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MIXED DISCONTINUOUS GALERKIN METHOD FOR THE

THREE-DIMENSIONAL ELECTROSTATIC PROBLEM

DAVEAU CHRISTIAN AND ABDELHAMID ZAGHDANI

Abstract. In this paper a new discontinuous Galerkin method for the
three dimensional electrostatic problem is presented. The divergence con-

traint is taken into account by a regularized variational formulation and
the tangential and normal jumps of the discrete solution at the element
interface are penalized. Optimal error estimates in a discrete energy norm

are proved. Some numerical experiments confirm the theoretical predic-
tions.

1. Introduction

There exists several works about the discontinuous Galerkin method for the
resolution of partial differential equations. For advection and diffusion problem,
there are the works of Baumann (see [2]) and the paper with Oden, Babuška
and Baumann (see [13]). Other versions of discontinuous Galerkin method are
presented in the book edited by Cockburn, Karniadakis and Shu (see [4]). We
also cite the work of S. Prudhomme, F.Pascal, J.T. Oden and A. Romkes (see
[14]); they analyse different Galerkin discontinuous formulations for the Poisson
problem. Besides, Ilaria Perugia and al. present different formulations for the
Maxwell’s equations, (see [15, 16]), and B. Rivière, and V. Girault and al. anal-
yse and studied different formulations for the Navier Stokes problem, (see [10]).

Discontinuous Galerkin methods has several advantages over other types of
finite element methods. For example, the trial and test spaces are very easy to
construct; they can naturally handle inhomogeneous boundary conditions and
curved conditions; and they allow the use of highly non uniform and unstruc-
tured meshes. In addition, the fact that the mass matrices are block diagonal
is an attractive feature in the context of time-dependent problems, especially
if explicit time discretizations are used.

In this paper, we present a new mixed discontinuous Galerkin method for the
three dimensional time harmonic electrostatic problem:

∇× (∇× u) = J
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∇ · u = 0

with boundary conditions. Here u is related to electric field E by the relation
E(x, t) = Re(u(x) exp(iwt)), where w 6= 0 is a given frequency. This problem
has also been studied, (see [16]), but we present a new discontinuous Galerkin
method. There are substantial differences between the two approaches. The
advantage of our method is that our primal formulation is consistent while in
[16], the formulation is not consistent, due to the nature of the discrete lifting
operator.

The outline of the paper is the following. Section 2, we introduce some nota-
tions and spaces. In section 3, we derive a discontinuous Galerkin formulation
and prove the equivalence between the variational formulation and the original
one. In section 4, we present the numerical method and prove the main proper-
ties of the discrete bilinear form. Section 5 is devoted to the convergence result
derived from an hp analysis method and in section 6, we present numerical
results.

2. Discontinuous Galerkin method

2.1. Mathematical Model. Let Ω be a bounded polyhedron domain included
in R3. We also suppose that Ω and its boundary denoted by Γ is connected and
simply connected. We deduce from Maxwell equations that the electric field u
satisfies:  ∇× (∇× u) = −iwJs =: J x ∈ Ω ⊂ R3,

∇ · u = 0 x ∈ Ω
n× u = 0 x ∈ Γ.

(1)

where ω ≥ 0 is the frequency of the electromagnetic field and Js is the im-
pressed current density which we assume to be divergence free. We introduce
a Lagrange multiplier p,the problem (1) is equivalent to the problem: ∇× (∇× u) - ∇p = J x ∈ Ω ⊂ R3,

∇ · u = 0 x ∈ Ω
n× u = 0 x ∈ Γ.

(2)

Now, we introduce some notations. Let be Πh a triangulation of Ω into tetra-
hedra such that:

Assumption (H)

(1) Two arbitrary tetrahedra K, K ′ ∈ Πh (K 6= K ′) are either disjoint, or
have a common vertex or a common edge or a common face. Further,
we have

Ω = ∪K∈Πh
K

(2) The triangulation is shape regular, i.e. if hK denote the diameter of
the element K and ρK the diameter of the largest sphere contained in
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K, there exists a constant σ > 0, independent of K such that

hK
ρK

≤ σ.

(3) For all tetrahedron K of Πh, K has not more than one face on Γ.

We finally denote by Fh, F
I
h and FD

h the union of all faces of Πh, the union
of the internal faces and the union of the face supported by the boundary Γ
respectively.

We also introduce some spaces. For a bounded domain O ∈ R3, C∞
0 (O) is

the set of C∞(O) with support compact in O, L2(O) is the square integrated
function on O, Hs(O) is the usual Sobolev space for s ∈ R and Hs

0(O) is the
set of Hs(O) whose trace is null on ∂O and we introduce

H(∇·,O) = {u ∈ L2(O)3,∇ · u ∈ L2(O)},

H(∇ · 0,O) = {u ∈ H(∇·,O), ∇ · u = 0 in O},

H(∇×,O) = {u ∈ L2(O)3,∇× u ∈ L2(O)3},

H0(∇× 0,O) = {u ∈ H(∇×,O), ∇× u = 0 in O, u× n = 0 on ∂O}.

The formulations involve the functional spaces

V(h) := {u ∈ L2(Ω)3, ∇× u ∈∈ L2(K)3 ∀K ∈ Πh}

and

Q(h) := {u ∈ L2(Ω), u|K ∈ H1(K) ∀K ∈ Πh}.

Let K ∈ Πh and nK the unit exterior normal of ∂K. We multiply the first
equation of the original problem (2) by a test function v ∈ V(h) and integrate
on K and with the Stokes and Green Formulae we get:∫

K

(∇× u) · (∇× v) +

∫
K

p∇ · v −
∫
∂K

(v · nK)p

−
∫
∂K

v · ((∇× u)× nK) =

∫
K

J · v.
(3)

We integrate on K the second equation of (2) and with Green formula, we
obtain for ψ ∈ Q(h)

−
∫
K

u · ∇ψ +

∫
∂K

(u · nK)ψ = 0.(4)
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Then, we obtain the variational formulation: ∀K ∈ Πh, find (u, p) ∈ V(h)×
Q(h) satisfy

∫
K

(∇× u) · (∇× v) +

∫
K

p∇ · v −
∫
∂K

(v · nK)p̂

−
∫
∂K

v · ((∇̂ × u)× nK)

=

∫
K

J · v ∀v ∈ V(h),

−
∫
K

u · ∇ψ +

∫
∂K

(û · nK)ψ = 0 ∀ψ ∈ Q(h).

