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We consider the Stokes system for a viscous medium consisting of an impurely (inclusion) merged in a consistent background medium. Appointed on both field expansion and layer potential methods, we strictly derive the asymptotic expansion of the perturbed velocity field because of small perturbations in the interface of the inclusion. We use these techniques to determine a relationship between Stokes solutions measurements and the shape of the object. Moreover, we may prove an asymptotic expansion for the perturbation in the viscosity moment tensors (VMTs) caused by the presence of small changes in the interface of the impurety.

Introduction

In this paper, we suppose that any shape deformation like [START_REF] Ammari | Conductivity interface problems. Part I: small perturbations of an interface[END_REF] occurs inside a bounded domain Ω in a Hölder space. Based on the works [START_REF] Ammari | Effective viscosity properties of dilute suspensions of arbitrarily shaped particles[END_REF][START_REF] Ammari | Reconstruction of small interface changes of an inclusion from modal measurements II: The elastic case[END_REF][START_REF] Ammari | A method of biological tissues elasticity reconstruction using magnetic resonance elastography measurements[END_REF][START_REF] Ammari | Layer Potential Techniques in Spectral Analysis[END_REF][START_REF] Boyer | Fabrie Mathematical tools for the study of the incompressible Navier-Stokes equations and related models[END_REF][START_REF] Daveau | Asymptotic behaviors for eigenvalues and eigenfunctions associated to Stokes operator in the presence of small boundary perturbations[END_REF][START_REF] Boujemaa | Small perturbation of a surface: full Maxwells equations[END_REF][START_REF] Lagha | Small perturbations of an interface for elastostatic problems[END_REF], we may advance the asymptotic expansions for the perturbed solutions of the Stokes system and we may give explicitly both the first term correction and a relationship between Stokes solutions measurements and the shape of the object. Since the Stokes system can be viewed as the incompressible limit (λ, λ → +∞) of the Lamé system [START_REF] Ammari | A method of biological tissues elasticity reconstruction using magnetic resonance elastography measurements[END_REF][START_REF] Ammari | Effective viscosity properties of dilute suspensions of arbitrarily shaped particles[END_REF], it is natural to view the viscosity moment tensor VMT as a limit of the elastic moment tensors EMT. We will check formally, in Section 3, this limit when the compressional modulus goes to infinity. Our method in this investigation may be deeply based on the ones developed in [START_REF] Ammari | Reconstruction of small interface changes of an inclusion from modal measurements II: The elastic case[END_REF][START_REF] Lagha | Small perturbations of an interface for elastostatic problems[END_REF] for the elastic case.

Suppose in this section that Ω ⊂ R d (d = 2, 3) is a bounded domain with C 1,1 -boundary. Let D be an open subset of Ω such that dist(∂Ω, D) ≥ d 0 > 0, [START_REF] Ammari | Reconstruction of small interface changes of an inclusion from modal measurements II: The elastic case[END_REF] representing an inclusion made of a different Newtonian fluid material. Assume that the boundary ∂D is of class C 2,1 . We denote by σ 0 and σ 1 the stress tensor fields in Ω\D and D, respectively. We assume that both Ω\D and D are occupied by isotropic and homogeneous Newtonian fluids. Then, the tensors σ 0 and σ 1 may be given by (σ s ) ijlk = µ s (δ ki δ lj + δ kj δ li ) for i, j, k, l = 1, 2 and for s = 0, 1,

where µ 0 and µ 1 are the viscosity constants of the flow in Ω\D and D, respectively. Given two (2 × 2) matrices A and B we denote by A : B the contraction, i.e., A : B = ij a ij b ij . Now, it is useful to introduce the strain rate tensor D for the flow as follows:

D(v) := 1 2 (∇v + (∇v) T ) = 1 2 ( ∂v i ∂x j + ∂v j ∂x i ) 1≤i,j≤d
.

Let σ D := σ 0 χ Ω\D + σ 1 χ D where σ 0 and σ 1 are given by [START_REF] Ammari | A method of biological tissues elasticity reconstruction using magnetic resonance elastography measurements[END_REF]. Then according to [START_REF] Boyer | Fabrie Mathematical tools for the study of the incompressible Navier-Stokes equations and related models[END_REF], one can rewrite the Stokes problem as the generalized one:

   -div(σD(v) -p Id) = 0 in Ω ∇.v = 0 in Ω v = F on ∂Ω (3) 
where v = (v i ) i=1,••• ,d denotes the velocity field while the scalar function p is the pressure. F is a given vector valued function. Moreover, (v, p) ∈ (H 2 (Ω)) d × H 1 (Ω) and Id means the identity. Here we refer the reader to [START_REF] Boyer | Fabrie Mathematical tools for the study of the incompressible Navier-Stokes equations and related models[END_REF]Theorem IV.5.8] for more details about the regularity properties. On the other hand, if S mens the Stokes operator, it is well know that (see for example, [START_REF] Ammari | Effective viscosity properties of dilute suspensions of arbitrarily shaped particles[END_REF][START_REF] Boyer | Fabrie Mathematical tools for the study of the incompressible Navier-Stokes equations and related models[END_REF]) there exist an orthogonal projection (the Leray projection) P such that:

S(v) = P (-∆v), ∀v ∈ (H 2 (Ω)) 2 ∩ H(Ω).
In consequence, the Stokes operator enters the general framework about spectral properties of the operator -∆. So, througout this paper we suppose that 0 is not an eigenvalue of S.

