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Abstract

We study the fundamental limits to the expressive power of neural networks.
Given two sets F , G of real-valued functions, we first prove a general lower bound
on how well functions in F can be approximated in Lp(µ) norm by functions in
G, for any p ≥ 1 and any probability measure µ. The lower bound depends on
the packing number of F , the range of F , and the fat-shattering dimension of G.
We then instantiate this bound to the case where G corresponds to a piecewise-
polynomial feed-forward neural network, and describe in details the application
to two sets F : Hölder balls and multivariate monotonic functions. Beside match-
ing (known or new) upper bounds up to log factors, our lower bounds shed some
light on the similarities or differences between approximation in Lp norm or in
sup norm, solving an open question by DeVore et al. [DHP21]. Our proof strategy
differs from the sup norm case and uses a key probability result of Mendelson
[Men02].

1 Introduction

Neural networks are known for their great expressive power: in classification, they can interpo-
late arbitrary labels [ZBH+21], while in regression they have universal approximation properties
[Cyb89, Hor91, LLPS93, KL20], with approximation rates that can outperform those of linear ap-
proximation methods [Yar18, DHP21]. Though the approximation problem is often only one part
of the underlying learning problem (where generalization and optimization properties are also at
stake), understanding the fundamental limits to the approximation properties of neural networks is
key, both conceptually and for practical issues such as designing the right network architecture for
the right problem.

Setting and related works. One way to quantify the expressive power of neural networks is
through the following problem (some informal statements will be made more precise in the next
sections). Let G be the set of all functions gw : X ⊂ R

d → R that can be represented by tuning the
weights w ∈ RW of a feed-forward neural network with a fixed architecture, and let F be any set of
real-valued functions on X . A natural question is: how well functions f ∈ F can be approximated
by functions gw ∈ G? More precisely, given a norm ‖·‖ on functions, what is the order of magnitude
of the (worst-case) approximation error of F by G defined by

sup
f∈F

inf
gw∈G

‖f − gw‖ , (1)
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and how small can it be given the numbers W , L of weights and layers, and some properties of F ?

The case when ‖ · ‖ is the sup norm (defined by ‖f‖∞ = supx∈X |f(x)|) is rather well understood
at least in some special cases. For example, when F is a Hölder ball of smoothness s > 0 and the
network uses the ReLU activation function, Yarotsky [Yar17] derived a lower bound on (1) of the
order of W−2s/d, later refined to (LW )−s/d (up to log factors) by [Yar18, YZ20] when the depth of
the network varies from L = 1 to L ≈ W . Using the bit extraction technique, these authors showed
that these lower bounds are achievable (up to log factors) with a carefully designed ReLU network
architecture. Refined results in terms of width and depth were obtained by [SYZ22] when s ≤ 1,
while some other activation functions were also studied in [YZ20].

In this paper, we study (1) with the Lp(µ) norm, defined by ‖f‖Lp(µ) =
(∫

X |f(x)|pdµ(x)
)1/p

, for
p ≥ 1 and some probability measure µ on X . Since this corresponds to approximating functions
in F in a more “average” sense than in sup norm, a natural question is whether the same accuracy
can be achieved with a smaller network or not. Unfortunately, however, the proof strategies behind
the lower bounds of [Yar17, Yar18, YZ20, SYZ22] are specific to the sup norm (see Remark 1 in
Section 3 for details). DeVore et al. [DHP21] indeed commented: “When we move to the case
p < ∞, the situation is even less clear [...] we cannot use the VC dimension theory for Lp(Ω)
approximation. [...] What is missing vis-à-vis Problem 8.13 is what the best bounds are and how we
prove lower bounds for approximation rates in Lp(Ω), p 6= ∞.”

Existing lower bounds in Lp(µ) norm. Several papers provided lower bounds in some special
cases, under some restrictions on the set to approximate F , the neural network, the approximation
metric, or the encoding map f ∈ F 7→ w(f) ∈ R

W .

When F is a space of smoothness s, a first result which is based on [DHM89] states that when im-
posing the weights to depend continuously on the function to be approximated, one can not achieve
a better approximation rate than W− s

d .

For the same F , another result for p = 2 and for activation functions which are continuous ([Mai99,
MMR99]) prove a lower bound on the approximation of functions of smoothness s on a compact
of Rd, by one hidden-layer neural networks, of order W− s

d−1 . A matching upper bound is proven
for a particular activation function, which is sigmoidal but pathological ([MP99]). For this same
activation function, they prove that contrary to the one-hidden-layer case, there is no lower bound in
the case of two-hidden-layer networks. The result is based on the Kolmogorov-Arnold superposition
theorem.

In [SX21], the authors study approximation by shallow neural networks with bounded weights and
activations of the form ReLUk for an integer k. They approximate the closure of the convex hull
of shallow ReLUk-neural networks with constrained weights. They obtain optimal lower bounds
of order W− 1

2−
2k+1
2d in any norm ‖ · ‖X where X is a Banach space to which the approximation

functions belong and such that these functions are uniformly bounded w.r.t. ‖ · ‖X . Although we
only consider approximation in Lp(µ) norm, our results complement the latter by addressing neural
networks with unbounded weights and arbitrary depth, and general sets F .

Approximation lower bounds in Lp(µ) norm, p ≥ 1, have also been studied in the quantized neural
networks setting (networks with weights encoded with a fixed number of bits). In [PV18], under
weak assumptions on the activation function, the authors prove a lower bound on the minimal num-
ber of nonzero weights W that are required for a network to approximate a class of binary classifiers

with Lp error at most ε. They show that W is at least of the order ε−
p(d−1)

β log−1
2 (1/ε), where β is a

smoothness parameter. Later works including [VP19, GR21] derive lower bounds for approximation
by quantized networks in various norms.

Main contributions and outline of the paper. We prove lower bounds on the approximation error
(1) in any Lp(µ) norm, for non-quantized networks of arbitrary depth, and general sets F . Our main
contributions are the following.

In Section 2, we first prove a general lower bound for any two sets F , G of real-valued functions
on a set X (Theorem 1). The lower bound depends on the packing number of F , the range of F ,
and the fat-shattering dimension of G. We then derive a versatile corollary when G corresponds to
a piecewise-polynomial feed-forward neural network (Corollary 1), solving the question by DeVore
et al. [DHP21]. Importantly, our proof strategy still relies on VC dimension theory, but differs from
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the sup norm case in using a key probability result of Mendelson [Men02], to relate approximation
in Lp(µ) norm with the fat-shattering dimension of G.

In Sections 3–4 we apply this corollary to the approximation of two sets: Hölder balls and multivari-
ate monotonic functions. Beside matching (known or new) upper bounds up to log factors, our lower
bounds shed some light on the similarities or differences between approximation in Lp norm or in
sup norm. In particular, with ReLU networks, Hölder balls are not easier to approximate in Lp norm
than in sup norm. On the contrary, the approximation rate for multivariate monotonic functions de-
pends on p. In Section 5, we outline several other examples of function sets F and G for which the
general lower bound (Theorem 1) can also be easily applied. Finally, some proofs are postponed to
the supplement, while some details on other existing lower bound proof strategies are provided in
the supplement, in Appendix C.

Main definitions and notation. We provide below some definitions and notation that will be used
throughout the paper. We denote the set of positive integers {1, 2, . . .} by N∗ and let N := N∗ ∪{0}.
All sets considered in this paper will be assumed to be nonempty, and measurable set will be used
to denote a set X (implicitly) endowed with a σ-algebra.

