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Abstract

We study the fundamental limits to the expressive power of neural networks.
Given two sets F , G of real-valued functions, we first prove a general lower bound
on how well functions in F can be approximated in Lp(µ) norm by functions in
G, for any p ≥ 1 and any probability measure µ. The lower bound depends on
the packing number of F , the range of F , and the fat-shattering dimension of G.
We then instantiate this bound to the case where G corresponds to a piecewise-
polynomial feed-forward neural network, and describe in details the application
to two sets F : Hölder balls and multivariate monotonic functions. Beside match-
ing (known or new) upper bounds up to log factors, our lower bounds shed some
light on the similarities or differences between approximation in Lp norm or in
sup norm, solving an open question by DeVore et al. [DHP21]. Our proof strategy
differs from the sup norm case and uses a key probability result of Mendelson
[Men02].

1 Introduction

Neural networks are known for their great expressive power: in classification, they can interpo-
late arbitrary labels [ZBH+21], while in regression they have universal approximation properties
[Cyb89, Hor91, LLPS93, KL20], with approximation rates that can outperform those of linear ap-
proximation methods [Yar18, DHP21]. Though the approximation problem is often only one part
of the underlying learning problem (where generalization and optimization properties are also at
stake), understanding the fundamental limits to the approximation properties of neural networks is
key, both conceptually and for practical issues such as designing the right network architecture for
the right problem.

Setting and related works. One way to quantify the expressive power of neural networks is
through the following problem (some informal statements will be made more precise in the next
sections). Let G be the set of all functions gw : X ⊂ R

d → R that can be represented by tuning the
weights w ∈ RW of a feed-forward neural network with a fixed architecture, and let F be any set of
real-valued functions on X . A natural question is: how well can functions f ∈ F be approximated
by functions gw ∈ G? More precisely, given a norm ‖·‖ on functions, what is the order of magnitude
of the (worst-case) approximation error of F by G defined by

sup
f∈F

inf
gw∈G

‖f − gw‖ , (1)
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and how small can it be given the numbers W , L of weights and layers, and some properties of F ?

Lower bounds on the approximation error (1) can be useful in several ways. They provide a limit to
the best approximation accuracy that one can hope to achieve if the number of weights or layers of
the network is constrained, and help design optimal architectures under these constraints. They also
imply a lower bound on the minimal number of weights or layers to include in a network in order to
approximate any function in F with a given accuracy ε.

The case when ‖·‖ is the sup norm (defined by ‖f‖∞ = supx∈X |f(x)|) is rather well understood at
least in some special cases. For example, whenF is a Hölder ball of smoothness s > 0 (a.k.a. Hölder
exponent) and the network uses the ReLU activation function, Yarotsky [Yar17] derived a lower
bound on (1) of the order of W−2s/d, later refined to (LW )−s/d (up to log factors) by [Yar18, YZ20]
when the depth of the network varies from L = 1 to L ≈ W . Using the bit extraction technique,
these authors showed that these lower bounds are achievable (up to log factors) with a carefully
designed ReLU network architecture. Refined results in terms of width and depth were obtained by
[SYZ22] when s ≤ 1, while some other activation functions were also studied in [YZ20].

In this paper, we study (1) with the Lp(µ) norm, defined by ‖f‖Lp(µ) =
(∫

X
|f(x)|pdµ(x)

)1/p
,

for 1 ≤ p < +∞ and some probability measure µ on X . There is a qualitative difference between
measuring the error in sup norm or in Lp(µ) norm, p < +∞. In the former case, the error is
small only if the approximation is good over the whole domain. In the latter case, the error can
be small even if the approximation is inaccurate over a small portion of the domain. Since the
Lp(µ) approximation problem corresponds to approximating functions in F in a more “average”
sense than in sup norm, a natural question is whether the same accuracy can be achieved with a
smaller network or not. Unfortunately, however, the proof strategies behind the lower bounds of
[Yar17, Yar18, YZ20, SYZ22] are specific to the sup norm (see Remark 1 in Section 3 for details).
DeVore et al. [DHP21] indeed commented: “When we move to the case p < ∞, the situation is
even less clear [...] we cannot use the VC dimension theory for Lp(Ω) approximation. [...] What
is missing vis-à-vis Problem 8.13 is what the best bounds are and how we prove lower bounds for
approximation rates in Lp(Ω), p 6= ∞.”

Existing lower bounds in Lp(µ) norm. Several papers provided lower bounds in some special
cases, under some restrictions on the set to approximate F , the neural network, the approximation
metric, or the encoding map f ∈ F 7→ w(f) ∈ RW .

When F is a space of smoothness s, a first result which is based on [DHM89] states that when im-
posing the weights to depend continuously on the function to be approximated, one can not achieve
a better approximation rate than W− s

d .

For the same F , another result for p = 2 and for activation functions which are continuous ([Mai99,
MMR99]) proves a lower bound on the approximation of functions of smoothness s on a compact
of Rd, by one hidden-layer neural networks, of order W− s

d−1 . A matching upper bound is proven
for a particular activation function, which is sigmoidal but pathological ([MP99]). For this same
activation function, they prove that contrary to the one-hidden-layer case, there is no lower bound in
the case of two-hidden-layer networks. The result is based on the Kolmogorov-Arnold superposition
theorem.

In [SX21], the authors study approximation by shallow neural networks with bounded weights and
activations of the form ReLUk for an integer k. They approximate the closure of the convex hull
of shallow ReLUk-neural networks with constrained weights. They obtain optimal lower bounds
of order W− 1

2−
2k+1
2d in any norm ‖ · ‖X , where X is a Banach space to which the approximation

functions belong and such that these functions are uniformly bounded w.r.t. ‖ · ‖X . Although we
only consider approximation in Lp(µ) norm, our results complement the latter by addressing neural
networks with unbounded weights and arbitrary depth, and general sets F .

Approximation lower bounds in Lp(µ) norm, p ≥ 1, have also been studied in the quantized neural
networks setting (networks with weights encoded with a fixed number of bits). In [PV18], under
weak assumptions on the activation function, the authors prove a lower bound on the minimal num-
ber of nonzero weights W that are required for a network to approximate a class of binary classifiers

with Lp error at most ε. They show that W is at least of the order ε−
p(d−1)

β log−1
2 (1/ε), where β is a

smoothness parameter. Later works including [VP19, GR20] derive lower bounds for approximation
by quantized networks in various norms.
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Main contributions and outline of the paper. We prove lower bounds on the approximation error
(1) in any Lp(µ) norm, for non-quantized networks of arbitrary depth, and general sets F . Our main
contributions are the following.

In Section 2, we first prove a general lower bound for any two sets F , G of real-valued functions
on a set X (Theorem 1). The lower bound depends on the packing number of F , the range of F ,
and the fat-shattering dimension of G. We then derive a versatile corollary when G corresponds to
a piecewise-polynomial feed-forward neural network (Corollary 1), solving the question by DeVore
et al. [DHP21]. Importantly, our proof strategy still relies on VC dimension theory, but differs from
the sup norm case in using a key probability result of Mendelson [Men02], to relate approximation
in Lp(µ) norm with the fat-shattering dimension of G.

In Sections 3–4 we apply this corollary to the approximation of two sets: Hölder balls and multivari-
ate monotonic functions. Beside matching (known or new) upper bounds up to log factors, our lower
bounds shed some light on the similarities or differences between approximation in Lp norm or in
sup norm. In particular, with ReLU networks, Hölder balls are not easier to approximate in Lp norm
than in sup norm. On the contrary, the approximation rate for multivariate monotonic functions de-
pends on p. In Section 5, we outline several other examples of function sets F and G for which the
general lower bound (Theorem 1) can also be easily applied. Finally, some proofs are postponed to
the supplement, while some details on other existing lower bound proof strategies are provided in
the supplement, in Appendix C.

Additional bibliographical remarks There are many other related results that we did not mention
to keep the focus on our specific approximation problem. For instance, depth separation results
show that deep neural networks can approximate functions that cannot be as easily approximated
by shallower networks (e.g., [Tel16, VRPS21]). Let us also mention the general results of [YB99],
which characterize minimax rates of estimation based on metric entropy conditions. Understanding
the precise connections between these statistical results and our general approximation lower bound
is an interesting question for the future.

Definitions and notation. We provide below some definitions and notation that will be used
throughout the paper. We denote the set of positive integers {1, 2, . . .} by N∗ and let N := N∗ ∪{0}.
All sets considered in this paper will be assumed to be nonempty. We will not explicitly mention σ-
algebras; for instance, by “Let X be a measurable space” we mean that X is a set implicitly endowed
with a σ-algebra.

Let p ∈ [1,+∞] and X be any measurable space endowed with a probability measure µ.
For any measurable function f : X → R, the Lp(µ) norm of f is defined by ‖f‖Lp(µ) =
(∫

X |f(x)|pdµ(x)
)1/p

(possibly infinite) if p < +∞, and ‖f‖L∞(µ) = ess supx∈X |f(x)|. We
will write λ for the Lebesgue measure on [0, 1]d.

For any ε > 0, two functions f1, f2 are said to be ε-distant in ‖ · ‖ if ‖f1 − f2‖ > ε. Let F be a set
of functions from X to R. A set {f1, . . . , fN} ⊂ F is said to be an ε-packing of F in ‖ · ‖ (or just
an ε-packing for short) if for any i 6= j ∈ {1, . . . , N}, fi and fj are ε-distant in ‖ · ‖. The ε-packing
number M(ε, F, ‖ · ‖) is the largest cardinality of ε-packings (possibly infinite).

For γ > 0, we say that a set S = {x1 . . . , xN} ⊂ X is γ-shattered by F if there exists r : S → R

such that for any E ⊂ S, there exists f ∈ F satisfying for all i = 1, . . . , N , f(xi) ≥ r(xi) + γ
if xi ∈ E, and f(xi) ≤ r(xi) − γ if xi /∈ E. The γ-fat-shattering dimension of F , denoted by
fatγ(F ), is the largest number N ≥ 1 for which there exists S ⊂ X of cardinality N that is γ-
shattered by F (by convention, fatγ(F ) = 0 if no such set S exists, while fatγ(F ) = +∞ if there
exist sets S of unbounded cardinality N ). Similarly, we say that S is pseudo-shattered by F if there
exists r : S → R such that for any E ⊂ S, there exists f ∈ F satisfying for all i = 1, . . . , N ,
f(xi) ≥ r(xi) if xi ∈ E, and f(xi) < ri if xi /∈ E. The pseudo-dimension Pdim(F ) is the largest
number N ≥ 1 for which there exists S ⊂ X of cardinality N that is pseudo-shattered by F (same
conventions).1

A formal definition of feed-forward neural networks is recalled in Appendix A. In short, in this
paper, a feed-forward neural network architecture A of depth L ≥ 1 is a directed acyclic graph with
d ≥ 1 input neurons, L− 1 hidden layers (if L ≥ 2), and an output layer with only one neuron. Skip

1By definition, note that γ 7→ fatγ(F ) is non-increasing and that fatγ(F ) ≤ Pdim(F ) for all γ > 0.
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connections are allowed, i.e., there can be connections between non-consecutive layers. Given an
activation function σ : R → R, a feed-forward neural network architecture A, and a vector w ∈ RW

of weights assigned to all edges and non-input neurons (linear coefficients and biases), the network
computes a function gw : Rd → R defined by recursively computing affine transformations for each
hidden or output neuron, and then applying the activation function σ for hidden neurons only (see
Appendix A for more details). Finally, we define HA := {gw : w ∈ R

W } to be the set of all
functions that can be represented by tuning all the weights assigned to the network.

A function σ : R → R is piecewise-polynomial on K ≥ 2 pieces, with maximal degree ν ∈ N, if
there exists a partition I1, . . . , IK of R into K nonempty intervals, such that σ restricted on each Ij
is polynomial with degree at most ν (in particular, σ can be discontinuous).

2 A general approximation lower bound in Lp(µ) norm

In this section, we provide our two main results: a general lower bound on the Lp(µ) approximation
error of F by G, i.e., supf∈F infg∈G ‖f − g‖Lp(µ), and a corollary when G corresponds to a feed-
forward neural network with a piecewise-polynomial activation function. The weak assumptions on
F make the last result applicable to a wide range of cases of interest, as shown in Sections 3–5.

2.1 Main results

Our generic lower bound reads as follows, and is proved in Section 2.2. We follow the conventions
0× log2(0) = 0 and P− 1

α log−
2
α (P ) = +∞ when P = 1.

Theorem 1. Let 1 ≤ p < +∞ and X be a measurable space endowed with a probability measure µ.
Let F , G be two sets of measurable functions from X to R, such that all functions in F have the same
range [a, b] for some a < b, and such that fatγ(G) < +∞ for all γ > 0. Then, there exists a constant
c > 0 depending only on p such that

sup
f∈F

inf
g∈G

‖f − g‖Lp(µ) ≥ inf

{

ε > 0 : logM
(

3ε, F, ‖ · ‖Lp(µ)

)

≤ c fat ε
32
(G) log2

(

2 fat ε
32
(G)

ε/(b− a)

)}

.

