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We consider for the full time-dependent Maxwell's equations the inverse problem of identifying locations and certain properties of small electromagnetic inhomogeneities in a homogeneous background medium from dynamic boundary measurements on the boundary for a finite time interval.

Introduction

The ultimate objective of the work described in this paper is to determine locations and certain properties of the shapes of small electromagnetic inhomogeneities in a homogeneous background medium from dynamic boundary measurements on part of the boundary and for finite interval in time. Using as weights particular background solutions constructed by a geometrical control method we develop an asymptotic method based on appropriate averaging of the partial dynamic boundary measurements. For stationary Maxwell's equations it has been known that the Dirichlet to Neumann map uniquely determines (smooth) isotropic electromagnetic parameters, see [START_REF] Mcdowall | An electromagnetic inverse problem in chiral media[END_REF], [START_REF] Romanov | Inverse Problems for Maxwell's Equations, Inverse and Ill-posed Problems Series[END_REF], [START_REF] Somersalo | A linearized inverse boundary value problem for Maxwell's equations[END_REF]. We will provide in this paper a rigorous derivation of the inverse Fourier transform of a linear combination of derivatives of point masses, located at the positions z j of the inhomogeneities, as the leading order term of an appropriate averaging of (partial) dynamic boundary measurements of the tangential components of electric fields on part of the boundary. Our formulas may be used to determine properties (location, relative size ) of the small inhomogeneities in case a single, or a few (tangential) boundary electric fields are known. Our approach differs from [START_REF] Ammari | An inverse initial boundary value problem for the wave equation in the presence of imperfections of small volume[END_REF], [START_REF] Ammari | Reconstruction of closely spaced small inclusions[END_REF], [START_REF] Ammari | Boundary integral formulas for the reconstruction of electromagnetic imperfections of small diameter[END_REF], [START_REF] Ammari | Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter II.The full Maxwell equations[END_REF], [START_REF] Volkov | An inverse problem for the time harmonic Maxwell equations[END_REF] and is expected to lead to very effective computational identification algorithms.

For discussions on closely related (stationary) identification problems we refer the reader to [START_REF] Sylvester | A global uniqueness theorem for an inverse boundary value problem[END_REF], [START_REF] Vogelius | Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities[END_REF], [START_REF] Cedio-Fengya | Identification of conductivity imperfections of small diameter by boundary measurements. Continuous dependence and computional reconstruction[END_REF], and [START_REF] Friedman | Identification of small inhomogeneities of extreme conductivity by boundary measurements: a theorem on continuous dependence[END_REF].

Problem formulation

Let Ω be a bounded C 2 -domain in R d , d = 2, 3. Assume that Ω contains a finite number of inhomogeneities, each of the form z j + αB j , where B j ⊂ R d is a bounded, smooth domain containing the origin. The total collection of inhomogeneities is B α = ∪ m j=1 (z j + αB j ). The points z j ∈ Ω, j = 1, . . . , m, which determine the location of the inhomogeneities, are assumed to satisfy the following inequalities: |z j -z l | ≥ c 0 > 0, ∀ j = l and dist(z j , ∂Ω) ≥ c 0 > 0, ∀ j.

(

) 1 
Assume that α > 0, the common order of magnitude of the diameters of the inhomogeneities, is sufficiently small, that these inhomogeneities are disjoint, and that their distance to R d \ Ω is larger than c 0 /2. Let µ 0 and ε 0 denote the permeability and the permittivity of the background medium, and assume that µ 0 > 0 and ε 0 > 0 are positive constants. Let µ j > 0 and ε j > 0 denote the permeability and the permittivity of the j-th inhomogeneity, z j + αB j , these are also assumed to be positive constants.

Introduce the piecewise-constant magnetic permeability

µ α (x) = µ 0 , x ∈ Ω \ Bα , µ j , x ∈ z j + αB j , j = 1 . . . m. ( 2 
)
If we allow the degenerate case α = 0, then the function µ 0 (x) equals the constant µ 0 . The electric permittivity is defined by ε α (x) = ε 0 , for all x ∈ Ω. Let n = n(x) denote the outward unit normal vector to Ω at a point on ∂Ω, ∂ t u = ∂u ∂t and ∆ means the Laplace operator defined by ∆u =

d i=1 ∂ 2 u ∂x 2 i .
In this paper, we will denote by bold letters the functional spaces for the vector fields. Thus H s (Ω) denotes the usual Sobolev space on Ω and H s (Ω) denotes (H s (Ω)) d and L 2 (Ω) denotes (L 2 (Ω)) d . As usual for Maxwell equations, we need spaces of fields with square integrable curls:

H( curl ; Ω) = {u ∈ L 2 (Ω), curl u ∈ L 2 (Ω)},
and with square integrable divergences

