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From Gauss’s law theorem, we have the compatibility condition:

/ g-va =20,
o0

where vq is the outward unit normal to 9.
Now, we consider dDg a d—perturbation of D defined by

(2) 0Ds ={Z =z +dv(z);z € 0D,0 < § << 1}

where v is the outward unit normal to dD. We denote by Ds the domain bounded by 0Ds. As
dD is of class C? and in view of the definition (2), the boundary 9Dy is of class C2. We denote
by % the conormal derivative defined on 9D as follows

Q a(,0) = (Vuc+ (V) o = v

where (Vu)T denotes the transpose of the matrix Vu := (0;ur); x=1.3 (see [1], [3], [14] and
[17]).
Let 7 be the outward unit normal to dDgs. Then, the conormal derivative on 9D is defined by

(4) %(u, q) == (Vu+ (Vu))7 — ¢v.

Define (ug, qs) as the solution to the transmission problem for the Stokes system with
a small boundary perturbation Ds:

(—A + k?)us + Vgs =0 in Q\ Ds
(—A + &)us +Vgs =0 in Ds
V-us =0 n 0

(5) usl+ —us|l— =0 on ODsg
- (us,qs)|+ — it (us,qs)|- =0 on 9Ds
Us =g on 0N
/ qs = 0.

Q

Here and throughout this paper, the subscripts + and — denote the limit from outside
and inside D

(6) ule(x):= lm wu(y), =€ aD.
D4i>y—ax

and similarly it denote the limit from outside and inside Djs

(7) ule(Z):= lim u(y), T € dD;y.
Ds 39—

The ultimate objective of this work is to present a schematic way to derive high-order
terms in the asymptotic expansions of (us — u)|q, and (us — u)|p, as d tends to 0,
where Dy is any close subset of D N Ds and g is any subset of Q \ (DU Ds). The
main ideas are to represent solutions of both initial and perturbed problem via the
layer potential operators, to write the Taylor expansion of the integrands and to use
properties of the perturbed interface. We have already worked on the derivation of
asymptotic expansion for the solution of boundary value perturbation resolvent Stokes
system in [9] and on asymptotic behaviors for eigenvalues and eigenfunctions associated
to Stokes operator in the presence of small boundary perturbations in [5]. Here we were
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inspired by the work of Zribi in [23] to derive asymptotic expansion of the solution of
the transmission Stokes system with a small interface perturbation. In connection with
this problem we referred to other works on layer potential techniques [2], [18], [19], [20],
[22], transmission problems [6], [7], [8] and Stokes system [11], [12], [15], [16].

This paper is organized as follows. In the next section, we give some notations
and preliminary results and we describe a layer potential techniques for solving the
transmission problem for the Stokes system. In section 3, we establish the existence and
uniqueness of the solution of the transmission problem for the Stokes system. Then, in
section 4, integral respresentation formulas for the solution of the transmission problem
for the Stokes system with a boundary perturbation for an inclusion is given. In
section 5, we provide a rigorous derivation of the leading-order term in the asymptotic
expansion of us as the parameter of the perturbation § goes to zero.

2 Definition and preliminary results

2.1 Small perturbation of an interface

Denote by dos the surface element of 0D;s which has the uniform expansion [10]:
(8) dos(x) =Y 0"op(z)do(z), = €D, T € D,
n=0

where o, are bounded functions regardless of n. In particular,
(9) oo(x) = 1,01(x) = =2H(x),00 = K(x), x € 9D,

where H and K denote the mean and the Gaussian curvature of 0D respectively.

Since 0D is parallel to dDg, we can conclude that
(10) v(z) =v(x), x € D, x € ODjy.
We then have for z,y € dDjy:
T-y=v-y+ov(z)-vy),

and
(&= yvls) —vw) | plr@) v

|z — y|? [z — y|?
We also introduce two functions £ and G for x # y € 0D defined by:
2
z—y,v(zr)—v v(z) —v
ey =) )
[z =yl el

T g = o —ylP(1+20

E(x,y) =

Since 0D is of class C?, there exists a constant C' depending only on 9D such that:
|B(a,y)| +|Ge.y)|? < C, Va,y € OD.