The conormal derivative ∂v ∂ν on ∂D is defined to be

∂v ∂ν = µ 0 ∂v ∂n -p n ( 5 
)
where n is the outward unit normal to ∂D

The problem (3) is equivalent to the following transmission problem:

               -div(σ 0 D(v) -p Id) = 0 in Ω \ D, -div(σ 1 D(v) -p Id) = 0 in D, v | -= v | + on ∂D, ∂v ∂ν | -= ∂v ∂ν | + on ∂D, ∇.v = 0 in Ω, v = F on ∂Ω, (6) 
where F is a known vector-valued function. The quantities v | ± on ∂D denote the limits from outside and inside of D, respectively. We will also sometimes use v e for v | + and v i for v | -.

The δ-perturbation, denoted by D δ , of the domain D is given by

∂D δ := {x = x + δh(x)ν(x), x ∈ ∂D} (7) 
where here h(x) is assumed to be a real function in C 1,1 (∂D) that satisfies

h C 1,1 (∂D) < c 0 for some positive constant c 0 . (8) 
Let σ D δ := σ 0 χ Ω\D δ + σ 1 χ D δ . Therefore, for the same given vector-valued function F , problem (6) can be generalized to the following perturbed Stokes problem:

     -div(σ D δ D(v δ ) -p δ Id) = 0 in Ω ∇.v δ = 0 in Ω v δ = F in ∂Ω (9) 
where

(v δ , p δ ) ∈ (H 2 (Ω)) d × H 1 (Ω).
The transmission stokes problem associated to ( 9) is given by:

               -div(σ 0 D(v δ ) -p δ Id) = 0 in Ω \ D δ , -div(σ 1 D(v δ ) -p δ Id) = 0 in D δ , v δ | -= v δ | + on ∂D δ , ∂v δ ∂ν | -= ∂v δ ∂ν | + on ∂D δ , ∇.v δ = 0 in Ω, v δ = F on ∂Ω. (10) 
The first main result of this paper is the derivation of the leading-order term in the asymptotic expansion of (v δ -v) Ω as δ → 0, where Ω is a bounded region outside the inclusion D and away from ∂D.

The methods and results developed in this paper can be generalized to higher dimension interface problems and can be extended to other PDEs systems, such as Lamé, Maxwell and also for cases with high oscillating or periodic boundary.

Main Results

Now we are ready to state the main achievements of this paper. The first main result of this paper is the following derivation of the leading-order term in the asymptotic expansion of v δ -v 0 as δ → 0, where Ω is a bounded region outside the inclusion D and away from both ∂D and ∂Ω.

Theorem 2.1. Assume that all hypothesis (1), ( 4), [START_REF] Ammari | Conductivity interface problems. Part I: small perturbations of an interface[END_REF] and (8) are satisfied. Let v and v δ be the solutions to [START_REF] Ammari | Layer Potential Techniques in Spectral Analysis[END_REF] and [START_REF] Daveau | Asymptotic behaviors for eigenvalues and eigenfunctions associated to Stokes operator in the presence of small boundary perturbations[END_REF], respectively. Let Ω be a bounded region outside the inclusion D and away from ∂D. For x ∈ Ω, the following pointwise asymptotic expansion holds:

v δ (x) = v(x) + δv 1 (x) + O(δ 2 ), (11) 
p δ (x) = p(x) + δp 1 (x) + O(δ 2 ). ( 12 
)
The remainder O(δ 2 ) depends only on µ 0 , µ 1 , Ω, D and v 1 is the unique solution to

               -div(σ 0 D(v 1 ) -p 1 Id) = 0 in Ω \ D, -div(σ 1 D(v 1 ) -p 1 Id) = 0 in D, v 1 | --v 1 | + = 0 on ∂D, ∂v1 ∂ν | --∂v1 ∂ν | + = ∂ ∂τ (h([σ 1 -M 0,1 ]D(v i ))τ ) on ∂D, ∇.v 1 = 0 in Ω, v 1 = F on ∂Ω (13) 
with τ as the tangential vector to ∂D, and the viscosity moment tensor

M l,k = 2µ k I + 2(µ l -µ k )I ⊗ (τ ⊗ τ ). ( 14 
)
Here I means the identity four-tensor, µ l , µ k given by (2), I the identity in R d and τ a tangential vector.

We will discuss the viscosity moment tensor M = (M l,k ) in the next section. As a consequence of the results of Theorem 2.1, we obtain the following relationship between velocity measurements and the deformation h. The scalar product in R d will be denoted by . and sometimes to ease the notations, by < ., . >. Theorem 2.2. Assume that all hypothesis (1), ( 4), [START_REF] Ammari | Conductivity interface problems. Part I: small perturbations of an interface[END_REF] and (8) are satisfied. Let M 0,1 be given by [START_REF] Depauw | Solutions des équations de Navier Stokes incompressibles dans un domaine exterieur[END_REF] and S be a Lipschitz closed curve enclosing D and away from ∂D Let (v, p) and (v δ , p δ ) be the solutions to [START_REF] Ammari | Layer Potential Techniques in Spectral Analysis[END_REF] and [START_REF] Daveau | Asymptotic behaviors for eigenvalues and eigenfunctions associated to Stokes operator in the presence of small boundary perturbations[END_REF], respectively, and (u, q) be the solution of the following system:

               -div(σ 0 D(u) -q Id) = 0 in Ω \ D, -div(σ 1 D(u) -q Id) = 0 in D, u | --u | + = 0 on ∂D, ∂u ∂ν | --∂u ∂ν | + = 0 on ∂D, ∇.u = 0 in Ω, u(x) = G(x) on ∂Ω ( 15 
)
where G is a given vector-valued function. Then, the following asymptotic expansion holds:

S (v δ -v). ∂G ∂ν dσ - S ( ∂v δ ∂ν - ∂v ∂ν ).Gdσ = δ ∂D h(([M 0,1 -σ 1 ]D(v i ))τ.D(u i )τ )dσ +O(δ 2 ), ( 16 
)
where the remainder O(δ 2 ) depends only on µ 0 , µ 1 , the C 1,1 -norm of h, and dist(S, ∂D). Here u i and v i denote the limits from inside D

The following theorem concerning the perturbations of the generalized viscosity moment tensors VMTs can be justified by the same manner as done in two dimensions, see [START_REF] Ammari | Effective viscosity properties of dilute suspensions of arbitrarily shaped particles[END_REF][START_REF] Lagha | Small perturbations of an interface for elastostatic problems[END_REF]. Later, We will give briefly its proof.