(2)

In particular, if logM
(

ε, F, ‖ · ‖Lp(µ)

)

≥ c0ε
−α for some c0, ε0, α > 0 and all ε ≤ ε0, and if

Pdim(G) < +∞, then there exist constants c1, ε1 > 0 depending only on b − a, p, c0, ε0 and α
such that

sup
f∈F

inf
g∈G

‖f − g‖Lp(µ) ≥ min
{

ε1, c1 Pdim(G)−
1
α log−

2
α
(

Pdim(G)
)

}

. (3)

The first lower bound (2) is generic but requires solving an inequation.2 In (3) we solve this in-
equation when logM

(

ε, F, ‖ · ‖Lp(µ)

)

grows at least polynomially in 1/ε (which is typical of non-
parametric sets) and when G has finite pseudo-dimension Pdim(G). Though we will restrict our
attention to such cases in all subsequent sections, we stress that the first bound should have broader
applications. A first example is when Pdim(G) = +∞ but fatγ(G) < +∞ for all γ > 0 (e.g.,
for RKHS [Bel18]). The first bound should also be useful to prove (slightly) tighter lower bounds
when logM

(

ε, F, ‖ · ‖Lp(µ)

)

has a (slightly) different dependency on 1/ε (e.g., of the order of

ε−α logβ (1/ε) as when F is the set of all multivariate cumulative distribution functions [BGL07]).

In the rest of the paper, we focus on the important special case when the approximation set G
is the set HA of all real-valued functions that can be represented by tuning the weights of a
feed-forward neural network with fixed architecture A and a piecewise-polynomial activation
function. By combining Theorem 1 with known bounds on the pseudo-dimension [BHLM19], we
obtain the following corollary, which bounds the approximation error in terms of the number W of
weights and the depth L (i.e., the number of hidden and output layers). The proof is postponed to

2Note that any ε ≥ (b− a)/3 is a solution to this inequation, since logM
(

3ε, F, ‖ · ‖Lp(µ)

)

= log(1) = 0
(because all functions in F are [a, b]-valued) and c fat ε

32
(G) ≥ 0. Therefore, the right-hand side of (2) is at

most (b− a)/3.
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Appendix B.4.

Corollary 1. Let 1 ≤ p < +∞, d ≥ 1 and X be a measurable subset of Rd endowed with a
probability measure µ. Let F be a set of measurable functions from X to [a, b] (for some real

numbers a < b), such that logM
(

ε, F, ‖ · ‖Lp(µ)

)

≥ c0ε
−α for some c0, ε0, α > 0 and all ε ≤ ε0.

Let σ : R → R be any piecewise-polynomial activation function of maximal degree ν ∈ N on K ≥ 2
pieces. Then, there exist Wmin ∈ N∗ and c1, c2, c3 > 0 such that, for any W ≥ Wmin, any L ≥ 1,
and any fixed feed-forward neural network architecture A of depth L with W weights, the set HA

of all real-valued functions on X that can be represented by the network (cf. Section 1) satisfies

sup
f∈F

inf
g∈HA

‖f − g‖Lp(µ) ≥











c1W
− 2

α log−
2
α (W ) if ν ≥ 2 ,

c2(LW )−
1
α log−

3
α (W ) if ν = 1 ,

c3W
− 1

α log−
3
α (W ) if ν = 0 .

(4)

There are equivalent ways to write the above corollary. For example, given a target accuracy ε > 0
and a depth L ≥ 1, (4) yields a lower bound on the minimum number W of weights that are needed
to get supf∈F infg∈HA

‖f−g‖Lp(µ) ≤ ε. Some earlier approximation results were written this way
(e.g., [Yar17, PV18]).

2.2 Proof of Theorem 1

In order to prove Theorem 1, we need two inequalities. The first one is straightforward (and appeared
within proofs, e.g., in [YZ20]), but formalizes the key idea that if G approximates F with error ε,
then G has to be at least as large as F . We use the conventions log(+∞) = +∞ and +∞ ≤ +∞.

Lemma 1. Let p ≥ 1 and X be a measurable space endowed with a probability measure µ. Let F ,
G be two sets of measurable functions from X to R. If supf∈F infg∈G ‖f − g‖Lp(µ) < ε, then

logM
(

3ε, F, ‖ · ‖Lp(µ)

)

≤ logM
(

ε,G, ‖ · ‖Lp(µ)

)

.

Proof. Let PF = {f1, . . . , fN} be a 3ε-packing of F , with N ≥ 1. Let PG = {g1, . . . , gN} be a
subset of G such that ‖fi−gi‖Lp(µ) ≤ ε for all i. Note that the existence of such a PG is guaranteed
by the assumption supf∈F infg∈G ‖f−g‖Lp(µ) < ε. Since the fi’s are pairwise 3ε-distant in Lp(µ),
the triangle inequality entails that the gi’s are also at least pairwise ε-distant in Lp(µ). Therefore,
PG is an ε-packing of G, and the result follows.

The next inequality is a fundamental probability result due to Mendelson [Men02]. It bounds from
above the ε-packing number in Lp(µ) norm of any uniformly bounded function set in terms of its
fat-shattering dimension. Crucially, the inequality holds for finite p ≥ 1, as opposed to the lower
bound strategy of Yarotsky [Yar17, Yar18] (see also [DHP21]), that relates the VC-dimension with
the approximation error in sup norm. The next statement is a slight generalization of a result of
[Men02] initially stated for [a, b] = [0, 1] and for Glivenko-Cantelli classes G (see Appendix B.1 for
details).

Proposition 1 ([Men02], Corollary 3.12). Let G be a set of measurable functions from a measurable
space X to [a, b] (for some real numbers a < b), and such that fatγ(G) < +∞ for all γ > 0. Then
for any 1 ≤ p < +∞, there exists c > 0 depending only on p such that for every probability measure
µ on X and every ε > 0,

logM
(

ε,G, ‖ · ‖Lp(µ)

)

≤ c fat ε
32
(G) log2

(

2(b− a) fat ε
32
(G)

ε

)

. (5)

Refinements of this inequality were proved in specific cases such as the L2(µ) norm [MV03] (see
also [Gue17] for empirical Lp(µn) norms). However, using the result of [MV03] when p = 2 would
only yield a minor logarithmic improvement in the lower bound of Theorem 1.

Proof (of Theorem 1). Part 1. We start by proving (2), using Proposition 1 as a key argument. Since
functions in G are not necessarily uniformly bounded, we will apply Proposition 1 to the “clipped
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version of G”. More precisely, for any function g ∈ G, we define its clipping (truncature) to [a, b]
as the function g̃ : X → R given by g̃(x) = min(max(a, g(x)), b) for all x ∈ X . We then set
G[a,b] = {g̃ : g ∈ G}, which by construction consists of functions that are all [a, b]-valued.

Noting that clipping can only help since elements of F are [a, b]-valued (see Lemma 4 in the supple-
ment, Appendix B.2), we have

sup
f∈F

inf
g∈G

‖f − g‖Lp(µ) ≥ sup
f∈F

inf
g̃∈G[a,b]

‖f − g̃‖Lp(µ) . (6)

Setting ∆ := supf∈F inf g̃∈G[a,b]
‖f − g̃‖Lp(µ), we now show that ∆ is bounded from below by the

right-hand side of (2). To that end, it suffices to show that every ε > ∆ is a solution to the inequation

logM
(

3ε, F, ‖ · ‖Lp(µ)

)

≤ c fat ε
32
(G) log2

(

2(b− a) fat ε
32
(G)

ε

)

. (7)

The last inequality is true whenever ε ≥ (b−a)/3 (see Footnote 2). We only need to prove (7) when
∆ < ε < (b − a)/3. In this case, by definition of ∆ and by Lemma 1 applied to G[a,b], we have

logM
(

3ε, F, ‖ · ‖Lp(µ)

)

≤ logM
(

ε,G[a,b], ‖ · ‖Lp(µ)

)

≤ c fat ε
32
(G[a,b]) log

2

(

2(b− a) fat ε
32
(G[a,b])

ε

)

≤ c fat ε
32
(G) log2

(

2(b− a) fat ε
32
(G)

ε

)

, (8)

where the second inequality follows from Proposition 1 (note from Lemma 3 in the supplement,
Appendix B.2 that fatγ(G[a,b]) ≤ fatγ(G) for all γ > 0, which is finite by assumption), and
where (8) follows from the next remark. Either fat ε

32
(G[a,b]) = 0, and (8) is true by the con-

vention 0 × log2(0) = 0 and c fat ε
32
(G) ≥ 0. Either fat ε

32
(G[a,b]) ≥ 1, and (8) follows from

t 7→ ct log2
( 2(b−a)t

ε

)

being non-decreasing on [ε/(2(b− a)),+∞) and ε/(2(b− a)) ≤ 1/6 ≤ 1 ≤
fat ε

32
(G[a,b]) ≤ fat ε

32
(G). To conclude, every ε > ∆ satisfies (7), which implies that ∆ is bounded

from below by the right-hand side of (2). Combining with (6) concludes the proof of (2).

Part 2. Set ε′1 = min
{

ε0
3 , 2(b−a)

}

. We now derive (3) from (2). To that end, settingP = Pdim(G),

we show that every ε > 0 satisfying (7) is such that ε ≥ min
{

ε1, c1P
− 1

α log−
2
α (P )

}

, where
ε1 ∈ (0, ε′1] and c1 > 0 will be defined later. Since the claimed lower bound on ε is true when
ε ≥ ε′1, in the sequel we consider any solution ε to (7) such that 0 < ε < ε′1 (if such a solution
exists).

By the assumption on logM
(

u, F, ‖ · ‖Lp(µ)

)

for u = 3ε ≤ ε0, and then using (7), we have, setting
r = 2(b− a),

c0(3ε)
−α ≤ logM

(

3ε, F, ‖ · ‖Lp(µ)

)

≤ c fat ε
32
(G) log2

(

r fat ε
32
(G)

ε

)

≤ cP log2
(

rP

ε

)

,

where the last inequality is because t 7→ ct log2
(

rt
ε

)

is non-decreasing on [ε/r,+∞), with ε/r ≤ 1,
and 1 ≤ fat ε

32
(G) ≤ Pdim(G) = P (the lower bound of 1 follows from c0(3ε)

−α > 0).

Solving the inequation c0(3ε)
−α ≤ cP log2(rP/ε) for ε (see Appendix B.3 for details), we get

ε ≥ min
{

ε′′1 , c1P
− 1

α log−
2
α P
}

, (9)

for some constants ε′′1 , c1 > 0 depending only on p, c0, b− a and α. Setting ε1 = min{ε′′1 , ε
′
1} and

noting that ε′1 only depends on ε0 and b− a, we conclude the proof.

3 Approximation of Hölder balls by feed-forward neural networks

In this section, we apply Corollary 1 to establish nearly-tight lower bounds for the approximation of
unit Hölder balls by feed-forward neural networks. Our main result is Proposition 3, which solves
an open question by [DHP21].
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Throughout the section, for any s > 0, we denote by n and α the unique members of the decompo-
sition s = n+ α such that n ∈ N and 0 < α ≤ 1.

For a set X ⊂ R
d, we follow [YZ20] and define the Hölder space Cn,α(X ) as the space of n times

continuously differentiable functions with finite norm

‖f‖Cn,α = max

{

max
n:|n|≤n

‖Dnf‖∞, max
n:|n|=n

sup
x 6=y

|Dnf(x)−Dnf(y)|

‖x− y‖α2

}

,

where, for n = (n1, · · · , nd) ∈ Nd, Dnf =
(

∂
∂x1

)n1

· · ·
(

∂
∂xd

)nd

f denotes the |n|-order partial

derivative of f . We denote

Fs,d = {f ∈ Cn,α([0, 1]d) : ‖f‖Cn,α ≤ 1}.

Let λ denote the Lebesgue measure over [0, 1]d. In this section, we provide nearly matching upper
and lower bounds for the Lp(λ) approximation error of elements of Fs,d by feed-forward ReLU
neural networks. The bounds are expressed in terms of the number of weights of the network.

3.1 Known bounds on the sup norm approximation error

[YZ20] gives matching (up to a certain constant) lower and upper bounds of the sup norm approxi-
mation error of the elements of Fs,d by feed-forward ReLU neural networks.

Proposition 2 ([YZ20]). Let d ∈ N∗, s > 0, γ ∈
(

s
d ,

2s
d

]

. Consider n ∈ N and α ∈ (0, 1] such that
s = n+ α.

There exist positive constants Wmin and c1, depending only on d and n, such that for any integer

W ≥ Wmin, there exists a feed-forward ReLU neural network architecture A with L = O(W γ d
s−1)

layers and W weights such that

sup
f∈Fs,d

inf
g∈HA

‖f − g‖∞ ≤ c1W
−γ . (10)

In the meantime, there exists a constant c2 > 0 depending only on d and n such that, for any feed-

forward neural network architecture A with W weights and L = o(W γ d
s−1/ logW ) layers and for

the ReLU activation function,

sup
f∈Fs,d

inf
g∈HA

‖f − g‖∞ ≥ c2W
−γ . (11)

It is worth stressing that, for any probability measure µ on [0, 1]d, the upper bound (10) is automat-
ically generalized to any smaller Lp(µ) norm, when 1 ≤ p < +∞. However, the lower bound (11)
does not immediately apply when ‖ · ‖∞ is replaced with ‖ · ‖Lp(µ), 1 ≤ p < +∞. The lower bound
of the next subsection shows that, in this setting, approximation in Lp(λ) norm is not easier than in
sup norm, solving an open question of DeVore et al. [DHP21].

