the adhesive neutral line is equal to the 
average over the adhesive thickness of transverse displacement. The 
solution is not provided in the form of ready-to-use equations. In 2021, 
Nguyen and Le Grognec [61] enhanced the previous approaches by 
starting from the enrichment of the kinematics within the adhesive layer 
in order to describe the longitudinal stress and its variations along both 
the length and through the thickness of the adhesive joint. So, the 
adherends are represented by Timoshenko beams, and the adhesive 
layer is defined as a 2D continuous medium with polynomial depen-
dence of the displacement fields with respect to the thickness. According 
to the polynomial degree and considering dissimilar adherents, the shear 
stress can drop to zero at both overlap ends. The solution is not however 
provided in the form of ready-to-use equations. Finally, it is indicated 
that some authors attempted to provide approximated – instead of exact 
– closed-form solutions using resolution schemes based on Fourier 
expansion series or Taylor expansion power series (TEPS) such as those 
published in Refs. [62–64] for example. The resulting equations are then 
not ready-to-use. Gilibert and Rigolot [23,24] analysed the mechanical 
behaviour of a symmetrical double-lap bonded joint using an approach 
based on asymptotic expansion-based analysis of the adhesive and 
adherend regarded as elastic continuum media. In such a configuration, 
it is often assumed that the adhesive stress tensor components van be 
neglected compared to the in-plane shear stress component according to 
the Arnovljevic or Volkersen [4,5] model. Using an approach based on 
asymptotical expansions, Gilibert and Rigolot showed that this 
assumption makes sense on a large length of the overlap, while a 
boundary layer effect is highlighted close to the adhesive free edges. In 
this boundary layer, adhesive longitudinal and peeling stresses exist and 
exhibit elevated gradients. Closed-form ready-to-use equations are 
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provided for the adhesive stress distributions. This boundary layer effect 
was also shown by Radice in 2018 [65] through a model – called 
Decoupled Biharmonic model – and focusing on the adhesive layer 
subjected to traction free surfaces and imposed displacement boundary 
conditions. The approach is comprehensively described and asymptoti-
cally satisfied the biharmonic Airy function. The solution is not given in 
the form of closed-form ready-to-use equations and an eight by eight 
linear system must be inverted. Finally, the previous models assume an 
adhesive square end surface over which the traction free conditions are 
applied. It is noteworthy that this ideal condition is difficult to produce 
in real life and a spew fillet, whose shape may be controlled or not, is 
likely present. The presence of spew fillets could lead to an increase in 
the strength of the bonded joints by reducing the amount of stress sin-
gularities at the interfaces with the adherends [66,67]. When the ad-
hesive material is assumed to be elasto-plastic, the ability to 
accommodate the stress by its deformability drives the strength of the 
joint since the stress peaks are clipped and the load transfer is redis-
tributed along the overlap [16,68]. 

3.3. Concluding remarks 

While numerous works have been published since Goland and 
Reissner, the scope of closed-form and ready-to-use solutions is 
restricted. The applications of boundary conditions and the nature of the 
materials to be joined are both difficulties to address when the materials 
are assumed to have a linear elastic behaviour. Dedicated resolution 
schemes are then used to overcome these difficulties applied to a 
particular set of simplifying hypotheses. At the end of the 1990s Mor-
tensen and Thomsen [69–72] provided a semi-analytical approach 
allowing for extension of the scope of the first family of models 
(adherends on elastic foundation) by supporting various boundary 
conditions, loadings and geometries. The adherends are linear elastic 
and are seen as Euler-Bernoulli laminated beams or Kirchhoff-Love 
laminated plates under cylindrical bending, including the Poisson ef-
fect. The adhesive layer is an elastic foundation involving peel and both 

shear deformation modes and possibly with nonlinear behaviours. The 
resolution scheme is based on the multi-segment method of integration 
[73]. 

4. Macro-element modelling 

4.1. Overview 

Macro-element (ME) modelling has been developed since 2004 for 
the simplified stress analysis of HBB joints [74–81]. Applied to pure 
bonded joints, ME modelling is a semi-analytical method extending the 
scope of models belonging to the first family. It offers the advantage of 
providing a solution for geometrical, material and loading configura-
tions for which there are no closed-form solutions [81–93]. As demon-
strated in sections 4 and 5, ME modelling is an attractive approach to 
support the variation and associated growing complexity of simplifying 
hypotheses at low computational cost. In particular, the ME modelling is 
able to support various in-plane force and/or displacement loadings, 
including statically indeterminate ones. A ME is a 4-node brick inte-
grating the assumed physics of the adherends and the adhesive in terms 
of constitutive and local equilibrium equations. Compared to the stan-
dard FE method, ME modelling differs by the formulation methodologies 
involved allowing for model enrichment. To reduce the size of FE 
models, 2D plane stress or strain or 3D special FEs were developed and 
published. These special FEs could represent the adhesive layer [94–99] 
or the adhesive and the adherends [100–104]. These special FEs make 
use of assumed shape functions, such that meshing is required to 
approximate the solution. Contrary to the special FEs and as seen in 
section 4, the ME stiffness matrix does not make use of assumed shape 
functions, so that a single ME is able to model an entire overlap. Like 
standard FEs or special FEs, a ME is represented by a stiffness matrix 
linking the nodal forces to the nodal displacements. Finally, over the 
same period of time and independently of ME modelling, a joint element 
was developed to model the adherends and adhesive within a single 
brick and again without hypotheses on shape function [105–111]. 

Fig. 10. 1D-bar ME model of a single-lap bonded joint.  
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4.2. Shear-lag approach 

4.2.1. Method description 
The objective of this section is to explain ME modelling based on the 

simple frame of 1D-bar analysis. ME modelling consists firstly in dis-
cretizing the single-lap bonded joints with 1 bar elements for each 
adherend outside the overlap and one bonded-bars ME for the sandwich 
(see Fig. 10). The model then consists of a total of six nodes and 6◦ of 
freedom (DoF) since each node counts one DoF per node. From the 
elementary stiffness matrices, the stiffness matrix of the entire joint 
denoted Ks is assembled. Accounting for the boundary conditions, the 
longitudinal displacement of node 1 is prescribed and the tensile force f 
is applied to node 6, leading to the nodal force and displacement vectors 
quoted Fs and Us respectively. Minimization of the potential energy re-
quires the linear system Fs = KsUs to be solved. The elementary stiffness 

matrix Ke of the bonded-bars ME must then be formulated. Contrary to 
the FE method, the shape of ME shape functions is not assumed a priori. 
These functions take the shape of the solution shape of the system of 
governing coupled ODEs. From the computation of Us by solving the 
five-by-five linear system Fs = KsUs, it is then possible to identify the 
integration constants and to assess the expressions for the adherend 
longitudinal displacements and normal forces, along with the adhesive 
shear stress at any point of the single-lap joint (see Fig. 11). 

