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A Proof of the Tree of Shapes in n-D
Thierry Géraud, Nicolas Boutry∗, Sébastien Crozet, Edwin Carlinet, Laurent Najman

Abstract—In this paper, we prove that the self-dual morpho-
logical hierarchical structure computed on a n-D gray-level well-
composed image u by the algorithm of Géraud et al. [1] is exactly
the mathematical structure defined to be the tree of shape of u in
Najman et al [2]. We recall that this algorithm is in quasi-linear
time and thus considered to be optimal. The tree of shapes leads
to many applications in mathematical morphology and in image
processing like grain filtering, shapings, image segmentation, and
so on.

Index Terms—Mathematical Morphology; Tree of Shapes; Self-
Dual Operators; Well-Composedness; Algorithms.

I. INTRODUCTION

The material presented here is a formal proof that the
hierarchical structure provided by the main algorithm in [1]
is the tree of shapes presented in [2]. This proof is n-
dimensional.

II. MATHEMATICAL BACKGROUND

In the following, we consider a n-D digital image u as a
function defined on a regular cubical n-D grid and having
integral values (even if we can generalize our case to any
totally ordered set); in brief, we have then u : Zn → Z.

Practically a digital image is defined on a finite domain,
usually an hyper-rectangle { (z1, . . . , zn) | ∀i, 0 ≤ zi < Ni },
so the number of points is N =

∏n
i=1Ni, and the space of

values is restricted to J 0, 2Q−1 K, where Q is the quantization.
We are interested in computing the tree of shapes of such
images.

For generality purpose, we give below some definitions
related to a function f defined upon a discrete set X and
taking values in a finite set Y ; we have f : X → Y . With
X having some discrete topology, for any subset E ⊂ X , we
denote by CC(E) the set of connected components of E. Given
x ∈ X , we denote by CC(E, x) the connected component of
E containing x if x ∈ E; otherwise, we set CC(E, x) := ∅.

A. The tree of shapes in Zn

Let us now consider X as being defined on the regular
cubical n-D grid Zn or on one of its subdivisions like 1

sZ
n

with s ∈ N∗. Furthermore, X is unicoherent in the sense that
it is connected and for any two subsets A,B ox X , the set
A ∩B is connected.
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As usual in discrete topology, to properly deal with subsets
of Zn and with their complementary in Zn, we consider the
dual connectivities c2n and c3n−1.

The extension from set to gray-level images is done using
what are called threshold sets. For any λ ∈ R, the subsets of
X:

[u < λ ] := {x ∈ X | u(x) < λ },
and [u ≥ λ ] := {x ∈ X | u(x) ≥ λ }

are respectively called the strict lower threshold set and
large upper threshold set of the function f relatively to (the
threshold) λ. The sets [u < λ ] and [u ≥ λ ] can be understood
as binary images.

From these two families of threshold sets, we can deduce
two sets, T<(u) and T≥(u), composed of the connected
components of respectively lower and upper cuts of u:

T<(u) = {Γ ∈ CCc2n([u < λ ]) }λ,
T≥(u) = {Γ ∈ CCc3n−1

([u ≥ λ ]) }λ.

The elements of T<(u) and T≥(u) respectively give rise to
two dual trees1: the min-tree and the max-tree of u.

Let us recall what we call a shape but before let us reintro-
duce some mathematical basics for mathematical morphology.
The saturation operator fills in the cavities of subsets of a
topological space Ω this way for any Γ ⊆ Ω:

Sat(Γ) = Ω \ CC(Ω \ Γ, p∞).

In discrete topology, we obtain then for any Γ ⊆ Zn:

Satc3n−1
(Γ) := Zn \ CCc3n−1

(Zn \ Γ),

Satc2n(Γ) := Zn \ CCc2n(Zn \ Γ).

Based on these trees, we can define what we call the sets
of shapes:

S<(u) := { Satc3n−1
(Γ); Γ ∈ T<(u) }

S≥(u) := { Satc2n(Γ); Γ ∈ T≥(u) }

S<(u) is the set of lower shapes of u, S≥(u) is the set of
upper shapes of u. They correspond to the sets of elements of
the min- and max-trees when we have filled in their cavities
using the saturation operator.

For a given subset Γ ⊆ Ω, and for a arbitrarily chosen
element p∞ ∈ Ω, then we call cavity each connected compo-
nent of Ω \Γ and which does not contain p∞. The connected
component of Ω \Γ containing p∞ is called the exterior of Γ
and can be empty.

1We say that the min-tree and the max-tree are dual in the sense that for
any image u, the structure of the min-tree of u is equal to the structure of
the max-tree of −u.
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Fig. 1. Morphological trees.

The set of all shapes:

S(u) = S<(u) ∪ S≥(u) (1)

forms a tree, the so-called tree of shapes of u [3]. Indeed, for
any pair of shapes Γ and Γ′ in S, we have Γ ⊂ Γ′ or Γ′ ⊂
Γ or Γ ∩ Γ′ = ∅.

Actually, the shapes are the cavities of the elements of T<
and T≥. For instance, if we consider a lower component Γ ∈
[ f < λ ] and a cavity H of Γ, this cavity is an upper shape,
i.e., H ∈ S≥. Furthermore, in a discrete setting, H is obtained
after having filled the cavities of a component of [ f ≥ λ ].

Figure 1 depicts on a sample image the three components
trees (T<, T≥, and S). Just note that the Equations so far rely
on the pair of dual connectivities, c2n and c3n−1, so discrete
topological problems are avoided, and, in addition, we are
forced to consider two kind of cuts: strict ones for c2n and
large ones for c3n−1.

B. Cellular complex and Khalimsky grid

Let us recall the definitions relative to n-D Khalimsky
grids [4], [5]. From the sets H1

0 = {{a}; a ∈ Z} and
H1

1 = {{a, a+1}; a ∈ Z}, we can define H1 = H1
0∪H1

1 and
the set Hn as the n-ary Cartesian power of H1. If an element
h ⊂ Zn is the Cartesian product of d elements of H1

1 and
(n−d) elements of H1

0, we say that h is a d-face of Hn and that
d is the dimension of h. The set of all faces, Hn, is called the
n-D space of cubical complexes. Figure 3 depicts a set of faces

h

h''

h'

(a) In P(Z2).

h

h'' h'

(b) In K2.

h

h'' h'

(c) In P(R2).

h

h'' h'

(d) In H2.

Fig. 2. Three faces, h, h′ and h′′, depicted as subsets of Z2 (a), as vertices
of the Khalimsky grid (b), as geometrical objects, parts of the plane (c), and
as elements of the cellular complex H2 (d).

(a) E ⊂ H2 (b) st(E) (c) cl(E)

(d) int(E) (e) ∂E (f) ext(E)

Fig. 3. Some topological operators on subsets of Hn.

{f, g, h} ⊂ H2 where f = {0}×{1}, g = {0, 1}×{0, 1}, and
h = {1}×{0, 1}; the dimension of those faces are respectively
0, 2, and 1. Let us write stHn(h) = {h′ ∈ Hn |h ⊆ h′} and
clHn(h) = {h′ ∈ Hn |h′ ⊆ h}. The pair (Hn,⊆) forms a
poset and the set U = {U ⊆ Hn | ∀h ∈ U, stHn(h) ⊆ U} is
a T0-Alexandroff topology on Hn. With E ⊆ Hn, we have a
star operator st(E) = ∪h∈E stHn(h) and a closure operator
cl(E) = ∪h∈E clHn(h), that respectively gives the smallest
open set and the smallest closed set of P(Hn) containing E.

The set of faces of Hn is arranged onto a grid, the so-called
Khalimsky’s grid, depicted in gray in Figure 2(b). The set of
n-faces is denoted by Hnn; it is the n-Cartesian product of H1

1.

C. Set-Valued Maps

Now let us recall the mathematical background relative to
set-valued maps [6]. A set-valued map U : X  Y is
characterized by its graph, Gra(U) = { (x, y) ∈ X × Y | y ∈
U(x) }. There are two different ways to define the “inverse”
of a subset by a set-valued map: U⊕(M) = {x ∈ X | U(x)∩
M 6= ∅ } is the inverse image of M by U, whereas U	(M) =
{x ∈ X | U(x) ⊂ M } is the core of M by U. Two distinct
continuities are defined on set-valued maps. The one we are
interested in is the “natural” extension of the continuity of
a single-valued function. When X and Y are metric spaces
and when U(x) is compact, U is said to be Upper Semi-
Continuous (USC) at x if ∀ε > 0, ∃ η > 0 such that ∀x′ ∈
BX(x, η), U(x′) ⊂ BY (U(x), ε), where BX(x, η) denotes
the ball of X of radius η centered at x. One characterization
of USC maps is the following: U is USC if and only if the
core of any open subset is open.