Let p ∈ [1,+∞] and X be any measurable set endowed with a probability measure µ. For any mea-

surable function f : X → R, the Lp(µ) norm of f is defined by ‖f‖Lp(µ) =
(∫

X
|f(x)|pdµ(x)

)1/p

(possibly infinite) if p < +∞, and ‖f‖L∞(µ) = ess supx∈X |f(x)|. We will write λ for the Lebesgue
measure on [0, 1]d.

For any ε > 0, two functions f1, f2 are said to be ε-distant in ‖ · ‖ if ‖f1 − f2‖ > ε. Let F be a set
of functions from X to R. A set {f1, . . . , fN} ⊂ F is said to be an ε-packing of F in ‖ · ‖ (or just
an ε-packing for short) if for any i 6= j ∈ {1, . . . , N}, fi and fj are ε-distant in ‖ · ‖. The ε-packing
number M(ε, F, ‖ · ‖) is the largest cardinality of ε-packings (possibly infinite).

For γ ≥ 0, we say that a set S = {x1 . . . , xN} ⊂ X is γ-shattered by F if there exists r : S → R

such that for any E ⊂ S, there exists f ∈ F satisfying for all i = 1, . . . , N , f(xi) > r(xi) + γ if
xi ∈ E, and f(xi) < r(xi) − γ if xi /∈ E. If this statement is true when we replace γ by 0, we
say that F pseudo shatters S. The γ-fat-shattering dimension, denoted by fatγ(F ), is defined as the
largest number N ≤ +∞ such that there exists S ⊂ X of cardinality N which is γ-shattered by F .
The pseudo dimension Pdim(G) is defined similarly but for sets that are pseudo shattered.

A formal definition of feed-forward neural networks is recalled in Appendix A. In short, in this
paper, a feed-forward neural network architecture A of depth L ≥ 1 is a directed acyclic graph with
d ≥ 1 input neurons, L− 1 hidden layers (if L ≥ 2), and an output layer with only one neuron. Skip
connections are allowed, i.e., there can be connections between non-consecutive layers. Given an
activation function σ : R → R, a feed-forward neural network architecture A, and a vector w ∈ RW

of weights assigned to all edges and non-input neurons (linear coefficients and biases), the network
computes a function gw : Rd → R defined by recursively computing affine transformations for each
hidden or output neuron, and then applying the activation function σ for hidden neurons only (see
Appendix A for more details). Finally, we define HA := {gw : w ∈ RW } to be the set of all
functions that can be represented by tuning all the weights assigned to the network.

A function σ : R → R is piecewise-polynomial on K ≥ 2 pieces, with maximal degree ν ∈ N, if
there exists a partition I1, . . . , IK of R into K nonempty intervals, such that σ restricted on each Ij
is polynomial with degree at most ν.

2 A general approximation lower bound in Lp(µ) norm

In this section, we provide our two main results: a general lower bound on the Lp(µ) approximation
error of F by G, i.e., supf∈F infg∈G ‖f − g‖Lp(µ), and a corollary when G corresponds to a feed-
forward neural network with a piecewise-polynomial activation function. The weak assumptions on
F make the last result applicable to a wide range of cases of interest, as shown in Sections 3–5.

2.1 Main results

Our generic lower bound reads as follows, and is proved in Section 2.2. We follow the conventions
0× log2(0) = 0 and P− 1

α log−
2
α (P ) = +∞ when P = 1.
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Theorem 1. Let 1 ≤ p < +∞ and X be a measurable set endowed with a probability measure
µ. Let F , G be two sets of real-valued functions defined on X , such that all functions in F have
the same finite range [a, b], and fatγ(G) < +∞ for all γ > 0. Then, there exists a constant c > 0
depending only on p such that

sup
f∈F

inf
g∈G

‖f − g‖Lp(µ) ≥ inf

{

ε > 0 : logM
(

3ε, F, ‖ · ‖Lp(µ)

)

≤ c fat ε
32
(G) log2

(

2 fat ε
32
(G)

ε/(b− a)

)}

.

(2)

In particular, if logM
(

ε, F, ‖ · ‖Lp(µ)

)

≥ c0ε
−α for some c0, ε0, α > 0 and all ε ≤ ε0, and if

Pdim(G) < +∞, then there exist constants c1, ε1 > 0 depending only on b − a, p, c0, ε0 and α
such that

sup
f∈F

inf
g∈G

‖f − g‖Lp(µ) ≥ min
{

ε1, c1 Pdim(G)−
1
α log−

2
α
(

Pdim(G)
)

}

. (3)

The first lower bound (2) is generic but requires solving an inequation.1 In (3) we solve this inequa-
tion when logM

(

ε, F, ‖ · ‖Lp(µ)

)

grows at least polynomially in 1/ε (which is typical of nonpara-
metric sets) and when G has finite pseudodimensionPdim(G). Though we will restrict our attention
to such cases in all subsequent sections, we stress that the first bound should have broader applica-
tions. A first example is when Pdim(G) = +∞ but fatγ(G) < +∞ is finite for all γ > 0 (e.g.,
for RKHS [Bel18]). The first bound should also be useful to prove (slightly) tighter lower bounds
when logM

(

ε, F, ‖ · ‖Lp(µ)

)

has a (slightly) different dependency on 1/ε (e.g., of the order of

ε−α logβ (1/ε) as when F is the set of all multivariate cumulative distribution functions [BGL07]).

In the rest of the paper, we focus on the important special case when the approximation set G is the
set of all real-valued functions that can be represented by tuning the weights of a feed-forward neural
network with fixed architecture A and a piecewise-polynomial activation function. By combining
Theorem 1 with known bounds on the pseudo-dimension [BHLM19], we obtain the following corol-
lary, which bounds the approximation error in terms of the number W of weights and the depth L
(i.e., the number of hidden and output layers). The proof is postponed to Appendix B.4.

Corollary 1. Let 1 ≤ p < +∞, d ≥ 1 and X be a measurable subset of Rd endowed with
a probability measure µ. Let F be a set of functions from X to [a, b], a, b ∈ R, such that

logM
(

ε, F, ‖ · ‖Lp(µ)

)

≥ c0ε
−α for some c0, ε0, α > 0 and all ε ≤ ε0.

Let HA be the set of all real-valued functions on X that can be represented by a feed-forward neural
network with a fixed architecture A of depth L ≥ 1, W ≥ 1 variable weights and a piecewise-
polynomial activation function of maximal degree ν ∈ N on K ≥ 2 pieces. Then, for W ≥ Wmin,

sup
f∈F

inf
g∈HA

‖f − g‖Lp(µ) ≥











c1W
− 2

α log−
2
α (W ) if ν ≥ 2 ,

c2(LW )−
1
α log−

3
α (W ) if ν = 1 ,

c3W
− 1

α log−
3
α (W ) if ν = 0 ,

(4)

where the constants Wmin, c1, c2, c3 > 0 are independent from W .

There are equivalent ways to write the above corollary. For example, given a target accuracy ε > 0
and a depth L ≥ 1, (4) yields a lower bound on the minimum number W of weights that are needed
to get supf∈F infg∈HA

‖f−g‖Lp(µ) ≤ ε. Some earlier approximation results were written this way
(e.g., [Yar17, PV18]).

2.2 Proof of Theorem 1

In order to prove Theorem 1, we need two inequalities. The first one is straightforward (and appeared
within proofs, e.g., in [YZ20]), but formalizes the key idea that if G approximates F with error ε,
then G has to be at least as large as F . We use the conventions log(+∞) = +∞ and +∞ ≤ +∞.

