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Maxwell’s equations
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Abstract

We consider for the full time-dependent Maxwell’s equations the inverse problem of
identifying locations and certain properties of small electromagnetic inhomogeneities
in a homogeneous background medium from dynamic boundary measurements on the
boundary for a finite time interval.
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1 Introduction

The ultimate objective of the work described in this paper is to determine locations
and certain properties of the shapes of small electromagnetic inhomogeneities in a ho-
mogeneous background medium from dynamic boundary measurements on part of the
boundary and for finite interval in time. Using as weights particular background solu-
tions constructed by a geometrical control method we develop an asymptotic method
based on appropriate averaging of the partial dynamic boundary measurements.
For stationary Maxwell’s equations it has been known that the Dirichlet to Neumann
map uniquely determines (smooth) isotropic electromagnetic parameters, see [16], [18],
[20]. We will provide in this paper a rigorous derivation of the inverse Fourier transform
of a linear combination of derivatives of point masses, located at the positions zj of the
inhomogeneities, as the leading order term of an appropriate averaging of (partial) dy-
namic boundary measurements of the tangential components of electric fields on part
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Cergy-Pontoise Cedex, France (Email: christian.daveau@math.u-cergy.fr).
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of the boundary. Our formulas may be used to determine properties (location, relative
size ) of the small inhomogeneities in case a single, or a few (tangential) boundary
electric fields are known. Our approach differs from [1], [2], [3], [4], [22] and is expected
to lead to very effective computational identification algorithms.

For discussions on closely related (stationary) identification problems we refer the
reader to [19],[21], [6], and [10].

2 Problem formulation

Let Ω be a bounded C2-domain in Rd, d = 2, 3. Assume that Ω contains a finite
number of inhomogeneities, each of the form zj + αBj , where Bj ⊂ Rd is a bounded,
smooth domain containing the origin. The total collection of inhomogeneities is Bα =
∪m
j=1(zj + αBj). The points zj ∈ Ω, j = 1, . . . ,m, which determine the location of the

inhomogeneities, are assumed to satisfy the following inequalities:

|zj − zl| ≥ c0 > 0,∀ j 6= l and dist(zj , ∂Ω) ≥ c0 > 0,∀ j. (1)

Assume that α > 0, the common order of magnitude of the diameters of the inhomo-
geneities, is sufficiently small, that these inhomogeneities are disjoint, and that their
distance to Rd \ Ω is larger than c0/2. Let µ0 and ε0 denote the permeability and
the permittivity of the background medium, and assume that µ0 > 0 and ε0 > 0 are
positive constants. Let µj > 0 and εj > 0 denote the permeability and the permittivity
of the j-th inhomogeneity, zj + αBj , these are also assumed to be positive constants.
Introduce the piecewise-constant magnetic permeability

µα(x) =

{
µ0, x ∈ Ω \ B̄α,
µj , x ∈ zj + αBj , j = 1 . . .m.

(2)

If we allow the degenerate case α = 0, then the function µ0(x) equals the constant µ0.
The electric permittivity is defined by εα(x) = ε0, for all x ∈ Ω. Let n = n(x) denote

the outward unit normal vector to Ω at a point on ∂Ω, ∂tu =
∂u

∂t
and ∆ means the

Laplace operator defined by ∆u =

d∑
i=1

∂2u

∂x2i
.

In this paper, we will denote by bold letters the functional spaces for the vector
fields. Thus Hs(Ω) denotes the usual Sobolev space on Ω and Hs(Ω) denotes (Hs(Ω))d

and L2(Ω) denotes (L2(Ω))d. As usual for Maxwell equations, we need spaces of fields
with square integrable curls:

H( curl ; Ω) = {u ∈ L2(Ω), curl u ∈ L2(Ω)},

and with square integrable divergences

H(div ; Ω) = {u ∈ L2(Ω),div u ∈ L2(Ω)}.

We will also need the following functional spaces:

Y (Ω) = {u ∈ L2(Ω),div u = 0 in Ω}, X(Ω) = H1(Ω) ∩ Y (Ω),
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and TL2(∂Ω) the space of vector fields on ∂Ω that lie in L2(∂Ω). Finally, the ”minimal”
choice for the electric variational space would be

XN (Ω) = {v ∈ H( curl ; Ω) ∩H(div ; Ω); v × n = 0 on ∂Ω}.

