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Asymptotic expansion of the solution of a transmission
problem for the Stokes system with a small boundary

perturbation for an inclusion

Imen Balloumi ∗, and Christian Daveau †.

Abstract

In this paper, we consider the transmission problem for the Stokes system in three
dimensional case. The aim of this work is to derive the development of high order terms
in the asymptotic expansion of the solution caused by a small boundary perturbation
for an inclusion. The derivation is rigorous and proved by layer potential techniques.

Key words: Stokes system, transmission problem, asymptotic expansions, small per-
turbation, layer potentials
AMS Subject Classification: 45B05

1 Introduction

Let Ω ⊂ R3 be a bounded domain with a connected Lipschitz boundary ∂Ω and suppose that Ω
contains an inhomogeneity D with a C3-boundary ∂D. We assume that there exists a constant
c0 > 0 such that infx∈D dist(x, ∂Ω) > c0 which means that D is away from the boundary ∂Ω.
Let us consider a boundary value transmission problem for the Stokes system:

(1)



(−∆+ κ2)u+∇q = 0 in Ω \D
(−∆+ κ̃2)u+∇q = 0 in D
∇ · u = 0 in Ω
u|+ − u|− = 0 on ∂D
µ ∂

∂n (u, q)|+ − µ̃ ∂
∂n (u, q)|− = 0 on ∂D

u = g on ∂Ω∫
Ω

q = 0,

where µ and µ̃ are positive constants related to the physical properties of Ω and D. Here κ2

and κ̃2 are in C \ {z ∈ R, z ≤ 0}. Let κ =
√
κ2 and κ̃ =

√
κ̃2 be particular square roots, which

have positive real parts (i.e. Re κ > 0, Re κ̃ > 0).
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From Gauss’s law theorem, we have the compatibility condition:∫
∂Ω

g · νΩ = 0,

where νΩ is the outward unit normal to ∂Ω.
Now, we consider ∂Dδ a δ−perturbation of ∂D defined by

(2) ∂Dδ = {x̃ = x+ δν(x);x ∈ ∂D, 0 < δ << 1}

where ν is the outward unit normal to ∂D. We denote by Dδ the domain bounded by ∂Dδ. As
∂D is of class C3 and in view of the definition (2), the boundary ∂Dδ is of class C2. We denote
by ∂

∂n the conormal derivative defined on ∂D as follows

(3)
∂

∂n
(u, q) := (∇u+ (∇u)T )ν − qν

where (∇u)T denotes the transpose of the matrix ∇u := (∂iuk)i,k=1..3 (see [1], [3], [14] and
[17]).
Let ν̃ be the outward unit normal to ∂Dδ. Then, the conormal derivative on ∂D is defined by

(4)
∂

∂n
(u, q) := (∇u+ (∇u)T )ν̃ − qν̃.

Define (uδ, qδ) as the solution to the transmission problem for the Stokes system with
a small boundary perturbation Dδ:

(5)



(−∆+ κ2)uδ +∇qδ = 0 in Ω \Dδ

(−∆+ κ̃2)uδ +∇qδ = 0 in Dδ

∇ · uδ = 0 in Ω
uδ|+ − uδ|− = 0 on ∂Dδ

µ ∂
∂n(uδ, qδ)|+ − µ̃ ∂

∂n(uδ, qδ)|− = 0 on ∂Dδ

uδ = g on ∂Ω∫
Ω
qδ = 0.

Here and throughout this paper, the subscripts + and − denote the limit from outside
and inside D

(6) u|±(x) := lim
D±∋y→x

u(y), x ∈ ∂D.

and similarly it denote the limit from outside and inside Dδ

(7) u|±(x̃) := lim
Dδ,±∋ỹ→x̃

u(ỹ), x̃ ∈ ∂Dδ.

The ultimate objective of this work is to present a schematic way to derive high-order
terms in the asymptotic expansions of (uδ − u)|Ω0 and (uδ − u)|D0 as δ tends to 0,
where D0 is any close subset of D ∩ Dδ and Ω0 is any subset of Ω \ (D ∪Dδ). The
main ideas are to represent solutions of both initial and perturbed problem via the
layer potential operators, to write the Taylor expansion of the integrands and to use
properties of the perturbed interface. We have already worked on the derivation of
asymptotic expansion for the solution of boundary value perturbation resolvent Stokes
system in [9] and on asymptotic behaviors for eigenvalues and eigenfunctions associated
to Stokes operator in the presence of small boundary perturbations in [5]. Here we were
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inspired by the work of Zribi in [23] to derive asymptotic expansion of the solution of
the transmission Stokes system with a small interface perturbation. In connection with
this problem we referred to other works on layer potential techniques [2], [18], [19], [20],
[22], transmission problems [6], [7], [8] and Stokes system [11], [12], [15], [16].

This paper is organized as follows. In the next section, we give some notations
and preliminary results and we describe a layer potential techniques for solving the
transmission problem for the Stokes system. In section 3, we establish the existence and
uniqueness of the solution of the transmission problem for the Stokes system. Then, in
section 4, integral respresentation formulas for the solution of the transmission problem
for the Stokes system with a boundary perturbation for an inclusion is given. In
section 5, we provide a rigorous derivation of the leading-order term in the asymptotic
expansion of uδ as the parameter of the perturbation δ goes to zero.

2 Definition and preliminary results

2.1 Small perturbation of an interface

Denote by dσδ the surface element of ∂Dδ which has the uniform expansion [10]:

(8) dσδ(x̃) =

∞∑
n=0

δnσn(x)dσ(x), x ∈ ∂D, x̃ ∈ ∂Dδ,

where σn are bounded functions regardless of n. In particular,

(9) σ0(x) = 1, σ1(x) = −2H(x), σ2 = K(x), x ∈ ∂D,

where H and K denote the mean and the Gaussian curvature of ∂D respectively.

Since ∂D is parallel to ∂Dδ, we can conclude that

(10) ν̃(x̃) = ν(x), x ∈ ∂D, x̃ ∈ ∂Dδ.