3.2 Nearly-matching lower bounds of the Lp(λ) approximation error

We first state a lower bound on the packing number of Fs,d, which is rather classical though hard
to find in this specific form (see [BS67] for the L∞ norm, or [ET96] for other Sobolev-type norms).
For the sake of completeness, we give a proof of Lemma 2 in the supplement, Appendix D.1.

Lemma 2. Let s > 0, d ∈ N∗ and 1 ≤ p < +∞. There exist constants ε0, c0 > 0 such that for any
0 < ε ≤ ε0,

logM
(

ε, Fs,d, ‖ · ‖Lp(λ)

)

≥ c0ε
− d

s . (12)

Given Lemma 2, we can use Corollary 1 to establish the next proposition and obtain the lower bound
on the Lp(λ) approximation error.

Proposition 3. Let d ∈ N∗, s > 0, γ ∈
(

s
d ,

2s
d

]

and 1 ≤ p < +∞. Consider n ∈ N and α ∈ (0, 1]
such that s = n+ α.
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Let σ : R → R be a piecewise-affine function, and c > 0. Then, there exist c1 > 0 and Wmin ∈ N∗

(depending only on s, d, p, σ and c) such that for any architecture A of depth 1 ≤ L ≤ cW γ d
s−1

with W ≥ Wmin weights, and for the activation σ, the set HA (cf. Section 1) satisfies

sup
f∈Fs,d

inf
g∈HA

‖f − g‖Lp(λ) ≥ c1W
−γ log−

3s
d (W ) . (13)

Note that the rate of the lower bound does not depend on p. Note also that, when the activation
function is ReLU (which is piecewise-affine), we obtain a lower bound which matches the upper
bound of the previous subsection up to logarithmic factors.

Proof. From Lemma 2, there exist ε0, c0 > 0 such that logM
(

ε, Fs,d, ‖ · ‖Lp(λ)

)

≥ c0ε
− d

s for all

0 < ε ≤ ε0. Combining with Corollary 1 and using L ≤ cW γ d
s−1 concludes the proof.

Remark 1 (Comparison with existing proof strategies in sup norm.). We would like to highlight a key
difference between the proof of Proposition 3 and the lower bound proof strategies of [Yar17, Yar18,
YZ20, SYZ22] that are specific to the sup norm. Their overall argument is roughly the following: if
G can approximate any f ∈ F in sup norm at accuracy ε > 0, since F contains many “oscillating”
functions with oscillation amplitude roughly ε, then so must be the case for G (the sup norm is key
here: all oscillations of any f ∈ F are well approximated). Therefore, a small ε implies a large
VCdim(G), which by contrapositive enables to lower bound the approximation error (1) with a
decreasing function of VCdim(G), and therefore as a function of L and W . In contrast, in the
proof of Theorem 1, the key probability result of Mendelson (Proposition 1) enables us to show that,
even if the oscillations of any f ∈ F are only well approximated on average (in Lp(µ) norm) by G,
then Pdim(G) must be large when ε is small. The conclusion is then the same: the approximation
error in Lp(µ) norm can be lower bounded as a function of Pdim(G), and therefore in terms of L,
W . This solves the question of DeVore et al. [DHP21] mentioned in the introduction, showing in
particular that VC dimension theory can (surprisingly) be useful to prove Lp approximation lower
bounds.

4 Approximation of monotonic functions by feed-forward neural networks

In this section, we consider the problem of approximating the set Md of all non-decreasing functions
from [0, 1]d to [0, 1]. These are functions f : [0, 1]d → [0, 1] that are non-decreasing along any line
parallel to an axis, i.e., such that, for all x, y ∈ [0, 1]d,

xi ≤ yi, ∀i = 1, . . . , d =⇒ f(x) ≤ f(y) .

Monotonic functions are an interesting case study for at least two reasons. First, they naturally
appear in physics or engineering applications (consider for instance the braking distance of a vehicle
as a function of variables such as the speed, the total load or the drag coefficient). Second, as will be
shown in this section, because their sets of discontinuities can have “complex” shapes in dimension
d ≥ 2, monotonic functions provide a good example for which the approximation by feed-forward
neural networks is hopeless in sup norm, but can be achieved in Lp(λ) norm.

Next we focus on the approximation of Md with Heaviside feed-forward neural networks. After
proving an impossibility result for the sup norm, we show that the weaker goal of approximating
Md in Lp(λ) norm is feasible, and derive nearly matching lower and upper bounds. Interestingly,
the approximation rates depend on p ≥ 1, which is in sharp contrast with the case of Hölder balls,
that are not easier to approximate in Lp(λ) norm than in sup norm (see Section 3).

4.1 Warmup: an impossibility result in sup norm

We start this section by showing that approximating monotonic functions of d ≥ 2 variables in sup
norm is impossible with Heaviside neural networks.

Proposition 4. For any neural network architecture A with the Heaviside activation, the set HA (cf.
Section 1) satisfies

sup
f∈Md

inf
g∈HA

‖f − g‖∞ ≥
1

2
.
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The proof of Proposition 4 is postponed to the supplement, Appendix E.2. We show a slightly
stronger result, by exhibiting a single function f ∈ Md such that the lower bound of 1

2 holds
simultaneously for all network architectures.

Next we study the approximation of Md in Lp(λ) norm.

4.2 Lower bound in Lp(λ) norm

We start by proving a lower bound, as a direct consequence of Corollary 1 and a lower bound on the
packing number due to [GW07].

Proposition 5. Let 1 ≤ p < +∞, d ≥ 1, and let α = max{d, (d − 1)p}. Let σ : R → R be a
piecewise-polynomial function having maximal degree ν ∈ N. Then, there exist positive constants
c1, c2, c3,Wmin (depending only on d, p, and σ) such that for any architecture A of depth L ≥ 1
with W ≥ Wmin weights, and for the activation σ, the set HA (cf. Section 1) satisfies

sup
f∈Md

inf
g∈HA

‖f − g‖Lp(λ) ≥











c1W
− 2

α log−
2
α (W ) if ν ≥ 2 ,

c2(LW )−
1
α log−

3
α (W ) if ν = 1 ,

c3W
− 1

α log−
3
α (W ) if ν = 0 .

(14)

Note that, contrary to the case of Hölder balls (Section 3), the rate of the lower bound depends on p
through α = max{d, (d− 1)p}.

Proof. From [GW07], there exist constants ε0, c0 > 0 such that for ε ≤ ε0,
logM

(

ε,Md, ‖ · ‖Lp(λ)

)

≥ c0ε
−α. Using Corollary 1, we obtain the result.

4.3 Nearly-matching upper bound in Lp(λ) norm

To the best of our knowledge, there does not exist any upper-bound of the Lp(λ) approximation
error of Md with feed-forward neural networks. Checking that all the lower-bounds of Proposition
5 are tight is out of the scope of this paper and we leave it for future research3. However, we
establish in the next proposition upper-bounds of the Lp(λ) approximation error of Md with feed-
forward neural networks with the Heaviside activation function. This shows that, for the Lp(λ)
approximation error, the lower-bound obtained in (14), for ν = 0, is tight up to logarithmic factors.
The next proposition follows by reinterpreting a metric entropy upper bound of [GW07] in terms of
Heaviside neural networks. The proof is postponed to Appendix E.1 in the supplement.

Proposition 6. Let 1 ≤ p < +∞, d ∈ N \ {0, 1} and let α = max{d, (d − 1)p}. There exist
positive constants Wmin and c, depending only on d and p, such that for any integer W ≥ Wmin,
there exists a feed-forward architecture A with two hidden layers, W weights and the Heaviside
activation function such that the set HA satisfies

sup
f∈Md

inf
g∈HA

‖f − g‖Lp(λ) ≤

{

cW− 1
α if p(d− 1) 6= d ,

cW− 1
d log(W ) if p(d− 1) = d .

(15)

5 Conclusion and other possible applications

We proved a general lower bound on the approximation error of F by G in Lp(µ) norm (Theorem 1),
in terms of generic properties of F and G (packing number of F , range of F , fat-shattering dimen-
sion of G). The proof relies on VC dimension theory as in the sup norm case, but uses an additional
key probabilistic argument due to Mendelson ([Men02], see Proposition 1), solving a question raised
by DeVore et al. [DHP21].

In Sections 3 and 4 we detailed two applications, where Corollary 1 yields nearly optimal approxi-
mation lower bounds in Lp norm, and which correspond to two examples where the approximation
rate may depend or not depend on p.

3Obtaining an upper-bound for ReLU networks seems challenging. For example, the bit extraction tech-
nique used in [Yar18] to find a sharp upper bound heavily relies on the local smoothness assumption of the
function to approximate, which is not satisfied in general for monotonic functions.
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Theorem 1 and Corollary 1 can be used to derive approximation lower bounds for many other
cases. Corollary 1 only requires a (tight) lower bound on the packing number of F , for which
approximation theory provides several examples. For instance, for the Barron space introduced in
[Bar93], Petersen and Voigtlaender [PV21] showed a tight lower bound on the log packing number
in Lp(λ, [0, 1]d) norm, of order ε−2d/(d+2). Applying Corollary 1, this yields an approximation

lower bound of (LW )−(
1
2+

1
d ) log−3( 1

2+
1
d)(W ) for ReLU networks (see Appendix F in the supple-

ment for details). Other examples of sets F for which tight lower bounds on the packing number
(or metric entropy) are available include: multivariate cumulative distribution functions [BGL07],
multivariate convex functions [GS13], and functions with other shape constraints [GJ14].

Piecewise-polynomial activation functions are not essential for the current derivation. Indeed, Theo-
rem 1 can also be applied to the case where G corresponds to a neural network with other activation
functions such as the sigmoid. In the sigmoid case, the pseudo-dimension is known to be at most of
the order of W 4 (see [KM97, AB99]), which we can use to derive an approximation lower bound
similar to that of Corollary 1, with a smaller right-hand side for large W . However, to the best of
our knowledge, it is not known whether the O(W 4) VC bound is tight (only a lower bound of the
order of W 2 is known), so the resulting approximation lower bound could be loose. We leave this
interesting question for future work.

Theorem 1 can also be applied to other approximating sets G, beyond classical feed-forward neural
networks, as soon as a (tight) upper bound on the fat-shattering dimension of G is available. For
example, upper bounds were derived by [WS22] on the VC dimension of partially quantized net-
works, while [Bel18] derived bounds on the fat-shattering dimension of some RKHS. Investigating
such applications and whether the obtained approximation lower bounds are rate-optimal is a natural
research direction for the future.
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A general approximation lower bound in Lp norm,
with applications to feed-forward neural networks

Supplementary Material

This is the appendix for “A general approximation lower bound in Lp norm, with applications to
feed-forward neural networks”.

A Feed-forward neural networks: formal definition

In all this paper, we use the following classical graph-theoretic definitions for feed-forward neural
networks given, e.g., in [BHLM19] (with slightly different terms and notation).

A feed-forward neural network architecture A of depth L ≥ 1 is a directed acyclic graph (V,E)
with d ≥ 1 nodes with in-degree 0 (also called the input neurons), a single node with out-degree 0
(also called the output neuron), and such that the longest path in the graph has length L.

We define layers ℓ = 0, 1, . . . , L recursively as follows:

• layer 0 is the set V0 of all input neurons; we assume that V0 = {1, . . . , d} without loss of
generality.

• for any ℓ = 1, . . . , L, layer ℓ is the set Vℓ of all nodes that have one or several predecessors5

in layer ℓ−1, possibly other predecessors in layers 0, 1, . . . , ℓ−2, but no other predecessors.

Layer L consists of a single node: the output neuron. Layers 1, . . . , L − 1 are called the hidden
layers (if L ≥ 2). Note that skip connections are allowed, i.e., there can be connections between
non-consecutive layers.

Given a feed-forward neural network architecture A of depth L ≥ 1, we associate real numbers
we ∈ R to all edges e ∈ E and wv ∈ R to all nodes v ∈ V1 ∪ . . . ∪ VL. These real numbers are
called weights (they correspond to linear coefficients and biases) and are concatenated in a weight

vector w ∈ RW , where W = Card(E) +
∑L

ℓ=1 Card(Vℓ) is the total number of weights.

Given A, an associated weight vector w ∈ R
W , and a function σ : R → R (called activation

function), the network represents the function gw : R
d → R defined recursively as follows. We write

Pv ⊂ V for the set of all predecessors of any node v ∈ V , and wu→v for the weight on the edge
from u to v. The recursion from layer ℓ = 0 to layer ℓ = L reads: given x = (x1, . . . , xd) ∈ Rd,

• each input neuron v ∈ {1, . . . , d} outputs the value yv := xv;

• for any ℓ = 1, . . . , L− 1, each neuron v ∈ Vℓ outputs yv := σ
(
∑

u∈Pv
wu→vyu + wv

)

;

• the unique output neuron v ∈ VL outputs gw(x) :=
∑

u∈Pv
wu→vyu + wv .

Finally, we define HA := {gw : w ∈ RW } to be the set of all functions that can be represented by
tuning all the weights assigned to the network (the dependency on the activation function σ is not
written explicitly).

B Main results: technical details

We provide technical details that were missing to establish Proposition 1, Theorem 1 and Corollary 1.