Lemma 1. Let p ≥ 1 and X be a measurable space endowed with a probability measure µ. Let F ,
G be two sets of real-valued functions defined on X . If supf∈F infg∈G ‖f − g‖Lp(µ) < ε, then

logM
(

3ε, F, ‖ · ‖Lp(µ)

)

≤ logM
(

ε,G, ‖ · ‖Lp(µ)

)

.
1Note that any ε ≥ (b− a)/3 is a solution to this inequation, since logM

(

3ε, F, ‖ · ‖Lp(µ)

)

= log(1) = 0
(because all functions in F are [a, b]-valued). Therefore, the right-hand side of (2) is at most (b− a)/3.
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Proof. Let PF = {f1, . . . , fN} be a 3ε-packing of F , with N ≥ 1. Let PG = {g1, . . . , gN} be a
subset of G such that ‖fi−gi‖Lp(µ) ≤ ε for all i. Note that the existence of such a PG is guaranteed
by the assumption supf∈F infg∈G ‖f−g‖Lp(µ) < ε. Since the fi’s are pairwise 3ε-distant in Lp(µ),
the triangle inequality entails that the gi’s are also at least pairwise ε-distant in Lp(µ). Therefore,
PG is an ε-packing of G, and the result follows.

The second inequality is a fundamental probability result due to Mendelson [Men02]. It bounds
from above the ε-packing number in Lp(µ) norm of any uniformly bounded function set in terms
of its fat-shattering dimension. Crucially, the inequality holds for finite p ≥ 1, as opposed to the
lower bound strategy of Yarotsky [Yar17, Yar18] (see also [DHP21]), that relates the VC-dimension
with the approximation error in sup norm. The next statement is a straightforward generalization
of a result of [Men02] initially stated for [a, b] = [0, 1] and for Glivenko-Cantelli classes G (see
Appendix B.1 for details).

Proposition 1 ([Men02], Corollary 3.12). Let G be a set of functions from a measurable set X to
[a, b], a, b ∈ R, and such that fatγ(G) < +∞ for all γ > 0. Then for any 1 ≤ p < +∞, there exists
c > 0 depending only on p such that for every probability measure µ on X and every ε > 0,

logM
(

ε,G, ‖ · ‖Lp(µ)

)

≤ c fat ε
32
(G) log2

(

2(b− a) fat ε
32
(G)

ε

)

. (5)

Proof (of Theorem 1). Part 1. We start by proving (2), using Proposition 1 as a key argument. Since
functions in G are not necessarily uniformly bounded, we will apply Proposition 1 to the “clipped
version of G”. More precisely, for any function g ∈ G, we define its clipping (truncature) to [a, b]
as the function g̃ : X → R given by g̃(x) = min(max(a, g(x)), b) for all x ∈ X . We then set
G[a,b] = {g̃ : g ∈ G}, which by construction consists of functions that are all [a, b]-valued.

Noting that clipping can only help since elements of F are [a, b]-valued (see Lemma 4 in the supple-
ment, Appendix B.2), we have

sup
f∈F

inf
g∈G

‖f − g‖Lp(µ) ≥ sup
f∈F

inf
g̃∈G[a,b]

‖f − g̃‖Lp(µ) . (6)

Setting ∆ := supf∈F inf g̃∈G[a,b]
‖f − g̃‖Lp(µ), we now show that ∆ is bounded from below by the

right-hand side of (2). To that end, it suffices to show that every ε > ∆ is a solution to the inequation

logM
(

3ε, F, ‖ · ‖Lp(µ)

)

≤ c fat ε
32
(G) log2

(

2(b− a) fat ε
32
(G)

ε

)

. (7)

The last inequality is true whenever ε ≥ (b − a)/3 (see Footnote 1 and note c fat ε
32
(G) ≥ 0). We

only need to prove (7) when ∆ < ε < (b − a)/3. In this case, by definition of ∆ and by Lemma 1
applied to G[a,b], we have

logM
(

3ε, F, ‖ · ‖Lp(µ)

)

≤ logM
(

ε,G[a,b], ‖ · ‖Lp(µ)

)

≤ c fat ε
32
(G[a,b]) log

2

(

2(b− a) fat ε
32
(G[a,b])

ε

)

≤ c fat ε
32
(G) log2

(

2(b− a) fat ε
32
(G)

ε

)

, (8)

where the second inequality follows from Proposition 1 (note from Lemma 3 in the supplement,
Appendix B.2 that fatγ(G[a,b]) ≤ fat ε

32
(G) for all γ > 0, which is finite by assumption), and

where (8) follows from the next remark. Either fat ε
32
(G[a,b]) = 0, and (8) is true by the con-

vention 0 × log2(0) = 0 and c fat ε
32
(G) ≥ 0. Either fat ε

32
(G[a,b]) ≥ 1, and (8) follows from

t 7→ ct log2
( 2(b−a)t

ε

)

being non-decreasing on [ε/(2(b− a)),+∞) and ε/(2(b− a)) ≤ 1/6 ≤ 1 ≤
fat ε

32
(G[a,b]) ≤ fat ε

32
(G). To conclude, every ε > ∆ satisfies (7), which implies that ∆ is bounded

from below by the right-hand side of (2). Combining with (6) concludes the proof of (2).

Part 2. Set ε′1 = min
{

ε0
3 , 2(b−a)

}

. We now derive (3) from (2). To that end, settingP = Pdim(G),

we show that every ε > 0 satisfying (7) is such that ε ≥ min
{

ε1, c1P
− 1

α log−
2
α (P )

}

, where

5



ε1 ∈ (0, ε′1] and c1 > 0 will be defined later. Since the claimed lower bound on ε is true when
ε ≥ ε′1, in the sequel we consider any solution ε to (7) such that 0 < ε < ε′1 (if such a solution
exists).

By the assumption on logM
(

u, F, ‖ · ‖Lp(µ)

)

for u = 3ε ≤ ε0, and then using (7), we have, setting
r = 2(b− a),

c0(3ε)
−α ≤ logM

(

3ε, F, ‖ · ‖Lp(µ)

)

≤ c fat ε
32
(G) log2

(

r fat ε
32
(G)

ε

)

≤ cP log2
(

rP

ε

)

,

where the last inequality is because t 7→ ct log2
(

rt
ε

)

is non-decreasing on [ε/r,+∞), with ε/r ≤ 1,
and 1 ≤ fat ε

32
(G) ≤ Pdim(G) = P (the lower bound of 1 follows from c0(3ε)

−α > 0).

Solving the inequation c0(3ε)
−α ≤ cP log2(rP/ε) for ε (see Appendix B.3 for details), we get

ε ≥ min
{

ε′′1 , c1P
− 1

α log−
2
α P
}

, (9)

for some constants ε′′1 , c1 > 0 depending only on p, c0, b− a and α. Setting ε1 = min{ε′′1 , ε
′
1} and

noting that ε′1 only depends on ε0 and b− a, we conclude the proof.

3 Approximation of Hölder balls by feed-forward neural networks

In this section, we apply Corollary 1 to establish nearly-tight lower bounds for the approximation of
unit Hölder balls by feed-forward neural networks. Our main result is Proposition 3, which solves
an open question by [DHP21].

Throughout the section, for any s > 0, we denote by n and α the unique members of the decompo-
sition s = n+ α such that n ∈ N and 0 < α ≤ 1.

For a set X ⊂ Rd, we follow [YZ20] and define the Hölder space Cn,α(X ) as the space of n times
continuously differentiable functions with finite norm

‖f‖Cn,α = max

{

max
n:|n|≤n

‖Dnf‖∞, max
n:|n|=n

sup
x 6=y

|Dnf(x)−Dnf(y)|

‖x− y‖α2

}

,

where, for n = (n1, · · · , nd) ∈ Nd, Dnf =
(

∂
∂x1

)n1

· · ·
(

∂
∂xd

)nd

f denotes the |n|-order partial

derivative of f . We denote

Fs,d = {f ∈ Cn,α([0, 1]d) : ‖f‖Cn,α ≤ 1}.