4.2.2. Formulation ME elementary stiffness matrix 
The formulation of the elementary stiffness matrix of the bonded- 

bars ME is based on the same set as the Arnovjlevic or Volkersen 
model [4,5] (see section 2.1.1). The aim is to determine the linear re-
lationships between the elementary nodal displacement vector Ue and 
the elementary nodal force vector Fe such that Fe=KeUe. Using Eqs (3), 
(5) and (6), the longitudinal displacements can be written as: 

(
u1
u2

)

=
1
2

⎛

⎜
⎜
⎜
⎝

1 x −
2ξ

1 + ξ
e− ηx −

2ξ
1 + ξ

eηx

1 x
2

1 + ξ
e− ηx 2

1 + ξ
eηx

⎞

⎟
⎟
⎟
⎠

C (30)  

where: 

C=

⎛

⎜
⎜
⎝

c1
c2
c3
c4

⎞

⎟
⎟
⎠ (31) 

From these previous expressions for the adherend longitudinal dis-
placements and the adherend constitutive equations in Eq. (1), two 
coupling matrices De

− 1 and Le are written in closed-form:   

Fe=LeC⇔

⎛

⎜
⎝

− N1(0)

− N2(0)

N1(Δ)

N2(Δ)

⎞

⎟
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1
2

⎛
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⎜
⎜
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⎜
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⎝
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A1 η 2ξ
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A1
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A2

0 A1 η 2ξ
1+ξ
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1+ξ

eηΔA1

0 A2 − η 2
1+ξ

e− ηΔA2 η 2
1+ξ

eηΔA2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

C (33)  

where Δ is the length of the ME. The elementary stiffness matrix for the 
bonded-bars ME is then obtained in closed-form by a simple matrix 
product:   

Fig. 11. Nodal displacements and forces associated with the bonded-beams ME.  

C=D− 1
e Ue ⇔ C=
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⎟
⎟
⎟
⎟
⎟
⎟
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⎟
⎟
⎟
⎟
⎠
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⎠ (32)   
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4.2.3. Resolution 
In addition to mechanical loading, a uniform temperature variation 

ΔT is applied such as in the model by Hart-Smith [16] (see section 2.1.4). 
The stiffness matrix of bar elements is in the following form: 

Kbar,i =
Ai

li

(
1 − 1
− 1 1

)

i = 1, 2 (35) 

By adding the loads equivalent to the thermal loading to the nodal 
force vector, the linear system to be solved is written as follows: 

Fs =KsUs ⇔

⎛

⎜
⎜
⎜
⎜
⎝

0
− A2α2ΔT
A1α1ΔT
0
f + A2α2ΔT

⎞

⎟
⎟
⎟
⎟
⎠

= Ks

⎛

⎜
⎜
⎜
⎜
⎝

u[2]
u[3]
u[4]
u[5]
u[6]

⎞

⎟
⎟
⎟
⎟
⎠

(36)  

where:   

and u[i] is the nodal displacement of the node i. ME modelling takes 
then advantage of the flexibility and efficiency of the FE method. In 
particular, any kind of loadings can be easily introduced, including those 
related to statically indeterminate configurations. The vector of inte-
gration constants is not expressed in closed-form. It is computed only 
when the nodal displacements are computed in order to assess the 
adherend longitudinal displacement and normal forces, as the adhesive 
shear stress as well as the stiffness of the entire joint or of the overlap. It 
is not worth saying that a linear variation of the adherend shear stress 
through the thickness following Tsaï et al. [18] can enrich the ME by 
simply adapting the adhesive shear modulus according to section 2.1.4. 
Finally, in the context of the shear-lag approach, the use of ME model-
ling does not seem relevant in the case on an elastic linear analysis due to 
the existence of closed-form and ready-to-use equations. Nevertheless, it 

can be of use in the analysis of more complex configurations such as 
nonlinear material behaviours, geometrical and/or mechanical proper-
ties graduation, multiple-lap joints or HBB joints [74,76,80,82,83,90, 
91]. 

4.3. Beam or cylindrical bending plate 

The consideration of in- and out-of-plane displacement, which is 
more representative for the mechanical behaviour of a single-lap joint, 
highlights the benefits of ME modelling. This section concerns the 
methodologies developed to formulate the elementary stiffness matrix of 
the bonded-beams ME. It is indicated that the aim of this review paper is 
not to provide the mathematical details, which can be found in the 
related papers. 

4.3.1. Initial methodology 
The first formulation of the elementary stiffness matrix of the bonded- 

beams ME provided in Refs. [74,75,77] assumed two similar linear 
elastic adherends. The formulation for the bonded-beams ME with dis-
similar laminated adherends was published from 2011 [79,81–85]. The 
initial methodology employed for the formulation focuses on 
closed-form equations, as for the bonded-bars ME. The key point of this 
methodology is the ability to write the expressions for adhesive shear (T) 
and peel (S) stress. However, contrary to the shear-lag approach and 
considering the literature review given in section 3, the components of 
the elementary stiffness matrix cannot be provided in closed-form 
expression. The simplifying hypotheses taken are those of Goland and 
Reissner (see section 2.2.1), except for the adherend constitutive re-
lationships, which are regarded as Euler-Bernoulli laminated beams 
including the coupling membrane-bending stiffness. The governing 
system of ODEs is then composed of twelve coupled linear first order 
ODEs: 

Ke =LeD− 1
e =

1
1 + ξ
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Δ
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⎜
⎜
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⎜
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(34)   
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dNi

dx
= (− 1)iwT

dVi

dx
= (− 1)i+1wS

dMi

dx
= − Vi − hiwT

dui

dx
=

Di

Δi
Ni +

Bi

Δi
Mi

dvi

dx
= θi

dθi

dx
=

Bi

Δi
Ni +

Ai

Δi
Mi

i = 1, 2 (37a)  

where, for the adherend i, Di is the bending stiffness, Bi is the coupling 
membrane-bending stiffness, hi is the half-thickness and Δi=AiDi-BiBi∕=0. 
When both adherends are assumed to be dissimilar, the coupling be-
tween ODEs is increased, such that the system of ODEs in T and S reads: 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d3T
dx3 = k1

dT
dx

+ k2S

d4S
dx4 = − k3

dT
dx

− k4S
(38)  

where: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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)]
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e
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Δ1
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Δ2
+
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B1

Δ1
+

B2

Δ2

)]

k3 = w
E
e

[
h1A1

Δ1
−

h2A2
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+

(
B1
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+
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k4 = w
E
e