(5)

As the functions in the equations (3) and (4) are discontinuous at the element
interfaces, we approximate the traces of the functions by numerical flux û, p̂

and ∇̂ × u. In the next section, we give the definition for the different flux.

2.2. Traces and numerical flux. We introduce some notations for the traces
of functions in Hs(Πh)

3 = (ΠK∈Πh
Hs(K))3 for s > 1

2 . To this end, let e ∈ F I
h

be an interior face shared by the elements Kl and Km. Let nl (resp. nm) be
the outer unit normal vector on e with respect to Kl (resp. Km). Let v be
a vector belonging to Hs(Πh)

3. We denote by vl (resp. vm) the restriction of
v to Kl (resp. Km). then, we define on e the average, the tangential and the
normal jump of v by:

{v} =
1

2
(vl|e + vm|e),

[v]T = vl|e × nl + vm|e × nm,

[v]N = vl|e · nl + vm|e · nm.
Similary, we define the average and the normal jump for a scalar function
ϕ ∈ Hs(Πh) by

{ϕ} =
1

2
(ϕl|e + ϕm|e),

[v]N = ϕl|enl + ϕm|enm.
Finally for e ∈ FD

h , we get:
{v} = v|e,

[v]T = v|e × n,

[v]N = v|e · n.
For a vector v ∈ Hs(Πh)

3 with s > 1
2 , numerical flux v̂ are functions of

L2(Fh)
3. It has an unique value on the element interface. It is the same for

scalar function % ∈ Hs(Πh) with s >
1
2 numerical flux %̂ are functions of L2(Fh).

Following [1], we define the numerical flux such that:
• On the interior faces : ∇̂ × u = {∇ × u} − σa[u]T ,

û = {u} − σc[p]N ,
p̂ = {p} − σa[u]N .

(6)
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• On the faces supported by Γ : ∇̂ × u = {∇ × u} − σa[u]T ,
û = u− σcpn,
p̂ = 0

(7)

with σa and σc which are stabilization parameters defined later.

2.3. Discontinuous Galerkin formulation. In the first time, we get the
formula : ∀v, t ∈ (ΠK∈πk

L2(∂K))3 ,∀ψ ∈ ΠK∈πk
L2(∂K) we have∑

K∈Πh

∫
∂K

v(t× nK) =

∫
Fh

[v]T {t} −
∫
F I

h

[t]T {v};∑
K∈Πh

∫
∂K

ψ(v · nK) =

∫
F I

h

([v]N{ψ}+ [ψ]N{v}) +
∫
FD

h

ψ(v · n).
(8)

Then we obtain with (8):∑
K∈Πh

∫
∂K

v · ((∇̂ × u)× nK) =

∫
Fh

[v]T {∇̂ × u}

−
∫
F I

h

[∇̂ × u]T {v}.
(9)

We have with the definition of numerical flux:∑
K∈Πh

∫
∂K

v · ((∇̂ × u)× nK)

=

∫
F I

h

[v]T {∇ × u} −
∫
F I

h

σa[u]T [v]T

+

∫
Γ

[v]T {∇ × u} −
∫
Γ

σa[v]T [u]T

=

∫
Fh

[v]T {∇ × u} −
∫
Fh

σa[v]T [u]T ,

(10)

∑
K∈Πh

∫
∂K

(v · nK)p̂ = −
∫
F I

h

σa[u]N [v]N +

∫
F I

h

{p}[v]N .(11)

and ∑
K∈Πh

∫
∂K

((û− u) · nK)ψ = −
∫
F I

h

σc[p]N [ψ]N −
∫
F I

h

[u]N{ψ}

−
∫
Γ

σcpψ.

(12)

With Green formula, we have∫
K

ψ∇ · u+

∫
∂K

((û− u) · nK) ψ = 0.(13)
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From (5), we add all elements of the triangulation K ∈ Πh and using (8)−(12),
we obtain the discontinuous formulation: find (u, p) ∈ V(h)×Q(h) satisfying:

∫
Ω

(∇× u)·(∇× v) +

∫
Ω

ph∇ · v −
∫
Fh

[v]T {∇ × u}

+r

∫
Ω

(∇ · u)(∇ · v) +
∫
Fh

σa[u]T [v]T

−
∫
F I

h

[v]N{p}+
∫
F I

h

σa[u]N [v]N =

∫
Ω

J · v,

∫
Ω

ψ∇ · u−
∫
F I

h

{ψ}[u]N −
∫
Fh

σc[p][ψ] = 0

(14)

for all test functions (v, ψ) ∈ V(h)×Q(h).

We add the penalty term to symmetrize the formulation

J(u, v) =

∫
Fh

[u]T {∇ × v}(15)

which is null for the exact solution of (2) and finally we have the following
formulation:
Find (u, p) ∈ V(h)×Q(h) such that:{

A(u, v) + B(v, p) = L(v) ∀v ∈ V(h),

B(u, ψ) − C(p, ψ) = 0 ∀ψ ∈ Q(h)
(16)

where A, B and C are bilinear forms defined on V(h)×V(h), V(h)×Q(h) and
Q(h)×Q(h) respectively by:

A(u, v) := a(u, v)− J(v, u)− J(u, v).(17)

a(u, v) :=

∫
Ω

(∇× u) · (∇× v) +

∫
Fh

σa[u]T [v]T +

∫
F I

h

σa[u]N [v]N

+r

∫
Ω

(∇ · u)(∇ · v),
(18)

B(v, p) :=

∫
Ω

p∇ · v −
∫
F I

h

[v]N{p}(19)

and

C(p, ψ) :=

∫
Fh

σc[p][ψ].(20)
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Remark 2.1. We add the term

r

∫
Ω

(∇ · u)(∇ · v), with r > 0 and independent of h(21)

which is null for the exact solution to regularize the formulation and to penalize
divergence free contraint.

We have the following result.

Theorem 1. Let (u, p) be the exact solution of (2), then (u, p) is solution
of (16). Conversely, if (u, p) is solution of (16), then (u, p) is solution of (2).