We then have for x̃, ỹ ∈ ∂Dδ:

x̃− ỹ = x− y + δ(ν(x)− ν(y)),

and

|x̃− ỹ|2 = |x− y|2(1 + 2δ
⟨x− y, ν(x)− ν(y)⟩

|x− y|2
+ δ2

|ν(x)− ν(y)|2

|x− y|2
).

We also introduce two functions E and G for x ̸= y ∈ ∂D defined by:

E(x, y) :=
⟨x− y, ν(x)− ν(y)⟩

|x− y|2
, G(x, y) :=

|ν(x)− ν(y)|2

|x− y|2
.

Since ∂D is of class C2, there exists a constant C depending only on ∂D such that:

|E(x, y)|+ |G(x, y)|
1
2 ≤ C, ∀x, y ∈ ∂D.

Hence, we obtain:

|x̃− ỹ| = |x− y|
√
1 + 2δE(x, y) + δ2G(x, y) := |x− y|

∞∑
n=0

δnLn(x, y),

where the serie converges absolutely and uniformly and the first two terms are:

L0(x, y) = 1, L1(x, y) = E(x, y).
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2.2 Layer potential theory for the Stokes resolvent system

2.2.1 Fundamental solution for the Stokes resolvent system

Let consider a bounded Lipschitz domain D ⊂ R3 with connected boundary ∂D and a
given complex constant κ2 in C∗. We denote by Γκ = (Γκ

ij)i,j=1,2,3 and F
κ = (F κ

i )i=1,2,3

the fundamental tensor and vector of the Stokes resolvent system respectively and they
satisfy:

(11)

{
(−∆+ κ2)Γκ

ij(x, y) + ∂jF
κ
i (x, y) = δijδy(x) in D,

∂iΓ
κ
ij(x, y) = 0 in D,

where δy is the Dirac distribution with mass at y and δij is the Kronecker symbol.
The components of (Γκ, F κ) can be obtained by the Fourier transform method in these
forms (see [18] [19]):

(12)

 Γκ
ij(x, y) = 1

4π

{
δij

|x−y|e1(κ|x− y|) + (x−y)i(x−y)j
|x−y|3 e2(κ|x− y|)

}
,

F κ
i (x, y) = 1

4π
(x−y)i
|x−y|3 ,

where

e1(ϵ) =

∞∑
n=0

(n+ 1)2

(n+ 2)!
(−ϵ)n = exp(−ϵ)(1 + ϵ−1 + ϵ−2)− ϵ−2,

e2(ϵ) =
∞∑
n=0

1− n2

(n+ 2)!
(−ϵ)n = exp(−ϵ)(−1− 3ϵ−1 − 3ϵ−2) + 3ϵ−2.

Now, let introduce for x, y ∈ ∂D, the stress tensor S associated to the fundamental
tensors (Γκ, F κ) defined by:

(13) Sκ
ijk(x, y) = −F κ

j (x̂)δik +
∂Γκ

ij(x̂)

∂x̂k
+
∂Γκ

ik(x̂)

∂x̂j
, i, j, k = 1, 2, 3

where x̂ = x− y = (x̂1, x̂2, x̂3) and r = |x̂|. Combining (12) and (13), one can obtain:

(14) Sκ
ijk(x, y) = − 1

ωd

{
δik
x̂j
rd
D1(κr) + (δkj

x̂i
rd

+ δij
x̂k
rd

)D2(κr) +
x̂ix̂j x̂k
rd+2

D3(κr)

}
where

D1(t) = 8
( t2)

m+1Km+1(t)

Γ(m)t2
− 6

t2
+ 1,

D2(t) = 8
( t2)

m+1Km+2(t)

Γ(m)t2
− 6

t2
+ 2

( t2)
mKm(t)

Γ(m)
,

D3(t) = −16
( t2)

m+2Km+2(t)

Γ(m)t2
+

30

t2
,

with m = 3
2 , Γ(m) is the Gamma function and Kn for n ≥ 0 is the modified Bessel

function of order n.
Here and throughout this paper we used the Einstein convention for the summation
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notation omitting the summation sign for the indices appearing twice.
Moreover, we give components of the pressure tensor Λκ(x, y) defined by

(15) Λκ
ik(x, y) = − 1

4π
(2
δik
r3

− δikκ
2

r
− 6

x̂ix̂k
r5

), i, k = 1, 2, 3.

Notice that (Sκ,Λκ) satisfies:

(16) (−∆+ κ2)Sκ
ijk(x, y) + ∂jΛ

κ
ik(x, y) = 0, ∂ijkSκ

ij(x, y) = 0 for x ̸= y, x, y ∈ D.

2.2.2 Layer potential operators for the Stokes system

In this section, we present the layer potential operators associated to the Stokes equa-
tion in R3. A special attention is devoted to the invertibility of the potential operators
for the standard Stokes equation and to the compactness of the complementary layer
potential operators.

In what follows L2(∂D) denotes the Lebesgue space of square integrable functions
on ∂D with respect to the surface measure dσ and L2(∂D)3 denotes the space of vectors
whose components belong to L2(∂D).

Let us first introduce a density ϕ = (ϕ1, ϕ2, ϕ3) ∈ L2(∂D)3 and define the single
layer potential by Sκ

Dϕ : R3\∂D → R3 and the pressure potential VDϕ : R3\∂D → R
as follows:

(17) Sκ
D,iϕ(x) :=

∫
∂D

Γκ
ij(x− y)ϕj(y)dσ(y), i = 1, 2, 3,

(18) VDϕ(x) :=

∫
∂D
Fj(x− y)ϕj(y)dσ(y).