[
A1
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+
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(39) 

Under the hypotheses of Goland and Reissner, the parameters k2 and 
k3 vanish such that the ODEs in T and S are naturally uncoupled. The 
uncoupling of the governing system of ODEs in Eq (38) requires several 
manipulations associated with an increase in ODE order leading to: 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d6S
dx6 − k1

d4S
dx4 +k4

d2S
dx2 +(k2k3 − k1k4)S= 0

d
dx

[
d6T
dx6 − k1

d4T
dx4 +k4

d2T
dx2 +(k2k3 − k1k4)T

]

= 0
(40) 

The first derivatives of T and S are then the solution of linear sixth 
order ODEs, which has the particularity of being bi-squared. It is then 
possible to obtain the closed-form equations of eigenvalues using the 
Cardano’s method for the assessment of roots of third order polynomial 
expressions. Depending on the Cardano’s discriminant, there are at least 
four possible sets of eigenvalues [85] leading to four different shapes of 
solutions for S and T:   

{
T(x)=K1 sint

′

x+K2 cost
′

x+K3 sins
′

x+K4 coss
′

x+K5er′ x+K6e− r′ x+K7

S(x)=K8 sint′x+K9 cost′ x+K10 sins′x+K11 coss′ x+K12er′ x+K13e− r′ x

(42)  

{
T(x) = K1 sin t′x + K2 cos t′x + K3es′ x + K4e− s′ x + K5er′ x + K6e− r′ x + K7

S(x) = K8 sin t′x + K9 cos t′ x + K10es′ x + K11e− s′ x + K12er′ x + K13e− r′ x

(43)  

where Ki are the thirteen integration constants and r, r’, s, s’, t and t’ real 
numbers. The solutions for T and S given in Eq. (40) are the solutions to 
be considered for all geometrical and material parameters having a 
physical meaning [45,50] when the adherends are dissimilar and 
B1=B2=0. The adherend displacements and internal forces can be 
written as functions of the expressions for adhesive stresses and their 
derivatives as well as polynomial expressions [79,81–85]. In addition to 
the first thirteen integration constants K1 to K13, fourteen new integra-
tion constants appear. The bonded-beams ME, however, has 3 DoFs for 
each of 4 nodes (Fig. 9). As a result, as set of twelve integration constants 
must be identified. The identification is performed by introducing the 
deduced closed-form expressions for adherend displacements, internal 
loads and adhesive stresses in Eq. (38) and particular governing ODEs 
following Högberg [50]. Once the twelve integration constants have 
identified the coupling matrices De

− 1 and Le, then the elementary stiff-
ness matrix Ke = LeDe

− 1 can be assessed. At this stage, a computer code is 
required to assess the components of the previous matrices. It has been 
shown in Refs. [79,81–85] that the stiffness matrix of beam elements 
representing the adherend outside the overlap takes the following shape: 

Kbeam,i=
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i=1,2 (44) 

The procedure should be repeated to determine the elementary 
stiffness matrix of the bonded-beams ME associated with of each of four 
possible adhesive stress solutions given in Eqs (40)–(43). It has been 
shown in Refs. [83,85] that the same approach is applicable if the 
Hart-Smith local equilibrium, or a linear adherend shear stress through 
the thickness according to Tsaï et al. is considered. Only the expressions 
for some constants need to be changed. 

4.3.2. Variation of simplifying hypotheses 
The initial methodology is well-established. However, a significant 

effort in terms of mathematical processing and code implementation is 

{
T(x) = K1esx sin tx + K2esx cos tx + K3e− sx sin tx + K4e− sx cos tx + K5erx + K6e− rx + K7

S(x) = K8esx sin tx + K9esx cos tx + K10e− sx sin tx + K11e− sx cos tx + K12erx + K13e− rx (40a)  

{
T(x) = K1esx sin tx + K2esx cos tx + K3e− sx sin tx + K4e− sx cos tx + K5 sin rx + K6 cos rx + K7

S(x) = K8esx sin tx + K9esx cos tx + K10e− sx sin tx + K11e− sx cos tx + K12 sin rx + K13 cos rx (41)   
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required. In the case where the simplifying hypotheses must be modified 
(see section 3), it could be attractive to use formulation methodologies 
avoiding the previous drawbacks associated with the algebraic manip-
ulation of equations. According to this objective, a methodology based 
on the use of the exponential of matrix is presented in Refs. [85,86]. The 
governing system of ODEs in Eq. (37) can be written under the matrix 
shape dX

dx = A X   

with Xt=(u1 u2 v1 v2 θ1 θ2 N1 N2 V1 V2 M1 M2) the transposed vector of 
unknown functions of the overlap abscissa x. The first six rows of A 

correspond to the adherend constitutive equations and the last 6 rows to 
the adherend local equilibrium. The corresponding fundamental matrix 
of A is quoted ΦA and is defined by its exponential shape ΦA (x) = eA .x. 
Two twelve-by-twelve coupling matrices D’e and L’e are built from the 

relevant extractions of the fundamental matrix assessed at both ME 
extremities in x=0 and x=Δ such as: 

⎧
⎪⎪⎨

⎪⎪⎩

D’e =

(
[Φ𝒜(0)]k=1:6,l=1:12

[Φ𝒜(Δ)]k=1:6,l=1:12

)

L’e =

(
[Φ𝒜(0)]k=7:12,l=1:12

[Φ𝒜(Δ)]k=7:12,l=1:12

) (46)  

where k stands for the row number and l for the column number. The 

coupling matrix De is then obtained by a simple rearrangement of De’ 
lines to be relevant to the sequence of Ue. The coupling matrix Le is 
obtained from Le’ by the same rearrangement and by taking the opposite 
values of matrix components associated with internal loads in x=0 (see 
Eq. (33)). The elementary stiffness matrix of the bonded-beams ME is 
then simply obtained by Ke = LeDe

− 1 via a dedicated computer program. 
It is indicated that the stiffness matrix of beams outside the overlap can 

be formulated following the same method. As a result, when the matrix 
A is written from the chosen simplifying hypotheses, the procedure to 
generate the corresponding elementary stiffness matrix of the bonded- 
beams ME is simple and straightforward [85,86]. For example, 
replacement of the local equilibrium of Goland and Reissner by the one 
of Hart-Smith results in the modification of both moment equations. 
Only the rows k = 11 and k = 12 of A are modified such that:  

where h is the half-thickness of the adhesive layer. Another example 
concerns the replacement of the Euler-Bernoulli beam model by the 
Timoshenko beam model. In a such case, instead of assuming that the 
bending angle is equal to the slope of the deflection, the adherend 
constitutive equation in terms of shear force is used: 