5A node u ∈ V is a predecessor of another node v ∈ V if there is a directed edge from u to v.
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B.1 Proof of Proposition 1

Proposition 1 is a direct extension of [Men02, Corollary 3.12] to any range [a, b]. We first recall this
result but in slightly different terms (see the comments afterwards).

Proposition 7 (Corollary 3.12 in [Men02], “almost equivalent” statement). Let G be a set of mea-
surable functions from a measurable space X to [0, 1], such that fatγ(G) < +∞ for all γ > 0.
Then, for every 1 ≤ p < +∞, there is some constant cp > 0 depending only on p such that, for
every probability measure µ on X and every ε > 0,

logM
(

ε,G, ‖ · ‖Lp(µ)

)

≤ cp fat ε
32
(G) log2

(

2 fat ε
32
(G)

ε

)

.

To be precise, [Men02, Corollary 3.12] was stated a little differently. Instead of the assumption on
fatγ(G), there were two conditions on G: (i) G satisfies a weak measurability assumption such as
the “image admissible Suslin” property, and (ii) G is a uniform Glivenko-Cantelli class. Fortunately,
note that assumption (i) could easily be checked in special cases such as the setting of Corollary 1,
and that assumption (ii) is equivalent to fatγ(G) < +∞ for all γ > 0 when (i) holds and when G
only consists of [0, 1]-valued functions (see [ABDCBH97], Theorem 2.5). The two statements are
thus “almost equivalent”. However, we stress that (i) and (ii) are not necessary (assuming fatγ(G) <
+∞ for all γ > 0). To see why, it suffices to adapt the proof of [Men02, Corollary 3.12] as follows:
instead of starting from an ε-packing of G in empirical Lp(µn) norm and showing that it is also
an ε′-covering of G in Lp(µ) norm, with ε′ > ε, we can start from an ε-packing of G in Lp(µ)
norm and show that it is also an ε-packing of G in empirical Lp(µn) norm for some large integer
n (with positive probability). This last statement directly follows from the Hoeffding inequality: no
uniform law of large numbers is required, since we only need to compare empirical averages to their
expectations for a finite number of bounded functions.6

We now explain how to derive Proposition 1 (with an arbitrary range [a, b]) as a straightforward
consequence of Proposition 7.

Proof (of Proposition 1). In order to apply Proposition 7, we reduce the problem from [a, b] to [0, 1]
by translating and rescaling every function in G. For g ∈ G, we define g̃ : X → [0, 1] by g̃(x) =
g(x)−a
b−a , and we set

G̃ = {g̃ : g ∈ G} .

Note that every g̃ ∈ G̃ is indeed [0, 1]-valued.

We now note that translation does not affect packing numbers nor the fat-shattering dimension, while
rescaling only changes the scale ε by a factor of b − a. More precisely, we have the following two
properties:

Property 1: For all u > 0, fat u
b−a

(G̃) = fatu(G).

Property 2: For all u > 0, M
(

u
b−a , G̃, ‖ · ‖Lp(µ)

)

= M
(

u,G, ‖ · ‖Lp(µ)

)

.

Before proving the two properties (see below), we first conclude the proof of Proposition 1. By
Property 1, fatγ(G̃) = fatγ(b−a)(G), which by assumption is finite for all γ > 0. Since every
g̃ ∈ G̃ is [0, 1]-valued, we can thus apply Proposition 7. Using it with ε̃ = ε/(b− a), we get

logM
(

ε̃, G̃, ‖ · ‖Lp(µ)

)

≤ cp fat ε̃
32
(G̃) log2

(

2 fat ε̃
32
(G̃)

ε̃

)

.

Combining with the two equalities in Properties 1 and 2, we obtain

logM
(

ε,G, ‖ · ‖Lp(µ)

)

≤ cp fat ε
32
(G) log2

(

2(b− a) fat ε
32
(G)

ε

)

,

which concludes the proof of Proposition 1.

We now prove the two properties.

6In passing, all occurrences of fat ε
32
(G) could be replaced with fat ε

8
(G).
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Proof of Property 1. We first show that fat u
b−a

(G̃) ≥ fatu(G). To that end, let S = {x1, . . . , xm}

and r : S → R be such that for any E ⊂ S, there exists g ∈ G such that g(x) ≥ r(x) + u if x ∈ E

and g(x) ≤ r(x)−u otherwise. Setting r̃(x) = r(x)−a
b−a , we can see that g̃(x) ≥ r̃(x)+ u

b−a if x ∈ E

and g̃(x) ≤ r̃(x) − u
b−a otherwise, which proves fat u

b−a
(G̃) ≥ fatu(G). The reverse inequality is

proved similarly.

Proof of Property 2. Let {g1, . . . , gm} be a u-packing of G in Lp(µ) norm. This means that
‖gi − gj‖Lp(µ) > u and therefore ‖g̃i − g̃j‖Lp(µ) > u

b−a for all i 6= j ∈ {1, . . . ,m}, so that

{g̃1, . . . , g̃m} ⊂ G̃ is a u
b−a -packing of G̃. This provesM

(

u
b−a , G̃, ‖·‖Lp(µ)

)

≥ M
(

u,G, ‖·‖Lp(µ)

)

.
The reverse inequality is proved similarly.

B.2 Clipping can only help

The next two lemmas indicate that clipping (truncature) to a known range can only help. These are
key to apply Proposition 1 in our setting. In the sequel, for a set G of functions from a set X to
R, and for a < b in R, we denote by G[a,b] the set of all functions in G whose values are truncated
(clipped) to the segment [a, b], that is, G[a,b] = {g̃ : g ∈ G}, where g̃ : X → R is given by

∀x ∈ X , g̃(x) = min(max(a, g(x)), b) .

Lemma 3. Let G be a set of functions defined on a set X , and with values in R. Let G[a,b] be defined
as above. Then, for any γ > 0,

fatγ(G) ≥ fatγ(G[a,b]) .

Proof. Let γ > 0. The case when fatγ(G[a,b]) = 0 is straightforward. We thus assume that
fatγ(G[a,b]) ≥ 1. To prove the result, we show that any subset A of X that is γ-shattered by G[a,b]

is also γ-shattered by G. Let us consider such a subset A = {x1, . . . , xN} ⊂ X , with cardinality
N ≥ 1. Hence, there exists {r1, . . . , rN} ⊂ R such that for any E ⊂ A, there exists g̃ ∈ G[a,b]

such that g̃(xi) − ri ≥ γ if xi ∈ E and g̃(xi) − ri ≤ −γ otherwise. Note that this must imply
that ri ∈]a, b[ for all i = 1, . . . , N (indeed, by choosing E such that xi ∈ E or not, we have either
ri+γ ≤ g̃(xi) ≤ b or ri−γ ≥ g̃(xi) ≥ a). Now fix i ∈ {1, . . . , N} and let us assume g̃(xi)−ri ≥ γ
(by symmetry, the reversed case g̃(xi) − ri ≤ −γ is treated the same way). Because ri > a, this
implies that g̃(xi) > a and thus g(xi) ≥ g̃(xi) (by definition of g̃), which entails g(xi)− ri ≥ γ. It
follows that if G[a,b] γ-shatters A, then G also γ-shatters A, and the result follows.

The following lemma formalizes the well-known idea that it is easier to approach a function with
values in a finite range by a function with values in the same range.
Lemma 4. Let G be a set of measurable functions from a measurable space X to R, and let G[a,b]

be defined as above. Assume F is a set of measurable functions from X to [a, b]. Then, for any
probability measure µ on X ,

sup
f∈F

inf
g∈G

‖f − g‖Lp(µ) ≥ sup
f∈F

inf
g̃∈G[a,b]

‖f − g̃‖Lp(µ) .

Proof. To prove the above result, it is enough to show that for any f ∈ F and g ∈ G, the function
g̃ is pointwise at least as close to f as g is, which for all f ∈ F yields infg∈G ‖f − g‖Lp(µ) ≥
inf g̃∈G[a,b]

‖f−g̃‖Lp(µ). By definition ofG[a,b], for any x ∈ X , if g(x) ∈ [a, b], then |f(x)−g(x)| =
|f(x) − g̃(x)|. And if g(x) /∈ [a, b], then |f(x) − g̃(x)| < |f(x) − g(x)| since f(x) ∈ [a, b]. It
follows that the discrepancy |f − g̃| is everywhere bounded by |f − g|, and the result follows.

B.3 Missing details in the proof of Theorem 1

We provide all details that were missing to derive (9), which is a direct consequence of Lemma 5
below. We follow the convention aP− 1

α log−
2
α (P ) = +∞ when P = 1.

Lemma 5. Let P ∈ N∗ and c, α, r > 0. There exist constants a, ε′′1 > 0 depending only on c, α
and r such that, for all ε ∈ (0, r) satisfying

ε−α ≤ cP log2
(

rP

ε

)

, (16)
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we have

ε ≥ min
(

ε′′1 , aP
− 1

α log−
2
α (P )

)

.

Proof. Assume ε ∈ (0, r) is such that (16) holds. To show the result, we study the function f :
(1/r,+∞) → R defined for all x > 1/r by

f(x) =
xα

log2(rPx)
.

Note that (16) implies that f(1/ε) ≤ cP . For all P ≥ 2, we set

εP = P− 1
α log−

2
α (P ) . (17)

Let P1 ≥ 2 be such that P
1
α
1 log

2
α (P1) ≥

exp( 2
α )

r . For all P ≥ P1, we have 1
εP

≥
exp( 2

α )

r > 1/r and

f

(

1

εP

)

=
P log2(P )

log2
(

rP 1+ 1
α log

2
α (P )

) .

Since

lim
Q→+∞

log2(Q)

log2
(

rQ1+ 1
α log

2
α (Q)

) =
1

(1 + 1
α )

2
=: c1 ,

there exists P2 such that for all Q ≥ P2, we have log2(Q)

log2
(

rQ1+ 1
α log

2
α (Q)

) ≥ c1
2 .

Below we distinguish the cases P ≥ max(P1, P2) and P < max(P1, P2).

1st case: P ≥ max(P1, P2).
We have f

(

1
εP

)

≥ c1P
2 and P ≥ 1

c f
(

1
ε

)

(by (16)), so that f
(

1
εP

)

≥ c1
2cf

(

1
ε

)

. We now use

Lemma 6 below with b = c1
2c : setting a := (b/2)1/α = (c1/(4c))

1/α, there exists x1 > max
{

1
r ,

1
ar

}

depending only on r, b, α such that bf(x) ≥ f(ax) for all x ≥ x1.

Therefore, if ε < 1
x1

=: ε1, then c1
2cf
(

1
ε

)

≥ f
(

a
ε

)

. Therefore f( 1
εP

) ≥ f
(

a
ε

)

.

Recall from (17) and P ≥ P1 that 1
εP

≥
exp( 2

α )

r . If ε < ar
exp( 2

α )
=: ε2, then we also have a

ε ≥
exp( 2

α )

r .

Therefore, using Lemma 6 again, f( 1
εP

) ≥ f(aε ) implies that 1
εP

≥ a
ε , that is,

ε ≥ a εP .

Summarizing, when ε ∈ (0, r) satisfies (16) and when P ≥ max(P1, P2), either ε ≥ ε1 or ε ≥ ε2
or ε ≥ a εP . Put differently,

ε ≥ min(ε1, ε2, a εP ) . (18)

2nd case: P < max(P1, P2) =: P3.
Using (16) and the fact that t 7→ ct log2

(

rt
ε

)

is non-decreasing on [ε/r,+∞), together with ε/r ≤

1 ≤ P ≤ P3 yields ε−α ≤ cP3 log
2(rP3/ε). This entails that, for some ε3 > 0 depending only on

α, c, P3, r,
ε ≥ ε3 . (19)

Conclusion: combining the two cases, when ε ∈ (0, r) satisfies (16), whatever P ∈ N∗, we have
(18) or (19). Setting ε′′1 = min(ε1, ε2, ε3), we obtain

ε ≥ min
(

ε′′1 , a P
− 1

α log−
2
α (P )

)

.

(Note that this is also true in the case P = 1, by the convention aP− 1
α log−

2
α (P ) = +∞.) Since

ε1, ε2, ε3 and a only depend on c, α, r, this concludes the proof.

Lemma 6. Let α, r > 0 and P ∈ N∗. We define f(x) = xα

log2(rPx)
for all x > 1/r. Then:
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i) f is increasing on I :=
[

exp( 2
α )

r ,+∞
)

and limx→+∞ f(x) = +∞.

ii) for all b > 0, setting a := (b/2)1/α, there exists x1 > max
{

1
r ,

1
ar

}

depending only on
r, b, α such that,

∀x ≥ x1 , bf(x) ≥ f(ax) .

Proof. Proof of i): The fact that limx→+∞ f(x) = +∞ is because α > 0. To see why f is
increasing on I , note that

f ′(x) =
αxα−1 log2(rPx) − xα2 log(rPx) 1x

log4(rPx)
=

xα−1 log(rPx)(α log(rPx) − 2)

log4(rPx)
,

so that f ′(x) > 0 for all x >
exp( 2

α )

rP , and in particular for all x >
exp( 2

α )

r (since P ≥ 1). This
proves that f is increasing on I .

Proof of ii): Let b > 0 and set a := (b/2)1/α. Let x1 > max
{

1
r ,

1
ar

}

depending only on r, b, α
such that, for all u ≥ x1,

log2(ru)

log2(rau)
≤ 2 .