Hence, we obtain:

‘EE - 17\ - ’.Cl? - y’\/l + 2(5E($,y) + 52G($7y) = |l’ - y| Z (5nLn(£L',y),
n=0

where the serie converges absolutely and uniformly and the first two terms are:

Lo(z,y) =1, Li(x,y) = E(z,y).
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2.2 Layer potential theory for the Stokes resolvent system
2.2.1 Fundamental solution for the Stokes resolvent system

Let consider a bounded Lipschitz domain ©® ¢ R? with connected boundary 9D and a
given complex constant £? in C*. We denote by T = (T'}); j=12,3 and F* = (F[*);=123
the fundamental tensor and vector of the Stokes resolvent system respectively and they

satisfy:

(11) {(—A+H2)F%($7y)+5ij($7y)—5z'j5y(l') in D,

Ol (z,y) =0 in D,

where 4, is the Dirac distribution with mass at y and d;; is the Kronecker symbol.
The components of (I'*, F'*) can be obtained by the Fourier transform method in these
forms (see [18] [19]):

K 6ij z—y)i(x—y);
(@) = = { e (nle — yl) + E2Eey (efe -y}
(12) , L (E-y);
F; (z,y) = Ir Je—y[3°
where -
= (n+1) 1 s 72
e1(e) = Z ————(—e)"=exp(—e)(1+e +€ ) —¢€ 7,
—= (n+2)!
— 1—n? n -1 -2 -2
ea(€) = Z m(—e) =exp(—e)(—1—3e " —3e 7))+ 3¢ “.
n=0 )

Now, let introduce for z,y € 99, the stress tensor S associated to the fundamental
tensors (I'*, F'®) defined by:

oT (@) | ors(3)

(13) Siip(m,y) = —F7(2)6ik + i, 9i;

)

) i7j7k:17273

where & = 2 —y = (&1, %2, 23) and r = |Z|. Combining (12) and (13), one can obtain:

1 Ti T Tk TiZi Tk
(14)  Sjplz,y) = o {51‘1@7"2171(/@7") + (5kj77; + 5z‘jﬁ)D2(ff7‘) + ;d—jﬂ Ds(f")}

where
tym+1
D (t) :8(2) ;(Tf)n;;l@) _gﬂ)
tym+1 t\m
Dg(t) — 8(2) F(nlj)t;ﬂ(t) 1562+2(2)F(I§;—;(t)’
tym+2
Dy(t) = 162 P(ﬂf;r:;w i

with m = 3, T'(m) is the Gamma function and K, for n > 0 is the modified Bessel
function of order n.

Here and throughout this paper we used the Einstein convention for the summation
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notation omitting the summation sign for the indices appearing twice.
Moreover, we give components of the pressure tensor A*(z,y) defined by

1 8 Oipk? &
(15) f(oy) = = (2 ih QRN TRy Gk =1,2,3.
vy

3 r 7o
Notice that (8%, A®) satisfies:

2.2.2 Layer potential operators for the Stokes system

In this section, we present the layer potential operators associated to the Stokes equa-
tion in R3. A special attention is devoted to the invertibility of the potential operators
for the standard Stokes equation and to the compactness of the complementary layer
potential operators.

In what follows L?(0D) denotes the Lebesgue space of square integrable functions
on D with respect to the surface measure do and L?(0D)? denotes the space of vectors
whose components belong to L?(9D).

Let us first introduce a density ¢ = (¢1, ¢, ¢3) € L?(0D)3 and define the single
layer potential by S%¢ : R3\0D — R? and the pressure potential Vp¢ : R*\0D — R
as follows:

(17) 55 1b(x) = /a e =)0 wda(). i =123

(18) Vod(z) = /a By = 9),(0)do ).