Vi =Hi

(
dvi

dx
− θi

)

i= 1, 2 (47)  

where Hi is the shear stiffness of adherend i. It is then sufficient to 
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(45)   

⎧
⎪⎪⎨

⎪⎪⎩

𝒜11,l =

(
G
e

2b(h1 + h) −
G
e

2b(h1 + h) 0 0
G
e

2bh1(h1 + h)
G
e

2bh1(h1 + h) 0 0 − 1 0 0 0
)

𝒜12,l =

(
G
e

2b(h2 + h) −
G
e

2b(h2 + h) 0 0
G
e

2bh2(h2 + h)
G
e

2bh2(h2 + h) 0 0 0 − 1 0 0
) (46a)   
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replace the rows k = 3 and k = 4 of A are replaced by: 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

𝒜3,l =

(

0 0 0 0
1
Н1

0 0 0
1
Н1

0 0 0
)

𝒜4,l =

(

0 0 0 0
1
Н2

0 0 0
1
Н2

0 0 0
) (48) 

To account for the nonlinear bending moment induced by the ec-
centricity of the load path, a simple approach consists in modifying the 
length li outside of the overlap by Ref. [71]: 

l
′

=
1

1
kM

− 1
c (49)  

where kM is the bending moment factor corresponding to the chosen 
theories (see section 3). Another idea is to implement a ME model cor-
responding to the theory of Luo and Tong, coupling the adherend normal 
force and bending moments. The system matrix A then depends on the 
applied tensile force f to be transferred and is such as:  

where h+ = h1+h2 et h- = h1-h2. It thus becomes simple to compute Ke 
when the simplifying hypotheses, which induce a system of linear first 
order ODEs coupled by the elastic foundation representing for the ad-
hesive layer, vary. However, due to the construction of this formulation 
methodology, the results are read only at the extremities of the overlap, 
since the shape of adherend displacement and internal forces, along with 
adhesive stresses, are not explicitly determined. As a result, the dis-
cretization of MEs must be employed if a distribution of results along the 
overlap is expected. It should be noted that the formulation based on the 
exponential of matrix was also applied to a multiple-lap joint [89]. It is 
obvious that the consideration of an unspecified number of adherends 
bonded by adhesive layers increases the mathematical processing of the 

governing system of ODEs. By using this formulation methodology, the 
complexity is confined only to the implementation of the computer 
program supporting an unspecified number of adherends. Nevertheless, 
a light dependency on the discretization has been reported. This de-
pendency is not expected and is related to the numerical assessment of 
the exponential of the matrix system A . 

Finally, another formulation methodology based on the use of the 
Jordan form was published in 2019 [88]. An initial pre-processing of the 
governing system of first order ODEs is required to obtain a consistent 
system of higher order ODEs in adherend displacement. Like the expo-
nential method, the governing system is written under a matrix system 
A such that dX/dx = A X. The use of the Jordan normal form causes the 
system to be rewritten as dZ/dx = JZ with Z = P− 1X. P is an invertible 
matrix such that J = P− 1A P, where J is the Jordan normal form. The 
Jordan matrix generation relies primarily on the eigenvalues and ei-
genvectors determination. The number and size of Jordan block are 
respectively determined by the geometric multiplicity and the nilpo-
tence degree of each eigenvalue. The solution of the initial governing 

system can be expressed as X = PeJxC, where C is the integration con-
stants vector. This resolution method offers the ability to express the 
solution shape of the adherend displacements and internal forces in 
terms of closed-form but not-ready-to-use equations, such that the re-
sults can be obtained at any point without any discretization. 

4.3.3. Exemplification on properties graduation 
The deformability of adherends and adhesive layer leads to peak 

stresses at the overlap ends (see section 2), such that the load is mainly 
transferred on a small length compared to the overlap length. A design 
based on a graduation of mechanical and/or geometrical properties of 
adherends and/or adhesive could help reduce peak stresses and ho-
mogenize the load transfer gradient. For example, the tapering of 
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adherend squared edges allows for a progressive increase in the neutral 
line lag and bending stiffness, leading to a reduction in adhesive peel 
stress [112,113]. While the mechanical and/or geometrical properties 
depend on the overlap abscissa x, however, the governing system of 

ODEs involves constants depending on x. A solution is to use the ME 
modelling involving a discretization of ME with homogeneous proper-
ties. In such a case, the gradient of properties is approximated by a 
stepped function. In the context of a 1D-bar ME model, simple 

Fig. 13. Adhesive shear stress distribution along the overlap from the 1D-beam ME and FE 3D FE model of an unbalanced single-lap bonded joint (the worst case 
tested in Ref. [87]). 

Fig. 12. ME and simplified FE model using homogeneous properties for a single-lap bonded joint involving a symmetrical parabolic distribution of the adhesive shear 
modulus submitted to combined thermal and mechanical loading. 
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discretization is sufficient, whereas an additional neutral line lag man-
agement step is required for a 1D-beam ME model involving a gradua-
tion of the adherend and/or adhesive thickness. By assuming the 
continuity of adhesive stresses, kinematic relationships can be written at 

the junction between two successive MEs. For example, the master-slave 
method allows for the introduction of these kinematics constraints 
through the application of a reduction matrix. It is indicated that the 
representation with a beam model of abrupt variations of neutral line 

Fig. 14. Adhesive peel stress distribution along the overlap from the 1D-beam ME and FE 3D FE model of an unbalanced single-lap bonded joint (the worst case 
tested in Ref. [87]). 

Fig. 15. Scheme and parameterization of single-lap HBB joints with n fastener lines subjected to a tensile force to be transferred.  

Fig. 16. Load transfer distribution along the overlap for pure bonded and HBB joints.  
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and/or cross-section areas could lead to numerical results far removed 
from the observable physical reality. 