Proof. If (u, p) is solution of (2) then (u, p) satisfy (16). Conversely, let (u, p)
be a solution of (16). In the first time, we demonstrate that ∇ · u = 0 in Ω.
Let K ∈ Πh and ϕ ∈ H1

0 (K) extended by zero to Ω. We obtain with the second
equality of (16) ∫

K

ϕ∇ · u = 0.(22)

As H1
0 (K) is dense in L2(K), we have

∇ · u = 0 in K.(23)

Let fij be an element interface shared by the elements K1 and K2 of Πh.
We consider ϕ ∈ H1

0 (K1 ∪K2), which is extented to zero in Ω; then we have
ϕ/K1

∈ H1(K1) and ϕ/K2
∈ H1(K2); we consider (v, ψ) = (0, ϕ) in the second

equality of (16) ∫
K1∪K2

ϕ∇ · u = 0.(24)

We multiply (23) by ϕ and integrate by parts on K:∫
Ki

u · ∇ϕ+

∫
fij

(u · n)ϕ = 0, i ∈ {1, 2}.(25)

Then, we have ∫
K1∪K2

u · ∇ϕ+

∫
fij

[u]Nϕ = 0.(26)

We integrate by parts (24), we obtain∫
K1∪K2

u · ∇ϕ = 0.(27)

Then, we have ∫
fij

[u]Nϕ = 0(28)

which implies the continuity of the normal component of u. Then, we have

∇ · u = 0 in Ω.(29)



8 DAVEAU CHRISTIAN AND ABDELHAMID ZAGHDANI

Now, we show that the solution u of (16) satisfies

∇× (∇× u)−∇p = J in Ω.(30)

Let v ∈ C∞
0 (K)3, then the first equality of (16) gives∫

K

(∇× u) · (∇× v) +

∫
K

p∇ · v =

∫
K

J · v.(31)

Then, we integrate by parts and obtain

∇× (∇× u)−∇p = J in K.(32)

Since u satisfies (29) then u ∈ H(∇·,Ω), we have B(u, p) = 0 and with ψ = p
we get ∫

Fh

σc[p]
2 = 0(33)

then p ∈ H1(Ω) and verifies p = 0 on Γ. Let fij be an element interface shared
by the elementsK1, K2 and v ∈ H2

0 (K1∪K2)
3, we obtain from the first equality

of (16) ∫
K1∪K2

(∇× u) · (∇× v) +

∫
K1∪K2

p∇ · v =

∫
K1∪K2

J · v.(34)

We integrate by parts (32) on K1 and K2 and obtain∫
Ki

(∇× u) · (∇× v)−
∫
Ki

v · ∇p+
∫
fij

(n×∇× u) · v =

∫
Ki

J · v, i ∈ {1, 2}.

Particularly, we have∫
K1∪K2

(∇× u) · (∇× v)−
∫
K1∪K2

v · ∇p+
∫
fij

v · [∇× u]T =

∫
K1∪K2

J · v.

We have [∇× u]T = 0 on F I
h and therefore (u, p) verifies (30).

Now we show that u × n = 0 on Γ. Let v ∈ H2(Ω)3 with v × n = 0 on Γ.
Then, we have∫

Ω

(∇× u) · (∇× v) +

∫
Ω

p∇ · v +
∫
Γ

(n× u) · (∇× v) =

∫
Ω

J · v.

We multiply (30) wit v and integrate by parts and using p = 0 on Γ we have:∫
Ω

(∇× u) · (∇× v) +

∫
Ω

p∇ · v =

∫
Ω

J · v.(35)

Then, we have:∫
Γ

(n× u) · (∇× v) = 0 ∀v ∈ H2(Πh)
3 with v × n = 0(36)

and we can conclude that u satisfies the boundary condition u× n = 0 on Γ.
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Since J is divergence free in Ω then (u, p) is solution of (16) and p is null
in Ω and u is solution of the original problem (1). Indeed, we have that (u, p)
solution of (16) satisfies p ∈ H1

0 (Ω) and∫
Ω

(∇× u) · (∇× v) +

∫
Ω

p∇ · v =

∫
Ω

J · v ∀v ∈ H0(∇×,Ω) ∩H(∇·,Ω).

Let v = ∇ϕ with ϕ the solution of

∆ϕ = p and ϕ = 0 on Γ,(37)

We have v ∈ H0(∇× 0,Ω) which implies

‖p‖20,Ω =

∫
Ω

J · ∇ϕ =

∫
Ω

ϕ∇ · J = 0.

�

3. Approximation of the problem

For k ≥ 1, we denote by Pk(K) the set of all polynomials of degree less than
or equal to k. The approximation of the formulation (16) involves the discrete
spaces:

Vh := {u ∈ L2(Ω) : u|K ∈ Pk(K)}3,
Qh := {q ∈ L2(Ω) : q|K ∈ Pk−1(K)}.

The approximate formulation for the variational formulation (16) is
Fi nd (uh, ph) ∈ Vh ×Qh such that{

A(uh, v) + B(v, ph) = L(v) ∀v ∈ Vh,

B(uh, ψ) − C(ph, ψ) = 0 ∀ψ ∈ Qh.
(38)

Remark 3.1. Another discontinuous Galerkin formulation is possible to
resolve (2); we can propose a non symmetric formulation where the bilinear
form A is defined by

A(u, v) := a(u, v)− J(v, u) + J(u, v).(39)

The results obtained for the symmetric discontinuous formulation are also right
for the non symmetric case.

We now precise the stabilization parameters in the next section.

3.1. Stabilization parameters. The stabilization parameters depend on the
mesh and we define them to have the stability of the method. In the mesh, the
cell have different size. Let h ∈ L∞(Fh) be a function such that

h = h(x) :=

{
min(hK , hK′) si x ∈ ∂K ∩ ∂K ′ , K,K ′ ∈ Πh;

hK si x ∈ ∂K ∩ Γ , K ∈ Πh.

Let κ > 0, we set

σa := κh−1 ∈ L∞(Fh) and σc :=
1

σa
.(40)
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4. Proprieties of bilinear forms A, B and C

In order to prove the continuity of the discrete forms A and B and the coercivity
of A, we introduce the following discrete semi-norm on V(h), ∀u ∈ V(h)

‖u‖2V(h) := ‖∇ × u‖20,Ω + ‖
√
σa[u]N‖20,F I

h
+ r‖∇ · u‖20,Ω

+‖
√
σa[u]T ‖20,Fh

+ ‖ 1
√
σa

{∇ × u}‖20,Fh

(41)

and the following discrete semi-norm on Q(h), ∀p ∈ Q(h) :

‖p‖2Q(h) := ‖p‖20,Ω + ‖
√
σc[p]‖20,Fh

.(42)

We have the following result.