Theorem 2.3. Assume that all hypothesis (1), ( 4), ( 7) and ( 8) are satisfied. Let's say that d = 2 and let M 0,1 be given by [START_REF] Depauw | Solutions des équations de Navier Stokes incompressibles dans un domaine exterieur[END_REF]. Suppose that (a α j ) and (b β k ) are constants such that

H = 2 j=1 α∈N 2 a α j x α e j and F = 2 k=1 β∈N 2 b β k x β e k satisfy -div(σ 0 D(•) -q Id) = 0 in R d , d = 2, 3.
Let u and v be the solutions to (15) and ( 6), respectively. Then, the following asymptotic expansion holds:

α,β,j,k a α j b β k M j αβk (D δ ) -M j αβk (D) = -δ ∂D h(([M 0,1 -σ 1 ]D(v i ))τ.D(u i )τ )dσ + O(δ 2 ), ( 17 
)
where O(δ 2 ) depends only on µ 0 , µ 1 , the C 1,1 -norm of h, and dist(S, ∂D).

According to previous investigations in others EDPs such that in [START_REF] Ammari | Reconstruction of small interface changes of an inclusion from modal measurements II: The elastic case[END_REF][START_REF] Ammari | Reconstruction of closely spaced small inclusions[END_REF][START_REF] Brühl | A direct impedance tomography algorithm for locating small inhomogeneities[END_REF][START_REF] Khelifi | Asymptotic expansions for the voltage potentials with two and three-dimensional thin interfaces[END_REF][START_REF] Khelifi | Boundary voltage perturbations resulting from small surface changes of a conductivity inclusion[END_REF][START_REF] Lagha | Small perturbations of an interface for elastostatic problems[END_REF], the VMTs associated with an unknown inclusion can be detected from boundary measurements. It is well known that [START_REF] Ammari | A method of biological tissues elasticity reconstruction using magnetic resonance elastography measurements[END_REF] the model of VMTs has its complements in the conductivity as generalized polarization tensor GPTs and the elasticity as the elastic moment tensor EMTs. Following once again [START_REF] Ammari | Reconstruction of closely spaced small inclusions[END_REF][START_REF] Brühl | A direct impedance tomography algorithm for locating small inhomogeneities[END_REF][START_REF] Lagha | Small perturbations of an interface for elastostatic problems[END_REF], given an arbitrary shape, one can find an equivalent ellipsoid with the same polarization tensor. Therefore, recovering more shape details than the equivalent ellipsoid using a finite number of GPTs is an ambitious question. One of solutions is to extend that optimization approach in [START_REF] Ammari | The generalized polarization tensors for resolved imaging. Part I: Shape reconstruction of a conductivity inclusion[END_REF][START_REF] Lagha | Small perturbations of an interface for elastostatic problems[END_REF] which is based on the shape derivative of α,β a α b β M αβ (k, D), where a α and b β are constants such that H = α a α x α and F = β b β x β are harmonic polynomials. In order to calculate that shape derivative, we use the asymptotic expansion of the GPTs under small perturbations of the boundary of the inclusion D given in [START_REF] Khelifi | Boundary voltage perturbations resulting from small surface changes of a conductivity inclusion[END_REF].

Representation of solutions

We now develop a boundary integral formulation for solving the perturbed Stokes problem [START_REF] Daveau | Asymptotic behaviors for eigenvalues and eigenfunctions associated to Stokes operator in the presence of small boundary perturbations[END_REF]. The components of the fundamental Stokes tensor Γ = (Γ ij ) d i,j=1 and those of the associated pressure vector P = (P ij ) d i,j=1 , which determine the fundamental solution (Γ, P ) of the Stokes system in R d , are given for d = 3 by (see for instance [START_REF] Ammari | A method of biological tissues elasticity reconstruction using magnetic resonance elastography measurements[END_REF], [START_REF] Ladyzhenskaya | Mathematical theory of the viscous incompressible id[END_REF])

   Γ ij (λ, x) = -1 4π δij e i √ λ|x| |x| -1 4πλ ∂ xi ∂ xj ( e i √ λ|x| -1 |x| ) P i (x) = -1 4π xi |x| 3 , (18) 
where ∂x i denotes ∂/∂x i for i = 1, • • • , d and i 2 = -1. We recall that the i th row Γ i of Γ satisfies

-∆Γ i + ∇P i (x) -λΓ i = e i δ(x) in R d ∇.Γ i = 0 in R d ; ( 19 
)
in the sense of distributions and where (e

i ; i = 1, • • • , d) is the orthonormal basis of R d .
Note that we used the Einstein convention for the summation notation omitting the summation sign for the indices appearing twice.

The potential theory for the Stokes system

Let us denote by ϕ = (ϕ i ) 1≤i≤3 a complex vector-valued function with class C 0 (∂Ω).