In this paper, the use of ME modelling is exemplified on the gradu-
ation of adhesive properties based on [85,86]. Recently, some simplified 
stress analyses associated with semi-analytical resolution schemes were 
published [85,114–116]. The resolution schemes are based on the TEPS, 
mathematical tool already used by Hart-Smith for the case of stepped or 
scarfed joints [112]. A 1D-beam ME model based on a discretization of 
MEs with homogeneous properties for a single-lap bonded joint with a 
symmetrical parabolic evolution of the adhesive shear modulus is 
illustrated in Fig. 12. It is assumed that the adhesive Poisson ν ratio 
remains constant such that the adhesive peel modulus is obtained by 
multiplying the adhesive shear modulus by 2(1+ν) at each abscissa x. 
The adherends have the same thickness but are not made from the same 
materials. It is emphasized that the approach presented is not restricted 
to this particular graduation shape. The single-lap joint is subjected to 
combined thermal and mechanical loading. As for the 1D-bar ME anal-
ysis, thermal loading is introduced through an elementary equivalent 
nodal vector Fe,th given by Refs. [79,81–85]:  

where NΔT
i and MΔT

i are respectively the normal force and the bending 
moment in the adherend i due to a uniform target temperature variation 
ΔT. Their expressions are as follows: 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

NΔT
i = w

∑ni

pi=1
Qi

pi αpi
i
(
hpi − hpi − 1

)
ΔT

MΔT
i =

w
2
∑ni

pi=1
Qi

pi α̂pi
i

(
hpi

2 − hpi − 1
2)ΔT

i = 1, 2 (52)  

where, for a laminated adherend with pi plys, each ply has a reduced 
modulus along the x-axis Qpi

i , at thickness hpi − hpi − 1 and αpi
i as thermal 

expansion coefficients. If the laminated adherend has a mirror symme-
try, then Bi = 0 and MΔT

i = 0 . 

In [86], the ME model results are compared to the results obtained 
with a simplified FE model. The simplified FE model is designed to be 
based on the same hypotheses as those of the ME model. The objective of 
this model is to validate the ME formulation and the associated com-
puter program, since the same hypotheses should give the same results. 
The formulation based on the exponential of matrix is applied to 
formulate the elementary stiffness matrix (see section 4.3.2). For a 
geometrically linear 1D-beam analysis, the ME relevant to the 
Hart-Smith (Goland and Reissner) model is chosen if the geometrical 
influence of the adhesive layer is (not) taken into account. The ME 
relevant to the Luo and Tong model is applied when the FE analysis is 
geometrically nonlinear. After a convergence study on the number of 
elements for both the FE and ME models, it is shown that the maximum 
relative difference with the FE results on maximum adhesive stresses is 
lower than 1.1% under 1D-beam geometrically linear analysis. It is 
indicated that these relative differences drop to 0.60% when the adhe-
sive properties are homogeneous. These values lead to the validation of 
the ME model. It should be noted that the same validation work was 
performed under 1D-bar analysis in Ref. [86]; a maximum relative dif-

ference with the FE results on maximum adhesive shear stresses lower 
than 0.32% (0.01%) is obtained when the adhesive properties are 
graduated (homogeneous). Moreover, it was shown that an overlap 
length, minimizing the maximum adhesive shear stress, exists. Besides, 
when geometrically nonlinear 1D-beam analyses are run, the ME model 
makes use of the ME formulated following the Luo and Tong model 
involving an approximation of large displacements (see section 4.3.2). It 
is interesting to note that the ME model based on the Luo and Tong 
approach leads to small relative differences without any iterative pro-
cedure. Moreover, an evaluation of the ME model results compared to 
refined 3D models is presented in Ref. [86]. Brick elements (cohesive 
elements) are used for the adhesive layer in the FE model if it is decided 
(not) to take into account the geometrical presence of the adhesive 
thickness. The maximum relative differences fall between 0.82% and 
7.88% for the maximum adhesive shear stress and between 1.36% and 
17.5% for the adhesive peeling stresses, depending on the tested cases. 

Fig. 17. Adhesive shear stress distribution along the overlap for pure bonded and HBB joints.  

Fe,th
t =( − NΔT

1 − NΔT
2 NΔT

1 NΔT
2 0 0 0 0 MΔT

1 MΔT
2 − MΔT

1 − MΔT
2 ) (51)   
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No significant influence of the graduation of adhesive properties on the 
relative differences was shown. The maximum relative difference is 
obtained when the adhesive physical thickness is subjected to a 
geometrically nonlinear analysis. To illustrate the comparisons per-
formed in Ref. [87], the distribution of the adhesive shear and peel stress 
along the overlap coming from the 1D-beam ME and 3D FE analyses are 
provided in Fig. 13 and Fig. 14. The worst case in terms of relative 
difference in peel stress among the tested cases in Ref. [87] is chosen. 
This corresponds to an unbalanced single-lap joint under pure me-
chanical loading and involving a symmetrical parabolic graduation of 
the adhesive peel and shear modulus. The adhesive layer is modelled in 
the 3D FE model with brick elements and the adhesive stresses are 
measured at the middle of the adhesive layer. The FE analysis is 
geometrically nonlinear. To approximate the tested configuration, the 
1D-beam ME is based on the Luo and Tong local equilibrium, in which 
the adhesive thickness is taken into account in the bending moment 
equation following Hart-Smith. 

Finally, in 2020, a formulation methodology based on TEPS was 
presented [90,91]. The unknown adherend displacements are expanded 
in power series. An initial solution is to consider the governing system of 

first order ODEs as for the formulation using the exponential of matrix 
(see section 4.3.2). In this case, the adherend internal loads are then 
expanded in power series too. A second solution requires the 
pre-processing of ODEs to determine a system of higher order ODEs in 
the adherend displacement only, as for the formulation based on the 
Jordan form (see section 4.3.2). In this case, the expansions in power 
series of adherend internal loads are deduced from those of displace-
ments using the constitutive equations. In both cases, the set of ODEs 
lead to recursive equations whose unknowns are the series terms. The 
adherend nodal displacements and internal loads can then be written as 
functions of the unknown series terms. After truncating the series to an 
order N, coupling matrices depending on N De

− 1(N) and Le(N) can be 
written, leading to the elementary stiffness matrix Ke(N) as a function of 
the order of truncation. A convergence study of the truncation order is 
then required to determine a suitable value for N. This methodology 
allows for the formulation of the elementary stiffness matrix of bon-
ded-bars and bonded-beams ME including the graduation of the adhesive 
properties, which is expanded in power series. When the adhesive 
properties are expanded in power series, series products appear and are 
handled thanks to the Cauchy product, then allowing the treatment of 

 ωωωω

fail-safe waiting fail-safe

Fig. 18. Total bolt load transfer in a two-fastener lines HBB joint made of similar adherends as a function of ω. The dashed lines clearly highlight the three different 
working regions, based on the authors’ specific choice of bolt load transferred. 

 

Fig. 19. ME model for a single-lap HBB joint with three lines of fasteners.  
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the nonlinearity in the ODEs induced by the graduation of adhesive 
properties. In other words, when including a graduation of adhesive 
properties, the ME model with TEPS formulation-based ME requires only 
one ME for the entire overlap. In 2021, this formulation was extended to 
multiple-lap joints involving graduated mechanical and/or geometrical 
parameters under 1D-beam and cylindrical bending plate following 
Mortensen and Thomsen [117]. In particular, for the case of the 
1D-beam multiple-lap joint, the formulation based on TEPS is no longer 
dependent on discretization, contrary to the formulation based on the 
exponential of matrix. 