Let λ denote the Lebesgue measure over [0, 1]d. In this section, we provide nearly matching upper
and lower bounds for the Lp(λ) approximation error of elements of Fs,d by feed-forward ReLU
neural networks. The bounds are expressed in terms of the number of weights of the network.

3.1 Known bounds on the sup norm approximation error

[YZ20] gives matching (up to a certain constant) lower and upper bounds of the sup norm approxi-
mation error of the elements of Fs,d by feed-forward ReLU neural networks.

Proposition 2 ([YZ20]). Let d ∈ N∗, s > 0, γ ∈
(

s
d ,

2s
d

]

. Consider n ∈ N and α ∈ (0, 1] such that
s = n+ α.

There exist positive constants Wmin and c1, depending only on d and n, such that for any integer

W ≥ Wmin, there exists a feed-forward ReLU neural network architecture A with L = O(W γ d
s−1)

layers and W weights such that

sup
f∈Fs,d

inf
g∈HA

‖f − g‖∞ ≤ c1W
−γ . (10)

In the meantime, there exists a constant c2 depending only on d and n such that for any feed-forward

ReLU neural network of architecture A with W weights and L = o(W γ d
s−1/ logW ) layers

sup
f∈Fs,d

inf
g∈HA

‖f − g‖∞ ≥ c2W
−γ . (11)
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It is worth stressing that, for any probability measure µ on [0, 1]d, the upper bound (10) is automat-
ically generalized to any smaller Lp(µ) norm, when 1 ≤ p < +∞. However, the lower bound (11)
does not necessarily apply when ‖ · ‖∞ is replaced with ‖ · ‖Lp(µ), 1 ≤ p < +∞. The lower bound
of the next subsection shows that, in this setting, approximation in Lp(λ) norm is not easier than in
sup norm, solving an open question of DeVore et al. [DHP21].

3.2 Nearly-matching lower bounds of the Lp(λ) approximation error

We first state a lower bound on the packing number of Fs,d, which is rather classical though hard
to find in this specific form (see [BS67] for the L∞ norm, or [ET96] for other Sobolev-type norms).
For the sake of completeness, we give a proof of Lemma 2 in the supplement, Appendix D.1.

Lemma 2. Let s > 0, d ∈ N∗ and 1 ≤ p < ∞. There exist constants ε0, c0 > 0 such that for any
0 < ε ≤ ε0,

logM
(

ε, Fs,d, ‖ · ‖Lp(λ)

)

≥ c0ε
− d

s . (12)

Given Lemma 2, we can use Corollary 1 to establish the next proposition and obtain the lower bound
of the Lp(λ) approximation error.

Proposition 3. Let d ∈ N∗, s > 0, γ ∈
(

s
d ,

2s
d

]

and 1 ≤ p < +∞. Let ε0, c0 be defined as in

Lemma 2. Consider n ∈ N and α ∈ (0, 1] such that s = n+ α.

Let σ : R → R be a piecewise-affine function. There exist positive constants c1,Wmin depending

only on d, p, c0, ε0 and σ such that for any architecture A of depth 1 ≤ L ≤ cW γ d
s−1 (where c is a

constant), W ≥ Wmin variable weights and activation σ, the set HA satisfies

sup
f∈Fs,d

inf
g∈HA

‖f − g‖Lp(λ) ≥ c1W
−γ log−

3s
d (W ). (13)

Note that, since ReLU is a piecewise-affine function, we obtain a lower bound which matches, up to
logarithmic factors, the upper bound presented in the previous subsection.

Proof. From Lemma 2, there exists a constant c0 > 0 such that logM
(

ε,Md, ‖ · ‖Lp(λ)

)

≥ c0ε
− d

s .

Therefore, using Corollary 1 and L ≤ c(W γ d
s−1), we obtain the result.

Remark 1 (Comparison with existing proof strategies in sup norm.). We would like to highlight a key
difference between the proof of Proposition 3 and the lower bound proof strategies of [Yar17, Yar18,
YZ20, SYZ22] that are specific to the sup norm. Their overall argument is roughly the following: if
G can approximate any f ∈ F in sup norm at accuracy ε > 0, since F contains many “oscillating”
functions with oscillation amplitude roughly ε, then so must be the case for G (the sup norm is key
here: all oscillations of any f ∈ F are well approximated). Therefore, a small ε implies a large
VCdim(G), which by contrapositive enables to lower bound the approximation error (1) with a
decreasing function of VCdim(G), and therefore as a function of L and W . In contrast, in the
proof of Theorem 1, the key probability result of Mendelson (Proposition 1) enables us to show that,
even if the oscillations of any f ∈ F are only well approximated on average (in Lp(µ) norm) by G,
then Pdim(G) must be large when ε is small. The conclusion is then the same: the approximation
error in Lp(µ) norm can be lower bounded as a function of Pdim(G), and therefore in terms of L,
W . This solves the question of DeVore et al. [DHP21] mentioned in the introduction, showing in
particular that VC dimension theory can (surprisingly) be useful to prove Lp approximation lower
bounds.

4 Approximation of monotonic functions by feed-forward neural networks

In this section, we consider the problem of approximating the set Md of all non-decreasing functions
from [0, 1]d to [0, 1]. These are functions f : [0, 1]d → [0, 1] that are non-decreasing along any line
parallel to an axis, i.e., such that, for all x, y ∈ [0, 1]d,

xi ≤ yi, i = 1, . . . , d =⇒ f(x) ≤ f(y) .

7



Next we focus on the approximation of Md with Heaviside feed-forward neural networks. After
proving an impossibility result for the sup norm, we show that the weaker goal of approximating
Md in Lp norm is feasible, and derive nearly matching lower and upper bounds. Interestingly, the
approximation rates depend on p ≥ 1, which is in sharp contrast with the case of Hölder balls, that
are not easier to approximate in Lp norm than in sup norm (see Section 3).

4.1 Warmup: an impossibility result in sup norm

We start this section by showing that approximating monotonic functions of d ≥ 2 variables in sup
norm is impossible with Heaviside neural networks.

Proposition 4. For any neural network architecture A with the Heaviside activation, the set HA

satisfies

sup
f∈Md

inf
g∈HA

‖f − g‖∞ ≥
1

2
.

The proof of Proposition 4 is postponed to the supplement, Appendix E.2. We show a slightly
stronger result, by exhibiting a single function f ∈ Md such that the lower bound of 1

2 holds
simultaneously for all network architectures.

Next we study the approximation of Md in Lp(λ) norm.

4.2 Lower bound in Lp(λ) norm

We start by proving a lower bound, as a direct consequence of Corollary 1 and a lower bound on the
packing number due to [GW07].

Proposition 5. Let 1 ≤ p < +∞, d ≥ 1, and let α = max{d, (d − 1)p}. Let σ : R → R

be a piecewise-polynomial function having maximal degree ν ∈ N. There exist positive constants
c1, c2, c3,Wmin depending only on d, p, and σ such that for any architecture A of depth L ≥ 1,
W ≥ Wmin variable weights and activation σ, the set HA satisfies

sup
f∈Md

inf
g∈HA

‖f − g‖Lp(λ) ≥











c1W
− 2

α log−
2
α (W ) if ν ≥ 2 ,

c2(LW )−
1
α log−

3
α (W ) if ν = 1 ,

c3W
− 1

α log−
3
α (W ) if ν = 0 .