Now, we introduce the following time-dependent Maxwell equations (associated to
the electric field) 

(εα∂
2
t + curl

1

µα
curl )Eα = 0 in Ω× (0, T ),

div (εαEα) = 0 in Ω× (0, T ),

Eα|t=0 = ϕ, ∂tEα|t=0 = ψ in Ω,

Eα × n|∂Ω×(0,T ) = f,

(3)

where Eα ∈ Rd is the electric field, f the boundary condition for Eα ×n, and ϕ and ψ
the initial data.

Let E be the solution of the Maxwell’s equations in the homogeneous domain:

(ε0∂
2
t + curl

1

µ0
curl )E = 0 in Ω× (0, T ),

div (ε0E) = 0 in Ω× (0, T ),

E|t=0 = ϕ, ∂tE|t=0 = ψ in Ω,

E × n|∂Ω×(0,T ) = f.

(4)

Here T > 0 is a final observation time and ϕ,ψ ∈ C∞(Ω) and f ∈ C∞(0, T ; C∞(∂Ω))
are subject to the compatibility conditions

∂2lt f |t=0 = (∆lϕ)× n|∂Ω and ∂2l+1
t f |t=0 = (∆lψ)× n|∂Ω, l = 1, 2, . . .

it follows that (4) has a unique solution E ∈ C∞([0, T ]× Ω). It is also known (see for
example [17]) that since Ω is smooth (C2− regularity would be sufficient) the non ho-
mogeneous Maxwell’s equations (3) have a unique weak solution Eα ∈ C0(0, T ;X(Ω))∩
C1(0, T ;L2(Ω)). Indeed, curl Eα belongs to C0(0, T ;X(Ω)) ∩ C1(0, T ;L2(Ω)).

3 Asymptotic formula

We start the derivation of the asymptotic formula for curl Eα × n with the following
estimate.

Lemma 3.1 The following estimate as α→ 0 holds:

||∂t(Eα − E)||L∞(0,T ;L2(Ω)) + ||Eα − E||L∞(0,T ;XN (Ω)) ≤ Cα, (5)

where the constant C is independent of α and the set of points {zj}mj=1 provided that
assumption (1) holds.
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Proof. From (3)-(4), it is obvious that Eα − E ∈ XN (Ω), then due to the Green
formula we have for any v ∈ XN (Ω):∫

Ω
ε0∂

2
t (Eα − E) · v dx+

∫
Ω

1

µα
curl (Eα − E) · curl v dx = (6)

m∑
j=1

(
1

µ0
− 1

µj
)

∫
zj+αBj

curl E · curl v dx.

Let vα be defined by {
vα ∈ XN (Ω),

curl 1
µα

curl vα = ∂t(Eα − E) in Ω.
(7)

Then, ∫
Ω

1

µα
curl (Eα − E) · curl vα dx = −

∫
Ω
∂t(Eα − E) · (Eα − E) dx =

−1

2
∂t

∫
Ω
|Eα −E|2 dx

and by Green formula, relation (7) gives:∫
Ω
∂2t (Eα − E) · vα dx =

∫
Ω

curl
1

µα
curl ∂tvα · vα dx

= −
∫
Ω

1

µα
curl ∂tvα · curl vα dx

= −1

2
∂t

∫
Ω

1

µα
| curl vα|2 dx.

Thus, it follows from (6) that

ε0∂t

∫
Ω

1

µα
| curl vα|2 dx+ ∂t

∫
Ω
|Eα −E|2 dx =

−2

m∑
j=1

(
1

µ0
− 1

µj
)

∫
zj+αBj

curl E · curl vα dx.

Next,

|
m∑
j=1

(
1

µ0
− 1

µj
)

∫
zj+αBj

curl E · curl vα| ≤ C|| curl E||L2(Bα)|| curl vα||L2(Ω).

Since E ∈ C∞([0, T ]× Ω) we have

|| curl E||L2(Bα) ≤ || curl E||L∞(Bα)α(
m∑
j=1

|Bj |)
1
2 ≤ Cα,

which gives

|
m∑
j=1

(
1

µ0
− 1

µj
)

∫
zj+αBj

curl E · curl vαdx| ≤ Cα|| curl vα||L2(Ω)
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and so,

ε0∂t

∫
Ω

1

µα
| curl vα|2 dx+∂t

∫
Ω
|Eα−E|2 dx ≤ Cα(

∫
Ω

1

µα
| curl vα|2 dx+

∫
Ω
|Eα−E|2 dx)1/2.