A topographical view of a 2D image can be observed in
Figure 4 and shows that, using span-based immersion maps,
we obtain “continuous” maps (in the sense of set-valued
maps).
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Fig. 4. From the classical view to the topographical view: In (a), a 2D image
u made of six pixels. In (b), it topographical view (where discontinuities can
be observed). In (c), the USC span-based immersion U of u where the 2-faces
(elements of H2

2) are depicted in yellow; they correspond to the pixels of u.
In (d), the topographical view of the USC map U without discontinuities (in
the sense of an USC map).

D. Interpolation

We are going to immerse a discrete n-D function defined on
a cubical grid u : Zn → Z into some larger spaces in order to
get some continuity properties. For the domain space, we use
the subdivision X = 1

2H
n of Hn. Every element z ∈ Zn is

mapped to an element m(z) ∈ 1
2H

n
n of dimension n with z =

(z1, . . . , zn) 7−→ m(z) = {z1, z1 + 1
2}× . . .×{zn, zn+ 1

2}.
The definition domain of u, D ⊆ Zn, has thus a counterpart
in X , that will also be denoted D, and that is depicted in bold
in Figure 6.

For the value space, we immerse Z (the set of pixel values)
into the larger space Y = 1

2H
1, where every integer becomes

a closed singleton, that is, an element of H1
0. Thanks to an

“interpolation” function, we can now define from u a set-
valued map U = I(u). We have U : X  Y and we
set ∀h ∈ X, U(h) := {u(m−1(h)) } if h ∈ D

max( U(h′) : h′ ∈ st(cl(h)) ∩ D ) if h ∈ 1
2H

n
1\D

span( U(h′) : h′ ∈ st(h) ∩ D ) if h ∈ X\ 1
2H

n
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Fig. 5. A grayscale 2D image u which is not well-composed since any value
in [0, 1] is lower than any value in [3, 4], a representation us of u which is
well-composed thanks to the max-interpolation, and the corresponding well-
composed immersion U of us into H2.

An example of interpolation is given in Figure 5. Actually,
whatever u, such a discrete interpolation I(u) can also be
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Fig. 6. Since we have used the max-interpolation to make u well-composed,
the lower threshold sets of the immersion U are connected, or equivalently
the lower threshold sets of us are connected, iff the lower threshold sets of u
are 2n-connected. Conversely, the upper threshold sets of U are connected,
or equivalently the upper threshold sets of us are connected, iff the threshold
sets of u are (3n − 1)-connected. We have chosen here ε = 1

2
because

we work with integral values. Recall that in well-composed images, 2n- and
(3n − 1)-connectivities are equivalent [7].

interpreted as a non-discrete set-valued map IR(u) : Rn  R
(schematically IR(u)(x) = I(u)(h) with h such as x ∈ Rn
falls in h ∈ 1

2H
n), and we can show that IR(u) is an upper

semi-continuous [6] (shortly USC) map.

Such span-based immersions will be called SI-maps in the
sequel.

E. Discrete surfaces and well-composedness

Let us recall the definition of discrete surfaces [8]. Let Y be
some partially ordered set (shortly poset) of rank n ≥ 0. Let X
be some subset of Y . We say that X is a discrete (−1)-surface
when X = ∅. We say X is a 0-surface if it can be written
{h, h′} with h 6∈ stY (h′) ∪ clY (h′). We call X a k-surface
with k ≥ 1 when it is connected and when for any h ∈ X ,
the poset stY (h)∪ clY (h) \ {h} is a discrete (k− 1)-surface.

Furthermore, we call (combinatorial) boundary of a subset
Z of Y the set:

∂Z := clY (Z) ∩ clY (Y \ Z).

We say that Z is (Alexandrov) well-composed (shortly WC)
when its boundary is a (possibly empty) separated union of
discrete (n− 1)-surfaces.

Remark 1. We recall that the shapes of a WC SI-map are
WC too.

F. The tree of shapes in Hn

Assuming that the domain X of the interpolation I(u) is
unicoherent2), like Hn/2 or any hyper-rectangle in Hn/2, and

2A topological space is unicoherent [9] if it is connected, and for any two
closed connected subsets A,B of this domain whose union covers this same
domain, the intersection of A and B is connected.
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Fig. 7. The closure and saturation operators do not always commute when
the used image is not well-composed (see the pinch encircled in red on the
left side which causes this topological issue).

that it set Y of values is H1/2. Then, threshold sets are defined
for any λ ∈ Y in this way [10], [7]:

[ U C λ ] = {x ∈ X | ∀µ ∈ U(x), µ < λ }

[ U B λ ] = {x ∈ X | ∀µ ∈ U(x), µ > λ }.

We can show (see [2]) that, for any λ ∈ Y , the threshold
sets [ I(u) C λ ] and [ I(u) B λ ] are well-composed [11]
when we use a well-composed interpolation I(u) (see [7],
[2] for examples of n-D well-composed interpolations). Then
the combinatorial boundaries of the threshold sets are discrete
surfaces. By defining respectively the upper and the lower
shapes:

S. = {Sat(Γ); Γ ∈ {CC([ I(u) B λ ])}λ } ,
S/ = {Sat(Γ); Γ ∈ {CC([ I(u) C λ ])}λ } ,

we obtain then that together these shapes form a set of
shapes SI(u) which is a tree, the tree of shapes.

G. Some elementary properties about shapes

The following properties of shapes will be useful in the
sequel.

Proposition 1 (Lemma 2.5 in [9]). Let D be a topological
space. Then, the Sat operator is monotonic, that is, for any
subset A,B of D:

A ⊆ B ⇒ Sat(A) ⊆ Sat(B).

Proposition 2 (Lemma 2.4 [9]). Let D be a topological space.
Then, when A ⊆ D is an open set, then Sat(A) is open too.

Proposition 3 (Lemma 2.7 [9]). Let D be a topological space.
Then, when A ⊆ D is connected, then Sat(A) is connected
too.

Proposition 4 (Lemma 2.10 [9]). Let D be a compact, locally
connected, and unicoherent topological space. Let A be a
subset of D such that Sat(A) 6= D. Then Sat(A) ⊆ Sat(∂A).
Furthermore, if A is closed, Sat(A) = Sat(∂A).

Proposition 5 ([8]). Let D be a n-D finite (unicoherent) hyper-
rectangle in the n-D Khalimsky grid, and let p∞ be a n-face
of D which belongs to ∂D. When a finite set X is an open

Fig. 8. The closure and saturation operators commute when the used image
is well-composed.

regular WC set, then we have the following property for any
x ∈ D:

Sat(clD(X), x) = clD(Sat(X,x)).

Figures 7 and 8 depict the possible topological issue which
arises when we do not work with well-composed images.

III. ALGORITHM DESCRIPTION

A. The main algorithm

u
immersion−−−−−−−−→ U

tree of shapes

y y tree computation

S(u)
emersion←−−−−−−− S(U)

Fig. 9. Global scheme to compute the tree of shapes. The “tree computation”
on the right side is composed of the two steps: sort (propagation) and union-
find (effective tree computation thanks to the parent relationship).

Let us begin with an intuitive explanation of the compu-
tation of the tree of shapes (see Figure 9). We start from an
image u whose domain is a subset of Zn. Then, we compute in
Zn/2 its well-composed max-interpolation. Then, we immerse
the interpolation into the n-D Khalimsky grid, so we provide
some continuity to the new image U representing u. We call
abusively this procedure the immersion step. Then, based on
U, we add a border, from which we start the propagation,
and we go deeper and deeper in the image, until we have
covered the whole domain of the image. This step is called
the tree computation because while we cover the domain of
the image, we can deduce the parenthood relationship between
the components in the image (we prove it in the next section).
Since the propagation has been done over a domain which has
been subdivided twice (once with the max interpolation and
once to immerse Zn/2 into Hn/2), we have to go back to
the initial domain. This last step is called the emersion and
removes the secondary pixels to keep only the primary pixels.
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1 COMPUTE QL TREE (u) : Pair(T, Array[P])
2 begin
3 U ← IMMERSION(u)
4 (R, u[) ← SORT(U)
5 parent ← UNION FIND(R)
6 CANONICALIZE TREE(parent , R, u[)
7 (parent’, R’) ← EMERGE(parent , R, u[)
8 return (parent’, R’)

Algorithm 1: The quasi-linear computation of the tree of
shapes (main procedure).