Besides, for a given density 1 = (1,2, %3) € L?(0D)3, we define the double layer
potential D1 : R*\0D — R3, by

(19) D () = /a —Shu ) e (), 1 =1.2.3

where v is the outward unit normal to 90. Moreover, the associated pressure potential
Wiy : R3\9D — R is defined by

(20) Waite) = | —Aelep)uel)isu)do(y).
We can check that (5%, V&) and (Df, W) are solutions of the Stokes system in R*\ 9D,
(—A+ K2)S50(x) + VVES(z) = 0; V- S5(x) =0,

(—A + K)DEp(x) + VWED(z) = 0; V- D5 (x) = 0.

We need to introduce the principal value of the double layer potential, for ¢ =
(¢1, P2, ¢3) € L2(9D)3 by the formula, (see [1]):

(21) K%,:(®)(z) == p.v. /8@ =Si(@, v (y) i (y)do(y); i =1,2,3; x € 09,
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and (K%)* the L*-adjoint operator of K%

(22)  (K5,:)"(9)(z) == po. /69 =S (@, y)vr(@)di(y)do(y); i =1,2,3; x € 0D.

Here p.v. denotes the Cauchy principal value. The operator K7 is known to be bounded
on L?(9D)3 [4]. We then apply the following decomposition as r = |z — y| — 0:

(23) If(z,y) = I(x,y) + Dij(z,y), Yo,y €D

where S® and I'? are weakly singular Stokes tensors. The remaining parts S and
I" are continuous kernels, so that the continuity behavior of the corresponding surface
potential is determined only by the Stokes tensors S° and I'°. A detailed proof of
the above relations can be found in [19] and [20]. In fact, I'° and SY are fundamental
tensors for the standard Stokes system [14].

According to Theorem 2.27 in [13] p.28, the following lemma holds about the com-
pactness of operators with kernels defined by (23) and (24).

Lemma 1. Let the operators IC, its adjoint K* and S for x € 0D defined by:

(25) o lela) = 0. | ~Sulann)o (o) i = 1,23,
(26) Koal6l(@) = pv. | —Sulanl@);()do(u)s i =1.2.3,
(27) Saulélle) = | Tile - 0o )dato)s i =123,

(28) So = (6) = So(@)]+ = Sa(@)|-.

These operators have continuous kernel. Moreover, Sp, Ko and K% are compact oper-

ators on C(0D)3 and on L*(0D)3.

We give some results about the trace of the single and double layer potentials on
0D, for (¢,v) € L2(0D)> x L?(0D)3.

(29) ()]s = (57 + K5)(),
0 0
(30) = (D), W) = 5 (D), W),
8 ]‘ *
(31) —(S5(0), VE@)]x = (£51 + (K5))(6),

URL: http:/mc.manuscriptcentral.com/gcov
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7
(32) S5 (W) = S5 ()4 = Sp(¥)|-

The formulas (29), (30), (31) and (32) have been proved in [14] when x = 0. Since
D — DY and S5 — SQ are continuous operators and according to (23) and (24), we
can extend these equalities to the case k # 0.

The relations (29) and (31) imply that the single and double layer potentials on
09 satisfy jump relations:

(33) Dy (¥)l+ = Do(¥)|- = —¢ on 09,
(34) 2 5(6)|+ ~ ~-55(6)]- = 6 on 0D
an "2\ T g PR Pl = @ on O
Moreover, a result about the decay behavior at infinity of the layer potentials can be
found in [18] and in [21].
Lemma 2. For the single layer potentials S§[¢], V(@] and the double layer potentials
D[], W], we have the decay behavior at infinity:
i)
S5lel(x) = O(lz[™1), VS5l¢l(x) = O(|z[7?), as |z| = cc.
ii)
VS[ol(x) = O(|z[7?), VVE[¢l(x) = O(|z[~?), as |z — oo.
iii)
Dy [¢)(z) = Ol %), VDE[¥](x) = O(|z[7%), as |z — cc.
i)
Wl](x) = O(|z7%), VWg[Y](z) = O(|$|_4), as |z — oo.
Recall that the single layer potential SO defined by S% faz) (x—y)oj(y)do(y), i =

1,2,3. for x € R3\0D corresponds to x = 0.