(8)
From the Gronwall Lemma it follows that

(

∫
Ω

1

µα
| curl vα|2 dx)1/2 + (

∫
Ω
|Eα − E|2 dx)1/2 ≤ Cα. (9)

Combining this last estimate (9) with the fact that

||∂t(Eα − E)||L∞(0,T ;H−1(Ω)) ≤ C|| curl vα||L∞(0,T ;L2(Ω))

the following estimate holds

||Eα − E0||L∞(0,T ;L2(Ω)) + ||∂t(Eα − E0)||L∞(0,T ;L2(Ω)) ≤ Cα. (10)

Now, taking (formally) v = ∂t(Eα − E) in (6) we arrive at

ε0∂t

∫
Ω

[
|∂t(Eα − E)|2 + 1

µα
| curl (Eα − E)|2

]
dx =

2
m∑
j=1

(
1

µ0
− 1

µj
)

∫
zj+αBj

curl E · curl ∂t(Eα − E) dx.

By using the regularity of E in Ω and estimate (10) given above, we see that

|
m∑
j=1

(
1

µ0
− 1

µj
)

∫
zj+αBj

curl E · curl ∂t(Eα − E) dx| ≤ C|| curl E||H2(Bα)||∂t(Eα −E)||H−1(Ω)

≤ Cα2,

where C is independent of t and α, and so, we obtain

∂t

∫
Ω

[
|∂t(Eα − E)|2 + 1

µα
| curl (Eα − E)|2

]
dx ≤ Cα2

which yields the following estimate

||∂t(Eα − E)||L∞(0,T ;L2(Ω)) + ||Eα − E||L∞(0,T ;XN (Ω)) ≤ Cα,

where C is independent of α and the points {zj}mj=1.

Now, we can estimate curl Eα − curl E0 as follows.

Proposition 3.1 Let Eα and E be solutions to the problems (3) and (4) respectively.
There exist constants 0 < α0, C such that for 0 < α < α0 the following estimate holds:

|| curl (Eα − E0)||L∞(0,T ;L2(Ω)) ≤ Cα, (11)
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Proof. To prove estimate (11) it is useful to introduce the following function

v̂(x) =

∫ T

0
v(x, t)z(t) dt ∈ L2(Ω), (12)

where v ∈ L1(0, T ;L2(Ω)) and z(t) is a given function in C∞
0 (]0, T [).

Then,

Ê(x) =

∫ T

0
E(x, t)z(t) dt and Êα(x) =

∫ T

0
Eα(x, t)z(t) dt ∈ X(Ω),

which by relation (5) give

(Êα − Ê) ∈ H1(Ω),

curl curl (Êα − Ê) = 0(α) in Ω,

div (Êα − Ê) = 0 in Ω,

(Êα − Ê)× n|∂Ω = 0,

and so,
|| curl (Êα − Ê)||L2(Ω) = O(α). (13)

The fact that curl (Eα−E) belongs to L∞(0, T ;L2(Ω)) and by using estimate (13) we
deduce that∫

Ω
| curl Eα(x, t)− curl E(x, t)|2 dx = O(α2) a.e. in t ∈ (0, T ),

which means that

|| curl (Eα − E)||L2(Ω) = O(α) a.e. in t ∈ (0, T ).

Thus, estimate (11) follows immediately if we take the sup on t ∈ (0, T ) in the last
relation.

Before formulating our main result in this section, let us denote Φj , j = 1, . . . ,m
the unique vector-valued solution to

∆Φj = 0 in Bj , and Rd \Bj ,

Φj is continuous across ∂Bj ,

µj
µ0

∂Φj

∂νj
|+ − ∂Φj

∂νj
|− = −νj ,

lim
|y|→+∞

|Φj(y)| = 0,

(14)

where νj denotes the outward unit normal to ∂Bj , and superscripts − and + indicate
the limiting values as the point approaches ∂Bj from outside Bj , and from inside Bj ,
respectively. The existence and uniqueness of this Φj can be established using single
layer potentials with suitably chosen densities, see [6] for the case of conductivity
problem. For each inhomogeneity zj + αBj we introduce the polarizability tensor
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Mj which is a d × d, symmetric, positive definite matrix associated with the j-th
inhomogeneity, given by

(Mj)k,l = ek · (
∫
∂Bj

(νj + (
µj
µ0

− 1)
∂Φj

∂νj
|+(y))y · el dσj(y)). (15)

Here (e1, . . . , ed) is an orthonormal basis of Rd. In terms of this function we are able
to prove the following result about the asymptotic behavior of curl Eα · νj |∂(zj+αBj)+ .

