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Summary 

Influenza epidemics are monitored using influenza-like illness (ILI) data reported by health-care professionals. 

Timely detection of the onset of epidemics is often performed by applying a statistical method on weekly ILI 

incidence estimates with a large range of methods used worldwide. However, performance evaluation and 

comparison of these algorithms is hindered by: 1) the absence of a gold standard regarding influenza epidemic 

periods and 2) the absence of consensual evaluation criteria. As of now, performance evaluations metrics are based 

only on sensitivity, specificity and timeliness of detection, which definitions are not clear for time repeated 

measurements such as weekly epidemic detection. We aimed to evaluate several epidemic detection methods by 

comparing their alerts to a gold standard determined by international expert consensus. We introduced new 

performance metrics that meet important objective of influenza surveillance in temperate countries: to detect 

accurately the start of the single epidemic period each year. Evaluations are presented using ILI incidence in France 

between 1995 and 2011. We found that the two performance metrics defined allowed discrimination between 

epidemic detection methods. In the context of performance detection evaluation, others metrics than the standard 

commonly used could better achieve the needs of real-time influenza surveillance. 
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Background 

The yearly global impact of seasonal influenza epidemics has been estimated about 1 billion symptomatic cases, 

3 to 5 million severe cases and 250 to 500 thousands of deaths [1]. The duration, severity and geographical spread 

of influenza activity vary widely from one season to another depending on several factors such as rapid mutating 

viral strains, sensitivity of the population or climatic factors [2, 3]. Early detection of the start of seasonal epidemics 

is needed to inform public health authorities in order to implement necessary control measures. Moreover, 

monitoring influenza epidemics allows analysis about changes in trends, estimation of the global impact on 

populations and year-to-year comparisons.  

The dynamics of influenza epidemics in the general population is monitored using primary care data collected by 

surveillance networks of health-care professionals who report the number of influenza-like illness (ILI) cases seen 

among their patients following a specific definition [4]. However, only a portion of ILI cases are due to influenza 

virus infection [5], thus statistical methods have to be used to determine the influenza epidemic onset from this 

non-specific data.  

A wide variety of statistical methods have been proposed to detect seasonal influenza epidemics based on ILI 

incidence time series [6] such as regression models [7, 8], hidden Markov models (HMM) [9] and more recently 

the moving epidemic method (MEM) [10]. However, the evaluation of these methods is hindered by the absence 

of a gold standard regarding true influenza epidemics periods [6]. Performances of these methods have often been 

evaluated based from the results of other detection methods [6], using standard epidemiological metrics as 

sensitivity, specificity, positive predictive value, etc. [6, 11-13] with different definitions [14]. 

An accurate detection method would be able to detect precisely, i.e. with the smallest detection time, each season 

the whole single epidemic period, and particularly the start, which allowed alerting public health authorities and 

population. 

In France, gold standard for seasonal influenza epidemics periods has been previously determined based on an 

international expert’s consensus using the Delphi method [15]. This allowed identifying the start and end of 

epidemics using estimated ILI incidences and virological data in primary care. 

We propose here to evaluate some common epidemic statistical detection methods by comparing their results to 

the gold standard determined by this expert consensus [15]. We defined performance metrics according to the 

monitoring objectives to seek for a global view of the detection methods properties. 
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Methods 

Influenza surveillance data 

ILI incidence rates were obtained from the Sentinelles network, a nationwide epidemiological surveillance system 

based on voluntary general practitioners (GP) in France [16, 17]. Sentinel GPs reported on a weekly basis the 

number of ILI cases seen among their patients, using the following definition: “sudden onset of fever >39°C 

(102°F) with respiratory signs and myalgia”, allowing estimation of weekly ILI incidence rates [18, 19]. 

Gold standard for influenza epidemic periods 

The gold standard for influenza epidemic periods in France were determined by a Delphi method described in 

Debin et al. [15]. More precisely, 57 experts determined yearly influenza epidemics periods from 1985/86 to 

2010/11 using a web interface. For each season, virological results and estimated ILI incidence rates (from 

Sentinelles network) were presented, the experts were asked to determine the beginning and ending dates of each 

epidemic. In a second round, the same data were presented; adding histograms with the distribution of responses 

for start and end dates given by all experts on the previous round. A third final round was proposed for seasons 

when at least 25% of experts changed their responses between the first and the second round. The consensus of 

start and end dates for each season was then determined by the mode of the response, after removal of 5% of 

extreme responses on each side. Results for seasons between 1995/96 and 2010/11 are presented in Figure 1 along 

with estimates of ILI incidence rates from the Sentinelles network. 