Besides, for a given density ψ = (ψ1, ψ2, ψ3) ∈ L2(∂D)3, we define the double layer
potential Dκ

Dψ : R3\∂D → R3, by

(19) Dκ
D,iψ(x) :=

∫
∂D

−Sκ
ijk(x, y)νk(y)ψj(y)dσ(y), i = 1, 2, 3

where ν is the outward unit normal to ∂D. Moreover, the associated pressure potential
W κ

Dψ : R3\∂D → R is defined by

(20) W κ
Dψ(x) :=

∫
∂D

−Λjk(x, y)νk(y)ψj(y)dσ(y).

We can check that (Sκ
D, V

κ
D) and (Dκ

D,W
κ
D) are solutions of the Stokes system inR3\∂D,

(−∆+ κ2)Sκ
Dϕ(x) +∇V κ

Dϕ(x) = 0; ∇ · Sκ
D(x) = 0,

(−∆+ κ2)Dκ
Dψ(x) +∇W κ

Dψ(x) = 0; ∇ · Dκ
D(x) = 0.

We need to introduce the principal value of the double layer potential, for ϕ =
(ϕ1, ϕ2, ϕ3) ∈ L2(∂D)3 by the formula, (see [1]):

(21) Kκ
D,i(ϕ)(x) := p.v.

∫
∂D

−Sκ
ijk(x, y)νk(y)ϕj(y)dσ(y); i = 1, 2, 3; x ∈ ∂D,
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and (Kκ
D)

∗ the L2-adjoint operator of Kκ
D

(22) (Kκ
D,i)

∗(ϕ)(x) := p.v.

∫
∂D

−Sκ
ijk(x, y)νk(x)ϕj(y)dσ(y); i = 1, 2, 3; x ∈ ∂D.

Here p.v. denotes the Cauchy principal value. The operator Kκ
D is known to be bounded

on L2(∂D)3 [4]. We then apply the following decomposition as r = |x− y| → 0:

(23) Γκ
ij(x, y) = Γ0

ij(x, y) + Γij(x, y), ∀x, y ∈ D

(24) Sκ
ijk(x, y) = S0

ijk(x, y) + Sijk(x, y),∀x, y ∈ D

where S0 and Γ0 are weakly singular Stokes tensors. The remaining parts S and
Γ are continuous kernels, so that the continuity behavior of the corresponding surface
potential is determined only by the Stokes tensors S0 and Γ0. A detailed proof of
the above relations can be found in [19] and [20]. In fact, Γ0 and S0 are fundamental
tensors for the standard Stokes system [14].

According to Theorem 2.27 in [13] p.28, the following lemma holds about the com-
pactness of operators with kernels defined by (23) and (24).

Lemma 1. Let the operators K, its adjoint K∗ and S for x ∈ ∂D defined by:

(25) KD,i[ϕ](x) := p.v.

∫
∂D

−Sijk(x, y)νk(y)ϕj(y)dσ(y); i = 1, 2, 3,

(26) K∗
D,i[ϕ](x) := p.v.

∫
∂D

−Sijk(x, y)νk(x)ϕj(y)dσ(y); i = 1, 2, 3,

(27) SD,i[ϕ](x) :=

∫
∂D

Γij(x− y)ϕj(y)dσ(y); i = 1, 2, 3,

(28) SD = (ϕ) = SD(ϕ)|+ = SD(ϕ)|−.

These operators have continuous kernel. Moreover, SD, KD and K∗
D are compact oper-

ators on C(∂D)3 and on L2(∂D)3.

We give some results about the trace of the single and double layer potentials on
∂D, for (ϕ, ψ) ∈ L2(∂D)3 × L2(∂D)3.

(29) Dκ
D(ψ)|± = (∓1

2
I +Kκ

D)(ψ),

(30)
∂

∂n
(Dκ

D(ψ), W
κ
D(ψ))|+ =

∂

∂n
(Dκ

D(ψ), W
κ
D(ψ))|−,

(31)
∂

∂n
(Sκ

D(ϕ), V
κ
D(ϕ))|± = (±1

2
I + (Kκ

D)
∗)(ϕ),
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(32) SκD(ψ) = Sκ
D(ψ)|+ = Sκ

D(ψ)|−.

The formulas (29), (30), (31) and (32) have been proved in [14] when κ = 0. Since
Dκ

D − D0
D and Sκ

D − S0
D are continuous operators and according to (23) and (24), we

can extend these equalities to the case κ ̸= 0.

The relations (29) and (31) imply that the single and double layer potentials on
∂D satisfy jump relations:

(33) Dκ
D(ψ)|+ −Dκ

D(ψ)|− = −ψ on ∂D,

(34)
∂

∂n
Sκ
D(ϕ)|+ − ∂

∂n
Sκ
D(ϕ)|− = ϕ on ∂D.

Moreover, a result about the decay behavior at infinity of the layer potentials can be
found in [18] and in [21].

Lemma 2. For the single layer potentials Sκ
D[ϕ], V

κ
D [ϕ] and the double layer potentials

Dκ
D[ψ], W

κ
Ω[ψ], we have the decay behavior at infinity:

i)
Sκ
D[ϕ](x) = O(|x|−1), ∇Sκ

D[ϕ](x) = O(|x|−2), as |x| → ∞.

ii)
V κ
D [ϕ](x) = O(|x|−2), ∇V κ

D [ϕ](x) = O(|x|−3), as |x| → ∞.

iii)
Dκ

D[ψ](x) = O(|x|−2), ∇Dκ
D[ψ](x) = O(|x|−3), as |x| → ∞.

iv)
W κ

D[ψ](x) = O(|x|−3), ∇W κ
D[ψ](x) = O(|x|−4), as |x| → ∞.

Recall that the single layer potential S0
D defined by S0

D,iϕ(x) :=
∫
∂D Γ0

ij(x−y)ϕj(y)dσ(y), i =
1, 2, 3. for x ∈ R3\∂D corresponds to κ = 0.

It follows from [14] the theorem.

Theorem 1.

(35) ker(S0D) = {cν : c ∈ R}.

Now, we give two lemmas about the invertibility of these operators.