Theorem 3.1 Suppose that (1) is satisfied and let Φj , j = 1, . . . ,m be given as in (14).
Then, for the solutions Eα, E of problems (3) and (4) respectively, and for y ∈ ∂Bj

we have
( curl Eα(zj + αy) · νj)|∂(zj+αBj)+ = curl E(zj , t) · νj (16)

+(1− µj
µ0

)
∂Φj

∂νj
|+(y) · curl E(zj , t) + o(1).

The term o(1) uniform in y ∈ ∂Bj and t ∈ (0, T ) and depends on the shape of {Bj}mj=1

and Ω, the constants c0, T , µ0, {µj}mj=1, the data ϕ,ψ, and f , but is otherwise inde-
pendent of the points {zj}mj=1.

Proof.
Let Eα = curl Eα(x, t) and E0 = curl E(x, t). Then, according to (3)-(4) we have

ε0∂
2
tEα − curl

1

µα
Eα = 0 and curl Eα = 0, for x ∈ Ω. (17)

We restrict, for simplicity, our attention to the case of a single inhomogeneity, i.e.,
the case m = 1. The proof for any fixed number m of well separated inhomogeneities
follows by iteration of the argument that we will present for the case m = 1. In order
to further simplify notation, we assume that the single inhomogeneity has the form
αB, that is, we assume it is centered at the origin. We denote the electromagnetic
permeability inside αB by µ∗ and define Φ∗ the same as Φj , defined in (14), but with
Bj and µj replaced by B and µ∗, respectively. Define ν to be the outward unit normal
to ∂B. Now, following a common practice in multiscale expansions we introduce the

local variable y =
x

α
, then the domain Ω̃ = (

Ω

α
) is well defined.

Next, let $ be given in C∞
0 (]0, T [). For any function v ∈ L1(0, T ;L2(Ω)), we define

v̂(x) =

∫ T

0
v(x, t)$(t) dt ∈ L2(Ω).

We remark that ∂̂tv(x) = −
∫ T

0
v(x, t)$′(t) dt. So that we deduce from (17) that Êα

satisfies  curl
1

µα
Êα =

∫ T

0
Eα$

′′(t) dt in Ω,

curl Êα = 0 in Ω.

Analogously, Ê satisfies
1

µ0
curl Ê =

∫ T

0
E$′′(t) dt in Ω,

curl Ê = 0 in Ω.
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Indeed, we have Êα × n = Ê × n = curl ∂Ωf̂ × n on the boundary ∂Ω, where curl ∂Ω
is the tangential curl. Following [4] and [1], we introduce q∗α as the unique solution to
the following problem

∆q∗α = 0 in Ω̃ = (
Ω

α
) \B and in B,

q∗α is continuous across ∂B,

µ0
∂q∗α
∂ν

|+ − µ∗
∂q∗α
∂ν

|− = −(µ0 − µ∗)Ê(αy) · ν on ∂B,

q∗α = 0 on ∂Ω̃.

The jump condition

µ0
∂q∗α
∂ν

|+ − µ∗
∂q∗α
∂ν

|− = −(µ0 − µ∗)Ê(αy) · ν on ∂B

guarantees that Êα(x) − Ê(x) − grad yq
∗
α(

x
α) belongs to the functional space XN (Ω),

where grad ∂Ω is the tangential gradient. Since
curl

1

µα
(Êα − Ê − grad yq

∗
α(
x

α
)) =

∫ T

0

[
Eα − χ(Ω \ αB)E +

µ∗
µ0
χ(αB)E

]
$′′(t) dt in Ω,

curl (Êα − Ê − grad yq
∗
α(
x

α
)) = 0 in Ω,

(Êα − Ê − grad yq
∗
α(

x
α))× n = 0 on ∂Ω,

where χ(ω) is the characteristic function of the domain ω, we arrive, as a consequence
of the energy estimate given by Lemma 3.1, at the following

(Êα − Ê − grad yq
∗
α(

x
α)) ∈ XN (Ω),

curl
1

µα
(Êα − Ê − curl yq

∗
α(
x

α
)) = 0(α) in Ω,

curl (Êα − Ê − grad yq
∗
α(
x

α
)) = 0 in Ω,

(Êα − Ê − grad yq
∗
α(

x
α))× n = 0 on ∂Ω.