Epidemic detection methods 

Four detection methods were evaluated: a periodic regression [7, 20], a robust regression [8], the MEM [10] and 

a HMM [9]. For each method, several values for the tuning parameters were chosen for calibration (Table 1). The 

common parameter of these four methods is the length of the learning period involved: the number of past 

observations (or past seasons for the MEM) provided to perform detection at a given point of time (called “learning 

size” further). For this parameter, we tested 4 values: 3 years, 5 years, 10 years and the whole available historical 

data at each time point. 

The periodic regression for epidemic detection is a widely used approach from Serfling's work on influenza [7]. 

To sum up, it is based on a regression model which fits non-epidemic data to predict non-epidemic baseline. The 

epidemic threshold is defined by an upper percentile of the prediction distribution (here the 90th percentile [21]). 
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In our evaluation, to prune the data, we removed values in the learning period over a given value (cut-off) that was 

either a fixed value or one determined from the learning data using a given percentile. To fit the model, we used 

the following regression equation: 
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where It is the incidence on week t, t being the week index and ε୲ the residuals.  

The robust regression is an alternative to periodic regression described above where all time serie is considered. 

Data pruning is done by assigning less weight to outliers, computed by a dedicated estimator [22, 23]. We used 

the same regression equation and the same definition of epidemic threshold as for periodic regression described 

above. 

The MEM is implemented by steps: epidemic periods are first determined using historical time series, then 

epidemic thresholds are calculated using epidemic periods defined [10]. An extra parameter δ must be specified, 

corresponding to the minimum increment percentage used to find the optimum epidemic duration [10].  

Hidden Markov Models were also used for monitoring such time series. A two-state HMM is applied on incidence 

time series, assuming that these observations are generated from a mixture of Gaussian distributions [9]. 

In what follows, we will call “detector” a method used with a given set of fixed parameters. Each detector was 

applied on ILI incidence rate time series to detect epidemic period in a prospective way (e.g. as it would be applied 

in real-time). Each week, the detector is run only on the data available up to this week.  

Epidemic periods generated by detectors are triggered as soon as two consecutive weekly ILI incidence were above 

the threshold [20, 24, 25] (or classified in “alarm state” for HMM). Moreover, two consecutive ILI observations 

below the threshold (or classified as “no alarm state” for HMM) were required to determine the end of an epidemic. 

All weeks inside an epidemic period are classified “on alert” for the detector. 

Detection performance 

The performance evaluation of each detector was carried out on the period 1995-2011, which included 15 seasonal 

influenza epidemics and the 2009/10 pandemic. Evaluating the performance of a detector required calculating a 

number of measures that are in keeping with the objectives of detection. We computed two sets of metrics: 1) 

“Weekly detection” metrics, which are based on weekly alerts determined by the detector and 2) “Epidemic period 

detection” metrics, which are focused on detecting the epidemic period as a whole. 
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For both approaches, we assumed the true state (epidemic or non-epidemic) of a given week was informed by our 

gold standard - states were called True and False. States in the evaluated detector (“on alert” or “without alert”) 

were called Positive and Negative. 

Weekly detection metrics 

We defined the number of weeks correctly classified by the detector as “true positive” (TP), respectively 

incorrectly classified as “false positive” (FP); the correctly classified as non-epidemic as “true negative” (TN), 

respectively the incorrectly as the “false negative” (FN). 

Evaluation measures were then defined as: 

Sensitivity = TP / (TP + FN) 

Specificity = TN / (TN+FP) 

We also defined positive predictive value as PPV = TP / (TP + FP) and negative predictive value as NPV = TN / 

(TN + FN). 

These metrics were computed for the whole evaluated period: from ISO week 26 of 1995 to ISO week 25 of 2011, 

being 835 weeks. 

Epidemic period detection metrics 

This second evaluation approach focused on the ability of the detector in identifying the start week of each 

epidemic, and gives less importance to the correct detection of subsequent epidemic weeks. It stems from the 

reality that, for the management of seasonal influenza epidemics, public health authorities need accurate and timely 

information about the epidemic start, less so about the epidemic state of each subsequent week as the epidemic 

unfolds time period detection [26].  