Lemma 3. [1] Let L2
0(∂D) := {f ∈ L2(∂D)3;

∫
∂D f ·ν = 0} and define H1

0(∂D) likewise.
We have the next result.

i) The operator S0
D : L2

0(∂D) → H1
0 (∂D) is invertible.

ii) The operator λI +K0
D and λI + (K0

D)
∗ are invertible on L2(∂D)3 for |λ| > 1/2.

Lemma 4. [14] Let D ⊂ R3 be a bounded domain with boundary ∂D. Then, we have:
(1/2)I+K0

D : L2
0(∂D) → L2

0(∂D) is invertible and so is I
2 +(K0

D)
∗ : L2

0(∂D) → L2
0(∂D).

In the next section, with the results given above, we study the existence and unique-
ness of the solution of the transmission problem for the Stokes system (1).
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3 Existence and uniqueness of the solution of

the transmission problem for the Stokes system

We look for a solution (u, q) to the transmission problem for the Stokes system (1)
with the following representation:

(36)

{
u = Sκ̃

D[ϕ] ,
u = Sκ

D[ψ] +Dκ
Ω[θ] ,

q = V κ̃
D[ϕ] in D,

q = V κ
D[ψ] +W κ

Ω[θ] in Ω \D,

for some triplet (ϕ, ψ, θ) ∈ L2(∂D)3×L2(∂D)3×L2(∂Ω)3. According to the equations
(29)-(32), (ϕ, ψ, θ) must satisfy the integral equations

(37)


Sκ̃
D|+
µ̃(−1

2I + (Kκ̃
D)

∗)
0

−Sκ
D|−

−µ(12I + (Kκ
D)

∗)
Sκ
D

−Dκ
Ω

−µ ∂
∂nD

κ
Ω

1
2I +Kκ

Ω


 ϕ

ψ
θ

 =

 0
0
g

 .

Denote by Aκ the matrix corresponding to the left hand side of (37).

We need to study the existence and uniqueness of the solution of the system (37).
This is equivalent to the invertibility of Aκ. We represent Aκ by a sum of two matrices
Ainv and Acom defined by

(38) Acom =


SD
µ̃(KD)

∗

0

−SD
−µ(KD)

∗

Sκ
D

−Dκ
Ω

−µ ∂
∂nD

κ
Ω

KΩ

 ,

and

(39) Ainv =


S0
D

µ̃(−1
2I + (K0

D)
∗)

0

−S0
D

−µ(12I + (K0
D)

∗)
0

0
0
1
2I +K0

Ω

 .

We know that Sκ
D is compact on L2(∂Ω)3 and that Dκ

Ω and ∂
∂nD

κ
Ω are also compact

on L2(∂D)3 since ∂D and ∂Ω do not intersect. According to Lemma 1, Acom is com-
pact. Hence, it suffices to prove that Ainv is invertible and that Aκ is injective to show
the invertibility of Aκ according to the Fredholm alternative.

So, we introduce the space H(∂D) defined by:

H(∂D) := {(ϕ, ψ) ∈ L2(∂D)3 × L2(∂D)3;ϕ− ψ ∈ L2
0(∂D)}

and we prove the first result.

Lemma 5. The operator Ainv : H(∂D) × L2
0(∂Ω) → H1

0(∂D) × L2(∂D)3 × L2
0(∂Ω) is

invertible.

proof. Let (f, h, g) ∈ H1
0(∂D) × L2(∂D)3 × L2

0(∂Ω), the solution (ϕ, ψ, θ) of the
system

Ainv

 ϕ
ψ
θ

 =

 f
h
g

 ,
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is given by

(40)

ϕ = (S0
D)

−1(f) + ψ

ψ = 1
µ̃−µ(−

1
2
1+λ
1−λI + (K0

D)
∗)−1[h− µ̃(−1

2I + (K0
D)

∗)(S0
D)

−1(f)]

θ = (12I +K0
Ω)

−1(g)

where 0 < λ = µ
µ̃ . As stated in Lemmas 3 and 4, the operators S0

D, −
1
2
1+λ
1−λI + (K0

D)
∗

and 1
2I +K0

Ω are invertible and the proof is then completed.

Now, we focus on the injectivity of Aκ and we give the following theorem.

Theorem 2. The operator Aκ : H(∂D) × L2
0(∂Ω) → H1

0(∂D) × L2(∂D) × L2
0(∂Ω) is

injective .

proof. Suppose that there exists (ϕ0, ψ0, θ0) ∈ H(∂D)×L2
0(∂Ω) such thatAκ(ϕ0, ψ0, θ0)

T =
(0, 0, 0)T and consider (u, q) defined by{

u = Sκ̃
D[ϕ0] with

u = Sκ
D[ψ0] +Dκ

Ω[θ0] with
q = V κ̃

D[ϕ0] in D,

q = V κ
D[ψ0] +W κ

Ω[θ0] in Ω \D.

We notice that the couple (u, q) is a solution of (1) with g = 0. Then, using
integration by parts [14] on D− = D and D+ = Ω \D, we obtain

2

∫
D−

Eu : Eu+ κ̃2
∫
D−

u.u =

∫
∂D

∂(u, q)

∂n
|−.u|−,

and

2

∫
D+

Eu : Eu+ κ2
∫
D+

u.u = −
∫
∂D

∂(u, q)

∂n
|+.u|+ +

∫
∂D

∂(u, q)

∂n
|−.u|−,

where E(u) is the deformation tensor defined by

E(u) :=
1

2
(∇u+ (∇u)T ).

The system (1) guarantees that u|− = 0 on ∂D, u|− = u|+ and ∂(u,q)
∂n |+ = µ̃

µ
∂(u,q)
∂n |− on

∂D. Thus, we have

2

∫
D+

Eu : Eu+ κ̃2
∫
D+

u.u = −
∫
∂D

µ̃

µ

∂(u, q)

∂n
|−.u|−

= − µ̃
µ
[

∫
D−

2Eu : Eu+ κ̃2
∫
D−

u.u].