B. The main procedure of the algorithm more in details

The algorithmic description of the procedure presented in
the previous subsection is as described in Alg. 1. We start
with the procedure called IMMERSION, and we follow with the
computation of the tree of shapes in three steps: (1) We use a
front propagation algorithm SORT which handles a hierarchical
queue and starts from the border of the image and covers
progressively the whole domain, it outputs then an array R of
the ordered pixels of the domain of the image, (2) Now that
we have R, we use UNION FIND to deduce the parenthood
relationship parent between the pixels of the image, that is,
it builds the tree of shapes (but without optimization) of U;
(3)Then the procedure CANONICALIZE TREE is utilized to
optimize the tree so that each pixel has a parent which is
the representative of the component it belongs to. This way,
we obtain parent which is in fact S(U). From it, we can
easily deduce S(u) by removing the secondary pixels (see
the EMERGE prodecure).

C. The sorting step

The details of the sorting step can be found in Alg 2. To
sort the faces of the domain X of U , we use a classical
front propagation based on a hierarchical queue [12], denoted
by q, the current level being denoted by L . There are two
notable differences with the well-known hierarchical-queue-
based propagation. First the d-faces, with d < n, are interval-
valued so we have to decide at which (single-valued) level
to enqueue those elements. The solution is straightforward: a
face h is enqueued at the value of the interval U(h) that is
the closest to L (see the procedure PRIORITY PUSH). Just
also note that we memorize the enqueuing level of faces
thanks to the image u[ (see the procedure SORT). Second,
when the queue at current level, q[L ], is empty (and when
the hierarchical queue q is not yet empty), we shall decide
what the next level to be processed is. We have the choice
of taking the next level, either less or greater than L , such
that the queue at that level is not empty (see the procedure
PRIORITY POP), even if this choice has no influence on the
result R of the algorithm. The image U , in addition with
the browsing of level in the hierarchical queue, allows for
a propagation that is “continuous” both in domain space and
in level space.

9 PRIORITY PUSH(q, n, U, L )
10 /* modify q */
11 begin
12 [lower , upper ]← U(n)
13 if L < lower then
14 L ′ ← lower

15 else if L > upper then
16 L ′ ← upper

17 else
18 L ′ ← L /* we have L ∈ U(n) */

19 PUSH(q[L ′], n)

20 PRIORITY POP(q, L ) : H
21 /* modify q, and sometimes ` */
22 begin
23 if q[L ] is empty then
24 L ′ ← level next to L such as q[L ′] is not empty
25 L ← L ′

26 return POP(q[L ])

27 SORT(U ) : Pair(Array[H], Image)
28 begin
29 for all h do
30 deja vu(h)← false

31 idx ← 0 /* index in R */
32 L∞ ← U(p∞)
33 PUSH(q[L∞], p∞)
34 deja vu(p∞)← true
35 L ← L∞ /* start from root level */
36 while q is not empty do
37 h← PRIORITY POP(q, L )

38 u[(h)← L
39 R[idx ]← h
40 idx ← idx + 1
41 for all n ∈ N (h) such as deja vu(n) = false do
42 PRIORITY PUSH(q, n, U, L )
43 deja vu(n)← true

44 return (R, u[)

Algorithm 2: The front propagation algorithm sorting the
pixels.

D. Tree Representation

The max-tree algorithm presented in [13] is actually a kind
of meta-algorithm that can be “filled in” so that it can serve
different aims; in particular, in the present paper, it gives an
algorithm to compute the tree of shapes. An extremely simple
union-find structure (attributed by Aho to McIlroy and Morris)
was shown by Tarjan [14] to be very efficient. This structure,
also called disjoint-set data structure or merge-find set, has
many advantages that are detailed in [15]; amongst them,
memory compactedness, simplicity of use, and versatility. This
structure and its related algorithms are of prime importance to
handle connected operators [16], [17].

Let us denote by R the ancestor relationship in trees: we
have aR p iff a is an ancestor of p. R can be encoded as
an array of elements (nodes) so that aR p ⇔ indexR(a) <
indexR(p); browsing that array thus corresponds to a down-
wards browsing of the tree, i.e., from root to leaves. To con-
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Fig. 10. Building the max-tree (left side) and the tree of shapes (right side) from root to leaves using the array R (figure extracted from [1]).

struct the max-tree of a given image, we rely on a rooted tree
defined by a parenthood function, named parent , and encoded
as an n-D image (so parent(p) is an n-D point). When a
node of the max-tree contains several points, we choose its
first point (with respect to R) as the representative for this
node; that point is called a component “canonical point” or
a “level root”. Let Γ denote a component corresponding to a
node of the max-tree, pΓ its canonical element, and pr the
root canonical element. The parent function that we want to
construct should verify the following four properties:

1) parent(pr) = pr ;
2) ∀ p 6= pr, parent(p)R p ;
3) p is a canonical element iff

{p = pr} ∨ {u(parent(p)) 6= u(p)} ;

4) ∀p, p ∈ Γ⇔ {u(p) = u(pΓ)} ∧ {∃ i, parent i(p) = pΓ}.
The routine UNION FIND, given in Algorithm 3, is the

classical “union-find” algorithm [14] but modified so that it
computes the expected morphological tree [13] while brows-
ing pixels following R−1 (see Figure 10), i.e., from leaves
to root. Its result is a parent function that fulfills those
first four properties. Obtaining the following extra property,
“5. ∀p, parent(p) is a canonical element,” is extremely inter-
esting since it ensures that the parent function, when restricted
to canonical elements only, gives a “compact” morphological
tree. Precisely it allows to browse components while discard-
ing their contents: a traversal is thus limited to one element
(one pixel) per component, instead of passing through every
image elements (pixels). Transforming the parent function so
that property 5 is verified can be performed by a simple post-
processing of the union-find computation. The resulting tree
has now the simplest form that we can expect (see Alg. 4);
furthermore we have an isomorphism between images and
their canonical representations.

The algorithm presented in [13] to compute the max-tree
is also able to compute the tree of shapes. The skeleton of
this algorithm is the routine COMPUTE TREE is composed
of the steps presented above. In the case of the max-tree,
the sorting step provides R encoded as an array of points
sorted by increasing gray-levels in u, i.e., such that the array
indices satisfy idx < idx ′ ⇒ u(R[idx ]) ≤ u(R[idx ′]).
Last, the canonicalization post-processing is trivial [13]. In
the case of the tree of shapes, it is also a tree that represents

an inclusion relationship between connected components of
the input image. As a consequence an important idea to catch
is that the tree of shapes can be computed with the exact
same routine, UNION FIND, as the one used by the max-tree.
The major and crucial difference between the max-tree and
the tree of shapes computations is obviously the sorting step
(see Figure 10). For the UNION FIND routine to be able to
compute the tree of shapes using R−1, the SORT routine has to
sort the image elements so that R corresponds to a downward
browsing of the tree of shapes. Schematically, R contains the
image pixels going from the “external” shapes to the “internal”
ones (included in the former ones).

E. The last step: the emersion

Using the canonicalized tree, we can finalize the procedure
and emerge the connected components of the tree simply by
removing the secondary pixels of the components (see Algo 5).

IV. THE n-D PROOF

A. New mathematical properties

Let us recall that the strict threshold sets of a plain map are
open sets.

Proposition 6. Let U be some SI-map on a n-D Khalimsky
grid, then any of its strict threshold sets T is regular, that is,
it satisfies:

Int(cl D̄(T )) = T.

The direct consequence is that its strict shapes are regular sets
too.