Proposition 4.1. The semi-norms (42) and (41) are norms on V(h) and
Q(h) respectively.

Proof. It is clear that (42) defined a norm on Q(h). Let v ∈ V(h) such that
‖v‖V(h) = 0, then we have

∇× v = 0 in K ∀K ∈ Πh

and

[v]T = 0 on Fh.

We deduce v ∈ H0(∇ × 0,Ω) and we can write v = ∇ϕ with ϕ ∈ H1
0 (Ω) (see

[5] ). We also have

∇ · v = 0 in K ∀K ∈ Πh

and

[v]N = 0 on F I
h .

Therefore, we have v ∈ H(∇ · 0,Ω). ϕ is the solution of the following problem:{
∇ · (∇ϕ) = 0 in Ω,

ϕ = 0 on Γ.

Then ϕ = 0 in Ω and therefore we have v = 0 in Ω. �

Remark 4.2. If we suppose that

r ≥ 1 and κ ≥ 1,

with the first inequality of [19], we have

‖u‖20,Ω ≤ C
(
‖∇ × u‖20,Ω + r‖∇ · u‖20,Ω + ‖

√
σa[u]N‖20,F I

h
+ ‖

√
σa[u]T ‖20,Fh

)
∀r ≥ 1, ∀κ ≥ 1.
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We now prove that the discrete problem is well posed. Therefore, in a first
time we prove that bilinear forms A, B and C are continuous. The coercivity
of A on kerB is not evident because of the term ‖ 1√

σa
{∇ × u}‖0,Fh

in the

norm of V(h). But, if we eliminate this term, we have difficulties to obtain the
continuity of A. We meet the same problem with Poisson problem, [2, 13], [9]
and [14].

4.1. Study of discrete problem. We prove that the discrete forms are con-
sistent with the partial differential operator involved in problem (16) and the
existence and uniqueness of solution for the discrete problem (38).

In the sequel, the following inverse estimate will be useful (see [18] in two-
dimensional and see [12] in three dimensional).

Lemma 4.3. For all p ∈ Pk(K) we have

‖p‖20,∂K ≤ C
1

hK
‖p‖20,K .

Theorem 2. Let σa and σc are stabilization parameters defined by (40);
Then there exists κ0 > 0 such that ∀κ > κ0, problem (38) is consistent and has
a unique solution.

Proof. . Theorem 1 implies the consistent. On other hand, the existence is
equivalent to uniqueness. Set j = 0 and let (uh, ph) is the solution of (38). We
show that (uh, ph) = (0, 0).

Set v = uh and ψ = ph, we obtain from (38)

A(uh, uh) + C(ph, ph) = 0.(43)

We have with the definitions of A and C,∫
Ω

(∇× uh)2 +

∫
Fh

σa[u
h]2T + r

∫
Ω

(∇ · uh)2

−2J(uh, uh) +

∫
F I

h

σa[u
h]2N +

∫
Fh

σc[p
h]2 = 0.

(44)

We obtain with Cauchy-Schwarz inequality, ∀ε > 0,

2J(uh, uh) ≤ 2ε

∫
Fh

σa[u
h]2T +

2

ε

∫
Fh

1

σa
|{∇ × uh}|2.(45)

Using the definition of stabilisation parameter σa and after lemma 4.3, we have
since, ∇× Vh ⊂ Vh∫

Fh

| 1
√
σa

{∇ × v}|2 ≤ C

κ

∫
Ω

|∇ × v|2 ∀v ∈ Vh.(46)
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Then we have

A(uh, uh) + C(ph, ph) ≥ (1− 2C
εκ )

∫
Ω

(∇× uh)2 + r

∫
Ω

(∇ · uh)2

+(1− 2ε)C

∫
Fh

σa[u
h]2T +

∫
F I

h

σa[u
h]2N +

∫
Fh

σc[p
h]2.

(47)

Now, we choose ε such that 2C
κ < ε < 1

2 (such choice is possible if κ > κ0 := 1
2C )

and if A(uh, uh) + C(ph, ph) = 0, then all term in (47) are null:

∇× uh = 0 in Ω, [uh]T = 0 on Fh,

∇ · uh = 0 in Ω , [uh]N = 0 on F I
h

(48)

and

[ph] = 0 on Fh.(49)

We deduce from (48) and since uh ∈ Vh satisfies

uh ∈ H0(∇× 0,Ω),(50)

uh ∈ H(∇ · 0,Ω).(51)

we have ‖uh‖V(h) = 0. Therefore, uh is null Ω. We deduce from (49) that

ph ∈ H1
0 (Ω). Then the jumps are null at element interfaces and with the

second equality (38), after an integration by parts

−
∫
Ω

v · ∇ph = 0 ∀v ∈ Vh.(52)

Then, we have ph is null in Ω. �

4.2. Continuity of bilinear forms A, B and C. We have the following
result.

Proposition 4.4. The bilinear forms A, B and C are continuous on
V(h) × V(h), V(h) × Q(h) and Q(h) × Q(h) respectively. There exists C > 0
independent of h such that:

|A(u, v)| ≤ C‖u‖V(h)‖v‖V(h) ∀u, v ∈ V(h),

|B(u, ψ)| ≤ C‖u‖V(h)‖ψ‖Q(h) ∀u ∈ V(h), ∀ψ ∈ Q(h),

|C(p, q)| ≤ C‖p‖Q(h)‖q‖Q(h) ∀p, q ∈ Q(h).

(53)

Proof. . We only show the continuity of A, the method is the same to show
the continuity of B and C.
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Let u, v ∈ V(h), we have with Cauchy-Schwarz inequality

|A(u, v)| ≤ C {‖∇ × u‖0,Ω‖∇ × v‖0,Ω + r‖∇ · u‖0,Ω‖∇ · v‖0,Ω
+‖√σa[u]T ‖0,Fh

‖√σa[v]T ‖0,Fh

+‖√σa[u]N‖0,F I
h
‖√σa[v]N‖0,F I

h

+‖√σa[v]T ‖0,Fh
‖ 1√

σa
{∇ × u}‖0,Fh

+‖√σa[u]T ‖0,Fh
‖ 1√

σa
{∇ × v}‖0,Fh

}
.