5. Application to hybrid (bolted/bonded) joints 

5.1. Shear-lag approach 

A single-lap HBB joint with n fastener lines subjected to a tensile 
force to be transferred is under consideration (see Fig. 15). For n fas-
teners, there are n+1 bonded bays located between dj-1 and dj, where dj 
(j = 1..n) is the abscissa at which the jth fastener is located, d0 = 0 and 

dn+1 = L. In addition to the simplifying hypotheses of the shear-lag 
model for bonded joints following Arnovljevic or Volkersen (see sec-
tion 2.1.1), it is assumed that the fasteners are linear elastic and 
modelled by a shear spring connecting both adherend neutral lines. The 
previous hypotheses for the fasteners correspond to those used within 
the models developed at NACA after the Second World War [6–8] (see 
section 1). A semi-analytical resolution scheme based on the integration 
of the governing system ODEs was presented in Refs. [74,76,78,80]. 

The method consists in analysing each bonded bay following the 
model by Arnovljevic or Volkesersen. The normal force on the jth 
bonded sandwich of adherend 2, quoted N2,j is then expressed as: 

N2,j = c2j− 1e− ηx + c2jeηx +
ξ

1 + ξ
f j = 1..n + 1 (53)  

where c2j-1 and c2j (j = 1..n+1) are integration constants. As a result, a 
total of 2*(n+1) integration constants must be identified. By assuming 
(i) the continuity of the adhesive stresses at fastener lines, (ii) the load 
transferred by each fastener, and (iii) the values of the normal force in 
adherend 2 in x = 0 and x = L, n + n+2 = 2*(n+1) equations are 
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Fig. 20. Fastener ME under 1D-beam analysis.  

Fig. 21. Normalized load as a function of total specimen displacement measured experimentally and simulated by a 1D-beam ME and 3D FE model. The picture 
denoted 1 represents the longitudinal strain along the load direction measured by stereo-correlation and simulated by a 3D FE model. The pictures denoted 2 and 3 
represent the deflection measured by stereo-correlation before and after the first load peak. 
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obtained. The following linear system is then deduced: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c1 + c2 = −
ξ

1 + ξ
f

e− ηdj c2j− 1 − eηdj c2j − e− ηdj c2j+1 + eηdj c2j+1 = 0 j = 1…n
(
1 − φj

)
e− ηdj c2j− 1 +

(
1 + φj

)
eηdj c2j − e− ηdj c2j+1 − eηdj c2j+1 = 0 j = 1…n

c2n+1 + c2n+2 =
1

1 + ξ
f

(54)  

where: 

φj =Cj
e
G

η
w

j = 1…n (55) 

and Cj is the fastener stiffness of the jth fastener. Numerous fastener 
stiffness formulae exist, such as for example [7,118–120]. The bolt load 
transfer rate of the jth fastener is denoted τj and is given by: 

τjf =φj
(
− c2j− 1e− ηdj + c2jeηdj

)
j= 1…n (56) 

Needless to say, a linear variation of the adherend shear stress 
through the thickness following Tsaï et al. [18] can be introduced 
adapting the adhesive shear modulus following section 2.1.4. 

For illustrative purposes, the normalized load transfer distribution 
along the overlap for a pure bonded, pure bolted and HBB joint made of 
similar adherends and having the same overlap length is provided in 
Fig. 16. For pure bonded and HBB joints, the distributions of adhesive 
shear stress divided by the maximum adhesive shear stress of the pure 
bonded configuration is provided in Fig. 17 along the overlap length. 
Two lines of fasteners are considered for the bolted and HBB joints. The 
load transfer mode is then both continuous along the bonded bay and 
discrete at the fastener lines. The presence of the adhesive layer allows 
the load transferred by the fasteners to be reduced. Consequently, the 
bearing stress and fastener shear stress are also reduced. The net-section 
stress at the fastener hole is reduced due to the load transferred by the 
adhesive between the overlap end and the fastener. As a result, while the 
adhesive layer sustains the load without cracking, the static strength of 
the HBB joint is expected to be higher than the one of the pure bolted 
joint. For the HBB joint, the adhesive shear stress distribution along the 
overlap is continuous along the overlap, with singularities at the fastener 
locations, due to the discrete load transfer. The area under the adhesive 
shear stress curve is equal to the tensile flow transferred by the adhesive: 
it means (1-τ1-τ2)φ. The maximum adhesive shear stress in the HBB joint 
is then lower than in the pure bonded joint, while remaining located at 
both overlap ends. 

The linear system in Eq. (54) can be solved analytically leading to 
closed-form and ready-to-use equations for bolt load transfer rates, and 
maximum adhesive stresses under specific conditions. For example, for 
the case of an HBB joint with two similar fasteners (having the same 
stiffness C1=C2=CF), made of two similar adherends and such d1 = L-d2: 

τ1f = τ2f =
1
2

r + q
reηd1 − qe− ηd1

ηCF

G
e
w

f (57)  

where: 

r= − 1+ coshη(L − 2d1) − (1+φ1)sinhη(L − 2d1) (58)  

q= 1 − coshη(L − 2d1) + (1 − φ1)sinhη(L − 2d1) (59) 

The closed-form solution for the maximum shear stress is: 

Tmax =
1
2

reηd1 + qe− ηd1

reηd1 − qe− ηd1
ηφ = ω reωd1

c + qe− ωd1
c

reωd1
c − qe− ωd1

c

Tav (60) 

Thanks to the model presented, it is possible to quickly perform in-
fluence studies of the design parameter on the load transfer shared be-
tween the fasteners and the adhesive layer. For example, the influence of 
the parameter ω on the total load transferred by the fasteners can be 
drawn (Fig. 18). It is reminded that ω represents the ratio between the 
adhesive shear stiffness with the membrane stiffness of both adherends 
(see section 2.1.2, Eq. (9)). Without limiting the generalities of the ob-
servations made, the curve given in Fig. 18 is related to an HBB joint 
with fastener lines, for which the mechanical and material properties are 
fixed, with the exception of the adhesive shear modulus, which varies 
allowing for the variation of ω. When the adhesive shear stiffness is 
significantly lower before the adherend membrane stiffness (very low 
ω), the fasteners mainly transfer the load, such that the HBB joint be-
haves like a pure bolted joint. A bolted-sealed joint may be an example. 
When the adhesive shear stiffness cannot be neglected due to the 
membrane stiffness of the adherend (ω close to 1), the load is transferred 
by the adhesive layer, such that the HBB joint behaves like a pure 
bonded joint. In other words, the fasteners could transfer the load only if 
the adhesive layer becomes sufficiently damaged. This design philoso-
phy can then be qualified as waiting fail-safe. For intermediate values of 
ω, the load is shared between the fasteners and the adhesive. The ad-
hesive layer can then be regarded as an additional load path relevant to a 
fail-safe design philosophy. Numerous publications, involving adherends 
made of metallic or composite laminate materials, along with various 
manufacturing processes [74,121–142] (without claiming to be 
exhaustive), have shown that the HBB design solution compared to pure 
bolted or pure bonded design solutions, can significantly increase the 
static strength and fatigue strength for a judicious choice of adhesive. 