From [4] we know that this yields the following estimate

|| curl 1

µα
(Êα − Ê − grad yq

∗
α(
x

α
))||L2(Ω) + ||Êα − Ê − grad yq

∗
α(
x

α
)||L2(Ω) ≤ Cα,

and so,

(Êα − Ê − grad yq
∗
α(
x

α
)) · ν|+ = 0(α) on ∂(αB).

Now, we denote by q∗ be the unique (scalar) solution to

∆q∗ = 0 in Rd \B and in B,

q∗ is continuous across ∂B,

µ0
∂q∗
∂ν

|+ − µ∗
∂q∗
∂ν

|− = −(µ0 − µ∗)Ê(0) · ν on ∂B,

lim
|y|→+∞

q∗ = 0.
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In the spirit of Theorem 1 in [6] it follows that

||( grad yq∗ − grad yq
∗
α)(

x

α
)||L2(Ω) ≤ Cα1/2,

which yields

(Êα − Ê − grad yq∗(
x

α
)) · ν = o(1) on ∂(αB).

Writing q∗ in terms of Φ∗ gives∫ T

0

[
( curl Eα(αy)·ν)|∂(αB)+−ν· curl E(0, t)−(

µ0
µ∗

−1)
∂Φ∗
∂ν

|+(y)· curl E(0, t)
]
$(t) dt = o(1),

for any $ ∈ C∞
0 (]0, T [), and so, by iterating the same argument for the case of m

(well separated) inhomogeneities zj + αBj , j = 1, . . . ,m, we arrive at the promised
asymptotic formula (16).

4 The identification procedure

Before describing our identification procedure, let us introduce the following cutoff
function β(x) ∈ C∞

0 (Ω) such that β ≡ 1 in a subdomain Ω′ of Ω that contains the inho-
mogeneities Bα and let η ∈ Rd. We will take in what follows E(x, t) = η⊥eiη·x−i

√
µ0|η|t

where η⊥ is a unit vector that is orthogonal to η which corresponds to taking ϕ(x) =
η⊥eiη·x, ψ(x) = −i√µ0|η|η⊥eiη·x, and f(x, t) = η⊥×neiη·x−i

√
µ0|η|t and assume that we

are in possession of the measurements of:

curl Eα × n on Γ× (0, T ),

where Γ is an open part of ∂Ω. Suppose now that T and the part Γ of the boundary ∂Ω
are such that they geometrically control Ω which roughly means that every geometrical
optic ray, starting at any point x ∈ Ω at time t = 0 hits Γ before time T at a non
diffractive point, see [5]. It follows from [17] (see also [13], [11] and [12]) that there exists
(a unique) gη ∈ H1

0 (0, T ;TL
2(Γ)) (constructed by the Hilbert Uniqueness Method) such

that the unique weak solution wη to

(∂2t + curl curl )wη = 0 in Ω× (0, T ),

div wη = 0 in Ω× (0, T ),

wη|t=0 = β(x)η⊥eiη·x, ∂twη|t=0 = 0 in Ω,

wη × n|∂Ω\Γ×(0,T ) = 0,

wη × n|Γ×(0,T ) = gη,

(18)

satisfies wη(T ) = ∂twη(T ) = 0 in Ω.
Let θη ∈ H1(0, T ;TL2(Γ)) denote the unique solution of the Volterra equation of

second kind ∂tθη(x, t) +

∫ T

t
e−i|η|(s−t)(θη(x, s)− i|η|∂tθη(x, s)) ds = gη(x, t) for x ∈ Γ, t ∈ (0, T ),

θη(x, 0) = 0 for x ∈ Γ.
(19)
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The existence and uniqueness of this θη in H1(0, T ;TL2(Γ)) for any η ∈ Rd can be
established using the resolvent kernel. However, observing from differentiation of (19)
with respect to t that θη is the unique solution of the ODE:{