We use Cauchy-Schwartz discrete inequality

|A(u, v)| ≤ C
{
‖∇ × u‖20,Ω + ‖√σa[u]T ‖20,Fh

+ ‖√σa[u]N‖2
0,F I

h

+
√
r‖∇ · u‖20,Ω + ‖ 1√

σa
{∇ × u}‖20,Fh

} 1
2

×
{
‖∇ × v‖20,Ω + ‖√σa[v]T ‖20,Fh

+ ‖√σa[v]N‖2
0,F I

h

+
√
r‖∇ · v‖20,Ω + ‖ 1√

σa
{∇ × v}‖20,Fh

} 1
2

≤ C‖u‖V(h)‖v‖V(h).

This implies the continuity of A on V(h)× V(h). �

The next result shows that the discrete bilinear form A is coercive on Vh×Vh

with respect to the norm ‖.‖V(h)

4.3. Coercivity of A. We know that if A is coercive on the kernel B then we
can demonstrate a convergence result. Nevertheless, we show A is coercive on
Vh × Vh.

Proposition 4.5. Let σa the stabilisation parameter defined by (40). It
exists κ0 > 0 such that if κ ≥ κ0, we have

A(u, u) ≥ α0‖u‖2V(h) ∀u ∈ Vh(54)

with α0 > 0 indépendent of h.

Proof. . We have

‖u‖2V(h) = a(u, u) + ‖ 1
√
σa

{∇ × u}‖20,Fh
.(55)

Then, we obtain

A(u, u)−α‖u‖2V(h)= (1− α)a(u, u)−2J(u, u)

−α‖ 1√
σa

{∇ × u}‖20,Fh
.

(56)
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By lemma 4.3, we have

‖ 1
√
σa

{∇ × u}‖20,Fh
≤ C

κ
‖∇ × u‖20,Ω ∀u ∈ Vh.(57)

This implies that

A(u, u)− α‖u‖2V(h) ≥ (1− α) a(u, u)− 2J(u, u)− α
C

κ
‖∇ × u‖20,Ω

= (1− α− αC)
[
‖∇ × u‖20,Ω + ‖

√
σa[u]T ‖20,Fh

+ ‖
√
σa[u]N‖20,F I

h
+ r‖∇ · u‖20,Ω

]
−2J(u, u)− α

C

κ
‖∇ × u‖20,Ω

With the inequalities (45) and (57) and if α is such that

1− α > 0,

we have

A(u, u)− α‖u‖2V(h) ≥ (1− α− 2C
εκ )‖∇ × u‖20,Ω

+(1− α− αC − 2ε)C‖√σa[u]T ‖20,Fh
.

(58)

It suffies to find α > 0 such that

1− α > 0 , 1− α− 2C

εκ
> 0 and 1− α− αC − 2ε > 0.(59)

The second inequality implies the first one, and the third inequality is satisfied
if

0 < α ≤ 1− 2ε

1 + C
,(60)

which implies

ε <
1

2
.(61)

Besides, the second inequality is satisfied if

0 < α ≤ 1− 2C/εκ ≤ 1− C/κ.(62)

Then, if we have 1 − C
κ > 0 or κ > κ0 with κ0 > C, there exists α0 > 0 such

that

A(u, u)− α0‖u‖2V(h) ≥ 0(63)

Therefore A is coercive on V(h) . �
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4.4. Condition inf-sup. In this section, we show that B satisfies an inf-sup
condition. In the first time, by lemma 4.3 we have

‖q‖20,Ω ≥ 1

2
‖q‖20,Ω+

1

2
‖q‖20,Ω ≥ 1

2
‖q‖20,Ω+C‖

1
√
σa

[q]‖20,Fh
≥ C‖q‖2Q(h) ∀q ∈ Qh.

We have the following result.

Proposition 4.6. If k ∈ {1, 2}, we define

Ṽh := {vh ∈ Vh : ∀f ⊂ Fh,

∫
f

qh · [vh] = 0 ∀qh ∈ Pk−1(f)
3 },

There exists an interpolation operator Rh : H1(Ω)3 −→ Ṽh which is continuous
such that

∀v ∈ H1
0 (Ω)

3, ∀qh ∈ Pk−1(K),

∫
K

qh∇ · (Rh(v)− v) = 0,

∀v ∈ H1
0 (Ω)

3, ∀e ⊂ Fh, ∀qh ∈ Pk−1(e)
3,

∫
e

qh · [Rh(v)] = 0,

∀v ∈W s,t(Ω)3, ∀t ≥ 0, ∀s ∈ [1, k + 1], ∀m ∈ {0, 1},
|v −Rh(v)|Wm,t(K) ≤ Chs−m|v|W s,t(∆K)

with ∆K are macro-elements which contain K, (see [11]).

Proof. For the two-dimensional and the three-dimensional case see [7] and
[8] respectively. �

We have the result, (see [11]).

Proposition 4.7. If k ≥ 3, there exists an interpolation operator R̃h :
H1

0 (Ω)
3 −→ Vh ∩H1

0 (Ω)
3 continuous which satisfies

∀ v ∈ H1
0 (Ω)

3, ∀qh ∈ Qh ∩ L2
0(Ω),

∫
Ω

qh∇ · (R̃h(v)− v) = 0,

∀ v ∈W s,p(Ω)3, ∀T ∈ Πh,

|R̃h(v)− v|Wm,q(T ) ≤ Chs−m+3( 1
q−

1
p )|v|W s,p(∆T )

∀ s ∈ [1, k + 1], ∀ 1 ≤ p, q ≤ ∞, ∀m ∈ {0, 1} verifying W s,p(Ω) ⊂Wm,q(Ω).

We give this last result useful for this section, (see [6]).

Proposition 4.8. We suppose that the assumption (H) holds. ∀f ⊂ Γ,
there exists a function ρh such that the support ρh|Γ is in f and

~ρh := ρh ~nf ∈ Yh := {qh ∈ C0(Ω) s.t. qh|K ∈ P1(K) ∀K ∈ Πh}3 ∩H0(∇×,Ω) ∩H(∇·,Ω).
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and verifies ∫
f

ρh =

∫
f

~ρh · ~nf = 1 ; |ρh|1,Ω ≤ K2

with K2 > 0 indépendent of h and ~nf is the restriction of n :, the unit normal
on f , a face supported by Γ, i.e. ~nf = n|f .

Proof. . Let Πh
2
be the mesh obtained by cutting every K ∈ Πh into eight

equal tetrahedra whose vertices are the middles of edges of K. Then, in [6],
they show that such a function ρh exists and ρh ∈ Yh

2
. We obtain the result

with scaling argument. �

Now, we can demonstrate the inf-sup condition.