H(div ; Ω) = {u ∈ L 2 (Ω), div u ∈ L 2 (Ω)}.
We will also need the following functional spaces:

Y (Ω) = {u ∈ L 2 (Ω), div u = 0 in Ω}, X(Ω) = H 1 (Ω) ∩ Y (Ω),
and T L 2 (∂Ω) the space of vector fields on ∂Ω that lie in L 2 (∂Ω). Finally, the "minimal" choice for the electric variational space would be

X N (Ω) = {v ∈ H( curl ; Ω) ∩ H(div ; Ω); v × n = 0 on ∂Ω}.
Now, we introduce the following time-dependent Maxwell equations (associated to the electric field)

               (ε α ∂ 2 t + curl 1 µ α curl )E α = 0 in Ω × (0, T ), div (ε α E α ) = 0 in Ω × (0, T ), E α | t=0 = ϕ, ∂ t E α | t=0 = ψ in Ω, E α × n| ∂Ω×(0,T ) = f, (3) 
where E α ∈ R d is the electric field, f the boundary condition for E α × n, and ϕ and ψ the initial data.

Let E be the solution of the Maxwell's equations in the homogeneous domain:

               (ε 0 ∂ 2 t + curl 1 µ 0 curl )E = 0 in Ω × (0, T ), div (ε 0 E) = 0 in Ω × (0, T ), E| t=0 = ϕ, ∂ t E| t=0 = ψ in Ω, E × n| ∂Ω×(0,T ) = f. (4) 
Here T > 0 is a final observation time and ϕ, ψ ∈ C ∞ (Ω) and f ∈ C ∞ (0, T ; C ∞ (∂Ω)) are subject to the compatibility conditions

∂ 2l t f | t=0 = (∆ l ϕ) × n| ∂Ω and ∂ 2l+1 t f | t=0 = (∆ l ψ) × n| ∂Ω , l = 1, 2, . . .
it follows that (4) has a unique solution E ∈ C ∞ ([0, T ] × Ω). It is also known (see for example [START_REF] Nicaise | Exact boundary controllability of Maxwell's equations in heteregeneous media and an application to an inverse source problem[END_REF]) that since Ω is smooth (C 2 -regularity would be sufficient) the non homogeneous Maxwell's equations (3) have a unique weak solution E α ∈ C 0 (0, T ; X(Ω)) ∩ C 1 (0, T ; L 2 (Ω)). Indeed, curl E α belongs to C 0 (0, T ; X(Ω)) ∩ C 1 (0, T ; L 2 (Ω)).

Asymptotic formula

We start the derivation of the asymptotic formula for curl E α × n with the following estimate.

Lemma 3.1

The following estimate as α → 0 holds:

||∂ t (E α -E)|| L ∞ (0,T ;L 2 (Ω)) + ||E α -E|| L ∞ (0,T ;X N (Ω)) ≤ Cα, ( 5 
)
where the constant C is independent of α and the set of points {z j } m j=1 provided that assumption (1) holds.

Proof. From (3)-(4), it is obvious that E α -E ∈ X N (Ω), then due to the Green formula we have for any v ∈ X N (Ω):

Ω ε 0 ∂ 2 t (E α -E) • v dx + Ω 1 µ α curl (E α -E) • curl v dx = (6) m j=1 ( 1 µ 0 - 1 µ j ) z j +αB j curl E • curl v dx.
Let v α be defined by

v α ∈ X N (Ω), curl 1 µα curl v α = ∂ t (E α -E) in Ω. (7) 
Then,

Ω 1 µ α curl (E α -E) • curl v α dx = - Ω ∂ t (E α -E) • (E α -E) dx = - 1 2 ∂ t Ω |E α -E| 2 dx
and by Green formula, relation [START_REF] Daveau | An inverse problem for the time dependent Maxwell's equations in the presence of imperfections of small volume[END_REF] gives:

Ω ∂ 2 t (E α -E) • v α dx = Ω curl 1 µ α curl ∂ t v α • v α dx = - Ω 1 µ α curl ∂ t v α • curl v α dx = - 1 2 ∂ t Ω 1 µ α | curl v α | 2 dx.
Thus, it follows from (6) that

ε 0 ∂ t Ω 1 µ α | curl v α | 2 dx + ∂ t Ω |E α -E| 2 dx = -2 m j=1 ( 1 µ 0 - 1 µ j ) z j +αB j curl E • curl v α dx. Next, | m j=1 ( 1 µ 0 - 1 µ j ) z j +αB j curl E • curl v α | ≤ C|| curl E|| L 2 (Bα) || curl v α || L 2 (Ω) . Since E ∈ C ∞ ([0, T ] × Ω) we have || curl E|| L 2 (Bα) ≤ || curl E|| L ∞ (Bα) α( m j=1 |B j |) 1 2 ≤ Cα, which gives | m j=1 ( 1 µ 0 - 1 µ j ) z j +αB j curl E • curl v α dx| ≤ Cα|| curl v α || L 2 (Ω)
and so,