Proof: Let us treat the upper case (see Figure 11) for some
value λ ∈ R (the lower case follows the same reasoning). Let
λ be some real value, and [UBλ] the corresponding lower set.
Now, let us prove its regularity using a double inclusion. First,
for any λ ∈ R, [UBλ] is contained in cl D̄([U B λ]), thus [UB
λ] = Int([UBλ]) ⊆ Int(cl D̄([U B λ])), which proves the first
inclusion. Second, let us define some z ∈ Int(cl D̄([uB λ)),
then st D̄(z) ⊆ cl D̄([U B λ]). The subset (st D̄(z))n made of
the n-faces of st D̄(z) is contained in cl D̄([U B λ]) = ∂[U B
λ]t [U Bλ] (disjoint union). Since ∂[U Bλ] does not contain
any n-face (as every combinatorial boundary), then:

(st D̄(z))n ⊆ [U B λ].
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45 FIND ROOT(zpar , x) : P /* modify zpar */
46 begin
47 if zpar (x) = x then
48 return x

49 else
50 zpar(x)← FIND ROOT(zpar , zpar(x))
51 return zpar(x)

52 DO UNION(p′, r′)
53 /* modify zpar , rank , and last */
54 begin
55 if rank(p′) > rank(r′) then
56 /* new root is p′ */
57 zpar(r′)← p′

58 if last(r′) < last(p′) then
59 last(p′)← last(r′)

60 else
61 /* new root is r′ */
62 zpar(p′)← r′

63 if last(p′) < last(r′) then
64 last(r′)← last(p′)

65 if rank(p′) = rank(r′) then
66 rank(r′)← rank(r′) + 1

67 UNION FIND(R) : T
68 /* with tree balancing and compression */
69 begin
70 for all p do
71 zpar(p)← undef
72 rank(p)← 0

73 for idx ← N − 1 to 0 do
74 p←R[idx ] /* p goes from leaves to root */
75 parent(p)← p
76 zpar(p)← p
77 last(p)← idx
78 for all n ∈ N (p) such as zpar(n) 6= undef do
79 p′ ← FIND ROOT(zpar , p)
80 r′ ← FIND ROOT(zpar , n)
81 if r′ 6= p′ then
82 r ←R[ last(r′) ]
83 parent(r)← p
84 DO UNION(p′, r′) /* update zpar */

85 /* deallocate zpar , rank , and last */
86 return parent

Algorithm 3: Tree construction based on the ancestor
relationship R.

87 CANONICALIZE(parent ,R, u[)
88 /* modify parent */
89 begin
90 for idx ← 0 to N − 1 do
91 p←R[idx ] /* p goes from root to leaves */
92 p′ ← parent(p)

93 if u[(parent(p′)) = u[(p′) then
94 parent(p)← parent(p′)

Algorithm 4: Canonicalization.

95 IS REPRESENTATIVE(x) : B
96 begin
97 return parent(x) = x or u[(parent(x)) 6= u[(x)

98 GET REPRESENTATIVE(x) : P
99 begin

100 while not IS REPRESENTATIVE(x) do
101 x← parent(x)

102 return x

103 FIND PRIMARY ANCESTOR(x) : P
104 begin
105 repeat
106 x← parent(x)
107 until not IS PRIMARY(x) and parent(x) 6= x
108 return x

109 EMERGE(parent , R, u[)
110 begin
111 /* rearrange */
112 for i← 0 to N − 1 do
113 p←R[i] /* p goes from root to leaves */
114 if IS REPRESENTATIVE(p) then
115 continue
116 p′ ← GET REPRESENTATIVE(p)
117 if not IS PRIMARY(p′) and IS PRIMARY(p) then
118 if parent(p′) = p′ then
119 parent(p)← p

120 else
121 parent(p)← parent(p′)

122 parent(p′)← p

123 /* keep only primary points */
124 j ← 0
125 for i← 0 to N − 1 do
126 p←R[i] /* p goes from root to leaves */
127 if IS PRIMARY(p) then
128 R[j]← p
129 j ← j + 1
130 parent(p)← FIND PRIMARY ANCESTOR(p)

131 N ← j
132 /* canonicalization */
133 CANONICALIZE(parent ,R, u[)
134 return (parent , R)

Algorithm 5: Emersion procedure used to obtain the final
tree (in the domain of the initial image).

Consequently, for any p ∈ (st D̄(z))n, U(p)B λ, which leads
by using the formula of the span-based immersion to:

U(z) := span{U(p) ; p ∈ (st D̄(z))n}B λ,

then U(z)B λ, that is, z ∈ [U B λ]. The proof is done.

Definition 1 (Interior boundaries). Let Hn be the n-D Khal-
imsky grid, and let F be an open subset of Hn. We call interior
boundary of F the set ∂intF = stHn(∂F ) ∩ F .

We recall that a family
⋃
i∈I Xi of subsets of a poset X is
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Fig. 11. Any strict threshold set of a SI-map is regular

Fig. 12. Boundaries in red of some subsets of H2.

said to be a separated union when for any i, j in I with i 6= j,
(stX(Xi) ∪ clX(Xi)) ∩Xj = ∅.

B. Property of the internal boundaries

Proposition 7. Let T be an open subset of Hn. The set ∂int(T )
can be reformulated this way:

∂int(T ) = stHn(T ) ∩ stHn(Hn \ T ).

Proof: Let us prove this equality by a double inclusion
relationship. When h is an element of ∂int(T ) = stX(∂T )∩T ,
then h belongs to T ⊆ stX(T ) and then h ∈ stX(T ). In
addition, Hn \ T is closed since T is open by hypothesis,
which means that Hn \T contains its boundary ∂T . This way,
we have that h ∈ stX(∂T ) ⊆ stX(Hn \ T ). This concludes
the first implication. Conversely, when h belongs to stX(T )∩

Fig. 13. Internal boundaries (in black square encircled in red) of some subsets
of H2; the n-faces remaining after having removed the internal boundaries
to their respective sets are encircled in yellow to show the thickness of the
internal boundaries.

stX(Hn \ T ), then h belongs to stX(T ) = T . Furthermore,
h belongs to stX(Hn \ T ) and then contains (as a face) some
other face of Hn \ T . However, the only elements of Hn \
T which are adjacent to T are the elements of ∂T , then h
contains a face z of ∂T , then h ∈ stX(∂T ). This proves the
second implication.

C. Domains of the SI-maps and their (thick) border

From now on, we will use the following notations.

Let the domain D of the given SI-map U be some non-
empty bounded open hyper-rectangular domain in the n-D
Khalimsky grid Hn.

Then, we deduce the “enlarged” domain:

D̄ := clHn(stHn(clHn(D))),

whose border 4D̄ is the set:

4D̄ = D̄ \ D.

We naturally extend U to Uext on D̄ in the following way:
we set at {L∞} with L∞ ∈ R all the n-faces of the border
of D̄ and we choose arbitrarily one of the n-faces of 4D̄
as exterior point p∞. The faces of D̄ \Hnn are then naturally
set using a procedure detailed later and which ensures the
continuity of the new set-valued image Uext defined on D̄.

This way, we ensure that any shape S of Uext is either the
whole domain D̄ or a subset of D. We are thus ensured that
for any shape S of Uext, the boundary ∂S is equal to ∂D̄ or
does not intersect ∂D̄. Furthermore, the complementary in D̄
of any shape S of any SI-map defined on D̄ is either empty
or connected.

For sake of simplicity, we will refer to Uext by calling U .

D. PR-cavities and their mathematical properties

Notation 1. Assuming that Li is the level at step i of the
front propagation algorithm (FPA), we can reformulate the
front propagation (see Figures 14,15 and 16) this way:
• L0 = L∞ is the level at step 0,
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Fig. 14. Example of P0 and its three cavities

Fig. 15. Example of P1 and its cavities: compared to P0, some cavities
appeared and some disappeared.

Fig. 16. Example of P2 where the whole domain has been covered.

• P0 = CC([U = L∞], p∞) is the covered part of D̄ at
step 0,

• {T j0 }j∈J (0) = CC(D̄ \ P0) is the set of what we call
PR-cavities at step 0,

• when i > 0,

Pi+1 = Pi ∪
⋃

j∈J (i)

⋃
x∈∂int(T j

i )

CC([U = Li+1], x)

is the covered domain at step i,

• when i > 0,

{T ji+1}j∈J (i+1) = CC(D̄ \ Pi+1)

is the set of what we call PR-cavities at step i > 0.

Note: the elements Pi are directly deduced from the prop-
agation presented in Alg. 2 and the terms T ji corresponds to
cavities in Hn but will be called PR-cavities to emphasize
that they are obtained thanks to the propagation algorithm.
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Fig. 17. Two equivalent representations of the same data on a toy example:
at the top, the image u[ in a 2D Khalimsky grid, and at the bottom,
the corresponding parentUF structure (in dark blue) resulting from the
union-find algorithm; the corresponding output from the sort algorithm is
R = [0, . . . , 0, 1, 1, 2, 3], and the levels L are in the following order:
[0, 1, 2, 3]. While Pi is progressively covering the whole domain D̄, the
structure parentUF grows and represents the way the propagation covers
the domain. When a node in parentUF has a value different from the one of
its parent, a level-line is crossed, which means that the depth of this branch
into the image increases.

Now, let us briefly show that the representation parentUF
provided by the union-find algorithm and the image u[ pro-
vided by the front propagation algorithm are equivalent. They
both encode the front propagation, as depicted in Figure 17.

Furthermore, they show the following properties:

Property 1. At each step i of the front propagation algorithm,
the front Pi is connected.

Proof: First, the tree resulting from the propagation is
connected by construction. Second, two nodes are connected
in this tree when they satisfy a covering relationship in
the Khalimsky grid (due to the propagation based on the
2n-connectivity). Thus, the representation of the tree in the
domain D̄ is connected, since a covering relation implies
adjacency.