Proposition 4.9. Bilinear form B verifies the condition

inf
q∈Qh\{0}

sup
v∈Vh\{0}

B(v, q)

‖q‖Q(h)‖v‖V(h)
≥ β > 0(64)

with β > 0 is independent of h.

Proof. . Following [10], let qh ∈ Qh\{0}, we look for a function vh ∈ Vh\{0}
and a positive constant C independent of h such that

B(vh, qh) ≥ C‖qh‖Q(h)‖vh‖V(h).(65)

We consider two cases.
• First case k ≥ 3.
We can write

qh = q̃h + qh with q̃h = qh − 1

mes(Ω)

∫
Ω

qh.(66)

As q̃h ∈ L2
0(Ω), [5], there exists vh ∈ H1

0 (Ω)
3 such as

∇ · vh = q̃h and ‖vh‖1,Ω ≤ C‖q̃h‖0,Ω.(67)

Let ṽh = R̃h(vh) with R̃h the interpolation operator from proposition 4.7 We
can write

vh = αṽh + vh and vh = qh ~ρh(68)

with ~ρh is given by the proposition 4.7 and α > 0 to choose. We have

B(vh, qh) = B(ṽh + vh, q̃h + qh)
= B(ṽh, q̃h) +B(ṽh, qh) +B(vh, q̃h) +B(vh, qh).

(69)

Since ṽh ∈ H1
0 (Ω)

3 and qh ∈ R, we have

B(ṽh, qh) = 0.(70)
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On other hand, we have by proposition 4.8

B(vh, qh) = q2h

∫
f

ρh ~nf · ~nf = q2h.(71)

We obtain with the definition of vh

B(vh, q̃h) =

∫
Ω

q̃hqh∇ · ~ρh ≤ K2‖q̃h‖0,Ω‖qh‖0,Ω.(72)

Using (67) and the proposition 4.7, we have

B(ṽh, q̃h) = ‖q̃h‖20,Ω.

We deduce

B(vh, qh) ≥ α‖q̃h‖20,Ω +
1

mes(Ω)
‖qh‖20,Ω − K2

mes(Ω)
1
2

‖qh‖0,Ω‖q̃h‖0,Ω

≥ α‖q̃h‖20,Ω +
1

mes(Ω)
‖qh‖20,Ω − 1

2ε

K2
2

mes(Ω)
‖qh‖20,Ω

− ε

2
‖q̃h‖20,Ω, ∀ε > 0.

(73)

If we choose ε = α = K2
2 , we can write

B(vh, qh) ≥ α‖q̃‖20,Ω +
1

mes(Ω)
‖qh‖20,Ω − 1

2mes(Ω)
‖qh‖20,Ω

−α
2
‖q̃h‖20,Ω

≥ K2
2

2
‖q̃h‖20,Ω +

1

2mes(Ω)
‖qh‖20,Ω

≥ C‖qh‖20,Ω
≥ C‖qh‖2Q(h).

(74)

Then we obtain the inf-sup condition:

‖vh‖V(h) ≤ C‖vh‖1,Ω
≤ C (‖ṽh‖1,Ω + ‖vh‖1,Ω)
≤ C (‖q̃h‖0,Ω + ‖qh‖0,Ω‖ρh‖1,Ω)
≤ C (‖q̃h‖0,Ω + ‖qh‖0,Ω)
≤ C (‖q̃h‖0,Ω + ‖qh‖0,Ω)
≤ C‖qh‖0,Ω
≤ C‖qh‖Q(h).

• Second case k ∈ {1, 2}, let qh ∈ Qh then there exists ṽh ∈ H1(Ω)3 such as

∇ · ṽh = qh and ‖ṽh‖1,Ω ≤ C‖qh‖0,Ω.(75)
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We set vh = Rh(ṽh) with Rh the interpolation operator given by the proposi-
tion 4.6 We deduce

B(vh, qh) =
∑

K∈Πh

∫
K

qh∇ ·Rh(ṽh) =
∑

K∈Πh

qh∇ · vh = ‖qh‖20,Ω ≥ C‖qh‖2Q(h).

As Rh is continuous, we have

‖vh‖V(h) = ‖Rh(ṽh)‖V(h)

≤ C‖ṽh‖1,Ω
≤ C‖qh‖0,Ω
≤ C‖qh‖Q(h).

�

5. Interpolation error estimate

We denote by (u, p) the exacte solution of (2) and (uh, ph) the solution of the
discrete problem (38). Let zu be the interpolation operator associated to the
discretization of u and zp associated to discretization of p. We denote by

e := u− uh, e′ := p− ph

and we write e, e′ such that:

e = η − ξ with ξ := uh − zu and η := u− zu

e′ = η′ − ξ′ with ξ′ := ph − zp and η′ := p− zp.
(76)

We have with triangular inequality

‖e‖V(h) + ‖e′‖Q(h) ≤ ‖η‖V(h) + ‖η′‖Q(h) + ‖ξ‖V(h) + ‖ξ′‖Q(h).(77)

Next, we show that

‖ξ‖V(h) + ‖ξ′‖Q(h) ≤ C
[
‖η‖V(h) + ‖η′‖Q(h)

]
.(78)

Remark 5.1. If the bilinear form C is positive, we can write

C(p, q) ≤ C(p, p)
1
2C(q, q)

1
2 .(79)

Indeed, the polynomial function P (t) := C(p+tq, p+tq) verifies P (t) ≥ 0 ∀t ∈
R.
We deduce there exists a constant M > O independent of h such as

C(p, q) ≤MC(p, p)
1
2 ‖q‖Q(h) ∀p, q ∈ Q(h).(80)

As the formulation is consistent, the solution (uh, ph) of (38), the errors e
and e′ verify {

A(e, v) + B(v, e′) = 0 ∀v ∈ Vh,

B(e, ψ) − C(e′, q) = 0 ∀ψ ∈ Qh.
(81)
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We deduce ξ and ξ′ verify{
A(ξ, v) + B(v, ξ′) = L(v) ∀v ∈ Vh,

B(ξ, ψ) − C(ξ′, q) = g(ψ) ∀ψ ∈ Qh

(82)

with L and g are linear applications defined on Vh and Qh respectively by

L(v) = A(η, v) +B(v, η′) and g(ψ) = B(η, ψ)− C(η′, ψ).(83)

By the proposition 4.9, we have

β‖ξ′‖Q(h) ≤ sup
v∈Vh\{0}

B(v, ξ′)

‖v‖V(h)

≤ sup
v∈Vh\{0}

A(ξ, v)− L(v)

‖v‖V(h)
.