5.2. Macro-element modelling 

ME modelling was initially created to simplify the stress analysis of 
HBB joints. The idea is to discretize the overlap with bonded-bars or 
bonded-beams MEs and fastener MEs to respectively represent the 
bonded bays and the fasteners (see Fig. 19). The elementary stiffness 
matrices of fastener MEs under 1D-bar and 1D-beam analyses have been 
formulated. 

In the case of a 1D-bar analysis, the fastener is modelled as a shear 
spring following the NACA models [6–8]. The elementary stiffness ma-
trix Ke,fast is then simply defined by: 

Ke,fast =CF

(
1 − 1
− 1 1

)

(61) 

In the case of a 1D-beam analysis, the fastener is modelled by a rigid 
body element associated with two identical triplets of springs, whose 
stiffness’s are (2Cu; 2Cv; 2Cθ), as illustrated in Fig. 20 [74,76,78]. A rigid 
body element ensures the displacement continuity between the adher-
ends. With k = 1,2 by denoting Fu(k) and Fv(k) the nodal forces ac-
cording to the x-axis and y-axis respectively, Fθ(k) the moment around 
the z-axis, u(k) and v(k) the nodal displacement according to the x-axis 
and y-axis respectively and θ(k) the nodal rotation around the z-axis, the 
elementary stiffness matrix of the fastener ME linking the elementary 
nodal and displacement vectors [79] is: 
⎛
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⎜
⎜
⎜
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⎜
⎜
⎜
⎜
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where: 
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(63)  

C= 2Cθ +
1
2
h2
+Cu (64) 

The parameter h+ = h1+h2 then represents, for the neutral line lag. 

5.3. Experimental and numerical quasi-static test 

In Paroissien et al. [79], both experimental and numerical 1D-beam 
ME and 3D FE quasi-static tests up to failure on the single-lap HBB joint 
subjected to a tensile force with two lines and three rows of fasteners are 
presented. Even though the experimental and numerical test procedures 
and results are detailed in Ref. [79], a summary is given in this section. 

The adherends are similar and made of 2024-T351 aluminium alloys. 
A room temperature curing two-component methacrylate adhesive from 
LORD Corporation is used. The adherends are drilled before applying the 
adhesive. After cleaning and degreasing the surface of the adherends to 
be bonded, the adhesive is applied to one adherend surface. The me-
chanical fastening system consists of a titanium TA6V countersunk head 
screw with a shank diameter ΦF = 5.56 mm (prEN6114-V-3A-4) and 
steels nuts (ASNA2531-3A). A net fit installation of fasteners is per-
formed (10 μm ± 10 μm). The fasteners are torqued at 1 N m on wet 
adhesive. As a result, the adhesive thickness is not constant along the 
overlap. 

A 250 kN Instron hydraulic tensile machine is used. The loading is 
applied through controlled displacement at a rate of 1 mm/min. The 
specimen is clamped on spacers with hydraulic grips. A full-field 
displacement measurement through digital image correlation is 
installed in front the specimen. The system is focused on the overlap area 
and countersunk head side. A calibrated random pattern with a conve-
nient contrast is painted before the test. 

The retrieved displacement as a function of the total displacement of 
the specimen measured by the tensile machine is given in Fig. 21. A 
linear behaviour is shown up to an initial peak load. The value of this 
peak load is used as a reference force to normalize the force in Fig. 21. 
The load drop is approximately 8% before load recovery up to a second 
peak load approximately 6% higher than the first load peak. The next 
load drop is approximately 32% lower than the first load peak. Finally, a 
nonlinear load recovery is observed up to force at failure approximately 
4% higher than the first load peak. The failure is due to the failure of 
screws in the filets. The pictures denoted 2 and 3 in Fig. 21 provided the 
deflection measured by stereo-correlation before and after the first load 
peak. They clearly indicate that the first load drop is due to the failure of 
the adhesive layer between both edge distances. Similarly, the second 
peak load corresponds to the failure of the adhesive over the entire 
overlap, such that the load is only transferred by the fasteners during the 
second load recovery phase. 

A 1D-beam ME model and a 3D FE model have been developed in 
order to simulate the experimental test. In the context of ME modelling, 
a Newton-Raphson iterative algorithm based on the secant matrix was 
implemented by Lélias et al. [84,85]. As the adhesive layer is modelled 
by an elastic foundation, when damage evolution laws are used for the 
adhesive constitutive law, the adhesive layer in the ME modelling is 
equivalent to cohesive zone modelling, which is commonly used to 

simulate the progressive debonding of interfaces. This algorithm was 
employed and validated for the simulation of the delamination of 
composite laminates [89] as well as for of the debonding of fracture 
mechanics specimens and single-lap joints [143]. In this paper, the 
traction separation laws are assumed to be bilinear on each of both pure 
modes, with linear energetic interaction laws for both initiation and 
propagation. The definition of both pure mode traction separation laws 
is chosen to ensure the correct dissipation of energy [144], such that five 
parameters must be defined. These five parameters are not experimen-
tally identified, but numerically calibrated to best fit the experimental 
results measured on the experimental test of the HBB joint. Conse-
quently, they cannot be considered as intrinsic material parameters. The 

fastener stiffness is set to Cv =
Ef πφ2

f
4h+

where Ef is the screw Young’s 
modulus. According to Ref. [74] and following [120], the fastener 
stiffness Cθ is deduced from Cu by Cθ = 3

8 (1+νf )φ2
FCu where νf the 

fastener Poisson ratio. To simulate the nonlinear behaviour during the 
second load recovery, a bilinear law with positive hardening is used for 
the fastener law along the x-direction. In other words, the relationship 
between the bolt load along the x-axis and the displacement is linear 
with a slope Cu1>0 up to a displacement δu1>0 followed by a second 
linear evolution with a slope Cu2 such as 0<Cu2<Cu1. As for the adhe-
sive law parameters, the three parameters Cu1, Cu2 and δu1 are adjusted 
to best fit the experimental test results. In the context of the 3D FE 
model, the adherends, screws and nuts are meshed with linear 
eight-mode brick elements under full integration. The adherends and 
screws are simulated by elastic perfectly plastic laws using the Von Misès 
yield criterion. The nuts are assumed to be linear elastic. The adhesive 
layer is modelled with interface elements; the adhesive traction sepa-
ration laws in both pure modes as well as the initiation interaction laws 
are the same as for the ME model. The Benzeggagh-Kenane criterion is 
used for the propagation interaction law. Comparison between the 
1D-beam ME and 3D FE numerical test results and the experimental test 
results shows a good agreement of the force displacement curve 
(Fig. 21). The picture denoted 1 in Fig. 21 represents the longitudinal 
strain measured by stereo-correlation and computed by the 3D FE 
model: a good agreement is shown. Moreover, the progressive failure 
scenario observed during the experimental test is reproduced by both 
numerical tests. 