∂2t θη − θη = ei|η|t∂t(e
−i|η|tgη) for x ∈ Γ, t ∈ (0, T ),

θη(x, 0) = 0, ∂tθη(x, T ) = 0 for x ∈ Γ,
(20)

the function θη may be find (in practice) explicitly with variation of parameters and it
also immediately follows from this observation that θη belongs to H2(0, T ;TL2(Γ)).
We introduce vη as the unique weak solution (obtained by transposition as done in
[15] and in [14] [Theorem 4.2, page 46] for the scalar function) in C0(0, T ;X(Ω)) ∩
C1(0, T ;L2(Ω)) to the following problem

(∂2t + curl curl )vη = 0 in Ω× (0, T ),

div vη = 0 in Ω× (0, T ),

vη|t=0 = 0 in Ω,

∂tvη|t=0 =

m∑
j=1

i(1− µ0
µj

)η × (νj + (
µ0
µj

− 1)
∂Φj

∂νj
|+)eiη·zjδ∂(zj+αBj) ∈ Y (Ω) in Ω,

vη × n|∂Ω×(0,T ) = 0.

Then, the following holds.

Proposition 4.1 Suppose that Γ and T geometrically control Ω. For any η ∈ Rd we
have ∫ T

0

∫
Γ
gη · ( curl vη × n) dσ(x)dt = α2

m∑
j=1

µ0(1−
µj
µ0

)e2iη·zjη ·
∫
∂Bj

(νj (21)

+(
µj
µ0

− 1)
∂Φj

∂νj
|+(y))η · y dsj(y) + o(α2).

Proof. Multiply the equation (∂2t + curl curl )vη = 0 by wη and integrating by parts
over (0, T )× Ω, for any η ∈ Rd we have

α

m∑
j=1

i(1− µj
µ0

)e2iη·zjη ·
∫
∂Bj

(νj + (
µj
µ0

− 1)
∂Φj

∂νj
|+(y))eiαη·y ds(y) =

−µ−1
0

∫ T

0

∫
Γ
gη · ( curl vη × n) dσ(x)dt.

Now, we take the Taylor expansion of αeiαη·y in the left side of the last equation, we
obtain the convenient asymptotic formula (21).

To identify the locations and certain properties of the small inhomogeneities Bα let
us view the averaging of the boundary measurements

curl Eα × n|Γ×(0,T ),

using the solution θη to the Volterra equation (19) or equivalently the ODE (20), as a
function of η. The following holds.

10



Theorem 4.1 Let η ∈ Rd. Let Eα be the unique solution in C0(0, T ;X(Ω))∩C1(0, T ;L2(Ω))
to the Maxwell’s equations (3) with ϕ(x) = η⊥eiη·x, ψ(x) = −i√µ0|η|η⊥eiη·x, and
f(x, t) = η⊥eiη·x−i

√
µ0|η|t. Suppose that Γ and T geometrically control Ω, then we have∫ T

0

∫
Γ

[
θη · ( curl Eα × n− curl E × n) + ∂tθη · ∂t( curl Eα × n− curl E × n)

]
dσ(x)dt =

α2
m∑
j=1

(µ0 − µj)e
2iη·zjMj(η) · η +O(α2),

(22)
where θη is the unique solution to the Volterra equation (20) with gη defined as the
boundary control in (18) and Mj is the polarization tensor of Bj, defined by

(Mj)k,l = ek · (
∫
∂Bj

(νj + (
µj
µ0

− 1)
∂Φj

∂νj
|+(y))y · el dsj(y)). (23)

Here (e1, e2) is an orthonormal basis of Rd. The term O(α2) is independent of the
points {zj , j = 1, · · · ,m}.

Proof. From ∂tθη(T ) = 0 and ( curl Eα×n− curl E×n)|t=0 = 0 the term

∫ T

0

∫
Γ
∂tθη ·

∂t( curl Eα × n− curl E × n) dσ(x)dt has to be interpreted as follows∫ T

0

∫
Γ
∂tθη ·∂t( curl Eα×n− curl E×n) = −

∫ T

0

∫
Γ
∂2t θη · ( curl Eα×n− curl E×n).

(24)
Next, introduce

Ẽα,η(x, t) = E(x, t) +

∫ t

0
e−i

√
µ0|η|svη(x, t− s) ds, x ∈ Ω, t ∈ (0, T ). (25)

We have∫ T

0

∫
Γ

[
θη · ( curl Eα × n− curl E × n) + ∂tθη · ∂t( curl Eα × n− curl E × n)

]
=∫ T

0

∫
Γ

[
θη · ( curl Eα × n− curl Ẽα,η × n) + ∂tθη · ∂t( curl Eα × n− curl Ẽα,η × n)

]
+

∫ T

0

∫
Γ

[
θη ·

∫ t

0
e−i

√
µ0|η|svη(x, t− s)× n ds+ ∂tθη · ∂t

∫ t

0
e−i

√
µ0|η|svη(x, t− s)× n ds

]
.