Therefore, we get:

(41)
u = 0, q = c1, E(u) = 0, on D+,
u = 0, q = c2, E(u) = 0, on D−,

where c1 and c2 are real constants. Using the argument that
∫
Ω q = 0, we have

(42)

∫
Ω
q = c1

∫
D−

+c2

∫
D+

= 0.
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On the other hand, the fifth line of system (1) gives c1 = c2
µ
µ̃ . Taking account of (42),

we obtain c1 = c2 = 0.
We also consider the solution to the system:

(43)


(−∆+ κ̃2)v +∇p = 0 in R3 \D
∇ · v = 0 in R3 \D
v = 0 on ∂D
|v||∇v| = o(|x|−2) as |x| → +∞
|v||p| = o(|x|−2) as |x| → +∞.

We know that
Sκ̃
D(ϕ0)|+ = Sκ̃

D(ϕ0)|− = u|−on ∂D.

By (41), we have Sκ̃
D(ϕ0)|+ = 0. Then, (v, p) = (Sκ̃

D(ϕ0), V
κ̃
D(ϕ0)) is solution of exterior

Dirichlet problem (43) which admits a unique solution [20]. Thus, we have (v, p) =
(0, 0) which implies

(Sκ̃
D(ϕ0),V

κ̃
D(ϕ0)) = (0, 0) on R3 \D.

The jump formula on ∂D yields:

∂

∂n
(Sκ̃

D(ϕ0), V
κ̃
D(ϕ0))|− − ∂

∂n
(Sκ̃

D(ϕ0), V
κ̃
D(ϕ0))|+ = ϕ0 = 0; x ∈ ∂D.

On the other hand, let consider the following interior Dirichlet problem:

(44)


(−∆+ κ2)v +∇p = 0 in D
∇ · v = 0 in D
v = 0 on ∂D.

We have

Sκ
D(ψ0)|− +Dκ

Ω(θ0)|− = Sκ
D(ψ0)|+ +Dκ

Ω(θ0)|+ = u|+ on ∂D.

Then, we get Sκ
D(ψ0)|− +Dκ

Ω(θ0)|− = 0 on ∂D. Finally, we obtain

(v, p) = (Sκ
D(ψ0) +Dκ

Ω(θ0), V
κ
D(ψ0) +W κ

Ω(θ0))

a solution of (44). We know that interior Dirichlet problem (44) admits a unique
solution (v, p) where the unknown p is determined up to an additive constant [20].
Thus, we get

(Sκ
D(ψ0) +Dκ

Ω(θ0), V
κ
D(ψ0) +W κ

Ω(θ0)) = (0, c).

Moreover, the trace formula on ∂D give:

∂

∂n
(v, p)|+ − ∂

∂n
(v, p)|− =

∂

∂n
(Sκ

D(ψ0), V
κ(ψ0))|+ +

∂

∂n
(Dκ

Ω(θ0),W
κ
Ω(θ0))|+

− ∂

∂n
(Sκ

D(ψ0), V
κ(ψ0))|− − ∂

∂n
(Dκ

Ω(θ0),W
κ
Ω(θ0))|−

=
∂

∂n
(Sκ

D(ψ0), V
κ(ψ0))|+ − ∂

∂n
(Sκ

D(ψ0), V
κ(ψ0))|−

= ψ0 = cν.
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We deduce that ψ0 = 0 on ∂D since ψ0−ϕ0 ∈ L2
0(∂D). Therefore, we have (Sκ

D(ψ0), V
κ
D(ψ0)) =

(0, 0) on R3 \ ∂D which implies that (Sκ
D(ψ0), V

κ
D(ψ0)) = (0, 0) on D+. Then, we get

(u, q) = (Dκ
Ω(θ0), W

κ
Ω(θ0)) = (0, 0) on D+.

Now, we consider the solution to the following exterior problem :

(45)


(−∆+ κ̃2)v +∇p = 0 in R3 \ Ω
∇ · v = 0 in R3 \ Ω
∂
∂n(v, p) = 0 on ∂Ω
|v||∇v| = o(|x|−2) as |x| → +∞
|v||p| = o(|x|−2) as |x| → +∞.

Then, (Dκ
Ω(θ0), W

κ
Ω(θ0)) solves (45) which is an exterior Neumann problem. It has a

unique solution. We then deduce that (v, q) = (0, 0). We know that (Dκ
Ω(θ0))|− −

(Dκ
Ω(θ0))|+ = θ0 = 0 on ∂Ω which implies that (Dκ

Ω(θ0), W
κ
Ω(θ0)) = (0, 0) in R3 \ ∂Ω

and particularly in D+. Finally, we get (u, q) = (Sκ
D[ψ0], V

κ
D[ψ0]) on D+.

We give the result.

Theorem 3. Let (ϕ, ψ, θ) ∈ H(∂D) × L2
0(∂Ω) be the unique solution of (37). Then

(u, q) represented by (36) is the unique solution of (1).

In the next section, we perturb the transmission problem for the Stokes system.

4 The transmission problem for the Stokes sys-

tem with a boundary perturbation for an inclu-

sion

Let (uδ, qδ) be the solution to problem (5). Using Theorem 3, (uδ, qδ) can be represented
by:{

uδ = Sκ̃
Dδ

[ϕδ] with

uδ = Sκ
Dδ

[ψδ] +Dκ
Ω[θδ] with

qδ = V κ̃
Dδ

[ϕδ] in Dδ,

qδ = V κ
Dδ

[ψδ] +W κ
Ω[θδ] in Ω \Dδ,

where (ϕδ, ψδ, θδ) ∈ H(∂Dδ)× L2
0(∂Ω) is the unique solution of the system

(46)


Sκ̃
Dδ

[ϕδ]− Sκ
Dδ

[ψδ]−Dκ
Ω[θδ] = 0 on ∂Dδ

µ̃(−1
2I + (Kκ̃

Dδ
)∗)[ϕδ]− µ(12I + (Kκ

Dδ
)∗)[ψδ]− µ ∂

∂nD
κ
Ω[θδ] = 0 on ∂Dδ

Sκ
Dδ

[ψδ] + (12I +Kκ
Ω)[θδ] = g on ∂Ω.