It follows from [14] the theorem.
Theorem 1.
(35) ker(S%) = {cv: c € R}.
Now, we give two lemmas about the invertibility of these operators.

Lemma 3. [1] Let L}(0D) := {f € L*(8D)?; [,5 f-v = 0} and define Hy(9D) likewise.

We have the next result.
i) The operator S : L3(0D) — H} (D) is invertible.
ii) The operator NI + K% and X\ + (K3)* are invertible on L?(0D)3 for |\ > 1/2.

Lemma 4. [1/] Let ® C R? be a bounded domain with boundary 0®. Then, we have:
(1/2)I+K% : L3(0D) — LE(0D) is invertible and so is 2 +(K2)* : LE(0D) — LE(0D).

In the next section, with the results given above, we study the existence and unique-
ness of the solution of the transmission problem for the Stokes system (1).

URL: http:/mc.manuscriptcentral.com/gcov
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3 Existence and uniqueness of the solution of
the transmission problem for the Stokes system

We look for a solution (u, ¢) to the transmission problem for the Stokes system (1)
with the following representation:

(36) {“:SH‘“ o a=Vple] D _
u=SHlY]+Dglo] | q=V5]+ W3] inQ\D

for some triplet (¢,v,0) € L*(0D)? x L?(0D)? x L?(092). According to the equations
(29)-(32), (¢, 1, 0) must satisfy the integral equations

S%H ) —Saﬁ —D% ¢ 0
(37) (=31 +(Kp)") —p(aI+(KD)")  —pg,Dg v |=10
0 Sr 1+ K5 0 g

Denote by A" the matrix corresponding to the left hand side of (37).

We need to study the existence and uniqueness of the solution of the system (37).
This is equivalent to the invertibility of A®. We represent A” by a sum of two matrices
A" and A°™ defined by

Sp —Sp ~Dg
(38) A =1 W(Kp)* —u(Kp)* —pzD |
0 Sw Ko
and
‘ S —-S9 0
(39) A = | (=51 + (KD)*) —nlzl + (KH)*) 0
0 0 31+ K,

We know that S% is compact on L?(9Q)? and that Dg and %D’é are also compact
on L?(0D)? since 9D and 9 do not intersect. According to Lemma 1, A°°™ is com-
pact. Hence, it suffices to prove that A is invertible and that A* is injective to show
the invertibility of A” according to the Fredholm alternative.

So, we introduce the space H(9D) defined by:
H(OD) = {(¢,) € L*(9D)? x L*(8D)* ¢ — ¢ € L§(9D)}
and we prove the first result.

Lemma 5. The operator A™ : H(OD) x L3(9Q) — H{(0D) x L*(0D)? x L%(9Q) is
tnvertible.

proof. Let (f,h,g) € H}(OD) x L?(0D)3 x L3(99), the solution (¢,,6) of the
system

, ¢ f
AZ’VL’U ,lj) — h ,
0 g

URL: http:/mc.manuscriptcentral.com/gcov
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is given by

¢
(40) v o= (Kp)*)~Hh = (=31 + (Kp)*)(Sp)~H(£)]
0

oNOYTULT D WN =

9 where 0 < A = % As stated in Lemmas 3 and 4, the operators S%, —%%I + (K%)*
and %I + IC?Z are invertible and the proof is then completed.