As proposed by Tsui et al. [26], we defined for each epidemic a “target” window that consist of the epidemic 

starting week and its two adjacent weeks (one before and one after) from the gold standard. Then, we considered 

that a detector correctly detected the start of the epidemic if the start of the first epidemic period detected during 

the season is in this target window. The associated evaluation metric, called Detectedstart, was defined as the 

proportion of epidemic starts correctly detected. 

We also defined the Timeliness as the mean number of weeks between the first epidemic week in the gold standard 

and the beginning of the first epidemic period identified by the detector for all the epidemics studied. 
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Finally, we defined Multipledetect which is the number of seasons where the detector identified more than one 

epidemic period. 

Metrics comparisons between detectors 

The most desirable detector might detect only one epidemic period per season [24], have maximum DetectedStart, 

Sensitivity and Specificity values, and Timeliness close to zero [6, 8, 27]. We prioritized metrics in the evaluation, 

whenever possible; we selected 1) Multipledetect equal to zero, 2) DetectedStart maximal and 3) compromise 

between high Sensitivity and high Specificity. 

For periodic regression and MEM, the impact of the parameters values on the detection performance was studied 

using linear regression.  

Uncertainty about the metrics point estimates was assessed by bootstrapping. The 16 influenza seasons included 

in the evaluation were resampled with replacement (N=1000). The bootstrap distributions obtained for each 

metrics allowed estimation of 95% confidence intervals using the 2.5% and 97.5% percentiles. Then, we used 

paired Student's t-test to compare bootstrap metrics values between detectors. 

Results 

All the 304 detectors studied (184 periodic regression models, 112 MEM, 4 HMM and 4 robust regression models) 

detected at least one epidemic period during each of the 16 studied influenza seasons (from 1995/96 to 2010/11). 

Link between metrics 

Link between DetectedStart and Specificity, Sensitivity or Timeliness is a bell-shaped trajectory, with maximal 

values of DetectedStart for Sensitivity between 0.80 and 0.94, Specificity between 0.96 and 0.99 and Timeliness 

between -1.3 and +0.3 weeks (Figure 2). DetectedStart was maximal when Multipledetect was minimal. 

Multipledetect was equal to zero for a high Specificity and a moderate to high Sensitivity (under 0.954). When 

Timeliness was close to zero (between -0.5 and 0.5), Sensitivity was between 0.69 and 0.92 and Specificity 

between 0.97 and 0.99. 

Intra-evaluation - by method 
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Periodic Regression 

Over the 184 detectors evaluated using periodic regression method, the prune parameter was the most influential 

on detection metrics. Increasing the pruning level made the Sensitivity and Multipledetect decreased; the 

Specificity and Timeliness increased. Regarding the Detectedstart metric, the relation with the prune parameter was 

no linear. Indeed, Detectedstart was minimal (0.375) for extreme values of prune parameters and maximal (0.875) 

for 36 detectors (cut-off between 160 and 250, percentile between 0.84 and 0.87). 

Among the 184 detectors studied, 8 achieved the highest DetectedStart value (0.875) and did not detect several 

epidemics within the same season. Among them, the detector with the highest values for Sensitivity and Specificity 

was parametrized with a percentile of 0.86 and a maximum learning size period (Sensitivity = 0.874, Specificity 

= 0.985, Timeliness = -0.2 weeks, PPV = 0.958 and NPV = 0.962).  

Robust regression 

For robust regression method, among the 4 detectors compared, metrics were often better when the learning size 

included all available historic data, except for Sensitivity for which a 10 years learning size lead to a slightly higher 

value (0.80 vs. 0.79). All detectors have at least one multiple epidemic detection within a season (seasons 1995/96 

and 2000/01).  

Robust regression method parameterised with the largest learning size achieved a DetectedStart equal to 0.750, 

Timeliness to 0.1 weeks, Sensitivity to 0.791 and Specificity to 0.985. During the 2000/01 epidemic, the detector 

identified two epidemic periods: a first of two weeks between weeks 50 and 52 year 2000 and a second between 

weeks 03 and 07 year 2001. For this detector, PPV was 0.959 and NPV was 0.941. 