Since θη satisfies the Volterra equation (20) and

∂t(

∫ t

0
e−i

√
µ0|η|svη(x, t− s)× n ds) = ∂t(−e−i

√
µ0|η|t

∫ t

0
ei
√
µ0|η|svη(x, s)× n ds)

= i
√
µ0|η|e−i

√
µ0|η|t

∫ t

0
ei
√
µ0|η|svη(x, s)× n ds+ vη(x, t)× n,

11



we obtain by integrating by parts over (0, T ) that∫ T

0

∫
Γ

[
θη ·

∫ t

0
e−i

√
µ0|η|svη(x, t− s)× n ds+ ∂tθη · ∂t

∫ t

0
e−i

√
µ0|η|svη(x, t− s)× n ds

]
=

∫ T

0

∫
Γ
(vη(x, t)× n) · (∂tθη +

∫ T

t
θη(s)e

i
√
µ0|η|(t−s) ds)

−i√µ0|η|(e−i
√
µ0|η|t∂tθη(t)) ·

∫ t

0
ei
√
µ0|η|svη(x, s)× n ds dt

=

∫ T

0

∫
Γ
vη(x, t)× n · (∂tθη +

∫ T

t
(θη(s)− i

√
µ0|η|∂tθη(s))ei

√
µ0|η|(t−s) ds) dt

=

∫ T

0

∫
Γ
gη(x, t) · ( curl vη(x, t)× n) dt

and so, from Proposition 4.1 we obtain∫ T

0

∫
Γ

[
θη · ( curl Eα × n− curl E × n) + ∂tθη · ∂t( curl Eα × n− curl E × n)

]
=

α2
m∑
j=1

(1− µj
µ0

)e2iη·zjη ·
∫
∂Bj

(νj + (
µj
µ0

− 1)
∂Φj

∂νj
|+(y))η · y dsj(y)

+

∫ T

0

∫
Γ

[
θη · ( curl Eα × n− curl Ẽα,η × n) + ∂tθη · ∂t( curl Eα × n

− curl Ẽα,η × n)
]
+ o(α2).

In order to prove Theorem 4.1 it suffices then to show that∫ T

0

∫
Γ

[
θη ·( curl Eα×n− curl Ẽα,η×n)+∂tθη ·∂t( curl Eα×n− curl Ẽα,η×n)

]
= o(α2).

(26)
Since

(∂2t − curl
1

µ0
curl )(

∫ t

0
e−i

√
µ0|η|svη(x, t− s) ds)

=

m∑
j=1

i(1− µj
µ0

)η × (νj + (
µj
µ0

− 1)
∂Φj

∂νj
|+(y))eiη·zjδ∂(zj+αBj)e

−i
√
µ0|η|t in Ω× (0, T ),

(

∫ t

0
e−i

√
µ0|η|svη(x, t− s) ds)|t=0 = 0, ∂t(

∫ t

0
e−i

√
µ0|η|svη(x, t− s) ds)|t=0 = 0 in Ω,

(

∫ t

0
e−i

√
µ0|η|svη(x, t− s) ds)× n|∂Ω×(0,T ) = 0,

it follows from Theorem 3.1 that
(∂2t − curl

1

µ0
curl )(Eα − Ẽα,η) = o(α2) in Ω× (0, T ),

(Eα − Ẽα,η)|t=0 = 0, ∂t(Eα − Ẽα,η)|t=0 = 0 in Ω,

(Eα − Ẽα,η)× n|∂Ω×(0,T ) = 0.

12



Following the proof of Proposition 3.1, we immediately obtain

||Eα − Ẽα,η||L2(Ω) = o(α2), t ∈ (0, T ), x ∈ Ω,

where o(α2) is independent of the points {zj}mj=1. To prove (26) it suffices then from
(24) to show that the following estimate holds

|| curl Eα × n− curl Ẽα,η × n||L2(0,T ;TL2(Γ)) = o(α2).