(Such an x1 exists since the ratio converges to 1 as u → +∞, and we can choose x1 as a function
of r, a only.) Now, for all x ≥ x1, using the above inequality with u = Px ≥ x (since P ≥ 1), we
get

f(ax)

f(x)
= aα

log2(rPx)

log2(rPax)
≤ 2aα = b ,

where the last equality is because a := (b/2)1/α. This proves that bf(x) ≥ f(ax) for all x ≥
x1.

B.4 Proof of Corollary 1

We first recall some definitions and two key bounds on the VC-dimension of piecewise-polynomial
feed-forward neural networks, proved by [GJ95] and [BHLM19].

For a set F of functions from X to {−1, 1}, we say that a set S = {x1 . . . , xN} ⊂ X is shattered
by F if for any E ⊂ S, there exists f ∈ F satisfying for all i = 1, . . . , N , f(xi) = 1 if xi ∈ E,
and f(xi) = −1 if xi /∈ E. The VC-dimension of F , denoted by VCdim(F ), is defined as the
largest number N ≥ 1 such that there exists S ⊂ X of cardinality N which is shattered by F (by
convention, VCdim(F ) = 0 if no such set S exists, while VCdim(F ) = +∞ if there exist sets S
of unbounded cardinality N ).

Let B be any feed-forward neural network architecture of depth L ≥ 1 with W ≥ 1 weights, d ≥ 1
input neurons, and U ≥ 1 hidden or output neurons. Let σ : R → R be any piecewise-polynomial
activation function onK ≥ 2 pieces, with maximal degree ν ∈ N. Denote by sgn(HB) = {sgn(gw) :
w ∈ RW } the set of all classifiers obtained by looking at the sign of the network’s output, that is, the
classifiers defined by sgn(gw)(x) = 1{gw(x)>0} for all x ∈ Rd.

Goldberg and Jerrum [GJ95] showed that, for some constant c′1 > 0 depending only on d, ν and K ,
the VC-dimension of sgn(HB) is bounded as follows (see also Theorem 8.7 in [AB99]):

VCdim(sgn(HB)) ≤ c′1W
2 . (20)

This bound was refined for piecewise-affine activation functions. Namely, Bartlett et al. [BHLM19,
Theorem 7] proved that, if U ≥ 3, then, for some R ≤ U + U(L− 1)νL−1,

VCdim(sgn(HB)) ≤ L+ L̄W log2

(

4e(K − 1)R log2
(

2e(K − 1)R
)

)

,

where L̄ = 1 if ν = 0, and L̄ ≤ L otherwise. Therefore, for some constants W ′
min ≥ 1 and

c′2, c
′
3 > 0 depending only on d and K , we have, for all W ≥ W ′

min (which in particular implies
U ≥ 3),

VCdim(sgn(HB)) ≤

{

c′2LW log(W ) if ν = 1 ,
c′3W log(W ) if ν = 0 .

(21)
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We are now ready to prove Corollary 1 from Theorem 1.

Proof (of Corollary 1). In order to apply Theorem 1, we first bound P := Pdim(HA) from above.
The bounds (20) and (21) were on the VC-dimension of sgn(HB), for any feed-forward neural
network architecture B, while we need a bound on the pseudo-dimension. However, by a well-
known trick (e.g., Theorem 14.1 in [AB99]), the pseudo-dimension of HA is upper bounded by
the VC-dimension of (the sign of) an augmented network architecture of depth L, with d + 1 input
neurons and W + 1 weights.7 Therefore, replacing (d,W ) with (d + 1,W + 1) in (20) and (21),
we get that, for some constants W̃min ≥ 1 and c̃1, c̃2, c̃3 > 0 depending only on d, ν and K , for all
W ≥ W̃min,

P ≤







c̃1W
2 if ν ≥ 2 ,

c̃2LW log(W ) if ν = 1 ,
c̃3W log(W ) if ν = 0 .

(22)

Now, by Theorem 1, we have, for some constants c1, ε1 > 0 depending only on b− a, p, c0, ε0, α,

sup
f∈F

inf
g∈HA

‖f − g‖Lp(µ) ≥ min
{

ε1, c1P
− 1

α log−
2
α (P )

}

. (23)

Noting that P 7→ min
{

ε1, c1P
− 1

α log−
2
α (P )

}

is non-increasing and plugging (22) into (23), we

get, for W ≥ Wmin,

sup
f∈F

inf
g∈HA

‖f − g‖Lp(µ) ≥ min











ε1,







c4W
− 2

α log−
2
α (W 2) if ν ≥ 2

c5(LW log(W ))−
1
α log−

2
α (LW log(W )) if ν = 1

c6(W log(W ))−
1
α log−

2
α (W log(W )) if ν = 0

















for some constants Wmin ≥ 1 and c4, c5, c6 > 0 depending only on d, ν, K , b − a, p, c0, ε0 and α.
Taking Wmin large enough, the first term ε1 is always larger than the second term in the above
minimum, and the logarithmic terms log(W log(W )) and log(LW log(W )) can be upper bounded
by a constant times log(W ) (since L ≤ W ). Rearranging concludes the proof.

C Earlier works: two other lower bound proof strategies

Approximation lower bounds in a sense similar to ours have been obtained in other recent works. In
the purpose of highlighting the differences between the different approaches, we describe the lower
bound proof strategies of Yarotsky [Yar17] and of Petersen and Voigtlaender [PV18].

C.1 Approximation in sup norm of Sobolev unit balls with ReLU networks [Yar17]

Recall that the Sobolev space Wn,∞([0, 1]d) is defined as the set of functions on [0, 1]d lying in L∞

along with all their weak derivatives up to order n. We equip this space with the norm

‖f‖Wn,∞([0,1]d) = max
n∈Nd:|n|≤n

ess sup
x∈[0,1]d

|Dnf(x)|,

and we let Fn,d be the unit ball of this space.

We first state the sup norm lower bound and then we give a synthesized version of the proof.

Proposition 8 ([Yar17]). There exists positive constants Wmin, c > 0 such that for any feed-forward
neural network with architecture A, ReLU activation and W ≥ Wmin weights,

sup
f∈Fn,d

inf
g∈HA

‖f − g‖∞ ≥ cW− 2n
d .

Details aside, the proof reads as follows. The author assumes that HA approximates Fn,d with
error ε. Fixing N = cn,d(3ε)

−1/n for a properly chosen constant cn,d > 0, he constructs a set of

7This is because Pdim(HA) = VCdim
(

{(x, r) ∈ R
d×R 7→ 1{g(x)−r>0} : g ∈ HA}

)

, the output neuron
of A is linear, and we allow skip connections.
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functions in Fn,d that can shatter a grid of Nd points x1, . . . , xNd evenly distributed over [0, 1]d.
The assumption that HA approximates Fn,d in sup norm with error ε allows to conclude that HA

also shatters {x1, . . . , xNd}, and hence, VCdim(HA) ≥ Nd = c′n,dε
− d

n , for a properly chosen
constant c′n,d > 0. The author concludes using the upper bound on VCdim(HA) with respect to W

from [AB99] which yields VCdim(HA) ≤ c′W 2 for some constant c′.

It is worth stressing that in this proof, it is paramount to assume that HA approximates Fn,d in sup
norm, rather than any Lp norm with p < +∞. The reason is that only this choice of norm allows
to bound the discrepancy between f ∈ Fn,d and gf ∈ HA chosen optimally with respect to f at
any chosen points. Our proof strategy relying on Proposition 1 allows to circumvent this issue by
relating the pseudo-dimension to the metric entropy with respect to any Lp norm, 1 ≤ p < +∞.

C.2 Approximation in Lp norm of Horizon functions with quantized networks [PV18]

The authors study quantized neural networks, that is, networks with weights constrained to be repre-
sentable with a fixed number of bits. They obtain a lower bound on the minimal number of weights
in a quantized neural network that can approximate a set of Horizon functions in Lp norm, p > 0,
with error ε > 0. This lower bound is easily invertible to a bound on the approximation error and is
thus comparable to the results we obtain in this paper.

Textually, the authors introduce the set of horizon functions as follows: “These are {0, 1}-valued
functions with a jump along a hypersurface and such that the jump surface is the graph of a smooth
function” [PV18]. Denoting by H the indicator function of the set [0,+∞) × Rd−1, the set of
horizon functions reads as

HFβ,d,B =

{

f ◦ T ∈ L∞

(

[

−
1

2
,
1

2

]d
)

:

f(x) = H(x1 + γ(x2, . . . , xd), x2, . . . , xd), γ ∈ Fβ,d−1,B, T ∈ Π(d,R)

}

,

where Fβ,d−1,B denotes the set of Hölder functions over [−1/2, 1/2]
d−1 whith smoothness param-

eter β and with norm ‖.‖Cn,α bounded by B (see Section 3), and Π(d,R) denotes the group of
d-dimensional permutation matrices.

In the following, for any nonzero integer K and any neural network architecture A, we denote by
HK

A ⊂ HA the set of K-quantized functions in HA; namely, the functions in HA with weights
representable using at most K bits. The lower bound in [PV18] (Theorem 4.2) reads as follow:

Proposition 9 ([PV18]). Let d ≥ 2. Let p, β,B, c0 > 0 and let σ : R → R be such that σ(0) = 0.
There exist positive constants ε0, c > 0 depending only on d, p, β,B and c0 such that, for any ε ≤ ε0,
setting K = ⌈c0 log(1/ε)⌉, for any feed-forward neural network architecture A with W weights and
activation σ such that HK

A approximates HFβ,d,B in Lp norm with error less than ε, we have

W ≥ cε−
p(d−1)

β log−1(1/ε).

The proof of this result is based on a lemma giving a lower bound on the minimal number of
bits ℓ necessary for a binary encoder-decoder pair to achieve an error less than ε > 0 in ap-
proximating HF := HFβ,d,B in Lp norm. Formally, given an integer ℓ > 0, a binary encoder
Eℓ : HF → {0, 1}ℓ and given a decoder Dℓ : {0, 1}ℓ → HF , one can measure an approximation
error

sup
f∈HF

‖f −Dℓ(Eℓ(f))‖Lp ,

which quantifies the loss of information due to the encoding Eℓ. Clearly, for an optimal choice
of encoder, one can reduce this loss of information by increasing ℓ. In particular, for ε > 0, it is
possible to estimate

ℓε = min

{

ℓ > 0 : inf
Eℓ,Dℓ

sup
f∈HF

‖f −Dℓ(Eℓ(f))‖Lp ≤ ε

}

,
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with the convention that ℓε = ∞ if the above set is empty. The authors show in their Lemma B.3
that for ε small enough (smaller than some ε0 > 0), it holds that

ℓε ≥ cε−
p(d−1)

β (24)

for some constant c > 0 depending only on d, p, β and B. In other words, one can not achieve a loss

of information smaller than ε by encoding functions in HF over less than cε−
p(d−1)

β bits.

The rest of the proof consists in showing that for an integer K > 0, given a neural network archi-
tecture A with W weight that can approximate HF in Lp norm with error less than ε > 0, one can
encode exactly (without loss of information, and for a given activation function) any function in HK

A
over a string of ℓ = c1W (K + ⌈log2 W ⌉) bits. This generates a natural encoder-decoder system
where any function f ∈ HF is encoded as the bit string of length ℓ associated to gf ∈ HK

A chosen
to approximate f . It remains to observe that if we fix K , this automatically yields a lower bound on
ℓ using inequality (24), and thus on W by expressing W through ℓ and K .

Remark. The authors in [PV18] study the neural network approximation in a setting slightly dif-
ferent from ours, since they focus on the approximation by quantized neural networks. This partly
explains why their proof strategy differs from ours. However, it is worth pointing out that the proof
of their lower bound on the minimal number of bits required to accurately encode a function in HF
relies on a lower bound of the packing number of HF , just like the lower bound of the packing
number of the set to approximate is key in our proof strategy. An interesting question for the future
would be to see whether our general lower bound (Theorem 1) yields lower bounds of the same
order as those in [PV18] for quantized neural networks.

D Hölder balls

D.1 Proof of Lemma 2

Though not necessarily stated this way, many arguments below are classical (see, e.g., Theorem 3.2
by [GKKW02] with a similar construction for lower bounds in nonparametric regression).

Let N ∈ N∗. For m = (m1, . . . ,md) ∈ {0, . . . , N−1}d, we let xm := 1
N (m1+1/2, . . . ,md+1/2)

and we denote by Cm the cube of side-length 1
N centered at xm, with sides parallel to the axes. We

see that the Nd cubes Cm decompose the cube [0, 1]d in smaller parts which, up to negligible sets
which will not be problematic, form a partition of [0, 1]d. We will use this decomposition to construct
a packing of Fs,d. Denoting ‖ · ‖ the sup norm in R

d, we define the C∞ test function φ : R
d → R

by:

φ(x) = exp

(

−
‖x‖2

1− ‖x‖2

)

,

for any x ∈ Rd such that ‖x‖ < 1, and φ(x) = 0 otherwise. Recalling that n ∈ N and α ∈ (0, 1] are
such that s = n+ α, and since all the high-order partial derivatives of φ are uniformly bounded on
[0, 1]d, ‖φ‖Cn,α is thus finite and is nonzero.