ε 0 ∂ t Ω 1 µ α | curl v α | 2 dx+∂ t Ω |E α -E| 2 dx ≤ Cα( Ω 1 µ α | curl v α | 2 dx+ Ω |E α -E| 2 dx) 1/2 . (8) From the Gronwall Lemma it follows that ( Ω 1 µ α | curl v α | 2 dx) 1/2 + ( Ω |E α -E| 2 dx) 1/2 ≤ Cα. ( 9 
)
Combining this last estimate [START_REF] Evans | Partial Differential Equations[END_REF] with the fact that

||∂ t (E α -E)|| L ∞ (0,T ;H -1 (Ω)) ≤ C|| curl v α || L ∞ (0,T ;L 2 (Ω))
the following estimate holds

||E α -E 0 || L ∞ (0,T ;L 2 (Ω)) + ||∂ t (E α -E 0 )|| L ∞ (0,T ;L 2 (Ω)) ≤ Cα. ( 10 
)
Now, taking (formally 6) we arrive at

) v = ∂ t (E α -E) in (
ε 0 ∂ t Ω |∂ t (E α -E)| 2 + 1 µ α | curl (E α -E)| 2 dx = 2 m j=1 ( 1 µ 0 - 1 µ j ) z j +αB j curl E • curl ∂ t (E α -E) dx.
By using the regularity of E in Ω and estimate [START_REF] Friedman | Identification of small inhomogeneities of extreme conductivity by boundary measurements: a theorem on continuous dependence[END_REF] given above, we see that

| m j=1 ( 1 µ 0 - 1 µ j ) z j +αB j curl E • curl ∂ t (E α -E) dx| ≤ C|| curl E|| H 2 (Bα) ||∂ t (E α -E)|| H -1 (Ω) ≤ Cα 2 ,
where C is independent of t and α, and so, we obtain

∂ t Ω |∂ t (E α -E)| 2 + 1 µ α | curl (E α -E)| 2 dx ≤ Cα 2
which yields the following estimate

||∂ t (E α -E)|| L ∞ (0,T ;L 2 (Ω)) + ||E α -E|| L ∞ (0,T ;X N (Ω)) ≤ Cα,
where C is independent of α and the points {z j } m j=1 .

Now, we can estimate curl E α -curl E 0 as follows.

Proposition 3.1 Let E α and E be solutions to the problems ( 3) and ( 4) respectively. There exist constants 0 < α 0 , C such that for 0 < α < α 0 the following estimate holds:

|| curl (E α -E 0 )|| L ∞ (0,T ;L 2 (Ω)) ≤ Cα, ( 11 
)
Proof. To prove estimate [START_REF] Kime | Boundary controllability of Maxwell's equations in a spherical region[END_REF] it is useful to introduce the following function

v(x) = T 0 v(x, t)z(t) dt ∈ L 2 (Ω), (12) 
where

v ∈ L 1 (0, T ; L 2 (Ω)) and z(t) is a given function in C ∞ 0 (]0, T [). Then, Ê(x) = T 0 E(x, t)z(t) dt and Êα (x) = T 0 E α (x, t)z(t) dt ∈ X(Ω),
which by relation [START_REF] Bardos | Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary[END_REF] give

             ( Êα -Ê) ∈ H 1 (Ω), curl curl ( Êα -Ê) = 0(α) in Ω, div ( Êα -Ê) = 0 in Ω, ( Êα -Ê) × n| ∂Ω = 0,
and so,

|| curl ( Êα -Ê)|| L 2 (Ω) = O(α). ( 13 
)
The fact that curl (E α -E) belongs to L ∞ (0, T ; L 2 (Ω)) and by using estimate [START_REF] Lagnese | Exact boundary controllability of Maxwell's equations in a general region[END_REF] we deduce that

Ω | curl E α (x, t) -curl E(x, t)| 2 dx = O(α 2 ) a.e. in t ∈ (0, T ), which means that || curl (E α -E)|| L 2 (Ω) = O(α) a.e. in t ∈ (0, T ).
Thus, estimate [START_REF] Kime | Boundary controllability of Maxwell's equations in a spherical region[END_REF] follows immediately if we take the sup on t ∈ (0, T ) in the last relation.