Let Ψδ(x) = x + δν(x) be the diffeomorphism from ∂D to ∂Dδ. The following
estimates hold.

Lemma 6. There exists a constant C depending only on D such that for any functions
(ϕδ, ψδ, θδ) ∈ H(∂Dδ)× L2

0(∂Ω), we have:

i)
∥Sκ̃

Dδ
[ϕδ] ◦Ψδ − Sκ̃

D[ϕδ ◦Ψδ]∥L2(∂D)3 ≤ Cδ∥ϕδ∥L2(∂Dδ)3 .
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ii)
∥Sκ

Dδ
[ψδ] ◦Ψδ − Sκ

D[ψδ ◦Ψδ]∥L2(∂D)3 ≤ Cδ∥ψδ∥L2(∂Dδ)3 .

iii)
∥(Kκ̃

Dδ
)∗[ϕδ] ◦Ψδ − (Kκ̃

D)
∗[ϕδ ◦Ψδ]∥L2(∂D)3 ≤ Cδ∥ϕδ∥L2(∂Dδ)3 .

iv)
∥(Kκ

Dδ
)∗[ϕδ] ◦Ψδ − (Kκ

D)
∗[ϕδ ◦Ψδ]∥L2(∂D)3 ≤ Cδ∥ϕδ∥L2(∂Dδ)3 .

proof The two last inequalities have been proven in Lemma 3.1 in [9]. Following
the same steps, we can easily obtain the first and the second ones.

5 Derivation of the asymptotic expansion

5.1 Asymptotic expansion of the density functions

First, we consider the asymptotic behavior of Sκ̃
Dδ

[ϕδ], S
κ
Dδ

[ψδ], Dκ
Ω[θδ], (Kκ̃

Dδ
)∗[ϕδ] and

(Kκ
Dδ

)∗[ψδ] on ∂Dδ, and S
κ
Dδ

[ψδ] on ∂Ω as δ → 0.

Denote by ϕ̃ = ϕδ ◦Ψδ the vectorial function with components ϕ̃j , (j = 1, 2, 3).
Besides, for all x̃ ∈ ∂Dδ and x− y ̸= 0, we define the integral operators for i = 1, 2, 3:

Sκ̃
Dδ,i

[ϕδ](x̃) =

∫
∂Dδ

Γκ̃
ij(x̃− ỹ)ϕδ,j(ỹ)dσδ(ỹ),

Sκ
Dδ,i

[ψδ](x̃) =

∫
∂Dδ

Γκ
ij(x̃− ỹ)ψδ,j(ỹ)dσδ(ỹ),

(Kκ̃
Dδ,i

)∗[ϕδ](x̃) =

∫
∂Dδ

−S κ̃
ijk(x̃, ỹ)ν̃k(x̃)ϕδ,j(ỹ)dσδ(ỹ),

(Kκ
Dδ,i

)∗[ψδ](x̃) =

∫
∂Dδ

−Sκ
ijk(x̃, ỹ)ν̃k(x̃)ψδ,j(ỹ)dσδ(ỹ),

Dκ
Ω,i[θδ](x̃) =

∫
∂Ω

−Sκ
ijk(x̃, y)νk(y)θδ,j(y)dσ(y),

and for x ∈ ∂Ω

(Sκ
Dδ

)i[ψδ](x) =

∫
∂Dδ

Γκ
ij(x− ỹ)ψδ,j(ỹ)dσδ(ỹ).

By Taylor expansions of Γκ̃
ij(x̃− ỹ), Γκ

ij(x− ỹ), Sijk(x̃, ỹ)ν̃k(x̃) and Sijk(x̃, y)νk(y),
we obtain:

Γκ̃
ij(x̃− ỹ) = Γκ̃

ij(x− y) +

∞∑
n=1

δn
∑
|α|=n

(ν(x)− ν(y))α

α!
∇αΓκ̃

ij(x− y)

︸ ︷︷ ︸
:=Γκ̃,n

ij (x,y)

,

Γκ
ij(x− ỹ) = Γκ

ij(x− y) +

∞∑
n=1

δn
∑
|α|=n

(−ν(y))α

α!
∇α

yΓ
κ
ij(x− y)

︸ ︷︷ ︸
:=Γ′κ,n

ij (x,y)

,
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−S(x̃, y)νk(y) = −Sijk(x, y)νk(y)︸ ︷︷ ︸
:=Hij(x,y)

−
∞∑
n=1

δn
∑
|α|=n

(−ν(x))α

α!
∇α

xSijk(x, y)νk(y)︸ ︷︷ ︸
:=H′n

ij (x,y)

,

−S(x̃, ỹ)ν̃k(x̃) = −Sijk(x, y)νk(x)︸ ︷︷ ︸
:=Hij(x,y)

−
∞∑
n=1

δn
∑
|α|=n

(ν(x)− ν(y))α

α!
∇α

xSijk(x, y)νk(y)︸ ︷︷ ︸
:=Hn

ij(x,y)

.

We then introduce the operators using (8) for i = 1, 2, 3 and for x̃ ∈ ∂Dδ:

Sκ̃,n
D,i [ϕδ](x̃) =

∑
m+q=n

∫
∂D

Γκ,m
ij (x, y)σq(x)ϕ̃j(y)dσ(y), n ⩾ 0,

S′κ,n
D,i [ψδ](x̃) =

∑
m+q=n

∫
∂D

Γ′κ,m
ij (x, y)σq(x)ψ̃j(y)dσ(y), n ⩾ 0,

Dκ,n
Ω,i [θδ](x̃) =

∫
∂Ω

H′m
ij (x, y)θδ,j(y)dσ(y), n ⩾ 0,

Kκ,n
D,i[ψδ](x̃) = p.v.