Let cs = 1
2 (2N)−s‖φ‖−1

Cn,α and consider, for any tensor of signs σ = (σm)m∈{0,··· ,N−1}d ∈

{−1, 1}N
d

, the function fσ defined as follows:

fσ(x) = cs
∑

m∈{0,...,N−1}d

σmφ (2N(x− xm)) ,

for all x ∈ [0, 1]d. There are 2N
d

different functions fσ .

Let us prove that, for all σ ∈ {−1, 1}N
d

, fσ ∈ Fs,d. To do so, we study the constituents of ‖fσ‖Cn,α

separately and show that they are all bounded by 1. For m ∈ {0, · · · , N−1}d, we define the function
gm(x) = csσmφ (2N(x− xm)). Note that because φ vanishes outside (−1, 1)d, we have that gm

vanishes everywhere outside the interior of Cm, and the same holds for Dngm for all n ∈ Nd such
that |n| ≤ n. For any such n, we have

‖Dngm‖∞ = cs(2N)|n|‖Dnφ‖∞ ≤ cs(2N)s‖φ‖Cn,α ≤
1

2
.
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Therefore,
max

n:|n|≤n
‖Dnfσ‖∞ ≤ 1.

Now for any n ∈ Nd such that |n| = n, any x, y ∈ [0, 1]d, we have

|Dnfσ(x) −Dnfσ(y)|

‖x− y‖α2
=

|Dngm(x) −Dngm′(y)|

‖x− y‖α2
,

where x ∈ Cm and y ∈ Cm′ for some multi-indexes m and m′. We have to distinguish between the
cases m = m′ and m 6= m′. In the former case, we have

|Dnfσ(x) −Dnfσ(y)|

‖x− y‖α2
= cs(2N)n+α |D

nφ(2N(x− xm))−Dnφ(2N(y − xm))|

‖2N(x− xm)− 2N(y − xm)‖α2

= cs(2N)s
|Dnφ(x′)−Dnφ(y′)|

‖x′ − y′‖α2

≤ cs(2N)s‖φ‖Cn,α =
1

2
,

where at the second line, we used the changes of variables x′ = 2N(x− xm) and y′ = 2N(y− xm).
In the case m = m′ (x and y belong to the same cube), we thus have

|Dnfσ(x) −Dnfσ(y)|

‖x− y‖α2
≤ 1.

In the case m 6= m′, observe that we have

|Dngm(x)−Dngm′(y)| ≤ 2max{|Dngm(x)|, |D
ngm′(y)|}. (25)

Besides, recall that Dngm and Dngm′ both vanish outside of the interiors of Cm and Cm′ respectively.
We can thus rewrite (25) as

|Dngm(x) −Dngm′(y)| ≤ 2max{|Dngm(x)−Dngm(y)|, |D
ngm′(x) −Dngm′(y)|}

≤ 2cs(2N)n max{|Dnφ(2N(x− xm))−Dnφ(2N(y − xm))|,

|Dnφ(2N(y − xm′))−Dnφ(2N(y − ym′))|}.

This entails

|Dnfσ(x) −Dnfσ(y)|

‖x− y‖α2
≤ cs2(2N)s max

{

|Dnφ(x′)−Dnφ(y′)|

‖x′ − y′‖α2
,
|Dnφ(x′′)−Dnφ(y′′)|

‖x′′ − y′′‖α2

}

≤ cs2(2N)s‖φ‖Cn,α = 1,

where x′ = 2N(x− xm) and y′ = 2N(y − xm), and x′′ = 2N(x− xm′) and y′′ = 2N(y − xm′).

Summarizing, we showed that for all σ ∈ {−1, 1}N
d

max
n:|n|≤n

‖Dnfσ‖∞ ≤ 1 and max
n:|n|=n

sup
x 6=y

|Dnfσ(x)−Dnfσ(y)|

‖x− y‖α2
≤ 1.

We conclude that for all σ ∈ {−1, 1}N
d

‖fσ‖Cn,α ≤ 1,

and therefore {fσ : σ ∈ {−1, 1}N
d

} ⊂ Fs,d.

Let us now evaluate the distance between distinct elements of {fσ : σ ∈ {−1, 1}N
d

}. Let σ1,
σ2 ∈ {−1, 1}N

d

, with σ1 6= σ2, and let m ∈ {0, . . . , N − 1}d be such that σ1
m = −σ2

m. Let us
estimate ∆p the Lp(λ) discrepancy between fσ1 and fσ2 on the cube Cm, that is

∆p
p =

∫

Cm

|fσ1(x)− fσ2(x)|pdx

= 2pcps

∫

Cm

|φ (2N(x− xm)) |
pdx

= 2pcps(2N)−d‖φ‖pLp(λ).
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It remains to find a subset among the functions fσ such that any two functions of this set differ on
a significant number of cubes Cm. According to the Varshamov-Gilbert Lemma [Yu97], there exists
Γ ⊂ {−1, 1}N

d

with cardinal at least exp(Nd/8) such that for any σ1, σ2 ∈ Γ, such that σ1 6= σ2,

σ1 and σ2 differ on at least one fourth of their coordinates; i.e.,
∑Nd

k=1 1σ1
k 6=σ2

k
≥ Nd

4 . We thus fix

such a set Γ ⊂ {−1, 1}N
d

. For any σ1, σ2 ∈ Γ, with σ1 6= σ2,

‖fσ1 − fσ2‖pLp(λ) =
∑

m:σ1
m 6=σ2

m

∫

Cm

|fσ1(x)− fσ2(x)|pdx

≥
Nd

4
∆p

p =
2p−dcps

4
‖φ‖pLp(λ).

Finally, recalling the definition of cs, we have for any σ1, σ2 ∈ Γ, with σ1 6= σ2,

‖fσ1 − fσ2‖Lp(λ) ≥ 21−
d+2
p

1

2
(2N)−s‖φ‖−1

Cn,α‖φ‖Lp(λ) = cN−s,

where c = 2−s− d+2
p

‖φ‖Lp(λ)

‖φ‖Cn,α
.

It follows that {fσ : σ ∈ Γ} is a cN−s-packing of Fs,d. Given the lower bound on the size of Γ,
this implies

M
(

cN−s, Fs,d, ‖ · ‖Lp(λ)

)

≥ exp(Nd/8),

for all N ∈ N∗.

Set ε0 = c and c0 = 2−dc
d
s /8. Consider ε > 0, with ε ≤ ε0. To conclude the proof, we need to show

that (12) holds for ε. To do so, we consider N : the smallest integer such that cN−s ≥ ε ≥ c(2N)−s.
This N ∈ N∗ exists because 0 < ε ≤ ε0 = c and s > 0. On one side, we have

M
(

ε, Fs,d, ‖ · ‖Lp(λ)

)

≥ M
(

cN−s, Fs,d, ‖ · ‖Lp(λ)

)

,

and on the other side, since 2N ≥ c
1
s ε−

1
s ,

exp(Nd/8) ≥ exp(2−dc
d
s ε−

d
s /8) = exp(c0ε

− d
s ).

Combining the last three inequalities, we finally obtain

logM
(

ε, Fs,d, ‖ · ‖Lp(λ)

)

≥ c0ε
−d/s,

for all 0 < ε ≤ ε0.

E Monotonic functions

This section contains the proofs of the results stated in Section 4. More precisely, in Section E.1 we
provide the proof of Proposition 6 and in Section E.2 we provide the proof of Proposition 4.

E.1 Proof of Proposition 6

The section contains two sub-sections. In the first sub-section, we provide a proposition on the rep-
resentation of piecewise-constant functions with Heaviside neural-networks. Section E.1.2 contains
the main part of the proof of Proposition 6.

E.1.1 Representing piecewise-constant functions with Heaviside neural networks

We first describe a neural network architecture which, with the Heaviside activation function, is able
to represent functions that are piecewise-constant on cubes.

Proposition 10. Let d ∈ N∗, M ∈ N∗. There exists an architecture A with two-hidden layers,
2(d + 1)2M weights and the Heaviside activation function, such that for any (αi)1≤i≤M ∈ RM ,

any collection (Ci)1≤i≤M of mutually disjoint hypercubes of R
d the function f̃ : R

d → [0, 1] defined
by

∀x ∈ R
d, f̃(x) =

M
∑

i=1

αi1Ci(x)

satisfies f̃ ∈ HA.
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Figure 1: Values of the sum of the perceptrons pij(x) around a hypercube Ci in dimension 2.

Proof. Define σ : R → R by σ(x) = 1x≥0 for all x ∈ R.

Let i ∈ {1, . . . ,M}. The cube Ci has 2d faces. These faces are supported by hyperplanes whose
equations are of the form 〈w, x〉+ b = 0, with w ∈ Rd and b ∈ R. We allow the faces to belong to
the cube or not. To distinguish them, we denote Ji ∈ {1, . . . , 2d} the number of faces that belong
to Ci. We index the Ji faces that belong to the cube from 1 to Ji, and the other faces from Ji + 1 to
2d. Thus, for all i ∈ {1, . . . ,M} and all j ∈ {1, . . . , 2d}, there exist wi

j ∈ Rd, bij ∈ R such that

Ci =
Ji
⋂

j=1

{x ∈ R
d :
〈

w
i
j , x
〉

+ bij ≥ 0} ∩
2d
⋂

j=Ji+1

{x ∈ R
d :
〈

w
i
j , x
〉

+ bij > 0} .

We rewrite:

Ci =







x ∈ R
d :

Ji
∑

j=1

1{〈wi
j ,x〉+bij≥0} +

2d
∑

j=Ji+1

1{〈wi
j ,x〉+bij>0} ≥ 2d







. (26)

Denoting for all i ∈ {1, . . . ,M} and all j ∈ {1, . . . , 2d} and for all x ∈ Rd,

pij(x) =

{

σ
(〈

w
i
j , x
〉

+ bij
)

if j ≤ Ji
1− σ

(

−
〈

w
i
j , x
〉

− bij
)

otherwise,

we have, see Figure 1 and (26), for all x ∈ R
d

1Ci(x) =

{

1 if
∑2d

j=1 p
i
j(x) ≥ 2d,

0 otherwise,

= σ





2d
∑

j=1

pij(x)− 2d



 .

Since the hypercubes are mutually disjoints, for all x ∈ [0, 1]d, we have

f̃(x) =

M
∑

i=1

αiσ





Ji
∑

j=1

σ
(〈

w
i
j , x
〉

+ bij
)

+

2d
∑

j=Ji+1

(

1− σ
(

−
〈

w
i
j , x
〉

− bij
))

− 2d





=

M
∑

i=1

αiσ





2d
∑

j=1

εijσ
(

〈

w̃
i
j , x
〉

+ b̃ij

)

− Ji



 , (27)

where

εij =

{

+1 if j ≤ Ji
−1 otherwise, w̃

i
j =

{

w
i
j if j ≤ Ji

−w
i
j otherwise,

b̃ij =

{

bij if j ≤ Ji
−bij otherwise.

Equation (27) is the action of the Heaviside neural network with two hidden layers whose architec-
ture is on Figure 2.

It remains to count the weights and biases of f̃ :
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Figure 2: The function f̃ represented as a neural network.

• the architecture has M edges going to the output layer, due to the αi;

• it has M biases associated to the neurons of the second hidden layer (they correspond to
the terms −Ji);

• between the second and the first hidden layer, the architecture has M × 2d edges (corre-
sponding to the εi,j);

• it has M × 2d biases associated to the neurons of the first hidden layer (the b̃ij);

• it has M × 2d× d edges between the first hidden layer and the entry (the w̃i
j).

Thus there are 2M + 2M × 2d +M × 2d × d = 2(d2 + 2d + 1)M = 2(d + 1)2M weights and
biases in total.

E.1.2 Main developments of the proof of Proposition 6

Let N ∈ N∗ and f ∈ Md. In this section, we partition [0, 1)d into cubes whose sizes depend on the
maximal variation of f . Then we use this partition to construct a piecewise constant approximation
f̃ of f ; we will bound from above the Lp(λ) approximation error ‖f − f̃‖Lp(λ) by a function of
N . This part is a direct reinterpretation of the proof of Proposition 3.1 in [GW07]. We then apply
Proposition 10 to f̃ and obtain the announced result.

We first define some notation that will be used in the rest of the section, then we explain the algorithm
used to divide [0, 1)d into cubes. We fix the constant K > 1 the following way:

K :=

{

2d if p = 1,

2β otherwise, where β = 1
2 (d− 1 + 1

p−1 ).

We also define an integer l that corresponds to the number of cube decompositions:

l :=

⌈

N log 2

logK

⌉

=

{⌈

N
d

⌉

if p = 1,
⌈

N
β

⌉

otherwise .
(28)

It is worth noting that this implies K−l ≤ 2−N < K−l+1.
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Now we partition [0, 1)d into dyadic cubes of the form [a1, b1)× · · · × [ad, bd). If C is such a cube,
we use the following convenient notation:

C := (a1, . . . , ad) ∈ R
d, C := (b1, . . . , bd) ∈ R

d,

to refer to the smallest and largest vertices of C. The cube decompositions process reads as follow:

• First we partition [0, 1)d into 2Nd cubes of side-length 2−N . We denote by S0 the set of
these cubes C such that f(C)− f(C) ≤ K2−N and by R0 the set of the remaining cubes.

• For 1 ≤ i < l, we partition each cube in the set Ri−1 (the remaining cubes at the step i−1)
into 2d cubes of equal size, and we denote by Si the set of obtained cubes C of side-length
2−(i+N) such that

f(C)− f(C) ≤ Ki+12−N . (29)

Again, the set of remaining cubes is denoted by Ri.