Before formulating our main result in this section, let us denote Φ j , j = 1, . . . , m the unique vector-valued solution to

                   ∆Φ j = 0 in B j , and R d \ B j , Φ j is continuous across ∂B j , µ j µ 0 ∂Φ j ∂ν j | + - ∂Φ j ∂ν j | -= -ν j , lim |y|→+∞ |Φ j (y)| = 0, (14) 
where ν j denotes the outward unit normal to ∂B j , and superscripts -and + indicate the limiting values as the point approaches ∂B j from outside B j , and from inside B j , respectively. The existence and uniqueness of this Φ j can be established using single layer potentials with suitably chosen densities, see [START_REF] Cedio-Fengya | Identification of conductivity imperfections of small diameter by boundary measurements. Continuous dependence and computional reconstruction[END_REF] for the case of conductivity problem. For each inhomogeneity z j + αB j we introduce the polarizability tensor M j which is a d × d, symmetric, positive definite matrix associated with the j-th inhomogeneity, given by

(M j ) k,l = e k • ( ∂B j (ν j + ( µ j µ 0 -1) ∂Φ j ∂ν j | + (y))y • e l dσ j (y)). (15) 
Here (e 1 , . . . , e d ) is an orthonormal basis of R d . In terms of this function we are able to prove the following result about the asymptotic behavior of curl

E α • ν j | ∂(z j +αB j ) + .
Theorem 3.1 Suppose that ( 1) is satisfied and let Φ j , j = 1, . . . , m be given as in [START_REF] Lions | Contrôlabilité exacte, Perturbations et Stabilisation de Systèmes Distribués[END_REF].

Then, for the solutions E α , E of problems ( 3) and ( 4) respectively, and for y ∈ ∂B j we have

( curl E α (z j + αy) • ν j )| ∂(z j +αB j ) + = curl E(z j , t) • ν j (16) +(1 - µ j µ 0 ) ∂Φ j ∂ν j | + (y) • curl E(z j , t) + o(1).
The term o(1) uniform in y ∈ ∂B j and t ∈ (0, T ) and depends on the shape of

{B j } m j=1
and Ω, the constants c 0 , T , µ 0 , {µ j } m j=1 , the data ϕ, ψ, and f , but is otherwise independent of the points {z j } m j=1 .

Proof.

Let E α = curl E α (x, t) and E 0 = curl E(x, t). Then, according to (3)-( 4) we have

ε 0 ∂ 2 t E α -curl 1 µ α E α = 0 and curl E α = 0, for x ∈ Ω. (17) 
We restrict, for simplicity, our attention to the case of a single inhomogeneity, i.e., the case m = 1. The proof for any fixed number m of well separated inhomogeneities follows by iteration of the argument that we will present for the case m = 1. In order to further simplify notation, we assume that the single inhomogeneity has the form αB, that is, we assume it is centered at the origin. We denote the electromagnetic permeability inside αB by µ * and define Φ * the same as Φ j , defined in ( 14), but with B j and µ j replaced by B and µ * , respectively. Define ν to be the outward unit normal to ∂B. Now, following a common practice in multiscale expansions we introduce the local variable y = x α , then the domain Ω = ( Ω α ) is well defined.

Next, let be given in

C ∞ 0 (]0, T [). For any function v ∈ L 1 (0, T ; L 2 (Ω)), we define v(x) = T 0 v(x, t) (t) dt ∈ L 2 (Ω).
We remark that

∂ t v(x) = - T 0 v(x, t) (t) dt. So that we deduce from (17) that Êα satisfies      curl 1 µ α Êα = T 0 E α (t) dt in Ω, curl Êα = 0 in Ω. Analogously, Ê satisfies      1 µ 0 curl Ê = T 0 E (t) dt in Ω, curl Ê = 0 in Ω.
Indeed, we have Êα × n = Ê × n = curl ∂Ω f × n on the boundary ∂Ω, where curl ∂Ω is the tangential curl. Following [START_REF] Ammari | Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter II.The full Maxwell equations[END_REF] and [START_REF] Ammari | An inverse initial boundary value problem for the wave equation in the presence of imperfections of small volume[END_REF], we introduce q * α as the unique solution to the following problem

                   ∆q * α = 0 in Ω = ( Ω α ) \ B and in B, q * α is continuous across ∂B, µ 0 ∂q * α ∂ν | + -µ * ∂q * α ∂ν | -= -(µ 0 -µ * ) Ê(αy) • ν on ∂B, q * α = 0 on ∂ Ω.
The jump condition