(84)

We deduce from the propositions 4.4

β‖ξ′‖2Q(h) ≤ C
[
‖ξ‖V(h) + ‖η‖V(h) + ‖η′‖Q(h)

]
.(85)

We now estimate ‖ξ‖V(h). We have the decomposition

Vh = KerB ⊕ (KerB)⊥,(86)

and we can write

ξ = ξc + ξc⊥ with ξc ∈ KerB , ξc⊥ ∈ (KerB)⊥.(87)

By the proposition 4.9, we obtain

β‖ξc⊥‖V(h) ≤ sup
q∈Qh\{0}

B(ξc⊥, q)

‖q‖Q(h)

≤ sup
q∈Qh\{0}

C(ξ′, q)− g(q)

‖q‖Q(h)
.

(88)

By the definition of g, we have

β‖ξc⊥‖V(h) ≤ C
[
C(ξ′, ξ′)

1
2 + ‖η‖V(h) + ‖η′‖Q(h)

]
.(89)

On the other hand, using proposition 4.5, we obtain

α0‖ξc‖V(h) ≤ sup
v0∈KerB

A(ξ, v0)

‖v0‖V(h)

= sup
v0∈KerB

(ξ, v0)−A(ξc⊥, v0)

‖v0‖V(h)

≤ C
[
‖ξc⊥‖V(h) + ‖η‖V(h) + ‖η′‖Q(h)

]
≤ C

[
C(ξ′, ξ′)

1
2 + ‖η‖V(h) + ‖η′‖Q(h)

]
.

(90)

Then, we have

‖ξc‖V(h) ≤ C
[
C(ξ′, ξ′)

1
2 + ‖η‖V(h) + ‖η′‖Q(h)

]
.(91)
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Now, let us consider v = ξ and ψ = ξ′, we have from (82)

A(ξ, ξ) + C(ξ′, ξ′) = L(ξ)− g(ξ′).(92)

On the other hand, we have

A(ξ, ξ) + C(ξ′, ξ′) ≤ C
[
‖η‖V(h) + ‖η′‖Q(h)

] [
‖ξ‖V(h) + ‖ξ′‖Q(h)

]
.(93)

We obtain with (89)

A(ξ, ξ) + C(ξ′, ξ′)

≤ C
[
‖η‖V(h)+ ‖η′‖Q(h)

] [
‖ξ‖V(h)+ ‖η‖V(h) + ‖η′‖Q(h) + ‖ξ‖V(h)

]
≤ C

[
‖η‖V(h) + ‖η′‖Q(h)

] [
‖η‖V(h) + ‖η′‖Q(h) + ‖ξ‖V(h)

]
≤ C

[
‖η‖V(h) + ‖η′‖Q(h)

]
C(ξ′, ξ′)

1
2 + C

[
‖η‖V(h) + ‖η′‖Q(h)

]2
.

(94)

Therefore, there exists

C(ξ′, ξ′) ≤ C
[
‖η‖V(h) + ‖η′‖Q(h)

]
C(ξ′, ξ′)

1
2 + C

[
‖η‖V(h) + ‖η′‖Q(h)

]2
.

In particular, we have

C(ξ′, ξ′)
1
2 ≤ C

[
‖η‖V(h) + ‖η′‖Q(h)

]
.(95)

We then deduce

‖ξ‖V(h) ≤ C
[
‖η‖V(h) + ‖η′‖Q(h)

]
(96)

and therefore with (89), we have

‖ξ′‖Q(h) ≤ C
[
‖η‖V(h) + ‖η′‖Q(h)

]
.(97)

From (96) and (97), we have

‖ξ‖V(h) + ‖ξ′‖Q(h) ≤ ‖ξ‖V(h) + ‖ξ′‖Q(h)

≤ C
[
‖η‖V(h) + ‖η′‖Q(h)

]
.

(98)

We conclude

‖e‖V(h) + ‖e′‖Q(h) ≤ C
[
‖η‖V(h) + ‖η′‖Q(h)

]
(99)

and we must estimate ‖η‖V(h) + ‖η′‖Q(h). We then give the following interpo-
lation result.

Theorem 3. Let K ∈ Πh and we suppose that u ∈ HtK (K) and tK ≥ 0,
then there exists a sequence of polynomial functions πhK ∈ Pk(K) such that

‖u− πhK (u)‖q,K ≤ Ch
min(k+1,tK)−q
K ‖u‖tK ,K ∀ 0 ≤ q ≤ tK .(100)

If tK ≥ 1, then we have

‖u− πhK (u)‖0,∂K ≤ Ch
min(k+1,tK)− 1

2

K ‖u‖tK ,K .(101)

The constant C is independent of u, and hK but depends on k, the mesh reg-
ularity and t = max

K∈Πh

tK .
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Proof. [16]. �
We interpolate vector functions. We denote par πh the interpolation oper-
ator defined by πh(u) |K= πhK (u |K), then we have for vector function, Πh

the interpolation operator defined by Πh(u) := (πh(u1), π
h(u2), π

h(u3)) if
u = (u1, u2, u3).

We give a interpolation result.

Theorem 4. Let (uh, ph) the solution of (38) and (u, p) the solution of (2).
We suppose that u ∈ Ht+1(Πh)

3, p ∈ Hs−1(Πh), t ≥ 1, s ≥ 2; then, we have

‖e‖2V(h) + ‖e′‖2Q(h) ≤ C
[
h2min(k,t) ‖u‖2t+1,Πh

+ h2min(k,s)−2‖p‖2s,Πh

]
(102)

with C is a positive constant independent of h.

Proof. . We have ‖e‖V(h) + ‖e′‖Q(h) ≤ C(‖η‖V(h) + ‖η′‖Q(h)). We can esti-
mate ‖η‖V(h) + ‖η′‖Q(h).

We first consider ‖η‖V(h). We have

‖η‖20,Ω =
∑

K∈Πh

‖η‖20,K .(103)

We deduce from theorem 3

‖η‖20,Ω ≤ C
∑

K∈Πh

h2min(k,t)+2‖u‖2t+1,K

≤ C
(
h2min(k,t)+2‖u‖2t+1,Πh

)
.