Property 2. At each step i of the front propagation algorithm,
the front Pi is closed.

Proof: This results from the fact that for any face h ∈ D̄
which is treated by the front propagation algorithm, all its
faces h′ will satisfy u[(h) ∈ U(h′), thus all the faces h′ will
be treated at the same step (with the same current level L ).
In other words, when h belongs to Pi, all the closure of Pi is
contained in Pi, which leads to the fact that Pi is closed.

Property 3 (PR-cavities form a hierarchy). The set of PR-
cavities of a SI-map U defined on a domain D̄ satisfies that
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for two PR-cavities T , T ′ such that T ∩T ′ 6= ∅, then we have
T ⊆ T ′ or T ⊇ T ′. In other words, the set of PR-cavities of
U is a tree, and we will denote it by PR-Cav.

Proof: By increasingness of the front Pi, we obtain
easily that the connected components of its complementary
are nested. Furthermore, D̄ is a superset of any other cavity
of U . Thus, PR-Cav is a tree.

Notation 2. Let T ( D̄ be a cavity of a SI-map U . We denote
by parentPR-Cav(T ) the direct parent of T in PR-Cav. The
root of PR-Cav, D̄, has no parent in PR-Cav.

Notation 3. Let T be a PR-cavity of a SI-map U . We define
the following set: nextPR-Cav(T ) ={

T ′ ∈ PR-Cav(U) ; T = parentPR-Cav(T ′)
}
.

Notation 4. Let T be a PR-cavity of a SI-map U . We denote
by childrenPR-Cav(T ) the set of children of T in PR-Cav(U).

Proposition 8. Let U be some SI-map on D̄. For any PR-
cavity T of U , we have the following equality:⋃

T ′∈nextPR-Cav(T )

T ′ =
⋃

T ′∈childrenPR-Cav(T )

T ′.

Proof: The first inclusion is immediate. The converse
inclusion follows directly from Property 3.

0

3

4

2

12

Fig. 18. The front P0 is depicted in black and shows the propagation on the
domain of a SI-map U at the initial step. Then, the remaining (open) PR-
cavity T (whose boundary is depicted in red) will be partially covered at the
next propagation level ` = 2 since it is the nearest level among {2, 3}. We
can thus affirm that L∗,PR-Cav(T ) = 2. Furthermore, the set (T )∗,PR-Cav
is depicted by all the blue faces connected into [U = 2] to the pixels of value
2 in the internal boundary of T . This set is also equal to T minus its children
in the hierarchy constructed thanks to the propagation.

The following definition is depicted in Figure 18.

Definition 2. Let U be some SI-map on D̄. For some PR-
cavity T of U , we will denote by L∗,PR-Cav(T ) the level at
which the FPA covered T starting from the elements of its
internal boundary and we call it the proper level of T .

Property 4. Any PR-cavity T of a SI-map U is an open
subset of Hn.

Proof: Let i be some fixed value in [0, N ]. Since Pi is
built from a finite union of closed sets, it is closed. The direct
consequence is that its complementary is an open set, and then
each of its connected components is an open set too.

Property 5. The internal boundary of each PR-cavity T of
a SI-map U is connected.

Proof: Let us notice that ∂intT ji is the intersection of

Pi ∪
⋃

k∈J (i)\{j}

T ki ∪ ∂intT ji

(which is an open connected set) and of T ji (which is open
by Property 4 and connected by definition). Furthermore, their
intersection is equal to ∂intT ji , and their union covers D̄. Since
D̄ is unicoherent by hypothesis, then ∂intT ji is connected.

Definition 3. Let U be a SI-map on D̄. We say that a PR-
cavity T different from D̄ is an upper PR-cavity when the
proper level of T is greater than the one of its parent (positive
polarity). At the opposite, we say T is a lower PR-cavity when
its proper level is lower than the one of its parent (negative
polarity). Two PR-cavities are said to be of the same nature
when they are both upper PR-cavities or both lower PR-
cavities.

Proposition 9. Let U be a SI-map on D̄ and T be a PR-
cavity of U different from D̄. Let h be an element of ∂T and
let parentkPR-Cav(T ) with k ≥ 1 be the nearest parent of T
containing h. Then,

(T , parentPR-Cav(T ), . . . , parentk−1
PR-Cav(T ))

have the same nature (the proper levels are monotonic rela-
tively to k). The direct consequence is that U(h) contains:

[L∗,PR-Cav(parentkPR-Cav(T )),L∗,PR-Cav(T )]

in the upper case, and contains:

[L∗,PR-Cav(T ),L∗,PR-Cav(parentkPR-Cav(T ))]

in the lower case.

Proof: Let T be some PR-cavity different from D̄,
and let h be one face of ∂T . We assume without con-
straint that the first parent of T containing h, denoted by
parentkPR-Cav(T ), is D̄. Let us treat the case where T
has a positive polarity (its proper level is greater than the
one of its parent). We want to prove that the sequence(
L∗,PR-Cav(parentlPR-Cav(T ))

)
l∈[1,k−1]

is strictly decreas-
ing.

For this aim, let us assume that:

min
l∈[1,k−1]

L∗,PR-Cav(parentlPR-Cav(T )) ≤ L∞,

then we can observe easily that the level line corresponding
to L∞ will separate T and one of its parents, that is, they
will be in separate branches in the hierarchy PR-Cav, which
is impossible by hypothesis.

We can now affirm that
minl∈[1,k−1] L∗,PR-Cav(parentlPR-Cav(T )) > L∞.
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Now, we want to prove that the sequence(
L∗,PR-Cav(parentlPR-Cav(T ))

)
l∈[1,k−1]

is strictly
decreasing. For this aim, we assume that it is not true
and thus we choose the parent parentlPR-Cav(T ) of T in
this sequence whose polarity is negative and whose level
L∗,PR-Cav is minimal. We have then:

L∗,PR-Cav(parentl−1
PR-Cav(T )) > L∗,PR-Cav(parentlPR-Cav(T )).

It is clear that during the propagation, when the current
level increases to cover T , it will reach the level line cor-
responding to L∗,PR-Cav(parentlPR-Cav(T )) before reaching
L∗,PR-Cav(parentl−1

PR-Cav(T )) and then we will not obtain
that parentlPR-Cav(T ) is the parent of parentl−1

PR-Cav(T ),
which is a contradiction. The proof is done.

Proposition 10. Let T ji be a PR-cavity of U with i ≥ 0 and
j ∈ J (i). We call Lpar = L∗,PR-Cav(parentPR-Cav(T ji )) the
level of its parent as a PR-cavity of U . Then, either L j

i >
Lpar, and we obtain that:

∀x ∈ ∂int(T ji ), U(x)BLpar,

or L j
i < Lpar, and we obtain that:

∀x ∈ ∂int(T ji ), U(x)CLpar.

In both cases, we have:

∀x ∈ ∂T ji ,Lpar ∈ U(x).

Proof: Let us proceed by induction on the step i.
Initialization (i = 0): Let j be some fixed value in J (0).

Since P0 is the connected component of [U = L∞] containing
p∞, we have ∀x ∈ ∂intT j0 ,L∞ 6∈ U(x) since by construction,
we have:

∂intT j0 ⊆ ∪j∈J (0)∂intT j0 = st D̄(P0) \ P0.

Now, let us assume that we arbitrarily choose x and y
in ∂intT j0 . Two cases are possible then: either x and y are
adjacent, then U(x) ⊆ U(y) or U(y) ⊆ U(x), which means
that they are of the same type relatively to L∞ (both greater
or both lower); or they are not adjacent, and we assume that x
and y satisfy U(x)BL∞ and U(y)CL∞. Thus, by Property 5,
there exists some path Π of length m in ∂intT j0 joining x and
y. Since x = Π(0) and y = Π(m) are assumed not to be of the
same type, there exists o∗ ∈ [0,m − 1] satisfying that Π(o∗)
and Π(o∗ + 1) are not of the same type, which is impossible
as just seen before (either U(Π(o∗)) ⊂ U(Π(o∗ + 1)) or
U(Π(o∗+ 1)) ⊂ U(Π(o∗))). Then, all the elements of ∂intT j0
are of the same type. Furthermore, since ∂T j0 ⊆ P0, we have
that ∀x ∈ ∂T j0 ,Lpar ∈ U(x).