Moving Epidemic Method 

With the MEM, both the delta parameter and the learning size affected metrics values, excepted Multipledetect. 

Increasing the delta value led to lower Detectedstart, Sensitivity and higher Timeliness and Specificity. Conversely, 

higher learning size lead to higher Specificity, Timeliness and lower Sensitivity and Detectedstart. 

Twelve detectors achieved a maximal DetectedStart (0.875) with no multiple epidemics detected within the same 

season. These detectors were parameterised with a maximal learning size and a delta value between 1.5 and 1.9, 

or a learning size equal to 10 years and a delta value between 2.2 and 2.8. Among these detectors, Timeliness was 

close to zero (between -0.3 and 0 weeks). Sensitivity was more variable (0.83 to 0.92) than Specificity (0.98 to 
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0.99). The best comprise was MEM parameterized with delta value of 1.5 and whole learning period (Sensitivity 

= 0.919, Specificity = 0.976, Timeliness = -0.3 weeks, PPV = 0.926, NPV = 0.976). 

Hidden Markov model 

Among the four detectors parameterized with HMM method, larger learning size led to higher Sensitivity, lower 

Specificity and Detectedstart. Only one detector had the best DetectedStart value (0.500) with no multiple season 

detections. It was parameterized with a learning size is fixed to 3 years (Sensitivity = 0.946, Specificity = 0.914, 

Timeliness = -1.1 weeks, PPV = 0.791, NPV = 0.983) 

Inter-evaluation: comparison between methods 

Among the four detectors identified in the intra-evaluation (Table 2), only robust regression had a multiple 

epidemic detection (two epidemic periods detected during influenza season 2000/01). Compared with HMM, 

DetectedStart values were higher for MEM and periodic regression method (p<1.10-6). Considering these two 

detectors, we did not highlight differences for DetectedStart (p=0.77), but the periodic regression led to higher 

Specificity and lower Sensitivity than the MEM (p<1.10-6).  

Discussion  

We compared performances of several epidemic detection methods and parameterizations for real-time influenza 

surveillance based on a gold standard determined by an expert consensus [15]. Performance metrics defined here 

allowed identification of methods able to detect accurately the start of the single epidemic period for each influenza 

season. The final choice of exact statistical method parameterization depends on the wishes of public health 

authorities in terms of sensitivity and specificity especially. 

Although statistical measures of performances of a classification function are enough consensual - such as 

sensitivity and specificity, in the case of the detection method evaluation based on a repeated classification function 

over time - the definition of these measures is less clear [14]. Cowling et al. [6] proposed a definition of sensitivity 

“whether there was at least one alarm during the peak season”, allowing a sensitivity equal to 1 for methods which 

were able to detect for example only the peak of the epidemic. Moreover, the specificity defined by Cowling et al. 

[6] involved values which are dependant of the epidemic duration. ROC curves, combining sensitivity and 

specificity, were sometimes used to compare detection methods [28], but they ignored the detection timeliness, 

which is of paramount importance in practice. We feel that a metric such as DetectedStart, addresses best what is 
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expected in practice from an epidemic detection method: identifying the epidemic start “not too early and not too 

late”, as the detection of the epidemic ending is a lesser issue for real-time surveillance. Moreover, as influenza 

epidemics occur once a year in temperate areas [24], a second metric was used (Multipledetect) to ensure ability 

of the method to detect only one epidemic period during the season (from September year n to August year n+1). 

In addition to new metrics defined here, standard metrics commonly used such as sensitivity and specificity [6, 

20], were also computed. The link between DetectedStart and these two metrics was non-linear allowing the 

selection of detectors achieving a compromise between high values of sensitivity and high values of specificity. In 

addition, by definition, high DetectedStart values lead to Timeliness close to zero. Indeed, DetectedStart allowed in 

one metric, identification of the most desirable method, with high sensitivity and specificity, and timeliness close 

to zero [8, 27]. 

The choice of the best method depends on the details of the application, implementation and context of surveillance 

[11]. Among all method studied here, we observed that HMM is more sensitive and less specific; conversely, 

robust periodic regression is more specific and less sensitive in comparison to other detectors studied. MEM and 

periodic regression are more able to be parametrized (delta, cut-off, learning size) involving a more difficult choice 

for implementation which requires us to test a large number of detectors compared to the two others methods. 

Overall, we observed that the consideration of all the historical data led to better metrics values.  