(14)

Proof. From [GW07], there exist constants ε0, c0 > 0 such that for ε ≤ ε0,
logM (ε,Md, ‖ · ‖Lp) ≥ c0ε

−α. Using Corollary 1, we obtain the result.

4.3 Nearly-matching upper bound in Lp(λ) norm

To the best of our knowledge, there does not exist any upper-bound of the Lp(λ) approximation
error of Md with feed-forward neural networks. Checking that all the lower-bounds of Proposition
5 are tight is out of the scope of this paper and we leave it for future research2. However, we
establish in the next proposition upper-bounds of the Lp(λ) approximation error of Md with feed-
forward neural networks with the Heaviside activation function. This shows that, for the Lp(λ)
approximation error, the lower-bound obtained in (14), for ν = 0, is tight up to logarithmic factors.
The next proposition follows by reinterpreting a metric entropy upper bound of [GW07] in terms of
Heaviside neural networks. The proof is postponed to Appendix E.1 in the supplement.

Proposition 6. Let 1 ≤ p < +∞, d ∈ N \ {0, 1} and let α = max{d, (d − 1)p}. There exist
positive constants Wmin and c, depending only on d and p, such that for any integer W ≥ Wmin,
there exists a feed-forward architecture A with two hidden layers, W weights and the Heaviside
activation function such that the set HA satisfies

sup
f∈Md

inf
g∈HA

‖f − g‖Lp(λ) ≤

{

cW− 1
α if p(d− 1) 6= d ,

cW− 1
d log(W ) if p(d− 1) = d .

(15)

2Obtaining an upper-bound for ReLU networks seems challenging. For example, the bit extraction tech-
nique used in [Yar18] to find a sharp upper bound heavily relies on the local smoothness assumption of the
function to approximate, which is not satisfied in general for monotonic functions.
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5 Conclusion and other possible applications

We proved a general lower bound on the approximation error of F by G in Lp(µ) norm (Theorem 1),
in terms of generic properties of F and G (packing number of F , range of F , fat-shattering dimen-
sion of G). The proof relies on VC dimension theory as in the sup norm case, but uses an additional
key probabilistic argument due to Mendelson ([Men02], see Proposition 1), solving a question raised
by DeVore et al. [DHP21].

In Sections 3 and 4 we detailed two applications, where Corollary 1 yields nearly optimal approxi-
mation lower bounds in Lp norm, and which correspond to two examples where the approximation
rate may depend or not depend on p.

Theorem 1 and Corollary 1 can be used to derive approximation lower bounds for many other
cases. Corollary 1 only requires a (tight) lower bound on the packing number of F , for which
approximation theory provides several examples. For instance, for the Barron space introduced in
[Bar93], Petersen and Voigtlaender [PV21] showed a tight lower bound on the log packing number
in Lp(λ, [0, 1]d) norm, of order ε−2d/(d+2). Applying Corollary 1, this yields an approximation

lower bound of (LW )−(
1
2+

1
d ) log−3( 1

2+
1
d)(W ) for ReLU networks (see Appendix F in the supple-

ment for details). Other examples of sets F for which tight lower bounds on the packing number
(or metric entropy) are available include: multivariate cumulative distribution functions [BGL07],
multivariate convex functions [GS13], and functions with other shape constraints [GJ14].

Theorem 1 can also be applied to other approximating sets G, beyond classical feed-forward neural
networks, as soon as a (tight) upper bound on the fat-shattering dimension of G is available. For
example, upper bounds were derived by [WS22] on the VC dimension of partially quantized net-
works, while [Bel18] derived bounds on the fat-shattering dimension of some RKHS. Investigating
such applications and whether the obtained approximation lower bounds are rate-optimal is a natural
research direction for the future.
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A general approximation lower bound in Lp norm,
with applications to feed-forward neural networks

Supplementary Material

This is the appendix for “A general approximation lower bound in Lp norm, with applications to
feed-forward neural networks”.

A Feed-forward neural networks: formal definition

In all this paper, we use the following classical graph-theoretic definitions for feed-forward neural
networks given, e.g., in [BHLM19] (with slightly different terms and notation).

A feed-forward neural network architecture A of depth L ≥ 1 is a directed acyclic graph (V,E)
with d ≥ 1 nodes with in-degree 0 (also called the input neurons), a single node with out-degree 0
(also called the output neuron), and such that the longest path in the graph has length L.

We define layers ℓ = 0, 1, . . . , L recursively as follows:

• layer 0 is the set V0 of all input neurons; we assume that V0 = {1, . . . , d} without loss of
generality.

• for any ℓ = 1, . . . , L, layer ℓ is the set Vℓ of all nodes that have one or several predecessors4

in layer ℓ−1, possibly other predecessors in layers 0, 1, . . . , ℓ−2, but no other predecessors.

LayerL consists of a single node: the output neuron. Layers 1, . . . , L−1 are called the hidden layers.
Note that skip connections are allowed, i.e., there can be connections between non-consecutive
layers.

Given a feed-forward neural network architecture A of depth L ≥ 1, we associate real numbers
we ∈ R to all edges e ∈ E and wv ∈ R to all nodes v ∈ V1 ∪ . . . ∪ VL. These real numbers are
called weights (they correspond to linear coefficients and biases) and are concatenated in a weight

vector w ∈ RW , where W = Card(E) +
∑L

ℓ=1 Card(Vℓ) is the total number of weights.

Given A, an associated weight vector w ∈ R
W , and a function σ : R → R (called activation

function), the network represents the function gw : R
d → R defined recursively as follows. We write

Pv ⊂ V for the set of all predecessors of any node v ∈ V , and wu→v for the weight on the edge
from u to v. The recursion from layer ℓ = 0 to layer ℓ = L reads: given x = (x1, . . . , xd) ∈ Rd,

• each input neuron v ∈ {1, . . . , d} outputs the value yv := xv;

• for any ℓ = 1, . . . , L− 1, each neuron v ∈ Vℓ outputs yv := σ
(
∑

u∈Pv
wu→vyu + wv

)

;

• the unique output neuron v ∈ VL outputs gw(x) :=
∑

u∈Pv
wu→vyu + wv .

Finally, we define HA := {gw : w ∈ RW } to be the set of all functions that can be represented by
tuning all the weights assigned to the network (the dependency on the activation function σ is not
written explicitly).

B Main results: technical details

We provide technical details that were missing to establish Proposition 1, Theorem 1 and Corollary 1.

4A node u ∈ V is a predecessor of another node v ∈ V if there is a directed edge from u to v.
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B.1 Proof of Proposition 1

Proposition 1 was originally stated by Mendelson [Men02, Corollary 3.12] when [a, b] = [0, 1] and
when G is a uniform Glivenko-Cantelli class (instead of the assumption on fatγ(G)). However,
when G only consists of [0, 1]-valued functions, the fact that G is a uniform Glivenko-Cantelli
class is equivalent to fatγ(G) < +∞ for all γ > 0 (see [ABDCBH97], Theorem 2.5, or [Men02],
Theorem 2.4). Therefore, Corollary 3.12 in [Men02] can be rewritten as follows.

Proposition 7 (Corollary 3.12 in [Men02], equivalent statement). Let G be a set of functions from
a measurable set X to [0, 1], such that fatγ(G) < +∞ for all γ > 0. Then, for every 1 ≤ p < +∞,
there is some constant cp > 0 depending only on p such that, for every probability measure µ on X
and every ε > 0,

logM
(

ε,G, ‖ · ‖Lp(µ)

)

≤ cp fat ε
32
(G) log2

(

2 fat ε
32
(G)

ε

)

.