Heredity (i ≥ 1): we assume that at step k ∈ [0, i − 1],
we have that for j ∈ J (k), for any x ∈ ∂intT kj , U(x) B
L∗,PR-Cav(parentPR-Cav(T kj )) (resp. for any x ∈ ∂intT kj ,
U(x)CL∗,PR-Cav(parentPR-Cav(T kj ))). Furthermore, for any
x ∈ ∂T kj , U(x) 3 L∗,PR-Cav(parentPR-Cav(T kj )). We want
to prove this property for i.

Let T ji be a PR-cavity at step i > 0, we can assume that
it has a parent PR-cavity T j

∗

i∗ with i∗ < i and j∗ ∈ J (i∗),
where we have propagated the front using the level

Lpar = L∗,PR-Cav(parentPR-Cav(T ij ))

to cover: ⋃
x∈∂intT j∗

i∗

CC([U = Lpar]∩, x) ∩ T j
∗

i∗ .

After this, we can deduce that the interior boundary of the
PR-cavity T ji satisfies:

∀p ∈ ∂intT ji , U(p) 6= Lpar,

that is, either U(p) is greater than Lpar or it is lower than
Lpar. Two cases are then possible:
• When T ji satisfies:

cl D̄(T ji ) ⊆ T j
∗

i∗ ,

then the (interior boundary of) T ji can be of positive or
negative nature. As explained in the initialization, all the
faces of the interior boundary are then of the same nature.

• When T ji satisfies:

cl D̄(T ji ) 6⊆ T j
∗

i∗ ,

thus:
∂intT ji ∩ ∂intT j

∗

i∗ 6= ∅,

then we assume without constraint that T j
∗

i∗ is an upper
PR-cavity (the proof of the decreasing case is symmet-
rical). Thus two cases can occur:

– for the elements p of ∂intT ji ∩ ∂intT j
∗

i∗ , we did
not have any propagation over p, which means that
U(p)BLpar.

– when p belongs to ∂intT ji \ ∂intT j
∗

i∗ , propagation at
the level Lpar occurred until p (excluded), which
means that U(p) is of type CLpar or BLpar. Now,
let p∗ be one element of ∂intT ji ∩ ∂intT j

∗

i∗ , with
U(p∗)BLpar. By connectivity of ∂intT ji , we know
that there exists a path joining p and p∗, then by
following the reasoning seen in the initialization,
U(p) is of type BLpar.

Concerning the proof that ∀x ∈ ∂T ji ,Lpar ∈ U(x), either
we are in the case:

cl D̄(T ji ) ⊆ T j
∗

i∗ ,

and then any x of ∂T ji satisfies U(x) 3 Lpar, or we are in
the case:

cl D̄(T ji ) 6⊆ T j
∗

i∗ ,

and for any h ∈ cl D̄(T ji ) \ T j
∗

i∗ , we look for the nearest
parent T j

∗∗

i∗∗ of T ji which contains h, and then by Proposition 9
we obtain that U(h) ⊇ [L∗,PR-Cav(T j

∗∗

i∗∗ ),L∗,PR-Cav(T ji ))]
with:

L∗,PR-Cav(T j
∗∗

i∗∗ ) < Lpar = L∗,PR-Cav(T j
∗

i∗ ) < L∗,PR-Cav(T ji )),

and thus Lpar ∈ U(h).
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Remark 2. Let T be some PR-cavity of a SI-map U not
equal to D̄. When this is an upper PR-cavity:

L∗,PR-Cav(T ) = sup {λ ∈ R ; ∀x ∈ ∂int(T ), U(x)B λ}
= min{bU(x)c;∀x ∈ ∂int(T )},

and when this is a lower PR-cavity:

L∗,PR-Cav(T ) = inf {λ ∈ R ; ∀x ∈ ∂int(T ), U(x)C λ}
= max{dU(x)e;∀x ∈ ∂int(T )}.

Property 6. Let N be the (finite) number of iterations of the
FPA. Then, for any value i ∈ [0, N−1], the set Pi is connected
and p∞ ∈ Pi.

Proof: Let us proceed by induction on i ≥ 0:
• Initialization: P1 is connected by hypothesis, and p∞

belongs to P1.
• Heredity: Let us assume that Pi is connected and that p∞

belongs to Pi for some value i ≥ 1. Then, Pi+1 is the
union of Pi, which is connected, and a set of connected
components adjacent to Pi. Thus, Pi+1 is connected and
p∞ belongs to it.

By applying the induction, we obtain that the property is
true for all the possible values of i since N is finite.

Property 7. The PR-cavities of a SI-map U do not have
any cavities.

Proof: For sake of simplicity, let us denote by Ti the set
∪j∈J (i)T ji .

Let {Hl}l∈[1,L] the set of (non-empty) cavities of Ti. Now
let us choose any fixed k ∈ [1, L] and its corresponding
Hk, cavity of some T ji . By definition, Hk ⊂ Sat(Ti). Then,
st D̄(Hk) ⊆ st D̄(Sat(Ti)) = Sat(Ti) by Property 4. Then
st D̄(Hk) ⊆ Sat(Ti). The consequence is that:

st D̄(Hk) \ ∪k∈[1,L]Hk ⊆ Sat(Ti) \ ∪k∈[1,L]Hk ⊆ Ti.

At the same time, Hk ⊆ D̄\Ti ⊆ Pi. Since Pi is connected
by Property 6, there exists some path Π = (h, . . . , p∞) of
length m in Pi joining h ∈ Hk to p∞ ∈ Pi \Hk.

Now, let o∗ be the value maxo∈[1,m]{o ∈ [1,m]|Π(o) ∈
Hk}. Then, since Hk is a closed set, we know that Π(o∗+ 1)
belongs to st D̄(Hk)\Hk ⊆ Ti ⊆ D̄\Pi, then Π(o∗+1) belongs
(also) to Pi. We have a contradiction. The set ∪l∈[1,L]Hl is
then empty.

The following notation is depicted in Figure 18.

Notation 5. Let T be a PR-cavity of U , then we define:

(T )∗,PR-Cav =

( ⋃
x∈∂intT

CC([U = L∗,PR-Cav(T )], x)

)
∩ T .

We recall that
⊔

denotes the disjoint union operator. The
following property can be observed in Figure 18.

Property 8. Let T be a PR-cavity of U . We have the
following equality:

T = (T )∗,PR-Cav

⊔ ⋃
T ′∈childrenPR-Cav(T )

T ′
 ,

or in other words:

(T )∗,PR-Cav = T \

 ⋃
T ′∈childrenPR-Cav(T )

T ′
 .

Proof: Let h be an element of some PR-cavity T of U .
Two cases are possible. The first case corresponds to when
h belongs to some child T ′ of T and then any path starting
from h reaching x ∈ ∂int(T ) ∩ [U = L∗,PR-Cav(T )] crosses
the internal boundary of the direct child T ′′ of T containing
T ′ on which U is lower or greater than L∗,PR-Cav(T ) (see
Proposition 10). The case corresponds to when there exists a
path in [U = L∗,PR-Cav(T )]∩T joining h and x ∈ ∂int(T )∩
[U = L∗,PR-Cav(T )]. Using Proposition 8, we conclude the
proof.

E. Mathematical properties of shapes

Definition 4. From now on, for any subset E of D̄, we will
denote by Int(E) the topological interior of E, that is, the
greatest open set contained in E.

1) Properties of shapes of a WC SI-map:

Proposition 11 (Shapes are open). Let S be some shape of
U . Then, S is an open set.

Proof: An upper threshold set is the core [18], [8] image
by the interval-valued map of an open interval ]a,+∞[,
which is then open by upper semicontinuity of the span-based
immersion U . Thus, its connected components are open. It
follows that the saturations of these components, the shapes
of U , are open by Proposition 2. The same reasoning can be
applied to lower shapes.

Proposition 12. Let D̄ be a n-D hyper-rectangle in the n-D
Khalimsky grid, and let p∞ be a n-face of D̄ which belongs
to ∂D̄. When a digital set S ⊂ D̄ is an open shape of a WC
SI-map, then we have the following property:

Int(Sat(∂S)) = S.

Proof: When we are in the case S = D̄, we obtain easily:

Sat(S) = D̄ \ CC(D̄ \ ∂D̄, p∞) = D̄.

When S ( D̄, we can use Proposition 4 and we obtain:

Sat(cl D̄(S)) = Sat(∂cl D̄(S)) = Sat(cl D̄(cl D̄(S))\Int(cl D̄(S))).

Thanks to the idempotency of the closure operator and to
Proposition 6 (regularity of the open shape S):

Sat(cl D̄(S)) = Sat(cl D̄(S) \ S) = Sat(∂S).

Thanks to Remark 1, S is WC, and then by Proposition 5:

Sat(∂S) = Sat(cl D̄(S)) = cl D̄(Sat(S)) = cl D̄(S).