∑
m+q=n

∫
∂D

Hm
ij (x, y)σq(x)ψ̃j(x)dσ(x), n ⩾ 0.

where ϕ̃(x) = ϕδ ◦Ψ(x) and ψ̃(x) = ψδ ◦Ψ(x)

Note that Sκ,0
D = S ′κ,0

D = Sκ
D, D

κ,0
D = Dκ

D, K
κ,0
D = (Kκ

D)
∗ and that σq = 0 for all

q ≥ 3.

We can obtain the following theorem whose demonstration is similar to that of
Lemma 6.

Theorem 4. Let N ∈ N, there exists C depending on N and D such that for any
(ϕδ, ψδ, θδ) ∈ H(∂Dδ)× L2

0(∂Ω):

∥(Kκ
Dδ

)∗[ϕδ] ◦Ψδ − (Kκ
D)

∗[ϕ̃]−
N∑

n=1

δnKD
κ,n[ϕ̃]∥(L2(∂D))3 ≤ CδN+1∥ϕ̃∥(L2(∂D))3

∥Sκ̃Dδ
[ϕδ] ◦Ψδ − Sκ̃D[ϕ̃]−

N∑
n=1

δnSκ̃,nD [ϕ̃]∥(L2(∂D))3 ≤ CδN+1∥ϕ̃∥(L2(∂D))3

∥Sκ̃Dδ
[ϕδ]− S′κ̃D[ϕ̃]−

N∑
n=1

δnS′
κ̃,n
D [ϕ̃]∥(L2(∂D))3 ≤ CδN+1∥ϕ̃∥(L2(∂D))3

∥Dκ
Dδ

[θδ]−Dκ
D[θδ]−

N∑
n=1

δnDκ,n
D [θδ]∥(L2(∂Ω))3 ≤ CδN+1∥θδ∥(L2(∂Ω))3

where ϕ̃ := ϕδ ◦Ψδ, ψ̃ := ψδ ◦Ψδ.
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Let (ϕ(n), ψ(n), θ(n)), n ≥ 1 be the solution of the following system:
(47)

Sκ̃D[ϕ
(n)]− SκD[ψ

(n)]−Dκ
Ω[θ

(n)] =∑n−1
m=0−Sκ̃,n−m

D [ϕ(m)] + Sκ,n−m
D [ψ(m)] +Dκ,n−m

Ω [θ(m)] on ∂D

µ̃(−1
2I + (Kκ̃

D)
∗)[ϕ(n)]− µ(12I + (Kκ

D)
∗)[ψ(n)]− µ ∂

∂nD
κ
Ω[θ

(n)] =∑n−1
m=0−µ̃((K

κ̃,n−m
D )∗)[ϕ(m)] + µ((Kκ,n−m

D )∗)[ψ(m)] + µ ∂
∂nD

κ,n−m
Ω [θ(m)] on ∂D

Sκ
D[ψ

(n)] + (12I +Kκ
Ω)[θ

(n)] =

δ0ng +
∑n−1

m=0−S
′κ,n−m
D [ψ(m)]−Kκ,n−m

Ω [θ(m] on ∂Ω.

We recursively construct the sequence (ϕ(n), ψ(n), θ(n)) ∀n ∈ N∗.
Let define

(48) ϕN =
N∑

n=0

δnϕ(n), ψN =
N∑

n=0

δnψ(n), θN =
N∑

n=0

δnθ(n),

where (ϕ(0), ψ(0), θ(0)) = (ϕ, ψ, θ) is the unique solution of (37). Taking into account
Theorem 4, one deduces from system (47) that:

N∑
n=0

δnSκ̃,nD [ϕ̃− ϕN ]−
N∑

n=0

δnSκ,nD [ψ̃ − ψN ]−
N∑

n=0

δnDκ,n
Ω [θδ − θN ] = O(δN+1) on ∂D

N∑
n=0

µ̃(−δ0n
2
I + δn(Kκ̃,n

D )∗)[ϕ̃− ϕN ]−
N∑

n=0

µ(
δ0n
2
I + δn(Kκ,n

D )∗)[ψ̃ − ψN ]

−
∑N

n=0 µ
∂
∂nD

κ,n
Ω [θδ − θN ] = O(δN+1) on ∂D

N∑
n=0

δnS
′κ,n
D [ψ̃ − ψN ] +Dκ

Ω[θδ − θN ] = O(δN+1) on ∂Ω.

Then we get the lemma.

Lemma 7. Let N ∈ N, there exists C depending only on N and Ω such that

∥ϕ̃−
N∑

n=0

δnϕ(n)∥(L2(∂D))3 ≤ CδN+1,

∥ψ̃ −
N∑

n=0

δnψ(n)∥(L2(∂D))3 ≤ CδN+1,

∥θδ −
N∑

n=0

δnθ(n)∥(L2(∂Ω))3 ≤ CδN+1

where (ϕ(n), ψ(n), θ(n)) are defined by the recursive relations (47).
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5.2 Asymptotic expansion for the solution of perturbed
problem

In this section, we develop the asymptotic behavior of uδ − u as δ → 0. The boundary
integral representation of the solution can be expressed as

(49) uδ − u =

{
Sκ̃
Dδ

[ϕδ]− Sκ̃
D[ϕ] in D0,

Sκ
Dδ

[ψδ]− Sκ
D[ψ] +Dκ

Ω[θδ]−Dκ
Ω[θ] in Ω0,

where D0 is any closed subset of D ∩Dδ and Ω0 is any subset of Ω \ (D ∪Dδ).
We obtain for i = 1, 2, 3 with Taylor expansion of Γκ̃

ij(x− ỹ) with respect to y and
through the change of variables x̃ = Ψδ(x) with (8) and with Lemma (7):

(50) Sκ̃
Dδ,i

[ϕδ](x) =

∫
∂Dδ

Γκ̃
ij(x− ỹ)ϕ̃j(y)dσδ(ỹ)

=

∫
∂D

(
Γκ̃
ij(x, y) +

N∑
n=1

δnΓ′κ̃,n
ij (x, y)

)(
ϕj(y) +

N∑
n=1

δnϕ
(n)
j (y)

)(
1 +

N∑
n=1

δnσn(x)

)
dσ(y)+O(δ3N+1)

=

∫
∂D

Γκ̃
ij(x, y)ϕj(y)dσ(y)+

3N∑
n=1

δn
∑

m+q+k=n

∫
∂D

Γ′κ̃,m
ij (x, y)σq(y)ϕ

(k)
j (y)dσ(y)+O(δ3N+1)

= Sκ̃
D,i[ϕ](x) +

3N∑
n=1

δn
∑

m+q+k=n

∫
∂D

Γ′κ̃,m
ij (x, y)σq(y)ϕ

(k)
j (y)dσ(y) +O(δ3N+1), ∀x ∈ ∂D.