µ 0 ∂q * α ∂ν | + -µ * ∂q * α ∂ν | -= -(µ 0 -µ * ) Ê(αy) • ν on ∂B
guarantees that Êα (x) -Ê(x) -grad y q * α ( x α ) belongs to the functional space X N (Ω), where grad ∂Ω is the tangential gradient. Since

             curl 1 µ α ( Êα -Ê -grad y q * α ( x α )) = T 0 E α -χ(Ω \ αB)E + µ * µ 0 χ(αB)E (t) dt in Ω, curl ( Êα -Ê -grad y q * α ( x α )) = 0 in Ω, ( Êα -Ê -grad y q * α ( x α )
) × n = 0 on ∂Ω, where χ(ω) is the characteristic function of the domain ω, we arrive, as a consequence of the energy estimate given by Lemma 3.1, at the following

                   ( Êα -Ê -grad y q * α ( x α )) ∈ X N (Ω), curl 1 µ α ( Êα -Ê -curl y q * α ( x α )) = 0(α) in Ω, curl ( Êα -Ê -grad y q * α ( x α )) = 0 in Ω, ( Êα -Ê -grad y q * α ( x α )) × n = 0 on ∂Ω.
From [START_REF] Ammari | Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter II.The full Maxwell equations[END_REF] we know that this yields the following estimate

|| curl 1 µ α ( Êα -Ê -grad y q * α ( x α ))|| L 2 (Ω) + || Êα -Ê -grad y q * α ( x α )|| L 2 (Ω) ≤ Cα,
and so, ( Êα -Ê -grad y q * α (

x α )) • ν| + = 0(α) on ∂(αB).
Now, we denote by q * be the unique (scalar) solution to

                 ∆q * = 0 in R d \ B and in B, q * is continuous across ∂B, µ 0 ∂q * ∂ν | + -µ * ∂q * ∂ν | -= -(µ 0 -µ * ) Ê(0) • ν on ∂B, lim |y|→+∞ q * = 0.
In the spirit of Theorem 1 in [START_REF] Cedio-Fengya | Identification of conductivity imperfections of small diameter by boundary measurements. Continuous dependence and computional reconstruction[END_REF] it follows that ||( grad y q * -grad y q * α )(

x α )|| L 2 (Ω) ≤ Cα 1/2 , which yields ( Êα -Ê -grad y q * ( x α )) • ν = o(1) on ∂(αB).
Writing q * in terms of Φ * gives

T 0 ( curl E α (αy)•ν)| ∂(αB) + -ν• curl E(0, t)-( µ 0 µ * -1) ∂Φ * ∂ν | + (y)• curl E(0, t) (t) dt = o(1),
for any ∈ C ∞ 0 (]0, T [), and so, by iterating the same argument for the case of m (well separated) inhomogeneities z j + αB j , j = 1, . . . , m, we arrive at the promised asymptotic formula [START_REF] Mcdowall | An electromagnetic inverse problem in chiral media[END_REF].

The identification procedure

Before describing our identification procedure, let us introduce the following cutoff function β(x) ∈ C ∞ 0 (Ω) such that β ≡ 1 in a subdomain Ω of Ω that contains the inhomogeneities B α and let η ∈ R d . We will take in what follows E(x, t) = η ⊥ e iη•x-i √ µ 0 |η|t where η ⊥ is a unit vector that is orthogonal to η which corresponds to taking ϕ

(x) = η ⊥ e iη•x , ψ(x) = -i √ µ 0 |η|η ⊥ e iη•x , and f (x, t) = η ⊥ × ne iη•x-i √ µ 0 |η|t
and assume that we are in possession of the measurements of:

curl E α × n on Γ × (0, T ),
where Γ is an open part of ∂Ω. Suppose now that T and the part Γ of the boundary ∂Ω are such that they geometrically control Ω which roughly means that every geometrical optic ray, starting at any point x ∈ Ω at time t = 0 hits Γ before time T at a non diffractive point, see [START_REF] Bardos | Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary[END_REF]. It follows from [START_REF] Nicaise | Exact boundary controllability of Maxwell's equations in heteregeneous media and an application to an inverse source problem[END_REF] (see also [START_REF] Lagnese | Exact boundary controllability of Maxwell's equations in a general region[END_REF], [START_REF] Kime | Boundary controllability of Maxwell's equations in a spherical region[END_REF] and [START_REF] Komornik | Boundary stabilization, observation and control of Maxwell's equations[END_REF]) that there exists (a unique) g η ∈ H 1 0 (0, T ; T L 2 (Γ)) (constructed by the Hilbert Uniqueness Method) such that the unique weak solution

w η to                    (∂ 2 t + curl curl )w η = 0 in Ω × (0, T ), div w η = 0 in Ω × (0, T ), w η | t=0 = β(x)η ⊥ e iη•x , ∂ t w η | t=0 = 0 in Ω, w η × n| ∂Ω\Γ×(0,T ) = 0, w η × n| Γ×(0,T ) = g η , (18) satisfies w η (T ) = ∂ t w η (T ) = 0 in Ω. Let θ η ∈ H 1 (0, T ; T L 2 (Γ)) denote the unique solution of the Volterra equation of second kind    ∂ t θ η (x, t) + T t e -i|η|(s-t) (θ η (x, s) -i|η|∂ t θ η (x, s)) ds = g η (x, t) for x ∈ Γ, t ∈ (0, T ), θ η (x, 0) = 0 for x ∈ Γ. ( 19 
)
The existence and uniqueness of this θ η in H 1 (0, T ; T L 2 (Γ)) for any η ∈ R d can be established using the resolvent kernel. However, observing from differentiation of [START_REF] Sylvester | A global uniqueness theorem for an inverse boundary value problem[END_REF] with respect to t that θ η is the unique solution of the ODE:

∂ 2 t θ η -θ η = e i|η|t ∂ t (e -i|η|t g η ) for x ∈ Γ, t ∈ (0, T ), θ η (x, 0) = 0, ∂ t θ η (x, T ) = 0 for x ∈ Γ, ( 20 
)
the function θ η may be find (in practice) explicitly with variation of parameters and it also immediately follows from this observation that θ η belongs to H 2 (0, T ; T L 2 (Γ)). We introduce v η as the unique weak solution (obtained by transposition as done in [START_REF] Lions | Nonhomogeneous Boundary Value Problems and Applications[END_REF] and in [START_REF] Lions | Contrôlabilité exacte, Perturbations et Stabilisation de Systèmes Distribués[END_REF] [Theorem 4.2, page 46] for the scalar function) in C 0 (0, T ;

X(Ω)) ∩ C 1 (0, T ; L 2 (Ω)) to the following problem                          (∂ 2 t + curl curl )v η = 0 in Ω × (0, T ), div v η = 0 in Ω × (0, T ), v η | t=0 = 0 in Ω, ∂ t v η | t=0 = m j=1 i(1 - µ 0 µ j )η × (ν j + ( µ 0 µ j -1) ∂Φ j ∂ν j | + )e iη•z j δ ∂(z j +αB j ) ∈ Y (Ω) in Ω, v η × n| ∂Ω×(0,T ) = 0.
Then, the following holds.

Proposition 4.1 Suppose that Γ and T geometrically control Ω. For any η ∈ R d we have

T 0 Γ g η • ( curl v η × n) dσ(x)dt = α 2 m j=1 µ 0 (1 - µ j µ 0 )e 2iη•z j η • ∂B j (ν j (21) 
+(

µ j µ 0 -1) ∂Φ j ∂ν j | + (y))η • y ds j (y) + o(α 2 ).
Proof. Multiply the equation (∂ 2 t + curl curl )v η = 0 by w η and integrating by parts over (0, T ) × Ω, for any η ∈ R d we have

α m j=1 i(1 - µ j µ 0 )e 2iη•z j η • ∂B j (ν j + ( µ j µ 0 -1) ∂Φ j ∂ν j | + (y))e iαη•y ds(y) = -µ -1 0 T 0 Γ g η • ( curl v η × n) dσ(x)dt.
Now, we take the Taylor expansion of αe iαη•y in the left side of the last equation, we obtain the convenient asymptotic formula [START_REF] Vogelius | Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities[END_REF].

To identify the locations and certain properties of the small inhomogeneities B α let us view the averaging of the boundary measurements curl E α × n| Γ×(0,T ) , using the solution θ η to the Volterra equation [START_REF] Sylvester | A global uniqueness theorem for an inverse boundary value problem[END_REF] or equivalently the ODE [START_REF] Somersalo | A linearized inverse boundary value problem for Maxwell's equations[END_REF], as a function of η. The following holds.

Theorem 4.1 Let η ∈ R d . Let E α be the unique solution in C 0 (0, T ; X(Ω))∩C 1 (0, T ; L 2 (Ω)) to the Maxwell's equations (3) with ϕ(x) = η ⊥ e iη•x , ψ(x) = -i √ µ 0 |η|η ⊥ e iη•x , and f (x, t) = η ⊥ e iη•x-i √ µ 0 |η|t
. Suppose that Γ and T geometrically control Ω, then we have

T 0 Γ θ η • ( curl E α × n -curl E × n) + ∂ t θ η • ∂ t ( curl E α × n -curl E × n) dσ(x)dt = α 2 m j=1 (µ 0 -µ j )e 2iη•z j M j (η) • η + O(α 2 ), (22) 
where θ η is the unique solution to the Volterra equation [START_REF] Somersalo | A linearized inverse boundary value problem for Maxwell's equations[END_REF] with g η defined as the boundary control in [START_REF] Romanov | Inverse Problems for Maxwell's Equations, Inverse and Ill-posed Problems Series[END_REF] and M j is the polarization tensor of B j , defined by

(M j ) k,l = e k • ( ∂B j (ν j + ( µ j µ 0 -1) ∂Φ j ∂ν j | + (y))y • e l ds j (y)). ( 23 
)
Here (e 1 , e 2 ) is an orthonormal basis of R d . The term O(α 2 ) is independent of the points {z j , j = 1, • • • , m}.