We now explain how to derive Proposition 1 (with an arbitrary range [a, b]) as a straightforward
consequence.

Proof (of Proposition 1). In order to apply Proposition 7, we reduce the problem from [a, b] to [0, 1]
by translating and rescaling every function in G. For g ∈ G, we define g̃ : X → [0, 1] by g̃(x) =
g(x)−a
b−a , and we set

G̃ = {g̃ : g ∈ G} .

Note that every g̃ ∈ G̃ is indeed [0, 1]-valued.

We now note that translation does not affect packing numbers nor the fat-shattering dimension, while
rescaling only changes the scale ε by a factor of b − a. More precisely, we have the following two
properties:

Property 1: For all u > 0, fat u
b−a

(G̃) = fatu(G).

Property 2: For all u > 0, M
(

u
b−a , G̃, ‖ · ‖Lp(µ)

)

= M
(

u,G, ‖ · ‖Lp(µ)

)

.

Before proving the two properties (see below), we first conclude the proof of Proposition 1. By
Property 1, fatγ(G̃) = fatγ(b−a)(G), which by assumption is finite for all γ > 0. Since every
g̃ ∈ G̃ is [0, 1]-valued, we can thus apply Proposition 7. Using it with ε̃ = ε/(b− a), we get

logM
(

ε̃, G̃, ‖ · ‖Lp(µ)

)

≤ cp fat ε̃
32
(G̃) log2

(

2 fat ε̃
32
(G̃)

ε̃

)

.

Combining with the two equalities in Properties 1 and 2, we obtain

logM
(

ε,G, ‖ · ‖Lp(µ)

)

≤ cp fat ε
32
(G) log2

(

2(b− a) fat ε
32
(G)

ε

)

,

which concludes the proof of Proposition 1.

We now prove the two properties.

Proof of Property 1. We first show that fat u
b−a

(G̃) ≥ fatu(G). To that end, let S = {x1, . . . , xm}

and r : S → R be such that for any E ⊂ S, there exists g ∈ G such that g(x) > r(x) + u if x ∈ E

and g(x) < r(x)−u otherwise. Setting r̃(x) = r(x)−a
b−a , we can see that g̃(x) > r̃(x)+ u

b−a if x ∈ E

and g̃(x) < r̃(x) − u
b−a otherwise, which proves fat u

b−a
(G̃) ≥ fatu(G). The reverse inequality is

proved similarly.

Proof of Property 2. Let {g1, . . . , gm} be a u-packing of G in Lp(µ) norm. This means that
‖gi − gj‖Lp(µ) > u and therefore ‖g̃i − g̃j‖Lp(µ) > u

b−a for all i 6= j ∈ {1, . . . ,m}, so that

{g̃1, . . . , g̃m} ⊂ G̃ is a u
b−a -packing of G̃. This provesM

(

u
b−a , G̃, ‖·‖Lp(µ)

)

≥ M
(

u,G, ‖·‖Lp(µ)

)

.
The reverse inequality is proved similarly.
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B.2 Clipping can only help

The next two lemmas indicate that clipping (truncature) to a known range can only help. These are
key to apply Proposition 1 in our setting. In the sequel, for a set G of functions from a measurable
set X ⊂ Rd to R, and for a < b, we denote by G[a,b] the set of all functions in G whose values are
truncated (clipped) to the segment [a, b], that is, G[a,b] = {g̃ : g ∈ G}, where g̃ : X → R is given by

∀x ∈ X , g̃(x) = min(max(a, g(x)), b) .

Lemma 3. Let G be a set of functions defined on a set X , and with values in R. Let G[a,b] be defined
as above. Then, for any γ > 0,

fatγ(G) ≥ fatγ(G[a,b]) .

Proof. Let γ > 0. The case when fatγ(G[a,b]) = 0 is straightforward. We thus assume that
fatγ(G[a,b]) ≥ 1. To prove the result, we show that any subset A of X that is γ-shattered by G[a,b]

is also γ-shattered by G. Let us consider such a subset A = {x1, . . . , xN} ⊂ X , with cardinality
N ≥ 1. Hence, there exists {r1, . . . , rN} ⊂ R such that for any E ⊂ A, there exists g̃ ∈ G[a,b]

such that g̃(xi) − ri > γ if xi ∈ E and g̃(xi) − ri < −γ otherwise. Note that this must imply
that ri ∈]a, b[ for all i = 1, . . . , N (indeed, by choosing E such that xi ∈ E or not, we have either
ri+γ < g̃(xi) ≤ b or ri−γ > g̃(xi) ≥ a). Now fix i ∈ {1, . . . , N} and let us assume g̃(xi)−ri > γ
(by symmetry, the reversed case g̃(xi) − ri < −γ is treated the same way). Because ri > a, this
implies that g̃(xi) > a and thus g(xi) ≥ g̃(xi) (by definition of g̃), which entails g(xi)− ri > γ. It
follows that if G[a,b] γ-shatters A, then G also γ-shatters A, and the result follows.

The following lemma formalizes the well-known idea that it is easier to approach a function with
values in a finite range by a function with values in the same range.

Lemma 4. Let G be a set of functions from a measurable set X ⊂ Rd to R and let G[a,b] be defined

as above. Assume F is a set of functions from X to [a, b]. Then, for any probability measure µ on
X ,

sup
f∈F

inf
g∈G

‖f − g‖Lp(µ) ≥ sup
f∈F

inf
g̃∈G[a,b]

‖f − g̃‖Lp(µ) .

Proof. To prove the above result, it is enough to show that for any f ∈ F and g ∈ G, the function
g̃ is pointwise at least as close to f as g is, which for all f ∈ F yields infg∈G ‖f − g‖Lp(µ) ≥
inf g̃∈G[a,b]

‖f−g̃‖Lp(µ). By definition ofG[a,b], for any x ∈ X , if g(x) ∈ [a, b], then |f(x)−g(x)| =
|f(x) − g̃(x)|. And if g(x) /∈ [a, b], then |f(x) − g̃(x)| < |f(x) − g(x)| since f(x) ∈ [a, b]. It
follows that the discrepancy |f − g̃| is everywhere bounded by |f − g|, and the result follows.

B.3 Missing details in the proof of Theorem 1

We provide all details that were missing to derive (9), which is a direct consequence of Lemma 5
below. We follow the convention aP− 1

α log−
2
α (P ) = +∞ when P = 1.

Lemma 5. Let P ∈ N
∗ and c, α, r > 0. There exist constants a, ε′′1 > 0 depending only on c, α

and r such that, for all ε ∈ (0, r) satisfying

ε−α ≤ cP log2
(

rP

ε

)

, (16)

we have

ε ≥ min
(

ε′′1 , aP
− 1

α log−
2
α (P )

)

.

Proof. Assume ε ∈ (0, r) is such that (16) holds. To show the result, we study the function f :
(1/r,+∞) → R defined for all x > 1/r by

f(x) =
xα

log2(rPx)
.
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Note that (16) implies that f(1/ε) ≤ cP . For all P ≥ 2, we set

εP = P− 1
α log−

2
α (P ) . (17)

Let P1 ≥ 2 be such that P
1
α
1 log

2
α (P1) ≥

exp( 2
α )

r . For all P ≥ P1, we have 1
εP

≥
exp( 2

α )

r > 1/r and

f

(

1

εP

)

=
P log2(P )

log2
(

rP 1+ 1
α log

2
α (P )

) .