13 Now, we focus on the injectivity of A® and we give the following theorem.

14 Theorem 2. The operator A® : H(OD) x L3(9) — HL(OD) x L2(0D) x L3(99) is
mnjective .

17 proof. Suppose that there exists (¢, to,00) € H(OD)x LE(9Q) such that A®(¢pg, o, 00)T =
18 (0,0,0)T and consider (u, q) defined by

;? { u = Spleo] with q = Vpl¢o] inD,
u = SH[o] + Dgl0o] with q = V[bo] + W§l0o] in Q\ D.

24 We notice that the couple (u, ¢) is a solution of (1) with ¢ = 0. Then, using
25 integration by parts [14] on D_ = D and Dy = Q\ D, we obtain

0
28 2 Eu:Eu+/?a2/ uu = M]_.u\_,
D_ - op On

30 and

0 0
32 2 Eu: Eu+ /@2/ wu = —/ (u,q)|+‘u|+ —I—/ (u’q)|,.u|7,
33 Dy Dy oD on oD on

35 where E(u) is the deformation tensor defined by

37 E(u) := %(Vu + (Vu)T).

The system (1) guarantees that u|— =0 on 9D, u|— = u|4 and 8(87“2‘7) |+ = % o |- on

41 0D. Thus, we have
[0
43 2 Eu:Eu+R2/ u.u:—/ H (u’q)\_.u|_
44 Dy Dy op K On

45 p
46 :—[/ 2Eu:Eu+F€2/ w.u.
47 K Jp_ -

48 Therefore, we get:

u=0, g=c, E(u)=0, on Dy,

(41) u=0, g=c3, E(u)=0, on D_,

53 where ¢; and ¢y are real constants. Using the argument that fQ q = 0, we have

55
(42) /q:cl/ +02/ = 0.
56 0 B D,
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On the other hand, the fifth line of system (1) gives ¢; = co&. Taking account of (42),
we obtain ¢y = ¢ = 0.
We also consider the solution to the system:

SIS

(-A+&)v+Vp=0 in R3\D

V-v=0 in R3\D
(43) v=20 on 0D

[v||Vo| = o(|z]|~2) as || = +o0

|vllp| = o(|z|~?) as |z| = +oo0.

We know that i i
SH(¢o)l+ = Sp(#o)|- = u|-on ID.

By (41), we have S%(¢o)|+ = 0. Then, (v,p) = (S5 (¢0), V5 (o)) is solution of exterior
Dirichlet problem (43) which admits a unique solution [20]. Thus, we have (v, p) =
(0, 0) which implies

(S (¢0), V(o)) = (0,0) on R*\ D.
The jump formula on 9D yields:

0 - ~ o - ~
%(SB(%%VE(%))P - %(SB(%)?VS(%))H =¢o=0; xe€dD.

On the other hand, let consider the following interior Dirichlet problem:

(-A+£K*)v+Vp=0 in D
(44) V-v=0 in D
v=20 on 0D.

We have

Sp(tho)|- +Dg(00)- = Sp(vo) |+ + D (bo) ]+ = uly on OD.

Then, we get SP(10o)|— + Dg(6o)|— = 0 on dD. Finally, we obtain

(v,p) = (5D (¢0) + D5 (6o), Vi (tho) + W (6o))

a solution of (44). We know that interior Dirichlet problem (44) admits a unique
solution (v,p) where the unknown p is determined up to an additive constant [20].
Thus, we get

(SH(¥o) + Dg(6o), V(o) + Wi (6o)) = (0, ¢).

Moreover, the trace formula on 0D give:

0 0

@B~ (R = gn (5 00)s VAWl + - (D(60), WO+
on
~ on

(SpH (o), V™ (%0))|- 5(99(90) W (6o))|-
(SD(%) “(0))]+ — n - (SH (o), V(o)) -

URL: http:/mc.manuscriptcentral.com/gcov
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11

We deduce that 19 = 0 on dD since ¢o—¢o € LE(OD). Therefore, we have (S5 (10), V(o)) =
(0,0) on R?\ D which implies that (S% (1), V5(10)) = (0,0) on D. Then, we get
(U7Q) = (DS(HO)a W5<90)) = (07()) on D.