Proof. From ∂ t θ η (T ) = 0 and ( curl

E α ×n-curl E ×n)| t=0 = 0 the term T 0 Γ ∂ t θ η • ∂ t ( curl E α × n -curl E × n) dσ(x)dt has to be interpreted as follows T 0 Γ ∂ t θ η • ∂ t ( curl E α × n -curl E × n) = - T 0 Γ ∂ 2 t θ η • ( curl E α × n -curl E × n). (24) Next, introduce Ẽα,η (x, t) = E(x, t) + t 0 e -i √ µ 0 |η|s v η (x, t -s) ds, x ∈ Ω, t ∈ (0, T ). ( 25 
)
We have

T 0 Γ θ η • ( curl E α × n -curl E × n) + ∂ t θ η • ∂ t ( curl E α × n -curl E × n) = T 0 Γ θ η • ( curl E α × n -curl Ẽα,η × n) + ∂ t θ η • ∂ t ( curl E α × n -curl Ẽα,η × n) + T 0 Γ θ η • t 0 e -i √ µ 0 |η|s v η (x, t -s) × n ds + ∂ t θ η • ∂ t t 0 e -i √ µ 0 |η|s v η (x, t -s) × n ds .
Since θ η satisfies the Volterra equation [START_REF] Somersalo | A linearized inverse boundary value problem for Maxwell's equations[END_REF] and

∂ t ( t 0 e -i √ µ 0 |η|s v η (x, t -s) × n ds) = ∂ t (-e -i √ µ 0 |η|t t 0 e i √ µ 0 |η|s v η (x, s) × n ds) = i √ µ 0 |η|e -i √ µ 0 |η|t t 0 e i √ µ 0 |η|s v η (x, s) × n ds + v η (x, t) × n,
we obtain by integrating by parts over (0, T ) that

T 0 Γ θ η • t 0 e -i √ µ 0 |η|s v η (x, t -s) × n ds + ∂ t θ η • ∂ t t 0 e -i √ µ 0 |η|s v η (x, t -s) × n ds = T 0 Γ (v η (x, t) × n) • (∂ t θ η + T t θ η (s)e i √ µ 0 |η|(t-s) ds) -i √ µ 0 |η|(e -i √ µ 0 |η|t ∂ t θ η (t)) • t 0 e i √ µ 0 |η|s v η (x, s) × n ds dt = T 0 Γ v η (x, t) × n • (∂ t θ η + T t (θ η (s) -i √ µ 0 |η|∂ t θ η (s))e i √ µ 0 |η|(t-s) ds) dt = T 0 Γ g η (x, t) • ( curl v η (x, t) × n) dt
and so, from Proposition 4.1 we obtain

T 0 Γ θ η • ( curl E α × n -curl E × n) + ∂ t θ η • ∂ t ( curl E α × n -curl E × n) = α 2 m j=1 (1 - µ j µ 0 )e 2iη•z j η • ∂B j (ν j + ( µ j µ 0 -1) ∂Φ j ∂ν j | + (y))η • y ds j (y) + T 0 Γ θ η • ( curl E α × n -curl Ẽα,η × n) + ∂ t θ η • ∂ t ( curl E α × n -curl Ẽα,η × n) + o(α 2 ).
In order to prove Theorem 4.1 it suffices then to show that

T 0 Γ θ η •( curl E α ×n-curl Ẽα,η ×n)+∂ t θ η •∂ t ( curl E α ×n-curl Ẽα,η ×n) = o(α 2 ). (26) Since                              (∂ 2 t -curl 1 µ 0 curl )( t 0 e -i √ µ 0 |η|s v η (x, t -s) ds) = m j=1 i(1 - µ j µ 0 )η × (ν j + ( µ j µ 0 -1) ∂Φ j ∂ν j | + (y))e iη•z j δ ∂(z j +αB j ) e -i √ µ 0 |η|t in Ω × (0, T ), ( t 0 e -i √ µ 0 |η|s v η (x, t -s) ds)| t=0 = 0, ∂ t ( t 0 e -i √ µ 0 |η|s v η (x, t -s) ds)| t=0 = 0 in Ω, ( t 0 e -i √ µ 0 |η|s v η (x, t -s) ds) × n| ∂Ω×(0,T ) = 0, it follows from Theorem 3.1 that            (∂ 2 t -curl 1 µ 0 curl )(E α -Ẽα,η ) = o(α 2 ) in Ω × (0, T ), (E α -Ẽα,η )| t=0 = 0, ∂ t (E α -Ẽα,η )| t=0 = 0 in Ω, (E α -Ẽα,η ) × n| ∂Ω×(0,T ) = 0.
Following the proof of Proposition 3.1, we immediately obtain