• Lastly, we partition each cube in the set Rl−1 into 2d cubes of equal size, and we denote
by Sl the set of obtained cubes of side-length 2−(l+N).

Once the algorithm is done, each point in [0, 1)d clearly belongs to one single cube of ∪l
i=0Si. For

i ∈ {0, . . . , l}, we let S̃i = ∪C∈SiC.

We now define the piecewise constant approximation of f by

∀x ∈ [0, 1]d, f̃(x) =
∑

C∈
⋃

0≤i≤l Si

f(C)1x∈C ,

where 1x∈C denotes the indicator function of the cube C. We do not make the dependence explicit,
but f̃ depends on the parameters N , d and p. The number of cubes over which f̃ is constant is
∑l

i=0 |Si|. This quantity is key when constructing the neural network according to Proposition 10;
in the next lemma, we bound from above |Si| for all i = 0, . . . , l. Then, we will estimate the error
‖f − f̃‖Lp(λ).

Lemma 7. With the above notation:

∀i ∈ {0, . . . , l}, |Si| ≤ dK−i2i(d−1)+Nd+1

Moreover,

λ(S̃i) ≤

{

1 if i = 0,
2d(2K)−i , otherwise.

(30)

Proof. By construction, we have

∀i ∈ {1, . . . , l}, |Si|+ |Ri| = 2d|Ri−1|,

since the set Si ∪Ri contains all the cubes of side-length 2−(i+N), that have been constructed from
the cubes of Ri−1. In particular,

∀i ∈ {1, . . . , l}, |Si| ≤ 2d|Ri−1|. (31)

It remains to bound |Ri−1| from above for i ≥ 1. Define V := {C : C ∈ Ri−1} the set of the
smallest vertices of the cubes in Ri−1. We consider the classes of these vertices under the “laying
on the same extended diagonal” equivalence relation. Since the cubes have side-length 2−(i−1+N),
there are less than d2(i−1+N)(d−1) equivalence classes. According to the pigeonhole principle, the

largest class has at least
⌈

|V |

d2(i−1+N)(d−1)

⌉

elements; let us refer to this class as D. Let (Cj)1≤j≤J

be the set of cubes in Ri−1 having a point in D as lowest vertex. Since f is non-decreasing and
according to (29), we have:

1 ≥ f(1, . . . , 1)− f(0, . . . , 0) ≥
J
∑

j=1

f(Cj)− f(Cj) ≥ JKi2−N

≥
|V |

d2(i−1+N)(d−1)
Ki2−N =

|Ri−1|

d2(i−1+N)(d−1)
Ki2−N .
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Thus
|Ri−1| ≤ d2i(d−1)+Nd+1−dK−i.

The first statement of Lemma 7 follows from (31).

For i = 0, λ(S̃0) ≤ 1. For 1 ≤ i ≤ l, using the first statement of this lemma, we bound from above
the measure of S̃i:

λ(S̃i) =
(

2−(i+N)
)d

|Si| ≤ dK−i2i(d−1)+Nd+12−d(i+N),

= 2d(2K)−i.

To show that f̃ is close to f in Lp(λ) norm, let us use the fact that (S̃i)0≤i≤l is a partition of [0, 1)d

and decompose the error in three parts:

‖f − f̃‖pLp(λ) =

∫

S̃0

|f(x)− f̃(x)|pdx+

l−1
∑

i=1

∫

S̃i

|f(x)− f̃(x)|pdx+

∫

S̃l

|f(x)− f̃(x)|pdx.

In the next lemma, we control each term of the above sum to bound from above ‖f − f̃‖Lp(λ) by a
function of N that is independent of f and tends to 0 when N tends to +∞.

Lemma 8. For any 1 ≤ p < +∞, there exists a constant cd,p > 0 depending only on d and p such
that for all N ∈ N∗

‖f − f̃‖Lp(λ) ≤ cd,p











2−N if p(d− 1) < d,

2−N (1+1/β)
p if p(d− 1) > d,

N
1
p 2−N if p(d− 1) = d,

(32)

where f̃ is the function constructed for the parameters N , d and p.

Proof. For 0 ≤ i < l, on any cube C ∈ Si, we have

∀x ∈ C, |f(x)− f̃(x)| = |f(x)− f(C)| ≤ f(C)− f(C) ≤ Ki+12−N , (33)

since f is non-decreasing, and by definition of f̃ and Si.

• Using the fact that λ(S̃0) ≤ 1 and by (33):
∫

S̃0

|f(x)− f̃(x)|pdx ≤ (2−NK)p. (34)

• Using (30) and (33), we get for all i ∈ {1, . . . , l − 1}
∫

S̃i

|f(x)− f̃(x)|pdx ≤ (Ki+12−N)p2d(2K)−i. (35)

• On any C ∈ Sl, we have, for all x ∈ C, |f(x) − f̃(x)| ≤ |f(x) − f(C)| ≤ 1, and we get,
using (30):

∫

S̃l

|f(x)− f̃(x)|pdx ≤ 2d(2K)−l. (36)

Combining (34), (35) and (36) we get:

‖f − f̃‖pLp(λ) ≤ (2−NK)p +

l−1
∑

i=1

(Ki+12−N)p2d(2K)−i + 2d(2K)−l

≤ (2−NK)p + 21−NpKpd

l−1
∑

i=1

(

Kp−1

2

)i

+ 2d(2K)−l. (37)

It remains to bound the right-hand side of (37), depending on the value of p and d. Note that the
behavior of this term depends on whether Kp−1

2 is larger or smaller than 1.
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• Suppose that p(d − 1) < d. In this case, we can have p = 1 or p > 1. If p = 1, we have
Kp−1

2 = 1
2 < 1 and 1

2K < K−p. If p > 1, we have:

p(d− 1) < d ⇐⇒ dp− p− d+ 1 < 1 ⇐⇒ d− 1 <
1

p− 1
.

Thus, β being the arithmetic mean of d − 1 and 1
p−1 , we have d − 1 < β < 1

p−1 . Then

K = 2β < 21/(p−1) and hence Kp−1

2 < 1 and 1
2K < K−p. Therefore, both for p = 1 and

p > 1,
l−1
∑

i=1

(

Kp−1

2

)i

≤
Kp−1

2−Kp−1
and (2K)−l ≤ K−pl.

Since K−l ≤ 2−N , this leads to

‖f − f̃‖pLp(λ) ≤ (2−NK)p + 21−NpKpd
Kp−1

2−Kp−1
+ 2dK−pl

≤

(

Kp + 2Kpd
Kp−1

2−Kp−1
+ 2d

)

2−Np.

We thus have, setting c1 :=

(

Kp + 2Kpd
Kp−1

2−Kp−1
+ 2d

)
1
p

,

‖f − f̃‖Lp(λ) ≤ c12
−N .

Notice c1 only depends on d and p.

• Suppose that p(d−1) > d. We have p > 1 and d−1 > β > 1
p−1 . ThenK = 2β > 21/(p−1)

and hence Kp−1

2 > 1, which entails using (37)

‖f − f̃‖pLp(λ) ≤ (2−NK)p + 21−NpKpd
(Kp−1/2)l

Kp−1/2− 1
+ 2d(2K)−l

≤ 2−NpKp + 2−NpKpl 2Kpd

Kp−1/2− 1
(2K)−l + 2d(2K)−l.

Since p > 1 + 1
β , we have 2−Np ≤ 2−N(1+ 1

β ). Also, since K = 2β , (2K)−l = 2−l(β+1),

and since l ≥ N log(2)
log(K) = N

β , we have (2K)−l ≤ 2−
N
β (β+1) = 2−N(1+ 1

β ). Finally, since

2−NK l < K ,

‖f − f̃‖pLp(λ) ≤

(

Kp +Kp 2Kpd

Kp−1/2− 1
+ 2d

)

2−N(1+1/β)

We thus have, setting c2 :=
(

Kp + 2K2pd
Kp−1/2−1 + 2d

)
1
p

,

‖f − f̃‖Lp(λ) ≤ c22
−N(1+1/β)

p .

Notice c2 only depends on d and p.

• Suppose that p(d − 1) = d. It implies p > 1 and p− 1 = 1
d−1 , then β = d − 1. We thus

have Kp−1 = 2(d−1)(p−1) = 2. Therefore, (37) becomes

‖f − f̃‖pLp(λ) ≤ 2−NpKp + 2−Np2Kpd(l − 1) + 2d(Kp)−l.

On the one hand, we have K−l ≤ 2−N . On the other, we have 2−N < K−l+1, so
l − 1 < N log 2

logK = N
d−1 . Putting it all together, we get

‖f − f̃‖pLp(λ) ≤ 2−NpKp + 2−Np2Kpd(l − 1) + 2d2−Np

≤

(

Kp + 2Kp d

d− 1
+ 2d

)

N2−Np.
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We thus have, setting c3 :=
(

Kp + 2Kp d
d−1 + 2d

)
1
p

,

‖f − f̃‖Lp(λ) ≤ c3N
1
p 2−N .

Notice c3 only depends on d and p.

Letting cd,p = max{c1, c2, c3} yields the result.

According to Proposition 10, the function f̃ constructed for a given N ∈ N∗ can be implemented by
a Heaviside neural network with two hidden layers and W = 2(d + 1)2

∑l
i=0 |Si| weights. Using

Lemma 7, we obtain

W = 2(d+ 1)2
l
∑

i=0

|Si| ≤ 2(d+ 1)2
l
∑

i=0

dK−i2i(d−1)+Nd+1

= 2Nd+2d(d+ 1)2
l
∑

i=0

(

2d−1

K

)i

.

We let, for all N ∈ N∗,

WN := 2Nd+2d(d+ 1)2
l
∑

i=0

(

2d−1

K

)i

. (38)

Although we do not make the dependence explicit, WN also depends on d and p. Observe that for
all d ≥ 1: (WN )N∈N∗ is non-decreasing and limN→+∞ WN = +∞.

Lemma 9. With the above notation: For any +∞ > p ≥ 1, there exist constants W ′
min, c

′
d,p > 0

depending only on d and p ≥ 1 such that for all N satisfying WN ≥ W ′
min

‖f − f̃‖Lp(λ) ≤ c′d,p g(WN+1)

where f̃ is constructed for the parameters N , p and d, and where for all W ≥ 1,

g(W ) =











W−1/d if (d− 1)p < d,

W− 1
p(d−1) if (d− 1)p > d,

W−1/d logW if (d− 1)p = d.

Proof. Again, we distinguish three cases depending on the values of p and d.

• Suppose that p(d−1) < d: if p = 1, 2d−1

K = 1
2 < 1; if p > 1, since 1

p−1 > d−1, β > d−1

and 2d−1

K = 2d−1−β < 1. Thus, in both cases 2d−1

K < 1 and for all N ≥ 1,

WN ≤ 2Nd

(

4d(d+ 1)2

1− 2d−1−β

)

=: 2Ndc′′d,p.

Writing the inequality for N + 1, we obtain

WN+1 ≤ 2Nd2dc′′d,p .

That is: 2−N ≤ 2
(

c′′d,p
WN+1

)1/d

. Combined with (32), this provides

‖f − f̃‖Lp(λ) ≤ 2cd,p

(

c′′d,p
WN+1

)1/d

= dd,pW
−1/d
N+1 ,

for dd,p = 2cd,p(c
′′
d,p)

1/d and all N ∈ N∗.
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• If p(d− 1) > d, then β < d− 1 and 2d−1

K = 2d−1−β > 1. Thus, reminding the definition
of l in (28), we have for all N ≥ 1

WN ≤ 2Nd2(d−1−β)(l+1)

(

4d(d+ 1)2

2d−1−β − 1

)

≤ 2Nd2(d−1−β)(N/β+2)

(

4d(d+ 1)2

2d−1−β − 1

)

= 2N(d+(d−1)/β−1)

(

4d(d+ 1)222(d−1−β)

2d−1−β − 1

)

=: 2N(1+ 1
β )(d−1)c′′d,p,

for a different constant c′′d,p. Writing again this inequality for N + 1, we obtain

WN+1 ≤ c′′d,p2
(1+ 1

β )(d−1) 2N(1+ 1
β )(d−1),

which we can write 2−N(1+ 1
β ) ≤ 2(1+

1
β )
(

c′′d,p
WN+1

)
1

d−1

. This provides

2−N (1+1/β)
p ≤ 2

(1+1/β)
p

(

c′′d,p
WN+1

)

1
p(d−1)

.

Therefore, using (32), we obtain

‖f − f̃‖Lp(λ) ≤ cd,p2
(1+1/β)

p

(

c′′d,p
WN+1

)

1
p(d−1)

= d′d,pW
− 1

p(d−1)

N+1 ,

for d′d,p = cd,p 2
(1+1/β)

p (c′′d,p)
1

p(d−1) and all N ∈ N∗.