The hydrodynamic single-layer potential with density ϕ ∈ C 0 (∂Ω) d is the vector function S(λ)ϕ(x) defined by

S(λ)ϕ(x) := ∂Ω Γ(λ, |x -y|)ϕ(y) dσ(y), x ∈ R d \∂Ω. (20) 
The pressure term Q corresponding to the single layer potential is the function given by Qϕ(x) := ∂Ω P (x, y)ϕ(y) dσ(y), x ∈ R d \∂Ω.

The double layer potential of the density function ϕ(x) on L ( ∂D) associated with the Stokes system is defined by

D(λ)ϕ(x) = ∂D [∇ y Γ(λ, |x -y|)ν(y)] T + (∇ y Γ) T (x -y, λ)ν(y) ϕ(y)dσ(y) (21) 
:

= ∂D K(x -y)ϕ(y)dσ(y), x ∈ R d \∂D.
For a careful study of these potentials, one can refer to [START_REF] Kohr | The interior Neumann problem for the Stokes resolvent system in a bounded domain in R n[END_REF], [START_REF] Ladyzhenskaya | Mathematical theory of the viscous incompressible id[END_REF], [START_REF] Varnhorn | The Stokes equations[END_REF].

Taking into account the well known properties of Green function Γ, one obtains the result that the pair (Sϕ, Qϕ) are smooth functions in each of the domains Ω and R d \Ω respectively. Also these functions are classical solutions to the Stokes system [START_REF] Ammari | Layer Potential Techniques in Spectral Analysis[END_REF].

The continuity and jump relations of the Stokes surface potentials on the boundary ∂Ω are described in the following proposition (see [START_REF] Ammari | A method of biological tissues elasticity reconstruction using magnetic resonance elastography measurements[END_REF], [START_REF] Depauw | Solutions des équations de Navier Stokes incompressibles dans un domaine exterieur[END_REF] pp. 41-42 or [START_REF] Varnhorn | The Stokes equations[END_REF] p. 66 ): 2 and let S and D(λ) denote the surface potentials defined in ( 20)- [START_REF] Li | Estimates for elliptic systems from composite material[END_REF]. Then on the boundary ∂D the following continuity and jump relations are satisfied:

Proposition 3.1. For d = 2, let ϕ ∈ C 0 (∂Ω)
(S(λ)ϕ)

+ = (S(λ)ϕ)| -= S(λ)ϕ ∂S(λ)(ϕ) ∂ν (x) ± = ± ϕ(x) 2 + ∂Ω ∂Γ(λ, |x -y|) ∂ν(x) ϕ(y) dσ(y). := (± 1 2 I + K * D )ϕ(x) a.e. x ∈ ∂D, and D(λ)ϕ(x) = (∓ 1 2 I + K D )ϕ(x) a.e. x ∈ ∂D, (22) 
where K D is defined by 

K D ϕ(x) := p.v.
∂D := {x = X(t), t ∈ [a, b]}.
Then the outward unit normal to D, ν(x), is given by ν

(x) = R -π 2 X (t)
, where R -π 2 is the rotation by -π/2, the tangential vector at x, τ (x) = T (x) = X (t), and X (t) ⊥ X (t). Set the curvature ζ(x) to be defined by

X (t) = ζ(x)ν(x).
We will sometimes use h(t) for h(X(t)) and h (t) for the tangential derivative of h(x). Then, X

(t) = X(t) + δh(t)ν(x) = X(t) + δh(t)R -π 2 X (t) is a parametrization of D δ . By ν(x)
, we denote the outward unit normal to D δ at x. Then, it is proved in [START_REF] Ammari | Layer Potential Techniques in Spectral Analysis[END_REF][START_REF] Ammari | Conductivity interface problems. Part I: small perturbations of an interface[END_REF][START_REF] Khelifi | Asymptotic expansions for the voltage potentials with two and three-dimensional thin interfaces[END_REF] that

ν(x) = ν(x) -δh (t)τ (x) + O(δ 2 ), uniformly for x ∈ ∂D. (23) 
The following uniformly convergent expansion for the length element dσ δ (ỹ) can be obtained easily (see [START_REF] Ammari | Layer Potential Techniques in Spectral Analysis[END_REF][START_REF] Ammari | Conductivity interface problems. Part I: small perturbations of an interface[END_REF][START_REF] Khelifi | Boundary voltage perturbations resulting from small surface changes of a conductivity inclusion[END_REF]):

dσ δ (ỹ) = (1 -δζ(y)h(y) + O(δ 2 )).dσ(y). ( 24 
)
Let Ψ δ be the diffeomorphism from ∂D onto ∂D δ given by Ψ δ (x) = x + δh(t)ν(x), where x = X(t). The asymptotic expansion of S * D δ is given by the following lemma, see [START_REF] Daveau | Asymptotic behaviors for eigenvalues and eigenfunctions associated to Stokes operator in the presence of small boundary perturbations[END_REF][START_REF] Khelifi | Asymptotic expansions for the voltage potentials with two and three-dimensional thin interfaces[END_REF] for an idea of the proof. Lemma 3.1. Let N ∈ N. There exists C depending only on N , the C 2,1 -norm of ∂D and the C 1,1 -norm of h such that for any φ ∈ L 2 (∂D δ ),

||(S * D δ φ) • Ψ δ -S * D φ - N -1 n=0 δ n+1 S (n+1) D φ|| L 2 (∂D) ≤ Cδ N +1 ||φ|| L 2 (∂D) ,
where φ := φ • Ψ δ . The operators S

(n) D , n > 0, are compact on L 2 (∂Ω) and can be explicitly computed.