||E α -Ẽα,η || L 2 (Ω) = o(α 2 ), t ∈ (0, T ), x ∈ Ω,
where o(α 2 ) is independent of the points {z j } m j=1 . To prove (26) it suffices then from (24) to show that the following estimate holds

|| curl E α × n -curl Ẽα,η × n|| L 2 (0,T ;T L 2 (Γ)) = o(α 2 ). Let θ be given in C ∞ 0 (]0, T [) and define Êα,η (x) = T 0 Ẽα,η (x, t)θ(t) dt and Êα (x) = T 0 E α (x, t)θ(t) dt.
From definition (25) we can write

                 ( Êα -Êα ) ∈ H 1 (Ω), curl curl ( Êα -Êα ) = 0(α) ∈ Y (Ω) in Ω, div ( Êα -Êα ) = 0 in Ω, ( Êα -Êα ) × n| ∂Ω = 0. (27) 
In the spirit of the standard elliptic regularity [START_REF] Evans | Partial Differential Equations[END_REF] we deduce for the boundary value problem (27) that

|| curl ( Êα -Êα ) × n|| L 2 (Γ) = O(α 2 ), for all θ ∈ C ∞ 0 (]0, T [); whence || curl (E α -Êα ) × n|| L 2 (Γ) = o(α 2 ) a. e. in t ∈ (0, T ),
and so, the desired estimate [START_REF] Volkov | An inverse problem for the time harmonic Maxwell equations[END_REF] holds. The proof of Theorem 4.1 is then over.

Our identification procedure is deeply based on Theorem 4.1. Let us neglect the asymptotically small remainder in the asymptotic formula [START_REF] Volkov | An inverse problem for the time harmonic Maxwell equations[END_REF], and define ℵ α (η) by

ℵ α (η) = T 0 Γ θ η • ( curl (E α -E) × n) + ∂ t θ η • ∂ t ( curl (E α -E) × n) .
Recall that the function e 2iη•z j is exactly the Fourier Transform (up to a multiplicative constant) of the Dirac function δ -2z j (a point mass located at -2z j ). From Theorem 4.1 it follows that the function e 2iη•z j is (approximately) the Fourier Transform of a linear combination of derivatives of point masses, or

אα (η) ≈ α 2 m j=1 L j δ -2z j ,
where L j is a second order constant coefficient, differential operator whose coefficients depend on the polarization tensor M j defined by (23) (see [START_REF] Cedio-Fengya | Identification of conductivity imperfections of small diameter by boundary measurements. Continuous dependence and computional reconstruction[END_REF] for its properties) and אα (η) represents the inverse Fourier Transform of ℵ α (η). The reader is referred to [START_REF] Cedio-Fengya | Identification of conductivity imperfections of small diameter by boundary measurements. Continuous dependence and computional reconstruction[END_REF] for properties of the tensor polarization M j . The method of reconstruction consists in sampling values of אα (η) at some discrete set of points and then calculating the corresponding discrete inverse Fourier Transform. After a rescaling the support of this discrete inverse Fourier Transform yields the location of the small inhomogeneities B α . Once the locations are known we may calculate the polarization tensors (M j ) m j=1 by solving an appropriate linear system arising from [START_REF] Volkov | An inverse problem for the time harmonic Maxwell equations[END_REF]. This procedure generalizes the approach developed in [START_REF] Ammari | Boundary integral formulas for the reconstruction of electromagnetic imperfections of small diameter[END_REF] for the two-dimensional (time-independent) inverse conductivity problem and generalize the results in [START_REF] Ammari | An inverse initial boundary value problem for the wave equation in the presence of imperfections of small volume[END_REF] to the full time-dependent Maxwell's equations.

Conclusion

In this paper, we are convinced that the use of approximate formulae such as [START_REF] Volkov | An inverse problem for the time harmonic Maxwell equations[END_REF] represents a very promising approach to the dynamical identification of small inhomogeneities that are embedded in a homogeneous medium. We also believe that our method yields a good approximation to small amplitude perturbations in the electromagnetic parameters (for the example of electric permittivity ε α (x) = ε 0 + αε(x)) from the measurements: curl H α × n on Γ × (0, T ).

Our method may yield the Fourier transform of the amplitude perturbation ε(x). This issue will be considered in a forthcoming work [START_REF] Daveau | An inverse problem for the time dependent Maxwell's equations in the presence of imperfections of small volume[END_REF].