Now, we consider the solution to the following exterior problem :

(-A+R)v+Vp=0 in R3\Q

V-v=0 in R3\Q
(45) %(U,p) =0 on 0f)

[v]|Vo| = o(|z]|~2) as x| — +oo

|vllp| = o(|z]~?) as |z| = +oo.

Then, (Dg(0o), WE(0p)) solves (45) which is an exterior Neumann problem. It has a
unique solution. We then deduce that (v,q) = (0,0). We know that (Dg(6p))|— —
(D5(60))|+ = 6o = 0 on 9 which implies that (Dg(6p), W§5(6o)) = (0,0) in R?\ 90
and particularly in Dy. Finally, we get (u,q) = (S7[vo], VS[to]) on Dy.

We give the result.

Theorem 3. Let (¢,9,0) € H(OD) x L2(99Q) be the unique solution of (37). Then
(u, q) represented by (36) is the unique solution of (1).

In the next section, we perturb the transmission problem for the Stokes system.

4 The transmission problem for the Stokes sys-
tem with a boundary perturbation for an inclu-
sion

Let (ug, gs) be the solution to problem (5). Using Theorem 3, (us, gs5) can be represented
by:

{ us = Sp, [be] with g5 = Vjj [¢s] in Ds,
Us = 5%5 [¢s] + Dg[05] with qs = Vﬁ; [s] + Wé”[@g] in Q\ Ds,

where (¢s,1s,0s) € H(ODs) x LE(09) is the unique solution of the system

Shslbs] — S, lwbs] — Dgl05] = 0 on 9D;
(46) QA=+ (K5,))[ds) — n(3T + (Kp,)*)ths] — ngEDE10s] =0 on 9Ds
S, ws] + (31 +K8)[05] =g on ON.

Let ¥s5(x) = x + dv(x) be the diffetomorphism from 0D to dD;s. The following
estimates hold.

Lemma 6. There exists a constant C depending only on D such that for any functions
(¢s,05,05) € H(ODs) x LE(0K), we have:

i)
1555[05] 0 W5 — Splos © Wslll L2(ap)s < ColldsllL2apy)s-
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i)
155 [1s] 0 W5 = Spls o Welll2ap)s < C6|vsl L2ap4s-
i) ) )
1(KD;)"[0s] 0 W5 — (Kp) (95 0 Uslll2apys < ClldsllL2(o5)3-
i)

1K) [¢s] 0 Ws — (Kp)*[¢s © Wsll|L2apys < Coll @5l L2(0p,)3-

proof The two last inequalities have been proven in Lemma 3.1 in [9]. Following
the same steps, we can easily obtain the first and the second ones.

5 Derivation of the asymptotic expansion

5.1 Asymptotic expansion of the density functions

First, we consider the asymptotic behavior of Sgé [ps], S, sl DG l0s], (ICBS)*[QS(;] and
(K%,)*[s] on OD;, and Sp [1hs] on 02 as § — 0.

Denote by 5 = ¢5 o Wy the vectorial function with components (;~Sj, (1 =1,2,3).
Besides, for all z € 0Dg and = — y # 0, we define the integral operators for i = 1,2, 3:

Sk, 4[05)(F) = /8 T~ )65, 0)dos(i)

S, [45](F) = /8 T — s, @dos(d)

(K%, )" [65] (3) = / S5 . D)k (@55 () dos (7).
(K5, )] / S5 . D)), (5 dos (D),
D5 105)(F / St (F, )0k ()05 (1) do (),

and for z € 90

(S, ):lue) () = /8 T (= )y () dos(d)

By Taylor expansions of Ffj @ —9), I'fi(x — ), Sijr(T,9)vk(T) and Sk (7, y)ve(y),
we obtain:

n — vy ¢ ampi
M@ -9 =T -+ Yo Y U gars iy,
n=1  Jaj=n ‘
::F%n(xﬂ)
K ~ n — )) amk
(@ —9) = +Zé Z 7@ Vors(z —y),
n=1  |aj=n
::FIZH( ’y)
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—())