Representation of solutions

The following transmission condition follows. Proposition 3.2. Let v be the solution to [START_REF] Ammari | Layer Potential Techniques in Spectral Analysis[END_REF]. Let v i and v e be the inner and the outer components of v. Then, the following identities hold:

(σ 0 D(v e ))τ = (M 0,1 D(v i ))τ, ( 25 
) (σ 1 D(v i ))τ = (M 1,0 D(v e ))τ, ( 26 
)
where the tensor M 1,0 was introduced previously in ( 14).

Proof 3.1. According to [START_REF] Daveau | Asymptotic behaviors for eigenvalues and eigenfunctions associated to Stokes operator in the presence of small boundary perturbations[END_REF], the solution v of (6) may satisfy the following transmission conditions along the interface ∂D:

v i = v e , (27) 
∇v e τ = ∇v i τ, (28) 
< D(v i )τ, τ >=< D(v e )τ, τ >, (29) 
and so,

p| + + 2µ 1 < D(v i )n, n >= p| -+ 2µ 0 < D(v e )n, n >, (30) 
µ 1 < D(v i )n, τ >= µ 0 < D(v e )n, τ > . (31) 
Therefore,

(σ 0 D(v e ))τ = 2µ 0 (D(v e )τ ) = 2µ 0 < (D(v e )τ, τ > τ + 2µ 0 < (D(v e )τ, n > τ = 2µ 0 < (D(v i )τ, τ > τ + 2µ 1 < (D(v i )τ, n > τ.
On the other hand, we can expand:

(D(v i )τ =< (D(v i )τ, n > n+ < (D(v i )τ, τ > τ.
Thus,

(σ 0 D(v e ))τ = 2µ 0 < (D(v i )τ, τ > τ + 2µ 1 D(v i )τ -2µ 1 < (D(v i )τ, τ > τ = 2µ 1 D(v i )τ + 2(µ 0 -µ 1 ) < (D(v i )τ, τ > τ = (M 0,1 D(v i ))τ.
By a completely similar manner, one may obtain the desired condition (26).

To find a representation to solutions of ( 10) or ( 6), the reader may see [START_REF] Ammari | A method of biological tissues elasticity reconstruction using magnetic resonance elastography measurements[END_REF][START_REF] Ammari | Effective viscosity properties of dilute suspensions of arbitrarily shaped particles[END_REF][START_REF] Ammari | Layer Potential Techniques in Spectral Analysis[END_REF][START_REF] Daveau | Asymptotic formula for the solution of the Stokes problem with a small perturbation of the domain in two and three dimensions[END_REF][START_REF] Lagha | Small perturbations of an interface for elastostatic problems[END_REF], 10] and others. The solution (u δ , q δ ) to [START_REF] Daveau | Asymptotic behaviors for eigenvalues and eigenfunctions associated to Stokes operator in the presence of small boundary perturbations[END_REF] can be represented by

u δ = H(x) + S D δ [ϕ δ ](x) , x ∈ Ω \ D δ , S D δ [ψ δ ](x) x ∈ D δ , (32) 
p δ = V D δ [ϕ δ ](x) , x ∈ Ω \ D δ , V D δ [ψ δ ](x) x ∈ D δ , (33) 
where the pair (ϕ δ , ψ δ ) is the unique solution in L 2 (∂D δ ) × L 2 (∂D δ ) of

S D δ [ψ δ ] | --S D δ [ψ δ ] | + = H on ∂D δ , (-1 2 I + K * D δ )[ψ δ ] -(-1 2 I + K * D δ )[ϕ δ ] = ∂H ∂ν on ∂D δ . (34) 
But, the solution (u, p) to ( 6) can be represented as

u(x) = H(x) + S D [ϕ](x) , x ∈ Ω \ D, S D [ψ](x) x ∈ D, (35) 
p(x) = V D [ϕ](x) , x ∈ Ω \ D, V D [ψ](x) x ∈ D, (36) 
where the pair (ϕ, ψ) is the unique solution in

L 2 (∂D δ ) × L 2 (∂D δ ) of S D [ψ] | --S D [ϕ] | + = H on ∂D, (-1 2 I + K * ∂D )[ψ] -(-1 2 I + K * ∂D )[ϕ] = ∂H ∂ν on ∂D, (37) 
For more details on the previous representations formulae, we may refer to [START_REF] Ammari | Reconstruction of Small Inhomogeneities from Boundary Measurements[END_REF].

Now, we introduce the integral operator K

(1) D , to be defined for any φ ∈ L 2 (∂D) by:

K (1) D [φ](x) := ∂ K 1 (x -y)φ(y)dσ(y), x ∈ ∂D, (38) 
where K 1 (x -y) means the first order term in the asymptotic expansion of K(x -ỹ) with K is the kernel of the double layer potential D(λ). The following result may be useful in our next analysis.

Lemma 3.2. Assume that all hypothesis (1), ( 4), ( 7) and ( 8) are satisfied. Then if we introduce (ψ (1) , ϕ (1) ) to be the solution to the following system:

S D [ψ (1) ] | --S D [ϕ (1) ]

| + = h ∂H ∂n -( S (1) 
D [ψ] -S (1) 
D [ϕ]) on ∂D, (-1 2 I + K * D )[ψ (1) ]) -( 1 2 I + K * D [ϕ (1) ] = κh ∂H ∂ν -∂ ∂τ (h(σ 0 ∇H)τ ) -( K (1) 
D [ψ] -K (1) 
D [ϕ]) on ∂D, (39 
) where (ψ, ϕ) is the solution to (37). Then, we have the following relations:

( S D -S (1) D )[ ψ-ψ-δψ (1) ] | --(S D +δS (1) D )[ ϕ-ϕ-δϕ (1) ] | + = H•φ δ -H-δh ∂H ∂n +O(δ 2 ) on ∂D, (40) and 
(- 1 2 I+ K * D +δ K ( 1) D )[ ψ-ψ-δψ (1) ] | --(- 1 2 I+K * D +δK ( 1) D )[ ϕ-ϕ-δϕ (1) ] | + = ∂H ∂ν •φ δ - ∂H ∂ν -δh ∂H ∂ν (41) +δ ∂ ∂τ (h(σ 0 ∇H)τ ) + O(δ 2 ) on ∂D.
Here, the operator S

D is defined for any φ ∈ L 2 (∂D) by

S

(1)

D [φ](x) = -S D [κhφ](x) + (h(x) ∂S D [φ] ∂n (x) + D D [hφ](x)) | ± , x ∈ ∂D (42)
with D D means the standard double layer potential, and K

D is given by (38).

Now we try to check formally that the obtained formula for V M T is the limit of the one obtained in case of elastic medium when the compressional modulus goes to infinity. According to [START_REF] Ammari | A method of biological tissues elasticity reconstruction using magnetic resonance elastography measurements[END_REF], we define the viscous moment tensor (VMT) denoted by M = (M pq ij ij) i,j,p,q=1,2,3 by 

M pq ij = ( µ -µ) D ∇v pq : (∇.(ζ i e j ) + ∇(ζ i e j ) T )dζ, (43) 
                   µ∆v pq + ∇p = 0 in R d \ D, µ∆v pq + ∇p = 0 in D, vpq | -= vpq | + on ∂D, (pN + µ ∂ vpq ∂N ) | -= (pN + µ ∂ vpq ∂N ) | + on ∂D, ∇.v pq = 0 in R d , vpq (ζ) -ζ p e q + δ pq d(ζ) → 0 as |ζ| → ∞, p(ζ) → 0 as |ζ| → ∞. (44) 
Now, according to [START_REF] Ammari | A method of biological tissues elasticity reconstruction using magnetic resonance elastography measurements[END_REF][START_REF] Lagha | Small perturbations of an interface for elastostatic problems[END_REF] the elastic moment tensor M = (m pq ij ) associated with the domain D and the pairs of Lamé parameters (λ, λ; µ, µ) is given by

m pq ij = D - ∂((ζ i e j )) ∂ν + ∂((ζ i e j )) ∂ ν w pq dσ, i, j, p, q = 1 • • • d. (45) 
where w pq means a solution of the Lamé system. Then the following limit holds (formally).

Proposition 3.3.

[3] For i, j, p, q = 1 • • • d, we have:

M pq ij = lim λ, λ→∞ [m pq ij -δ ij /d d k=1 m pq kk -δ pq /d d s=1 m ss ij + δ ij δ pq d 2 d k,s=1 m ss kk ]. Proof 3.2. Following [3, page 2], one can remark that - ∂((ζ i e j )) ∂ν + ∂((ζ i e j )) ∂ ν = -(λ -λ)∇.(ζ i e j )N -(µ -µ) (ζ i e j ) ∂N .
By a closely approach used to prove Theorem 3.1 in [START_REF] Ammari | A method of biological tissues elasticity reconstruction using magnetic resonance elastography measurements[END_REF], one can prove that

vpq = lim λ, λ→∞ (w pq -δ pq /d k w kk ).
Then, the proof is achieved by using (43) and expending

[m pq ij -δ ij /d d k=1 m pq kk = ( µ -µ) D ∇w pq .[∇.(ζ i e j -δ ij d(ζ)) + ∇.(ζ j e i -δ ij d(ζ)) T ].

Proof of the Theorem 2.1

Regarding Section 3.2, we can easily write that,

∂ ∂t (φ(x)) = ∇φ(x)X (t) = ∂φ ∂t (x). (46) 
Then, the following result easily holds.

Lemma 3.3. Suppose that we have all hypothesis of Theorem 2.1. Using Section 3.2, then the following holds:

div(σ 0 D(φ(x))) = 1 2 µ 0 div(∇φ(x) + (∇φ) (x)) = 1 2 µ 0 ∇∇φ(x)n(x)n(x) + ∇∇φ(x)τ (x)τ (x) + ∇(∇φ) (x)n(x)n(x) + ∇(∇φ) (x)τ (x)τ (x) .
Using relation (46), we get that

div(σ 0 D(φ(x))) = 1 2 µ 0 ∇∇φ(x)n(x)n(x) + ∇(∇φ(x)) n(x)n(x) + 1 2 ∂ ∂t σ 0 D(φ(x) τ (x) = 1 2 µ 0 ∇∇φ(x)n(x)n(x) + ∇(∇φ) )(x)n(x)n(x) -κ(x) σ 0 D(φ(x)) n(x) + ∂ ∂t σ 0 D(φ(x))τ (x) x ∈ ∂D.
Next, regarding Section 3.2, for

x = x + δh(x)ν(x) ∈ ∂D δ , ν( x) = ∞ m=0 δ m ν m (x), x ∈ ∂D ν 0 (x) = n(x), n 1 (x) = -h (x)τ (x), x ∈ ∂D.
Consequently, the following Taylor expansion holds:

H(x + δh(x)n(x)) = H(x) + δh(x) ∂H ∂n (x) + o(δ 2 ), x ∈ ∂D. (47) 
On the other hand, taking into account relation [START_REF] Ammari | Reconstruction of closely spaced small inclusions[END_REF], we get:

∂H ∂ν ( x) = µ 0 ∂H ∂n (x) -p n( x) = µ 0 ∇H( x) + (∇H) ( x) n( x) -p n( x) = µ 0 ∇H(x)n(x) + δh(x)∇∇H(x)n(x) + δh(x)∇(∇H) (x)n(x) +(∇H) (x)n(x) + δh(x)∇(∇H) (x)n(x) + δh(x)(∇(∇H) ) (x)n(x) n(x) -p n( x) = µ 0 ∇H(x)n(x) + δh(x)∇∇H(x)n(x) + (∇H) (x)n(x) + δh(x)∇(∇H) (x)n(x) n(x) -µ 0 δh (x) ∇H(x)τ (x) + (∇H) (x)τ (x) -p n(x) + δh (x)p τ (x) = ∂H ∂ν (x) -2δh σ 0 D(H)(x)τ (x) + δh (x)p τ (x) + µ 0 δh(x) ∇∇H(x)n(x)n(x) + ∇(∇H) (x)n(x)n(x) .
Then, by Lemma 3.3, we immediately get

∂H ∂ν ( x) = ∂H ∂ν (x) -δh 2σ 0 D(H)(x)τ (x) -p τ (x) + δh(x) 2div(σ 0 D(H(x)) + 2κ(x)(σ 0 D(H(x)))n(x) -2 ∂ ∂t (σ 0 D(φ(x))τ (x))) + o(δ 2 ) = ∂H ∂ν (x) + δh p τ (x) + δh(x) 2div(σ 0 D(H(x)) + 2κ(x)(σ 0 D(H(x)))n(x) -δ ∂ ∂t (2h(x)σ 0 D(φ(x))τ (x))) + o(δ 2 ) = ∂H ∂ν + δh(x)(div(σ 0 D(φ(x)) + κ(x)(σ 0 D(φ(x)))n(x) -δ ∂ ∂t (hσ 0 D(φ(x))τ (x)))) + o(δ 2 ), x ∈ ∂D.
Next, one can easily see that -div(σ 0 D(v 1 )-p 1 Id) = 0 in Ω\D and -div(σ 1 D(v 1 )-p 1 Id) = 0 in D. This may be seen if we introduce the asymptotic expansion of v δ with respect to δ → 0 into the transmission problem [START_REF] Daveau | Asymptotic behaviors for eigenvalues and eigenfunctions associated to Stokes operator in the presence of small boundary perturbations[END_REF].

On the other hand, we may write:

v i 1 -v e 1 = -S D [ϕ (1) ] + S D [κhϕ] -D D [hϕ] + S D [ψ (1) ] -S D [κhψ] + D D [hψ]. (48) 
Using relation (39), we get

v i 1 -v e 1 = h ∂H ∂n + S (1) 
D [ϕ] -S (1) 
D [ψ] + S D [κhϕ] -S D [κhψ] -D D [hϕ] + D D [hψ].
But, by (42), we have

v i 1 -v e 1 = h( ∂H ∂n + ∂S D [ϕ] ∂n | + - ∂ S D [ψ] ∂n | -),
and so, by (35) we find that

v i 1 -v e 1 = h(∇v e n -∇v i n) = 0.
To proceed with the proof, we may expand

∂v 1 ∂ν | -- ∂v 1 ∂ν | + = - ∂S D [ϕ (1) ] ∂ν | + + ∂S D [κhϕ] ∂ν | + - ∂D D [hϕ] ∂ν | + + ∂ S D [ψ (1) ] ∂ν | - = - ∂ S D [κhψ] ∂ν | -+ ∂ D D [hψ] ∂ν | -.
Inserting relation (39) into previous equality, we immediately obtain:

∂v 1 ∂ν | -- ∂v 1 ∂ν | + = κh ∂H ∂ν - ∂ ∂τ (hσ 0 (D(H))τ ) -K (1) 
D [ψ] + K (1) D [ϕ] + ∂S D [κhϕ] ∂ν | + - ∂ S D [κhψ] ∂ν | - + ∂ D D [hψ] ∂ν | -- ∂D D [hϕ] ∂ν | + .
Finally, relations (48) and ( 25)-(26) imply that,

∂v 1 ∂ν | -- ∂v 1 ∂ν | + = ∂ ∂τ (hσ 1 (D(v i ))τ ) - ∂ ∂τ (hσ 0 (D(v e ))τ ) = ∂ ∂τ (h[σ 1 -M 0,1 ](D(v i ))τ ),
and the proof can be easily obtained.

Proof of the Theorem 2.2

Let v and v δ be the solutions to ( 6) and ( 10),respectively and let v 1 be the unique solution of (13).

Let Ω be a bounded region outside the inclusion D and away from ∂D. For x ∈ Ω, the following pointwise asymptotic expansion holds:

∂v δ ∂ν (x) = ∂v ∂ν (x) + δ ∂v 1 ∂ν (x) + O(δ 2 ), (49) 
where the remainder O(δ 2 ) depends only on λ 0 , λ 1 , µ 0 , µ 1 , the C 2 -norm of X, the C 2 -norm of h, and dist(Ω, ∂D).