Since

lim
Q→+∞

log2(Q)

log2
(

rQ1+ 1
α log

2
α (Q)

) =
1

(1 + 1
α )

2
=: c1 ,

there exists P2 such that for all Q ≥ P2, we have log2(Q)

log2
(

rQ1+ 1
α log

2
α (Q)

) ≥ c1
2 .

Below we distinguish the cases P ≥ max(P1, P2) and P < max(P1, P2).

1st case: P ≥ max(P1, P2).
We have f

(

1
εP

)

≥ c1P
2 and P ≥ 1

c f
(

1
ε

)

(by (16)), so that f
(

1
εP

)

≥ c1
2cf

(

1
ε

)

. We now use

Lemma 6 below with b = c1
2c : setting a := (b/2)1/α = (c1/(4c))

1/α, there exists x1 > max
{

1
r ,

1
ar

}

depending only on r, b, α such that bf(x) ≥ f(ax) for all x ≥ x1.

Therefore, if ε < 1
x1

=: ε1, then c1
2cf
(

1
ε

)

≥ f
(

a
ε

)

. Therefore f( 1
εP

) ≥ f
(

a
ε

)

.

Recall from (17) and P ≥ P1 that 1
εP

≥
exp( 2

α )

r . If ε < ar
exp( 2

α )
=: ε2, then we also have a

ε ≥
exp( 2

α )

r .

Therefore, using Lemma 6 again, f( 1
εP

) ≥ f(aε ) implies that 1
εP

≥ a
ε , that is,

ε ≥ a εP .

Summarizing, when ε ∈ (0, r) satisfies (16) and when P ≥ max(P1, P2), either ε ≥ ε1 or ε ≥ ε2
or ε ≥ a εP . Put differently,

ε ≥ min(ε1, ε2, a εP ) . (18)

2nd case: P < max(P1, P2) =: P3.
Using (16) and the fact that t 7→ ct log2

(

rt
ε

)

is non-decreasing on [ε/r,+∞), together with ε/r ≤

1 ≤ P ≤ P3 yields ε−α ≤ cP3 log
2(rP3/ε). This entails that, for some ε3 > 0 depending only on

α, c, P3, r,
ε ≥ ε3 . (19)

Conclusion: combining the two cases, when ε ∈ (0, r) satisfies (16), whatever P ∈ N∗, we have
(18) or (19). Setting ε′′1 = min(ε1, ε2, ε3), we obtain

ε ≥ min
(

ε′′1 , a P
− 1

α log−
2
α (P )

)

.

(Note that this is also true in the case P = 1, by the convention aP− 1
α log−

2
α (P ) = +∞.) Since

ε1, ε2, ε3 and a only depend on c, α, r, this concludes the proof.

Lemma 6. Let α, r > 0 and P ∈ N∗. We define f(x) = xα

log2(rPx)
for all x > 1/r. Then:

i) f is increasing on I :=
[

exp( 2
α )

r ,+∞
)

and limx→+∞ f(x) = +∞.

ii) for all b > 0, setting a := (b/2)1/α, there exists x1 > max
{

1
r ,

1
ar

}

depending only on
r, b, α such that,

∀x ≥ x1 , bf(x) ≥ f(ax) .
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Proof. Proof of i): The fact that limx→+∞ f(x) = +∞ is because α > 0. To see why f is
increasing on I , note that

f ′(x) =
αxα−1 log2(rPx) − xα2 log(rPx) 1x

log4(rPx)
=

xα−1 log(rPx)(α log(rPx) − 2)

log4(rPx)
,

so that f ′(x) > 0 for all x >
exp( 2

α )

rP , and in particular for all x >
exp( 2

α )

r (since P ≥ 1). This
proves that f is increasing on I .

Proof of ii): Let b > 0 and set a := (b/2)1/α. Let x1 > max
{

1
r ,

1
ar

}

depending only on r, b, α
such that, for all u ≥ x1,

log2(ru)

log2(rau)
≤ 2 .

(Such an x1 exists since the ratio converges to 1 as u → +∞, and we can choose x1 as a function
of r, a only.) Now, for all x ≥ x1, using the above inequality with u = Px ≥ x (since P ≥ 1), we
get

f(ax)

f(x)
= aα

log2(rPx)

log2(rPax)
≤ 2aα = b ,

where the last equality is because a := (b/2)1/α. This proves that bf(x) ≥ f(ax) for all x ≥
x1.

B.4 Proof of Corollary 1

We first recall two key bounds on the VC-dimension of piecewise-polynomial feed-forward neural
networks, proved by [GJ04] and [BHLM19].

Let B be any feed-forward neural network architecture of depth L ≥ 1 with W ≥ 1 weights, d ≥ 1
input neurons, and U ≥ 1 hidden or output neurons. Let σ : R → R be any piecewise-polynomial
activation function onK ≥ 2 pieces, with maximal degree ν ∈ N. Denote by sgn(HB) = {sgn(gw) :
w ∈ RW } the set of all classifiers obtained by looking at the sign of the network’s output, that is, the
classifiers defined by sgn(gw)(x) = 1{gw(x)>0} for all x ∈ Rd.

Goldberg and Jerrum [GJ04] showed that, for some constant c′1 > 0 depending only on d, ν and K ,
the VC-dimension of sgn(HB) is bounded as follows (see also Theorem 8.7 in [AB99]):

VCdim(sgn(HB)) ≤ c′1W
2 . (20)

This bound was refined for piecewise-affine activation functions. Namely, Bartlett et al. [BHLM19,
Theorem 7] proved that, if U ≥ 3, then, for some R ≤ U + U(L− 1)νL−1,

VCdim(sgn(HB)) ≤ L+ L̄W log2

(

4e(K − 1)R log2
(

2e(K − 1)R
)

)

,

where L̄ = 1 if ν = 0, and L̄ ≤ L otherwise. Therefore, for some constants W ′
min ≥ 1 and

c′2, c
′
3 > 0 depending only on d and K , we have, for all W ≥ W ′

min (which in particular implies
U ≥ 3),

VCdim(sgn(HB)) ≤

{

c′2LW log(W ) if ν = 1 ,
c′3W log(W ) if ν = 0 .

(21)

We are now ready to prove Corollary 1 from Theorem 1.

Proof (of Corollary 1). In order to apply Theorem 1, we first bound P := Pdim(HA) from above.
The bounds (20) and (21) were on the VC-dimension of sgn(HB), for any feed-forward neural
network architecture B, while we need a bound on the pseudo-dimension. However, by a well-
known trick (e.g., Theorem 14.1 in [AB99]), the pseudo-dimension of HA is upper bounded by
the VC-dimension of (the sign of) an augmented network architecture of depth L, with d + 1 input
neurons and W + 1 weights.5 Therefore, replacing (d,W ) with (d + 1,W + 1) in (20) and (21),

5This is because Pdim(HA) = VCdim
(

{(x, r) ∈ R
d×R 7→ 1{g(x)−r>0} : g ∈ HA}

)

, the output neuron
of A is linear, and we allow skip connections.
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we get that, for some constants W̃min ≥ 1 and c̃1, c̃2, c̃3 > 0 depending only on d, ν and K , for all
W ≥ W̃min,

P ≤







c̃1W
2 if ν ≥ 2 ,

c̃2LW log(W ) if ν = 1 ,
c̃3W log(W ) if ν = 0 .