—S(@, y)vily) = —Sijr(,y)vi(y 25" > VaSijn (@, y)vr(y),

n=1
=i (2,y) lod=n

=M ,y)

—S(E,@/)Dk(:f> = - z]k x y Vk Z(Sn Z Mvgsijk(xvy)yk(y> .

o

n=1 af=n

=H (2,y)

We then introduce the operators using (8) for i = 1,2,3 and for z € dDy:

SEled@ = 3 [ 1@ @dmde). 0o,

m-+q=n

Ssiwd@ = 3 [ 5 @@ mint). w0

m+q=n
DS’,?[%](:?) = £ HgT(l‘,y)G&j(y}dg(y), n >0,
Kplils)(T) = p.v. Z / (2, y)oq(2)d;(x)do(z), n > 0.
m-+q=n oD

where ¢(x) = ¢ 0 U(z) and ¥(z) = s o U(z)

Note that S5;° = S50 = 85 D5 = Dy, K5° = (K%)* and that o, = 0 for all
q=3.

We can obtain the following theorem whose demonstration is similar to that of
Lemma 6.

Theorem 4. Let N € N, there exists C' depending on N and D such that for any
(¢s,s,05) € H(ODgs) x LE(99Q):

1(KDs) [ds] 0 Ws — (Kp)* 25”/@3"‘"[ 2@y < CONH(Bll220m))

n=1

1Sh, [¢s] © U5 — Sh[¢] Z5n5m A r20py2 < CON 60l (203

15D, [0s] — SHl¢ Z5n5’m dlllz20m)2 < CON Gl (12(0m))

n=1

D, [05] — Dp[0s] — 25"27 0511l r200)2 < C6™ 105l (22003

where 5 = ¢5 0 Uy, 1/1 = 1) o Uy,

URL: http:/mc.manuscriptcentral.com/gcov

13



oNOYTULT D WN =

Complex Variables and Elliptic Equations Page 14 of 18
14

Let (¢(”), ON 6(")), n > 1 be the solution of the following system:
(47)
SHlpt] — Splv™] - Dgo™)] =
Yoo =S 6] + ST ™M) + DG [00m)] on 9D
(=51 + (KH))[6M] = n(5T + (KH) ) ™] — pg DE[0M™] =
3o (KB ™)) + u((KE™™) ) W] + pgp DY) on 0D

m=0

Spl™] + (31 + Kg)[0™] =

Song + Som o —SHT T M) — KGO0 on 9.
We recursively construct the sequence (qb("), IR 0(")) VYn € N*.
Let define
N N N
n=0 n=0 n=0

where (¢, 1) 90)) = (¢,4,6) is the unique solution of (37). Taking into account
Theorem 4, one deduces from system (47) that:

( N
Z ST P — o] — Z 'S W — N =) " 6mDG" 05 — 6N = O™ *!) on 9D
n=0 n=0
N 5o N 5o .
7;)#(—[‘1‘5”( SRR Z)M(;IM”(/C*B”)*)W—W]
— N 2D 05 — 0N] = O(6N ) on dD
N !
> S H" W — V] + D05 — 0N = O(6V ) on 0.
n=0

Then we get the lemma.