Let S be a Lipschitz closed curve enclosing D away from ∂D and let u be the solution to (15). As we done in [START_REF] Boujemaa | Small perturbation of a surface: full Maxwells equations[END_REF], and by integration by parts one may combine both relations 11) and (49) to get that,

S (v δ -v). ∂F ∂ν dσ - S ( ∂v δ ∂ν - ∂v ∂ν ).F dσ = δ S (v 1 . ∂u ∂ν - ∂v 1 ∂ν .u)dσ + O(δ 2 ) = δ S ( ∂u e ∂ν .v e 1 -u e . ∂v e 1 ∂ν )dσ + O(δ 2 ).
Taking into account relation [START_REF] Brühl | A direct impedance tomography algorithm for locating small inhomogeneities[END_REF], we immediately get

S (v δ -v). ∂F ∂ν dσ - S ( ∂v δ ∂ν - ∂v ∂ν ).F dσ = δ ∂D ( ∂u i ∂ ν .v i 1 -u i . ∂v i 1 ∂ ν )dσ =0 + ∂D ∂ ∂τ (h([σ 1 -M 0,1 ]D(v i ))τ ).u i dσ + O(δ 2 ) = -δ ∂D (h([σ 1 -M 0,1 ]D(v i ))τ ).∇u i τ dσ + O(δ 2 ) = -δ ∂D (h([σ 1 -M 0,1 ]D(v i ))τ ).D(u i )τ dσ + O(δ 2 )
which achieves the proof.

Proof of the Theorem 2.3

To prove Theorem 3, we may firstly introduce the notion of the viscosity moment tensors (VMTs) associated with the inclusion D as follows (see for example [START_REF] Ammari | Reconstruction of Small Inhomogeneities from Boundary Measurements[END_REF][START_REF] Ammari | Effective viscosity properties of dilute suspensions of arbitrarily shaped particles[END_REF][START_REF] Lagha | Small perturbations of an interface for elastostatic problems[END_REF]):

For multi-index α ∈ N 2 and j = 1, 2, let the pair (f j α , g j α ) ∈ (L 2 (∂D)) 2 be the unique solution (as seen for ( 49)) to:

S D [f j α ] | --S D [g j α ] | + = x α e j on ∂D, ∂ S D [f j α ] ∂ν | -- ∂S D [g j α ] ∂ν | + = ∂(x α ej ) ∂ν on ∂D. (50) 
For some multi-index β ∈ N 2 , the VMTs denoted by M = (M j αβ ) j,αβ are defined by: M j αβ = (m j αβ,1 , m j αβ,2 ) := ∂D y β g j α (y)dσ(y).

(51)

One can see [START_REF] Ammari | A method of biological tissues elasticity reconstruction using magnetic resonance elastography measurements[END_REF] for more details about this definition. Moreover, we recall the readers that similar relations as (51) was introduced before for generalized polarization tensors GPTs in [START_REF] Ammari | The generalized polarization tensors for resolved imaging. Part I: Shape reconstruction of a conductivity inclusion[END_REF][START_REF] Khelifi | Boundary voltage perturbations resulting from small surface changes of a conductivity inclusion[END_REF] and for elastic moments tensors EMTs in [START_REF] Lagha | Small perturbations of an interface for elastostatic problems[END_REF]. 

where ϕ was defined in (37). But the perturbed m j αβk (D δ ) is given by: 

where ϕ δ was defined in (34).

By relation [START_REF] Ammari | Conductivity interface problems. Part I: small perturbations of an interface[END_REF] and by Taylor expansion (as δ → 0), we can write: G(ỹ) = F(y + δh(y)n(y)) = F(y) + δh(y) ∂F ∂n (y) + O(δ 2 ); y ∈ ∂D.

To prove the asymptotic behavior of αβjk a α j b β k m j αβk (D δ ) (as δ → 0), we may use also (53) and the fact that ϕ δ (ỹ) = F(y + δh(y)n(y)) = ϕ(y) + δh(y)ϕ (1) (y) + O(δ 2 ); y ∈ ∂D, where ϕ (1) was defined in (48). Using the asymptotic expansion of dσ δ (ỹ) given in Section 3.2, then by change of variables ỹ = y + δh(y)n(y), we use (53) to immediately obtain: Analyzing each part of the left hand side of (55) one can find by using (15), Proposition 2 and ( 14) that: Then the proof can be deduced easily.

∂DK

  (x -y)ϕ(y)dσ(y) a.e. x ∈ ∂D, and K * D is the adjoint operator of K D . 3.2 Small perturbation of a C 1,1 -interface Let a, b ∈ R, with a < b, and let X(t) : [a, b] → R 2 be the arclength parametrization of ∂D, namely, X is an C 2 -function satisfying |X (t)| = 1 for all t ∈ [a, b] and

  where for ζ ∈ R d , we define d(ζ) := 1/d k ζ k e k and vpq be the solution to

Now let H = 2 j=1 α∈N 2 a α j x α e j and F = 2 k=1 β∈N 2 bF

 222 β k x β e k satisfying -div(σ 0 D(•) -q Id) = 0 in R d .The VMTs m j αβk (D) associated with D satisfy: (y)ϕ(y)dσ(y),

F

  (ỹ)ϕ δ (ỹ)dσ δ (ỹ),

F • ϕ ( 1 )

 1 ϕ(y) + δh(y)ϕ(1) (y) 1 -δτ h dσ + O(δ 2 ).(54) Thus,αβjk a α j b β k m j αβk (D δ )αβjk a α j b β k m j αβk (D) = δ ∂D h(y) ∂F ∂n (y)ϕ(y)dσ(y) +δ ∂D (y) -τ hϕ(y) dσ(y) + O(δ 2 ).On the other hand, using Proposition 1, we can write∂D F • ϕ (1) (y) -τ hϕ(y) dσ(y) = -∂D F • ∂S D [ϕ (1) (y) -τ hϕ(y)] ∂ν | -(55)-∂S D [ϕ(1) (y) -τ hϕ(y)] ∂ν | + dσ(y).

∂DF • ϕ ( 1 )

 1 (y) -τ hϕ(y) dσ(y) = ∂D h(([σ 1 -M 0,1 ]D(v i ))τ.D(u i )τ )dσ.
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