We can conclude that the 1D-beam ME model is a relevant approach 
to simulating the mechanical behaviour of HBB joints at low computa-
tional time. Other more or less complicated semi-analytical approaches 
can be found in the literature [127,145]. 

6. Conclusion 

At first sight, the mechanical behaviour of two slender structural 
parts bonded by an adhesive layer and subjected to tensile load could 
appear simple to grasp, due to the potential simplifications on the stress 
and strain tensors that could be made. For over a century however, 
numerous works have been published. It has been shown that the 
mathematical treatment of ordinary differential equations deduced from 
the simplifying hypotheses is complicated. Thus, the scope of closed- 
form and ready-to-use solutions is restricted. The use of semi- 
analytical resolution schemes appears necessary to extend this scope, 
even for one-dimensional cases. The choice of simplifying hypotheses 
also appears to be relevant. The development of semi-analytical reso-
lution schemes, such as the ME approach, allowing the enrichment of 
models to be ever closer to the physical reality, could reduce the 
computational time, while providing access to an accurate description of 
the mechanical behaviour. Additionally, it is highlighted that ME 
modelling can be used to address the preliminary design of various in- 
plane loaded structural parts made of bars, beams, fasteners and 
(multi-)layered bars and beams. The loads can be applied in the form of 
force or displacement, while combined with a uniform target tempera-
ture variation. Moreover, nonlinear homogeneous and graduated 



26

material behaviours can be included in the analysis, in particular 
allowing for the simulation of progressive joint failure. 

In the context of a design process, stress analyses only provide me-
chanical fields susceptible to be used as input data of strength criteria. 
These strength criteria could be obtained theoretically and/or experi-
mentally while involving safety factors calibrated with the real in- 
service life. Moreover, they must be determined in view of the 
selected design philosophy and by considering the adhesive bonding 
system defined by the adhesive, the adherends and the manufacturing 
process. The results of stress analyses are obviously dependent on the 
material properties of the adhesive employed such as a confined layer 
[146,147], considering that these material properties can influence the 
resolution scheme to be used. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgement 

This work has not received any specific grant. The authors would like 
to thank Professor Michel Salaün for his valuable help in the preparation 
of the revised manuscript. 

References 

[1] A. Higgins, Adhesive bonding of aircraft structures, Int. J. Adhesion Adhes. 20 
(2000) 367–376, https://doi.org/10.1016/S0143-7496(00)00006-3. 

[2] N. de Bruyne, The strength of glued joints, Aircraft Eng. Aero. Technol. 16 (4) 
(1944) 115–118, https://doi.org/10.1108/eb031117. 

[3] L.R. Demarkles, Investigation of the Use of a Rubber Analog in the Study of Stress 
Distribution in Riveted and Cemented Joints, NACA TN-3413, 1955. Washington 
(DC), https://ntrs.nasa.gov/api/citations/19930084165/downloads/19930084 
165.pdf. 

[4] I. Arnovljevic, Das verteilungsgesetz der Tiefspannungen in axial beanspruchten 
verbundstaben, Z.F. Archund-Ing-Wesen 55 (1909) 415–418. 

[5] O. Volkersen, Die Nietkraftverteilung in Zugbeanspruchten Nietverbindungen mit 
konstanten Laschenquerschnitten, Luftfahrforschung 15 (24) (1938) 41–47. 

[6] R.D. Ross, An Electrical Computer for the Solution of Shear-Lag and Bolted Joints 
Problems, NACA, TN-1281, 1946. Langley Field (VA), https://ntrs.nasa.gov/ap 
i/citations/19930081897/downloads/19930081897.pdf. 

[7] M.B. Tate, S.J. Rosenfeld, Preliminary Investigation of the Loads Carried by 
Individual Bolts in Bolted Joints, NACA TN-1051, 1946. Langley Field (VA), http 
s://ntrs.nasa.gov/api/citations/19930081668/downloads/19930081668.pdf. 

[8] S.J. Rosenfeld, Analytical and Experimental Investigation of Bolted Joints. NACA 
TN-1458, 1947. Washington (DC), https://ntrs.nasa.gov/api/citations/199300 
82094/downloads/19930082094.pdf. 

[9] J.F.P. Owens, P. Lee-Sullivan, Stiffness behavior due to fracture in adhesively 
bonded composite-to-aluminum joints. I. Theoretical model, Int. J. Adhesion 
Adhes. 20 (2000) 39–45, https://doi.org/10.1016/S0143-7496(99)00013-5. 

[10] R.D. Adams, N.A. Peppiatt, Stress analysis of adhesive-bonded lap joints, J. Strain 
Anal. Eng. Des. 8 (2) (1973) 185–196, https://doi.org/10.1243/ 
03093247V093185. 

[11] R.D. Adams, N.A. Peppiatt, Effect of Poisson’s ratio in adherends on stresses of an 
idealized lap joint, J. Strain Anal. Eng. Des. 9 (3) (1974) 134–139, https://doi. 
org/10.1243/03093247V082134. 

[12] X. Xiao, P.H. Foss, J.A. Schroeder, Stiffness prediction of the double lap shear 
joint. Part1: analytical solution, Int. J. Adhesion Adhes. 24 (2004) 229–237, 
https://doi.org/10.1016/j.ijadhadh.2003.10.003. 

[13] W. Li, E. Ghafoori, Y. Lu, S. Li, M. Motavalli, Analytical solution for stiffness 
prediction of bonded CFRP-to-steel double strap joints, Eng. Struct. 177 (2018) 
190–197, https://doi.org/10.1016/j.engstruct.2018.09.024. 

[14] Adhesives — Determination of Shear Behaviour of Structural Adhesives — Part 2: 
Tensile Test Method Using Thick Adherends, ISO 11003-2:2019. 
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