Lemma 7. Let N € N, there exists C depending only on N and Q such that

N
I = 6" | 129pyys < CONTY,
n=0

N

b = > 6" ™| r2apys < CONTY
n=0

N
105 — > 6™0™)|| 1200y < CONT!
n=0

where (¢, (™ 00 are defined by the recursive relations (47).
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5.2 Asymptotic expansion for the solution of perturbed
problem

In this section, we develop the asymptotic behavior of us —u as § — 0. The boundary
integral representation of the solution can be expressed as

s — 1 = { Shslbs] — Spl9] in Do,

(49) S [ia] — S516] + D5[65] — DSlE] in D,

where Dy is any closed subset of D N Ds and € is any subset of 2\ (D U Ds).
We obtain for ¢ = 1, 2,3 with Taylor expansion of Ffj(x — ) with respect to y and
through the change of variables & = Us(z) with (8) and with Lemma (7):

(50) S5, (8] () = /6 T (o= ) )dos(i)
N
- / ( (z,y) + Z ST (@ > <¢j(y) + Zé”¢§”) ) (1 + Z 5o (x ) (y)+O(*N+1)
oD —

:/3 (Z' Yy ¢] dU +Z K Z /6D F/Hm .I y o'q(y)gbg-k)(y)do‘(y)-f—O((SgNH)

n=1 m~+q+k=n

= Sbl )+ Zé" Z / me (x,y) aq(y)gb;-k)(y)da(y) +0(8*N ), Vo € OD.
n=1 m~+q+k=n oD

By a similar computation, Sp,_ [¢s](z) for € 0D can be rewritten as follows:

(51) 85, [0s)(x) = /8 T = )de(i). i = 1.2.3

S S+ Y [ @ iets) + 06

n=1 m—+q+k=n

Similarly, we have, for i = 1,2,3

(52) D4, (03] (2 / =S )k ()05 (9)do (v)

N
= /8Q —Sfjk(l',y)l/k(y) <9j(y) + Zénegz)(y>> do(y) + O(5N+l),x e Oo.
n=1

Then, we get the result.

Theorem 5. Define for n € N the vector-valued functions u™ = (ul)i=1,23 as follows:

,

3 /wr’f;%,y)w(y)qﬁ;‘ﬂ)@)da(y) Ve € Do

m-+q+k=n

wa)y=4 Y 5" (2, ) 0q ()l (y)do(y)

m+q+k=n oD
[ =S5y )8 (y)do(y) Va € Q.
\ o0 J
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Then the next formula holds uniformly for x € Q¢ U Dy:
(53) ug ch" "(z) + OV Th.

The remainder O(SN*1) depends on N, Q and Qq.

5.3 Computation of the first order approximation

Let us compute the first order approxunatlon of us explicitly. If we put (qﬁ( IRTACN 0(0)) =
(6,1, 6) defined by (36), (¢, 1 #1) is then defined by the following system:

S 160] - SpI] — Dg[em] -
—S%l[qb(o)] + SBIWJ(O)] + 9571[9(0)] on 9D

A(=31 + (5[] — p(AT + (K)")[w V] — p 2 Dgl0D)] =
— (KB O] + u((K5H ) ] + uaan%l[@(O)] on 9D

SppM] + (31 + Kg)[0W] =
| =S O] — K5t O] on 0Q.

Let consider the vector-valued function u! = (u});=1.23 defined by:

/aD 5™ (2, y)og (y)6\" (y)do(y) in Do;

+[ =St pme o) in Q.
oN

Therefore, uzl takes the form:

ulz) = —2 /8 e =) H@E W)dol) + / % (@ = ) (n)do (y)

+ [ 15 wne s o € Dy

and more explicitly:

ul(z) = -2 /8 e - HO)E )dol) + [ e -0 wiotw)

+ /8 I o) + /d =Sl o) @ € .

with H denotes the mean curvature defined in (9).
Thus, we get the following formula for z € Q¢ U Dy

us(z) — u(x) = dul(x) + O(6%).
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1

2 L]

3 6 Conclusion

4

5 In this paper, we present a result about the construction and justification of the asymp-
6 totic expansion of the solution of the transmission problem for the Stokes system with a
7 boundary perturbation for an inclusion. We derive high-order terms in the asymptotic
8 expansion of the solution with layer potential techniques. Some results concerning a
? 0 reconstruction procedure to determine the localization of the inhomogeneity and the
11 shape of the inclusion based on boundary measurements will be discussed in a forth-
12 coming work.
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