• If p(d− 1) = d, then β = d− 1 and 2d−1

K = 1. Thus, reminding the definition of l in (28),
we have for all N ≥ 1

WN = 2Nd+2d(d+ 1)2(l + 1) ≤ 2Nd+2d(d+ 1)2
(

N

β
+ 2

)

= 2Nd

(

N

β
+ 2

)

(

4d(d+ 1)2
)

=: 2Nd

(

N

d− 1
+ 2

)

c′′d,p

≤ 2d(d−1)( N
d−1+2)

(

N

d− 1
+ 2

)

c′′d,p

= exp

(

d(d− 1)

(

N

d− 1
+ 2

)

log 2

)(

N

d− 1
+ 2

)

c′′d,p (39)

where c′′d,p = 4d(d+ 1)2. Setting

W̃N :=
d(d− 1)WN log 2

c′′d,p
and Ñ := d(d− 1)

(

N

d− 1
+ 2

)

log 2,

we can rewrite (39) as:
W̃N ≤ Ñ exp(Ñ ) . (40)

Since d ≥ 2, c′′d,p > 0, (WN )N∈N∗ is non-decreasing and limN→+∞ WN = +∞, there
exists W ′

min such that, for all N satisfying WN ≥ W ′
min, we have the following:























log(W̃N ) > 1

log(W̃N+1) > 2 log(2) d(d − 1)
log(W̃N+1)
d log(2) − log log(W̃N+1)

d log(2) − 2(d− 1) > 1
p log(2)

logWN+1 ≥ log
(

d(d−1) log 2
c′′d,p

)

.

(41)

These inequalities will be used latter in the proof and, from now on, we always consider N
such that WN ≥ W ′

min.

Let us first show by contradiction that, for all N satisfying WN ≥ W ′
min, (40) implies that

Ñ ≥ log W̃N − log log W̃N . (42)
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Indeed, if the latter does not hold

Ñ < log W̃N − log log W̃N ,

exp(Ñ) <
W̃N

log W̃N

,

and therefore, multiplying the two inequalities, since (41) implies that W̃N > 0, log W̃N >
0 and log(log(W̃N )) > 0,

Ñ exp(Ñ) < W̃N .

The latter being in contradiction with (40), we have proved that, for all N satisfying WN ≥
W ′

min, (42) holds. Using the definition of Ñ , we deduce

N ≥

(

log W̃N − log log W̃N

d(d− 1) log(2)
− 2

)

(d− 1)

=
log(W̃N )

d log(2)
−

log log W̃N

d log(2)
+ c,

for the constant c = −2(d − 1) < 0. Since (WN )N∈N is non-decreasing, for all N
satisfying WN ≥ W ′

min, WN+1 ≥ W ′
min and the inequality also holds for N + 1. That is

N + 1 ≥
log(W̃N+1)

d log(2)
−

log log W̃N+1

d log(2)
+ c. (43)

Using (32), we obtain:

‖f − f̃‖Lp(λ) ≤ cd,pN
1
p 2−N ≤ 2cd,p(N + 1)

1
p 2−(N+1).

Since, for t > 1
p log(2) , the function t 7−→ t

1
p 2−t is non-increasing, using (43) and (41) and

the fact that − log log W̃N+1

d log(2) + c < 0, we obtain

‖f − f̃‖Lp(λ) ≤ 2cd,p

(

log(W̃N+1)

d log(2)

)
1
p

2−
log(W̃N+1)

d log(2) 2
log log W̃N+1

d log(2) 2−c,

=

(

21−ccd,p
(d log(2))1/p

)

(log W̃N+1)
1
p+

1
d W̃

− 1
d

N+1

=

(

21−ccd,p
(d log(2))1/p

)

W̃
− 1

d

N+1 log W̃N+1,

since p(d − 1) = d implies 1
p + 1

d = 1. Finally, using the definition of W̃N and (41), we
obtain

‖f − f̃‖Lp(λ) ≤ d′′d,pW
− 1

d

N+1 logWN+1,

for the constant d′′d,p = 2
(

21−ccd,p
(d log(2))1/p

)(

d(d−1) log 2
c′′d,p

)−1/d

and all N ∈ N∗ such that

WN ≥ W ′
min. Notice d′′d,p only depends on d and p.

Taking c′d,p = max(dd,p, d
′
d,p, d

′′
d,p) provides the announced statement.

Proof of Proposition 6. Take Wmin = max(W ′
min,W1) and c = c′d,p, where W ′

min and c′d,p are
from Lemma 9 and W1 is defined in (38). Let W ≥ Wmin, there exists N ∈ N∗ such that

WN ≤ W < WN+1.

Consider the architecture A with W weights, as in Proposition 10, which allows to represent
piecewise-constant functions with less than W

2(d+1)2 cubic pieces. It can represent piecewise-constant

functions with WN

2(d+1)2 pieces.
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Figure 3: The set C, the set ∂C ∩ (0, 1)2 and the indicator function f .

For any f ∈ Md, the function f̃ obtained for the parameter N is a piecewise-constant function with
at most WN

2(d+1)2 pieces, therefore we have f̃ ∈ HA and, according to Lemma 9, f̃ satisfies

‖f − f̃‖Lp(λ) ≤ c′d,pg(WN+1).

Moreover, since g is non-increasing, we have using c = c′d,p

‖f − f̃‖Lp(λ) ≤ c g(W ).

Therefore, for any f ∈ Md,
inf

g∈HA

‖f − g‖Lp(λ) ≤ c g(W )

and so does the supremum over f in Md.

This concludes the proof of Proposition 6.

E.2 Proof of Proposition 4

Step 1: we prove the result in dimension d = 2.

We consider the closed disk of radius 1, centered at (1, 1),

C =

{

x ∈ R
2 :

2
∑

i=1

(xi − 1)2 ≤ 1

}

.

The intersection between (0, 1)2 and the topological boundary ∂C of C is the quarter of circle:

∂C ∩ (0, 1)2 =

{

x ∈ (0, 1)2 :

2
∑

i=1

(xi − 1)2 = 1

}

.

We denote by f : [0, 1]2 → {0, 1} the indicator function of the set C ∩ [0, 1]2. The set C ∩ [0, 1]2,
the set ∂C ∩ (0, 1)2 and the function f are represented on Figure 3.

Since no point in Cc ∩ [0, 1]2 has all its coordinates strictly larger than those of a point in C, we have
f ∈ M2 (monotonic functions of 2 variables). We consider an arbitrary neural network architecture
A and g ∈ HA.

Let W ≥ 1 be the number of weights in the architecture A. As is well known for Heaviside neural
networks, there exist K ∈ N with K ≤ 2W , reals αj and polygonsAj ⊂ [0, 1]2, for j ∈ {1, . . . ,K},
such that for all x ∈ [0, 1]2

g(x) =

K
∑

j=1

αj1Aj (x).
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Moreover, (Aj)1≤j≤K form a partition of [0, 1]2.

The proof relies on the fact (proved afterwards) that, if ‖f − g‖∞ < 1
2 then ∂C ∩ (0, 1)2 is finite.

The latter being false, we conclude that ‖f − g‖∞ ≥ 1
2 .

Assume from now on that ‖f − g‖∞ < 1
2 . This implies that g > 1

2 on C, and g < 1
2 elsewhere. Let

us first show that we then have

∂C ∩ (0, 1)2 ⊂
K
⋃

j=1

∂Aj .

Indeed, if the latter were not true, then there would exist x ∈ ∂C ∩ (0, 1)2 and j ∈ {1, . . . ,K}

such that x ∈ Åj . Since C is closed, x ∈ C. Let ǫ > 0 be such that B(x, ǫ) ⊂ Åj . We have
B(x, ǫ) 6⊂ C (otherwise, x belongs to the interior of C which contradicts x ∈ ∂C). Thus there exists
z ∈ B(x, ǫ) \ C. Since g > 1

2 on C, and g < 1
2 elsewhere, we have

g(z) <
1

2
< g(x).

This is not possible since x, z ∈ Åj and g is constant on Aj . This concludes the proof of the
following fact: if ‖f − g‖∞ < 1

2 then ∂C ∩ (0, 1)2 ⊂
⋃

1≤j≤K ∂Aj .

Since the Aj are polygons (recall that we work in dimension 2), their boundaries are finite unions of
closed line segments. Then ∂C ∩ (0, 1)2 is included in a finite union of closed line segments which
we denote Sm, for m ∈ {1, . . . ,M}. The reader may already see that this is in contradiction with
the fact that ∂C ∩ (0, 1)2 is a quarter circle. To detail this argument and complete the announced
proof, we show that ∂C ∩ (0, 1)2 ⊂

⋃M
m=1 Sm implies that ∂C ∩ (0, 1)2 is finite.

To do so, since when ∂C ∩ (0, 1)2 ⊂
⋃M

m=1 Sm we have

M
⋃

m=1

(

∂C ∩ (0, 1)2 ∩ Sm

)

= ∂C ∩ (0, 1)2,

it suffices to prove that the intersection of any closed line segment S with ∂C ∩ (0, 1)2 contains at
most 2 points.

Denote by S a closed line segment: C and S are convex and hence connected, thus C ∩ S is either
empty, a singleton or a line segment, as a connected compact subset of S. If it is empty, then a
fortiori, ∂C ∩ (0, 1)2 ∩ S = ∅. If it is not, denote by y and z its extremities (assuming z = y in the
case of a singleton). By strict convexity of the function x 7→

∑2
i=1(xi − 1)2, the open line segment

(y, z) is included in C̊ ( (y, z) = ∅ in the case of a singleton), hence

∂C ∩ (0, 1)2 ∩ S ⊂ [y, z] \ C̊ ⊂ {y, z}.

In any case, we have |∂C ∩ (0, 1)2 ∩ S| ≤ 2.

This concludes the proof of the fact: if ‖f − g‖∞ < 1
2 then ∂C ∩ (0, 1)2 is finite and concludes the

proof in the case d = 2.

Step 2: we prove the result in any dimension d ≥ 2, by a reduction to dimension 2.

We define

C =

{

x ∈ R
d :

d
∑

i=1

(xi − 1)2 ≤ 1

}

,

and the function f : [0, 1]d → R by

f(x1, . . . , xd) = 1(x1,...,xd)∈C .
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Consider an arbitrary neural network architecture A and g ∈ HA. That is, g can be represented by
a Heaviside neural network with d input neurons. Note that

sup
x1,x2,x3...,xd∈[0,1]

|f(x1, x2, x3 . . . , xd)− g(x1, x2, x3 . . . , xd)|

≥ sup
x1,x2∈[0,1]

|f(x1, x2, 1 . . . , 1)− g(x1, x2, 1 . . . , 1)|

≥
1

2
,

where the last inequality is by the result of Step 1, since (x1, x2) ∈ [0, 1]2 7→ f(x1, x2, 1 . . . , 1) is
the indicator function of Step 1, and (x1, x2) ∈ [0, 1]2 7→ g(x1, x2, 1 . . . , 1) can be represented by
a Heaviside neural network with 2 input neurons. This concludes the proof.

Remark. Note from the above proof that, though we only stated the impossibility result for
piecewise-constant activation functions, an analogue statement in fact holds more generally for
piecewise-affine activation functions.

F Barron space

In Section 5 we mentioned that the Barron space introduced in [Bar93] is one among several ex-
amples for which approximation theory provides ready-to-use lower bounds on the packing number.
This space has received renewed attention recently in the deep learning community, in particular
because its “size” is sufficiently small to avoid approximation rates depending exponentially on the
input dimension d. Next we detail how to apply Corollary 1 in this case.

Definition of the Barron space. We start by introducing the Barron space, as defined in [PV21].
Let d ∈ N∗. For any constant C > 0, the Barron space Bd(C) is the set of all functions
f : [0, 1]d → [0, 1] for which there exist a measurable functionF : R

d → C and some c ∈ [−C,C]
such that, for all x ∈ [0, 1]d,

f(x) = c+

∫

Rd

(eix·ξ − 1)F (ξ)dξ and
∫

Rd

‖ξ‖2|F (ξ)|dξ ≤ C,

where x · ξ denotes the standard scalar product in between x and ξ.

Known lower bound on the packing number. Petersen and Voigtlaender [PV21] showed a tight
lower bound on the log packing number in Lp(λ, [0, 1]d) norm, which we recall below.

Proposition 11 (Proposition 4.6 in [PV21]). Let 1 ≤ p ≤ +∞. There exist constants ε0, c0 > 0
depending only on d and C such that for any ε ≤ ε0,

logM(ε,Bd(C), ‖ · ‖Lp) ≥ c0ε
−1/( 1

2+
1
d ). (44)

Consequence on the approximation rate by piecewise-polynomial neural networks. Plugging
the lower bound of Proposition 11 in Corollary 1, we obtain the following lower bound on the
approximation error of the Barron space by piecewise-polynomial neural networks.

Proposition 12. Let 1 ≤ p < +∞, d ≥ 1. Let σ : R → R be a piecewise-polynomial function on
K ≥ 2 pieces, with maximal degree ν ∈ N. Consider the Barron space Bd(C) defined above, with
C > 0. There exist positive constants c1, c2, c3,Wmin depending only on d, p, C, K and ν such that,
for any architecture A of depth L ≥ 1 with W ≥ Wmin weights, and for the activation σ, the set HA

(cf. Section 1) satisfies

sup
f∈Bd(C)

inf
g∈HA

‖f − g‖Lp(λ) ≥











c1W
−1− 2

d log−1− 2
d (W ) if ν ≥ 2 ,

c2(LW )−
1
2−

1
d log−

3
2−

3
d (W ) if ν = 1 ,

c3W
− 1

2−
1
d log−

3
2−

3
d (W ) if ν = 0 .

(45)
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