Let θ be given in C∞
0 (]0, T [) and define

ˆ̃Eα,η(x) =

∫ T

0
Ẽα,η(x, t)θ(t) dt

and

Êα(x) =

∫ T

0
Eα(x, t)θ(t) dt.

From definition (25) we can write

(Êα − ˆ̃Eα) ∈ H1(Ω),

curl curl (Êα − ˆ̃Eα) = 0(α) ∈ Y (Ω) in Ω,

div (Êα − ˆ̃Eα) = 0 in Ω,

(Êα − ˆ̃Eα)× n|∂Ω = 0.

(27)

In the spirit of the standard elliptic regularity [9] we deduce for the boundary value
problem (27) that

|| curl (Êα − ˆ̃Eα)× n||L2(Γ) = O(α2),

for all θ ∈ C∞
0 (]0, T [); whence

|| curl (Eα − Êα)× n||L2(Γ) = o(α2) a. e. in t ∈ (0, T ),

and so, the desired estimate (22) holds. The proof of Theorem 4.1 is then over.

Our identification procedure is deeply based on Theorem 4.1. Let us neglect the
asymptotically small remainder in the asymptotic formula (22), and define ℵα(η) by

ℵα(η) =

∫ T

0

∫
Γ

[
θη · ( curl (Eα − E)× n) + ∂tθη · ∂t( curl (Eα −E)× n)

]
.

Recall that the function e2iη·zj is exactly the Fourier Transform (up to a multiplicative
constant) of the Dirac function δ−2zj (a point mass located at −2zj). From Theorem
4.1 it follows that the function e2iη·zj is (approximately) the Fourier Transform of a
linear combination of derivatives of point masses, or

ℵ̆α(η) ≈ α2
m∑
j=1

Ljδ−2zj ,

where Lj is a second order constant coefficient, differential operator whose coefficients
depend on the polarization tensor Mj defined by (23) (see [6] for its properties) and

13



ℵ̆α(η) represents the inverse Fourier Transform of ℵα(η). The reader is referred to [6]
for properties of the tensor polarization Mj .

The method of reconstruction consists in sampling values of ℵ̆α(η) at some discrete
set of points and then calculating the corresponding discrete inverse Fourier Transform.
After a rescaling the support of this discrete inverse Fourier Transform yields the loca-
tion of the small inhomogeneities Bα. Once the locations are known we may calculate
the polarization tensors (Mj)

m
j=1 by solving an appropriate linear system arising from

(22). This procedure generalizes the approach developed in [3] for the two-dimensional
(time-independent) inverse conductivity problem and generalize the results in [1] to
the full time-dependent Maxwell’s equations.

5 Conclusion

In this paper, we are convinced that the use of approximate formulae such as (22)
represents a very promising approach to the dynamical identification of small inho-
mogeneities that are embedded in a homogeneous medium. We also believe that our
method yields a good approximation to small amplitude perturbations in the electro-
magnetic parameters (for the example of electric permittivity εα(x) = ε0+αε(x)) from
the measurements:

curl Hα × n on Γ× (0, T ).

Our method may yield the Fourier transform of the amplitude perturbation ε(x). This
issue will be considered in a forthcoming work [7].
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[15] J. L. Lions and E. Magenes, Nonhomogeneous Boundary Value Problems and Ap-
plications, Vol. 1, Springer, 1972.

[16] S. R. McDowall, An electromagnetic inverse problem in chiral media, Trans. Amer.
Math. Soc. 352 (2000), 2993-3013.

[17] S. Nicaise, Exact boundary controllability of Maxwell’s equations in heteregeneous
media and an application to an inverse source problem, SIAM J. Control Optim.
38 (2000), 1145-1170.

[18] V. G. Romanov and S. I. Kabanikhin, Inverse Problems for Maxwell’s Equations,
Inverse and Ill-posed Problems Series, VSP, Utrecht, 1994.

[19] J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary
value problem, Ann. Math. 125 (1987), 153-169.

[20] E. Somersalo, D. Isaacson, and M. Cheney, A linearized inverse boundary value
problem for Maxwell’s equations, J. Comput. Appl. Math. 42 (1992), 123-136.

[21] M. Vogelius and D. Volkov, Asymptotic formulas for perturbations in the elec-
tromagnetic fields due to the presence of inhomogeneities, Math. Model. Numer.
Anal. 34 (2000), 723-748.

[22] D. Volkov, An inverse problem for the time harmonic Maxwell equations, PhD
thesis, Rutgers University, New Brunswick, NJ,2001.

15