(104)

We also have

‖∇ × η‖20,Ω ≤ C
∑

K∈Πh

h2min(k,t)‖u‖2t+1,K

≤ C
(
h2min(k,t)‖u‖2t+1,Πh

)
.

(105)

We obtain with the definition of stabilization parameter σa and with an in-
equality trace

‖ 1
√
σa

{∇ × η}‖0,Fh
≤ C

∑
K∈Πh

‖∇ × η‖20,K

≤ C
∑

K∈Πh

h2min(k,t)‖u‖2t+1,K

≤ Ch2min(k,t)‖u‖2t+1,Πh
.

(106)

With theorem 3, we also have

‖
√
σa[η]N‖20,F I

h
≤ C

∑
K∈Πh

h2min(k,t)‖u‖2t+1,K

≤ Ch2min(k,t)+2‖u‖2t+1,Πh
.

(107)



22 DAVEAU CHRISTIAN AND ABDELHAMID ZAGHDANI

We have

‖ 1
√
σa

{η}‖20,Fh
≤ C

∑
K∈Πh

‖η‖21,K

≤ C
∑

K∈Πh

h2min(k,t)‖u‖2t+1,K

≤ Ch2min(k,t)‖u‖2t+1,Πh
.

We deduce

‖η‖2V(h) ≤ C
(
h2min(k,t)‖u‖2t+1,Πh

)
.

Similary, we obtain

‖η′‖2Q(h) ≤ C
(
h2min(k−1,s−1)‖p‖2s,Πh

)
Hence we have the result.

�

6. Numerical results

In this section, we present numerical results obtained for the three-dimensional
problem (1) with the density current:

J(x, y, z) :=

 J1(x, y, z)
J2(x, y, z)
J3(x, y, z)


with

J1(x, y, z) = − exp(yz)
[
(z2 − z)

(
2 + 2z(2y − 1) + z2(y2 − y)

)]
− exp(yz)

[
(y2 − y)

(
2 + 2y(2z − 1) + y2(z2 − z)

)]
− exp(xyz)

[
(2x− 1)(y2 − y)(z2 − z) + yz(x2 − x)(y2 − y)(z2 − z)

]
,

J2(x, y, z) = − exp(xz)
[
(x2 − x)

(
2 + 2x(2z − 1) + x2(z2 − z)

)]
− exp(yz)

[
(z2 − z)

(
2 + 2z(2x− 1) + z2(x2 − x)

)]
− exp(xyz)

[
(2y − 1)(x2 − x)(z2 − z) + xz(x2 − x)(y2 − y)(z2 − z)

]
and

J3(x, y, z) = − exp(xy)
[
(y2 − y)

(
2 + 2y(2x− 1) + y2(x2 − x)

)]
− exp(yx)

[
(x2 − x)

(
2 + 2x(2y − 1) + x2(y2 − y)

)]
− exp(xyz)

[
(2z − 1)(x2 − x)(y2 − y) + xy(x2 − x)(y2 − y)(z2 − z)

]
.

Then, the exact solution (u, p) is :

u(x, y, z) =

 (y2 − y)(z2 − z) exp(yz)
(z2 − z)(x2 − x) exp(xz)
(y2 − y)(x2 − x) exp(yx)

 ,

p(x, y, z) = (y2 − y)(z2 − z)(x2 − x) exp(xyz).

(108)
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In the experiments, Ω is the cube [0, 1] × [0, 1] × [0, 1]. We choose κ = 100,
it can’t be chosen too big otherwise the matrix associated to discrete bilinear
form A is ill conditionned. We set r = 1 and we choose k = 2.

We use Uzawa Algorithme, [3], we eliminate u

u = A−1(f −Bp)

and we solve linear system with conjugated gradient

(BtA−1B + C)p = BtA−1f.(109)

since matrix BtA−1B + C is symmetric and positive definite.

We denote by Nbte the number of tetraedron of the mesh of Ω and by Nbtr
the number of triangles supported by Γ.

h Nbte Nbtr ‖u− uh‖V(h) ‖p− ph‖Q(h) ‖∇ · uh‖0,Ω
0.4367 12 30 0.2380E+00 0.8891E+00 0.1603E-01
0.2184 96 216 0.8899E-01 0.2229E+00 0.1641E-01
0.1733 192 432 0.7307E-01 0.1700E+00 0.2176E-01
0.1694 371 826 0.4589E-01 0.7804E-01 0.1027E-01
0.1379 660 1416 0.2952E-01 0.6283E-01 0.6412E-02

9.26E-02 2631 5502 0.1381E-01 0.4660E-01 0.3417E-02

Table 1. Errors table

h Nbte Nbtr ‖u− uh‖L1(Ω)3 ‖p− ph‖L1(Ω) ‖u− uh‖L2(Ω)3 ‖p− ph‖L2(Ω)

0.4367 12 30 0.3471E-01 0.7633E-01 0.4517E-01 0.1045E+00
0.2184 96 216 0.6913E-02 0.1325E-01 0.8761E-02 0.1700E-01
0.1733 192 432 0.3846E-02 0.8522E-02 0.5215E-02 0.1134E-01
0.1694 371 826 0.2350E-02 0.5901E-02 0.3046E-02 0.7447E-02
0.1379 660 1416 0.1434E-02 0.5440E-02 0.1857E-02 0.7059E-02

9.26E-02 2631 5502 0.6172E-03 0.5277E-02 0.7924E-03 0.6941E-02
Table 2. Errors table

We remark that errors decrease when the mean mesh decreases and the quan-
tity ‖∇ · uh‖0,Ω is small even with coarse mesh. We obtain the exact solution
u to 10−3 and p to 10−2 with L1(Ω) norm and L2(Ω) norm respectively after
tables 4.1 and 4.2.

Errors ‖u− uh‖V(h) ‖p− ph‖Q(h) are plotted in Figures 4.1 and 4.2. These
plots highlight the convergence of the numerical solution towards exact solu-
tion according to the rate O(h2) and O(h) for ‖u − uh‖V(h) and ‖p − ph‖Q(h)
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respectively.

Remark 6.1. We have tested our method with k = 1 and the P1 − P0

elements is also convergent.

7. Conclusion

We presented and analysed a new discontinuous Galerkin method to resolve
the three-dimensional electrostatic problem. An error a priori estimate is de-
rived and we present numerical results to validate the convergence result. In
the future, we study this problem in the case where the exact solution is singu-
lar using edge element of the first kind in the discontinuous Galerking method
as in [17].
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