This way,

Int(Sat(∂S)) = Int(cl D̄(S)) = S

by regularity of S.
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Let us now assume that the studied function U is WC.

Notation 6. Let S be a shape of a WC SI-map U . We define
the following set:

nextS(S) = {S ′ ∈ S(U) ; S = parentS(S ′)} .

Notation 7. Let S be a shape of a WC SI-map U . We denote
by childrenS(S) the set of children of S in S(U).

We obtain then easily the following proposition.

Proposition 13. Let U be a WC SI-map on D̄. For any shape
S of U , we have the following equality:⋃

S′∈nextS(S)

S ′ =
⋃

S′∈childrenS(S)

S ′.

0

3

4

2

12

Fig. 19. Starting from the upper shape S = Sat([UB0.5]) whose contour is
colored in red, we compute (S)∗,S depicted by squares with blue contours;
remark that L∗,S(S) is equal to 2 since it is the minimal value that can be
found in the internal boundary.

Definition 5 (Levels of shapes). We define:

L∗,S(D̄) = L∞.

For any shape S of U different from D̄, we define when this
shape is an upper shape:

L∗,S(S) = sup {λ ∈ R ; ∀x ∈ ∂int(S), U(x)B λ}
= min{bU(x)c;x ∈ ∂int(S)},

and when this shape is a lower shape, then:

L∗,S(S) = inf {λ ∈ R ; ∀x ∈ ∂int(S), U(x)C λ}
= max{dU(x)e;x ∈ ∂int(S)}.

This definition is depicted in Figure 19.

Notation 8. Let U be some WC SI-map and S its tree of
shapes. Then for any shape S of U different from the root D̄
of S, we denote by parentS(S) the direct parent of S in S.

Proposition 14. Let S be some shape of some WC SI-map
U with S 6= D̄, then when S is an upper shape, it satisfies
that L∗,S(S) > L∗,S(parentS(S)). Conversely, when S is a
lower shape, it satisfies that L∗,S(S) < L∗,S(parentS(S)).

Proof: Let us treat the upper case only, the other
case being symmetrical. Let us assume that S is an upper
shape different from D̄, then there exists some connected
component Γ ∈ CC([U B L∗,S(S) − ε]) with ε → 0+

such that Sat(Γ) = S. However, if we assume now that
L∗,S(parentS(S)) > L∗,S(S), then there exists some face
x ∈ parentS(S) which is neighbor of Γ and which satisfies
U(x)BL∗,S(S). By construction of Γ, it contains x, and then
we obtain that Sat(Γ) ) S, which is a contradiction. However,
the case L∗,S(parentS(S)) = L∗,S(S) is impossible, then
L∗,S(parentS(S)) < L∗,S(S).

Proposition 15. Let S,S ′ be two shapes different from D̄ of a
WC SI-map U with S ′ = parentS(S) and with clX(S) 6⊆ S ′.
Then, S and S ′ are both upper shapes or both lower shapes.

Proof: Let us treat the case where S is an upper shape
(he lower case follows a same reasoning). We assume that S ′
is a lower shape, then for any x ∈ ∂intS ′, we have U(x) C
L∗,S(S ′) + ε with ε → 0−. Since clX(S) 6⊆ S ′, then there
exists a face h in clX(S) which does not belong to S ′, then
there exists x in the closure of h which belongs to:

∂intS ∩ ∂intS ′,

which leads at the same time to U(x) B L∗,S(S) − ε with
ε → 0+ and to U(x) CL∗,S(S ′) + ε′ with ε′ → 0−. Then,
we obtain:

L∗,S(S)− εC U(x)CL∗,S(S ′) + ε′,

which means that L∗,S(S ′) > L∗,S(S), then by Proposi-
tion 14, S is a lower shape. We obtain a contradiction. This
concludes the proof.

Proposition 16. Let S be a shape of a WC SI-map U different
from D̄. When S is an upper shape:

∀λ ∈ [L∗,S(parentS(S)),L∗,S(S)[,∀x ∈ ∂intS, U(x)B λ,

and

∀λ ∈ [L∗,S(parentS(S)),L∗,S(S)],∀x ∈ ∂S, U(x) 3 λ,

and S is a lower shape:

∀λ ∈]L∗,S(S),L∗,S(parentS(S))],∀x ∈ ∂intS, U(x)C λ,

and

∀λ ∈ [L∗,S(S),L∗,S(parentS(S))],∀x ∈ ∂intS, U(x) 3 λ.

Proof: Let us treat the upper case only (the other case
can be deduced by symmetry). By Proposition 14, we know
that:

L∗,S(parentS(S)) < L∗,S(S).

Now, let us prove that for any x ∈ ∂intS, we have that
U(x)BL∗,S(S)− ε with ε→ 0+. For this aim, we assume
that there exists at least one face h ∈ ∂int(S) such that
U(h) 6 BL∗,S(S)− ε. Since S is an upper shape, there exists
a connected component Γ of [U B L∗,S(S) − ε] such that
Sat(Γ) = S. However, h does not belong to Γ. Then, h
belongs to D̄ \ Γ. Also, h ∈ ∂int(S), then there exists some
path Π joining p∞ to h in D̄ \ S (since D̄ \ S is connected).
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Then, h belongs to CC(D̄ \Γ, p∞), and then h 6∈ Sat(Γ), that
is, ∂int(S) 6⊆ S, which is a contradiction. Then all the faces x
of ∂int satisfy the property that U(x) is greater than L∗,S(S).
Concerning the property that for any x ∈ ∂S, U(x) contains
L∗,S(S), it is simply due to the properties of the span-based
immersion:
• when clX(S) ⊆ parentS(S), each face x of ∂S is

neighbor of a n-face hin of ∂intS whose value is
U(hin) = v with v ≥ L∗,S(S) and of an n-face hout in
(parentS(S))∗,S with U(hout) = L∗,S(parentS(S)),
then it contains

[L∗,S(parentS(S)), v],

and then L∗,S(S),
• when clX(S) 6⊆ parentS(S), we have two possi-

ble cases. Either we have x ∈ ∂S which belong to
parentS(S) and we can reason as in the previous case,
or x ∈ ∂S does not belong to the (direct) parent
parentS(S). In this last case, we look for the nearest
parent S ′ in S(U) which contains x. Since it will be
an upper shape by Proposition 15, we will have that
L∗,S(S ′) is lower than L∗,S(S). Now, let us define v as
the supremum of (the lower bounds of) U on the n-faces
of clX(x); we will obtain v ≥ L∗,S(S). We will obtain
that U(x) contains:

[L∗,S(S ′), v]

and then L∗,S(S).
This concludes the proof.

Notation 9. Let S be a shape of U . We will define:

(S)∗,S = S \

 ⋃
S′∈childrenS(S)

S ′
 .

This notation is depicted in Figure 19.

Remark 3. Let S be a shape of U . Then, any n-face h of
(S)∗,S satisfies:

U(h) = {L∗,S(S)} .

Proposition 17 (Separation property of shape boundaries). Let
S be an (open) shape of a SI-map U defined on D̄. Let choose
an operator in {∂int, ∂}. We say that bd(S) separates D̄ in
the sense that when we call exterior component the set:

E := CC(D̄ \ bd(S), p∞)

and interior component the set:

I = Int(Sat(bd(S))),

then we can assert that any path in D̄ going from the
interior component to the exterior component (or the converse)
will intersect bd(S). Furthermore, we obtain the following
partition of D̄:

D̄ = E t bd(S) t I.

Proof: Let us begin with the case bd = ∂. Since S is
open, we know by Proposition 12 that:

I = Int(Sat(∂S))) = S,

and at the same time we obtain that the exterior component is
equal to:

E = D̄ \ clX(S),

which is due to the fact that Sat(∂S) = clX(S) (see the
proof of Proposition 12). Then, every path Π going from E to
S satisfies that it starts from a ∈ E to b ∈ S in D̄. Let Π(i∗)
be the last element of Π which is in E, then Π(i∗+1) belongs
to S or to ∂S. Since E is open, Π(i∗ + 1) does not belong to
stX(Π(i∗), otherwise it belongs to E. Then, Π(i∗+1) belongs
to clX(Π(i∗)) \ E, and then to

clX(E) \ E = ∂E = ∂S.

The same reasoning applies when we start from b in S and
then every path Π from E to I intersects ∂S.

Let us treat now the case bd = ∂int. We recall by Proposi-
tion 7 that:

∂intS = stX(Hn \ S) ∩ stX(S)

or after simplification:

∂intS = stX(D̄ \ S) ∩ S.