Epidemic detection methods were applied to ILI incidence time series. According to the chosen ILI definition, 

specificity for influenza could vary [5] as others respiratory pathogens which also circulating during autumn and 

winter can cause very similar illness [29]. Virological confirmation of these ILI cases allows estimating the real 

number of influenza symptomatic cases and would tend to improve epidemic detection. However, laboratory 

surveillance is not always part of routine surveillance. When data are available, reporting delay is observed and 

methods, practices and sample size may vary by country [10]. This suggests that detection methods based on 

clinical data could be a more practical choice. However, when proper virological data is collected along with 

clinical cases, it should be taken into account to confirm that increasing incidence is largely due to influenza 

viruses. 

Our study was limited by the statistical methods for influenza epidemic detection here compared.  

All methods are based only on ILI incidence time series. Assimilation of laboratory-confirmed influenza 

surveillance data and ILI time series in a same detection method may improve performance. However, definition 

of ILI used by the French Sentinelles network is very specific [5], allowing estimation of ILI incidence close to 
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influenza confirmed incidence. Moreover, the methods did not consider spatial information that is often available 

in influenza surveillance, such as ILI incidence by region. The incorporation of spatial data in statistical models 

holds the promise of improved sensitivity, timeliness of detection, and possibly specificity [14]. Finally, we did 

not explore voting algorithm which could combine several detectors.  

The metrics presented here allowed to measure ability of statistical epidemic detection methods to detect precisely 

the beginning of the single epidemic period by year with the smallest detection time. Their implementation on ILI 

incidence data from primary care surveillance network could improve influenza surveillance by providing accurate 

epidemic alerts for public health authorities and population. 
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Tables 

Table 1. Methods and parameter combinations used for detectors parameterisation 

Method Parameter Description Values 

Periodic 

regression 

Learning size Size of the learning period 3y, 5y, 10y, all a 

Prune Cut-off value 80 to 320 by 10 

Percentile  0.7 to 0.9 by 0.01 

Robust 

regression 

Learning size Size of the learning period 3y, 5y, 10y, all a 

Moving 

epidemic 

method 

Learning size Size of the learning period 3y, 5y, 10y, all a 

 
Delta Minimum increment percentage to find 

the optimum epidemic duration 

1.3 to 4.0 by 0.1 

Hidden Markov 

model 

Learning size Size of the learning period 3y, 5y, 10y, all a 

a Considering all available historical data at each point 
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Table 2. Metrics values and 95% confidence intervals for the best detector identified for each method tested, 

influenza epidemics from 1995/96 to 2010/11, France.  

Detector Multipledetect 
DetectStart 

(95%CI) 

Timeliness in 

weeks  

(mean (95%CI))  

Sensitivity 

(95%CI) 

Specificity 

(95%CI) 

PPV 

(95%CI) 

NPV 

(95%CI) 

Periodic 

regression 

(percentile 

= 0.86; all 

learning 

size) 

0 0.875 

(0.688,1) 

-0.2 

(-0.2,0.5) 

0.874 

(0.832,0.912) 

0.985 

(0.960,1) 

0.958 

(0.897,1.000) 

0.962 

(0.948,0.975) 

Robust 

regression 

(all 

learning 

size) 

1 a 0.750 

(0.500,0.938) 

0.1 

(-1.0,1.0) 

0.791 

(0.748,0.852) 

0.985 

(0.960,1.000) 

0.959 

(0.895,1.000) 

0.941 

(0.928,0.960) 

MEM  

(delta=1.5; 

all learning 

size) 

0 0.875  

(0.688,1) 

-0.3 

(-1.4,0.5) 

0.919 

(0.880,0.952) 

0.976 

(0.954,0.994) 

0.926 

(0.871,0.975) 

0.976 

(0.963,0.986) 

HMM  

(3 years 

learning 

size) 

0 0.500 

(0.250,0.750) 

-1.1 

(-2.8,0.1) 

0.946 

(0.899,0.985) 

0.914 

(0.873,0.953) 

0.791 

(0.711,0.872) 

0.983 

(0.969,0.995) 

 

PPV : Positive predictive value ; NPV : negative predictive value 

a Two epidemic periods were detected during the 2000/01 season (2000w50 to 2000w52 and 2001w03 to 

2001w07) 

 