By a similar computation, Sκ
Dδ,i

[ψδ](x) for x ∈ ∂D can be rewritten as follows:

(51) Sκ
Dδ,i

[ψδ](x) =

∫
∂Dδ

Γκ
ij(x− ỹ)ψ̃j(y)dσ(ỹ), i = 1, 2, 3

= Sκ
D,i[ψ](x) +

N∑
n=1

δn
∑

m+q+k=n

∫
∂D

Γ′κ,m
ij (x, y)σq(y)ψ

(k)
j (y)dσ(y) +O(δN+1).

Similarly, we have, for i = 1, 2, 3

(52) Dκ
Ω,i[θδ](x) =

∫
∂Ω

−Sκ
ijk(x, y)νk(y)θδ,j(y)dσ(y)

=

∫
∂Ω

−Sκ
ijk(x, y)νk(y)

(
θj(y) +

N∑
n=1

δnθ
(n)
δ,j (y)

)
dσ(y) +O(δN+1), x ∈ Ω0.

Then, we get the result.

Theorem 5. Define for n ∈ N the vector-valued functions un = (uni )i=1,2,3 as follows:

uni (x) =



∑
m+q+k=n

∫
∂D

Γ′κ̃,m
ij (x, y)σq(y)ϕ

(k)
j (y)dσ(y) ∀x ∈ D0;∑

m+q+k=n

∫
∂D

Γ′κ,m
ij (x, y)σq(y)ψ

(k)
j (y)dσ(y)

+

∫
∂Ω

−Sκ
ijl(x, y)νl(y)θ

(n)
j (y)dσ(y) ∀x ∈ Ω0.
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Then the next formula holds uniformly for x ∈ Ω0 ∪D0:

(53) uδ(x)− u(x) =
N∑

n=1

δnun(x) +O(δN+1).

The remainder O(δN+1) depends on N , Ω and Ω0.

5.3 Computation of the first order approximation

Let us compute the first order approximation of uδ explicitly. If we put (ϕ
(0), ψ(0), θ(0)) =

(ϕ, ψ, θ) defined by (36), (ϕ(1), ψ(1), θ(1)) is then defined by the following system:

Sκ̃D[ϕ
(1)]− SκD[ψ

(1)]−Dκ
Ω[θ

(1)] =

−Sκ̃,1D [ϕ(0)] + Sκ,1D [ψ(0)] +Dκ,1
Ω [θ(0)] on ∂D

µ̃(−1
2I + (Kκ̃

D)
∗)[ϕ(1)]− µ(12I + (Kκ

D)
∗)[ψ(1)]− µ ∂

∂nD
κ
Ω[θ

(1)] =

−µ̃((Kκ̃,1
D )∗)[ϕ(0)] + µ((Kκ,1

D )∗)[ψ(0)] + µ ∂
∂nD

κ,1
Ω [θ(0)] on ∂D

Sκ
D[ψ

(1)] + (12I +Kκ
Ω)[θ

(1)] =

−S′κ,1
D [ψ(0)]−Kκ,1

Ω [θ(0)] on ∂Ω.

Let consider the vector-valued function u1 = (u1i )i=1,2,3 defined by:

u1i (x) =



∑
m+q+k=1

∫
∂D

Γ′κ̃,m
ij (x, y)σq(y)ϕ

(k)
j (y)dσ(y) in D0;∑

m+q+k=1

∫
∂D

Γ′κ,m
ij (x, y)σq(y)ψ

(k)
j (y)dσ(y)

+

∫
∂Ω

−Sκ
ijl(x, y)νl(y)θ

(1)
j (y)dσ(y) in Ω0.

Therefore, u1i takes the form:

u1i (x) = −2

∫
∂D

Γ′κ̃
ij(x− y)H(y)ϕ

(0)
j (y)dσ(y) +

∫
∂D

Γ′κ̃
ij(x− y)ϕ

(1)
j (y)dσ(y)

+

∫
∂D

Γ′κ̃,1
ij (x, y)ϕ

(0)
j (y)dσ(y); x ∈ D0

and more explicitly:

u1i (x) = −2

∫
∂D

Γ′κ
ij(x− y)H(y)ϕ

(0)
j (y)dσ(y) +

∫
∂D

Γ′κ
ij(x− y)ϕ

(1)
j (y)dσ(y)

+

∫
∂D

Γ′κ,1
ij (x, y)ϕ

(0)
j (y)dσ(y) +

∫
∂Ω

−Sκ
ijl(x, y)νl(y)θ

(1)
j (y)dσ(y); x ∈ Ω0.

with H denotes the mean curvature defined in (9).
Thus, we get the following formula for x ∈ Ω0 ∪D0

uδ(x)− u(x) = δu1(x) +O(δ2).
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6 Conclusion

In this paper, we present a result about the construction and justification of the asymp-
totic expansion of the solution of the transmission problem for the Stokes system with a
boundary perturbation for an inclusion. We derive high-order terms in the asymptotic
expansion of the solution with layer potential techniques. Some results concerning a
reconstruction procedure to determine the localization of the inhomogeneity and the
shape of the inclusion based on boundary measurements will be discussed in a forth-
coming work.
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