Now, let Π be a path in D̄ starting from a belonging to:

E = D̄ \ S,

and going to b belonging to:

I = S \ ∂intS.

Then, there exists i∗ such that Π(i∗) is the last element of
Π which does not belong to S. It satisfies Π(i∗ + 1) ∈
stX(Π(i∗)) \ {Π(i∗)}, then Π(i∗ + 1) belongs to S and to
stX(D̄ \ S), then to ∂intS. Conversely, if we start from b, we
denote by i∗ the index of Π such that Π(i∗) is the last element
in S. Then, Π(i∗ + 1) belongs to E, then Π(i∗) belongs to
stX(D̄ \ S) ∩ S = ∂intS and Π intersects ∂intS.

Internal boundary

Saturation

Fig. 20. The saturation of the internal boundary of a shape of a WC SI-map
is equal to this same shape

Proposition 18. Let U be some WC SI-map and S one of
its shapes. We have the following property:

Sat(∂int(S)) = S.
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Proof: This proof is depicted in Figure 20. Using the
notations of the proof of Proposition 17, we obtain:

Sat(∂int(S)) = D̄ \ CC(D̄ \ ∂int(S), p∞),

and the two (separated) connected components of D̄ \ ∂int(S)
are E and I. However, only E contains p∞. Thus,

CC(D̄ \ ∂int(S), p∞) = E,

and Sat(∂int(S)) = D̄ \E = It ∂int(S) = S. This concludes
the proof.

Proposition 19. Let S be some shape of U , then we have the
remarkable properties (as depicted in Figure 19):(

D̄
)
∗,S =

⋃
x∈4D̄

CC ([U = L∞], x) .

and when S 6= D̄:

(S)∗,S =

 ⋃
x∈∂int(S)

CC ([U = L∗,S(S)], x)

 ∩ S.
Proof: The case of D̄ is obvious. We can observe that

this proposition results from the fact that when we have some
face h in some upper shape S of U (then by Proposition 16
it is a shape of type B), four cases are possible:
(1) L∗,S(S) ∈ U(h) and there exists some path joining h

to some x ∈ ∂intS in [U = L∗,S(S)]. In this case, h
belongs to (S)∗,S.

(2) L∗,S(S) ∈ U(h) but there does not exist any path joining
h to some x ∈ ∂intS in [U = L∗,S(S)], then there
exists two shapes S ′,S ′′ ∈ childrenS(S) of U such that
L∗,S(S ′) 6= L∗,S(S), L∗,S(S ′′) = L∗,S(S), and S ′′ ⊂
S ′ ⊂ S . In this case, h belongs to S ′′ which belongs to
the children of S, and then h 6∈ (S)∗,S.

(3) U(h)CL∗,S(S), then ∂intS (where U is B L∗,S(S)−ε
with ε→ 0+) separates D̄ by Proposition 17 so that we
obtain:

CC ([U CL∗,S(S)], h) ⊆ Sat(∂intS),

then by Proposition 1 and Proposition 18:

S ′ = Sat(CC ([U CL∗,S(S)], h)) ⊆ S.

Since S ′ is a lower shape different from D̄, S ′ 6= S, and
then S ′ ( S. Thus, h belongs to S ′ which belongs to the
children of S, and then h 6∈ (S)∗,S.

(4) U(h)BL∗,S(S), then ∂S (where U contains L∗,S(S))
separates D̄ by Proposition 17 so that we obtain:

CC ([U BL∗,S(S)], h) ⊆ Int(Sat(∂S)),

which means that S ′ = Sat(CC ([U BL∗,S(S)], h)) ⊆
S , and then there exists a child S ′ of S satisfying h ∈ S ′,
and then h 6∈ (S)∗,S.

Finally, h belongs to (S)∗,S iff it belongs to ⋃
x∈∂int(S)

CC ([U = L∗,S(S)], x)

 ∩ S,
which proves the assertion in the upper case. The same
reasoning applies in the lower case. This concludes the proof.

F. Properties of cavities that are shapes

Proposition 20. Let U be a SI-map, and let F be a subset
of D̄ which is at the same time a shape of U and a PR-cavity
of U . Then L∗,PR-Cav(F ) = L∗,S(F ).

Proof: It is a direct consequence of Remark 2.

Proposition 21. Let U be a SI-map, and let F be a subset
of D̄ which is at the same time a shape of U and a PR-cavity
of U . Then (F )∗,PR-Cav = (F )∗,S.

Proof: Let F be a PR-cavity and a shape of U . Then,
thanks to Proposition 20 and to Proposition 19:

(F )∗,PR-Cav =
(⋃

x∈∂int(F) CC ([U = L∗,PR-Cav(F )], x)
)
∩F ,

=
(⋃

x∈∂int(F) CC ([U = L∗,S(F )], x)
)
∩F ,

= (F )∗,S

The proof is done.

G. Our main theorem

Theorem 1. Let U be a well-composed SI-map defined on
a unicoherent domain D̄. The PR-cavity hierarchy computed
by the FPA is equal to the tree of shapes of U . In other words,
our FPA algorithm computes the tree of shapes of U .

Proof: Let F be a subset of D̄ which is at the same time
a PR-cavity and a shape of U . Thanks to Proposition 21, we
obtain that :

(F )∗,PR-Cav = (F )∗,S ,

which leads by Property 8 to:

F \

 ⋃
T ∈childrenPR-Cav(F)

T

 = (F )∗,S .

Using Notation 9, we obtain:⋃
T ∈childrenPR-Cav(F)

T =
⋃

S∈childrenS(F)

S,

which can be reformulated by Proposition 13 and Proposi-
tion 8: ⋃

T ∈nextPR-Cav(F)

T =
⋃

S∈nextS(F)

S.

Furthermore, the elements of nextPR-Cav(F ) are PR-
cavities, then open by Property 4, and connected by defini-
tion. The elements of nextS(F ) are shapes, then open by
Proposition 11, and connected by Proposition 3.
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The consequence is that:

nextPR-Cav(F ) = CC

 ⋃
T ∈nextPR-Cav(F)

T

 (2)

= CC

 ⋃
S∈nextS(F)

S

 (3)

= nextS(F ). (4)

We obtain thus directly that:

PR-Cav = S

since their root is the same set D̄.

Corollary 1. By following the procedure described in Fig-
ure 9, the tree of PR-cavities computed on u is the tree of
shapes of u.

V. DISCUSSION ABOUT THE TREE OF SHAPES

In Corollary 1, we assert that the tree of cavities computed
by our algorithm is the tree of shapes of u. In fact, when
the input image u is already well-composed, the immersion U
is well-composed, and thus no topological reparation of U is
needed to obtain the property that the output of our algorithm
(before the emersion) will be the tree of shapes of U . After
the emersion, since it is used to remove the additional faces
(added during the immersion step), we understand easily that
the tree of cavities of U becomes “the” tree of shapes of u.

However, when the initial image u is not well-composed,
we have to make it well-composed using some topological
reparation algorithm, based for example on a min-interpolation
(simulating the 2n-connectivity for the ones), or a max-
interpolation (simulating the 3n−1-connectivity for the ones),
or even our n-D self-dual topological reparation (considering
different connectivities depending on the context [10]). Due
to this choice that has to be made, there exist several tree of
shapes, depending on the choice that has been made about the
well-composed interpolation we have chosen before applying
our algorithm.

Another important remark is that the algorithm we present
here is thus deterministic: assuming we have fixed the well-
composed interpolation that we used at the beginning of the
algorithm, whatever the random propagation during the sort
algorithm is (several sequences of levels are possible during
the propagation depending on if we increase or decrease the
level), the final output is always the tree of shapes. So the
algorithm we present here is deterministic. Intuitively, this
determinism is justified by the fact that depending on when
we increase or decrease the current level, we propagate in
different areas of the domain of the image, thus increasing or
decreasing has no influence on the final computation.

VI. COMPLEXITY ANALYSIS

Complexity analysis of the algorithm presented here is
trivial. The immersion, canonicalization, and emersion are
linear. The modified union-find (once augmented with tree

balancing, i.e., union-by-rank) is quasi-linear when values of
the input image u have a low quantization (typically 12 bits or
less). Last, the time complexity of the sorting step is governed
by the use hierarchical queue: it is linear with low quantized
data3. Eventually, we obtain a quasi-linear algorithm.

VII. CONCLUSION

We have proven in this paper that the tree computed in the
algorithm provided in [1] is indeed the expected tree of shapes.
We also know that the tree of shapes is a purely self-dual
representation of a cubical image when we work with self-dual
well-composed interpolations. For this reason, we propose to
focus in the future on the proof that the interpolation provided
in [7] is self-dual.
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