(22)

Now using Theorem 1, we have

sup
f∈F

inf
g∈HA

‖f − g‖Lp(µ) ≥ min
{

ε1, c1P
− 1

α log−
2
α (P )

}

. (23)

Noting that P 7→ min
{

ε1, c1P
− 1

α log−
2
α (P )

}

is non-increasing and plugging (22) into (23), we

get, for W ≥ Wmin,

sup
f∈F

inf
g∈HA

‖f − g‖Lp(µ) ≥ min











ε1,







c4W
− 2

α log−
2
α (W 2) if ν ≥ 2

c5(LW log(W ))−
1
α log−

2
α (LW log(W )) if ν = 1

c6(W log(W ))−
1
α log−

2
α (W log(W )) if ν = 0

















for some constants Wmin ≥ 1 and c4, c5, c6 > 0 depending only on d, ν and K . Taking Wmin

large enough, the first term ε1 is always larger than the second term in the above minimum, and the
logarithmic terms log(W log(W )) and log(LW log(W )) can be upper bounded by a constant times
log(W ) (since L ≤ W ). Rearranging concludes the proof.

C Earlier works: two other lower bound proof strategies

Approximation lower bounds in a sense similar to ours have been obtained in other recent works. In
the purpose of highlighting the differences between our approaches, we describe the lower bound
proof strategies of Yarotsky [Yar17] and of Petersen and Voigtlaender [PV18].

C.1 Approximation in sup norm of Sobolev unit balls with ReLU networks [Yar17]

Recall that the Sobolev space Wn,∞([0, 1]d) is defined as the set of functions on [0, 1]d lying in L∞

along with all their weak derivatives up to order n. We equip this space with the norm

‖f‖Wn,∞([0,1]d) = max
n∈Nd:|n|≤n

ess sup
x∈[0,1]d

|Dnf(x)|,

and we let Fn,d be the unit ball of this space.

We first state the sup norm lower bound and then we give a synthesized version of the proof.

Proposition 8 ([Yar17]). There exists positive constants Wmin, c > 0 such that for any feed-forward
neural network with architecture A, ReLU activation and W ≥ Wmin weights,

sup
f∈Fn,d

inf
g∈HA

‖f − g‖∞ ≥ cW− 2n
d .

Details aside, the proof reads as follows. The author assumes that HA approximates Fn,d with
error ε. Fixing N = c(3ε)−1/n for some constant c > 0 properly chosen, he constructs a set
of functions in Fn,d that can shatter a grid of Nd points x1, . . . , xNd evenly distributed over [0, 1]d.
The assumption that HA approximatesFn,d in sup norm with error ε allows to conclude thatHA also
shatters {x1, . . . , xNd}, and hence, VCdim(HA) ≥ Nd = cn,dε

− d
n . The author concludes using

the upper bound on VCdim(HA) with respect to W from [AB99] which yields VCdim(HA) ≤
c′W 2 for some constant c′.

It is worth stressing that in this proof, it is paramount to assume that HA approximates Fn,d in sup
norm, rather than any Lp norm with p < +∞. The reason is that only this choice of norm allows
to bound the discrepancy between f ∈ Fn,d and gf ∈ HA chosen optimally with respect to f at
any chosen points. Our proof strategy relying on Proposition 1 allows to circumvent this issue by
relating the pseudo-dimension to the metric entropy with respect to any Lp norm, 1 ≤ p < +∞.

17



C.2 Approximation in Lp norm of Horizon functions with quantized networks [PV18]

The authors study quantized neural networks, that is, networks with weights constrained to be repre-
sentable with a fixed number of bits. They obtain a lower bound on the minimal number of weights
in a quantized neural network that can approximate a set of Horizon functions in Lp norm, p > 0,
with error ε > 0. This lower bound is easily invertible to a bound on the approximation error and is
thus comparable to the results we obtain in this paper.

Textually, the authors introduce the set of horizon functions as follows: “These are {0, 1}-valued
functions with a jump along a hypersurface and such that the jump surface is the graph of a smooth
function” [PV18]. Denoting by H the indicator function of the set [0,+∞) × R

d−1, the set of
horizon functions reads as

HFβ,d,B =

{

f ◦ T ∈ L∞

(

[

−
1

2
,
1

2

]d
)

:

f(x) = H(x1 + γ(x2, . . . , xd), x2, . . . , xd), γ ∈ Fβ,d−1,B, T ∈ Π(d,R)

}

,

where Fβ,d−1,B denotes the set of Hölder functions over [−1/2, 1/2]d−1 whith smoothness parame-
ter β and with norm bounded by B (see section 3), and Π(d,R) denotes the group of d-dimensional
permutation matrices.

In the following, for any nonzero integer K and any neural network architecture A, we denote by
HK

A ⊂ HA the set of K-quantized functions in HA; namely, the functions in HA with weights
representable over at most K bits. The lower bound in [PV18] (Theorem 4.2) reads as follow:

Proposition 9 ([PV18]). Let d ≥ 2. Let p, β,B, c0 > 0 and let σ : R → R be such that σ(0) = 0.
There exists positive constants ε0, c > 0 depending only on d, p, β,B and c0 such that, for any
ε ≤ ε0, setting K = ⌈c0 log(1/ε)⌉, for any feed-forward neural network architecture A with W
weights and activation σ such that HK

A approximates HFβ,d,B in Lp norm with error less than ε,
we have

W ≥ cε−
p(d−1)

β log−1(1/ε).

The proof of this result is based on a lemma giving a lower bound on the minimal number of
bits ℓ necessary for a binary encoder-decoder pair to achieve an error less than ε > 0 in ap-
proximating HF := HFβ,d,B in Lp norm. Formally, given an integer ℓ > 0, a binary encoder
Eℓ : HF → {0, 1}ℓ and given a decoder Dℓ : {0, 1}ℓ → HF , one can measure an approximation
error

sup
f∈HF

‖f −Dℓ(Eℓ(f))‖Lp ,

which quantifies the loss of information due to the encoding Eℓ. Clearly, for an optimal choice
of encoder, one can reduce this loss of information by increasing ℓ. In particular, for ε > 0, it is
possible to estimate

ℓε = min

{

ℓ > 0 : inf
Eℓ,Dℓ

sup
f∈HF

‖f −Dℓ(Eℓ(f))‖Lp ≤ ε

}

,

with the convention that ℓε = ∞ if the above set is empty. The authors show that for ε small enough
(smaller than some ε0 > 0), it holds that

ℓε ≥ cε−
p(d−1)

β (24)

for some constant c > 0 depending only on d, p, β and B. In other words, one can not achieve a loss

of information smaller than ε by encoding functions in HF over less than cε−
p(d−1)

β bits.

The rest of the proof consists in showing that for an integer K > 0, given a neural network archi-
tecture A with W weight that can approximate HF in Lp norm with error less than ε > 0, one can
encode exactly (without loss of information, and for a given activation function) any function in HK

A
over a string of ℓ = c1W (K + ⌈log2 W ⌉) bits. This generates a natural encoder-decoder system
where any function f ∈ HF is encoded as the bit string of length ℓ associated to gf ∈ HK

A chosen
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to approximate f . It remains to observe that if we fix K , this automatically yields a lower bound on
ℓ using inequality (24), and thus on W by expressing W through ℓ and K .

Remark. The authors in [PV18] study the neural network approximation in a setting slightly dif-
ferent from ours, since they focus on the approximation by quantized neural networks. This partly
explains why their proof strategy differs from ours. However, it is worth pointing out that the proof
of their lower bound on the minimal number of bits required to accurately encode a function in HF
relies on a lower bound of the packing number of HF , just like the lower bound of the packing
number of the set to approximate is key in our proof strategy. An interesting question for the future
would be to see whether our general lower bound (Theorem 1) yields lower bounds of the same
order as those in [PV18] for quantized neural networks.

D Hölder balls

D.1 Proof of Lemma 2

Let N ∈ N∗. For m = (m1, . . . ,md) ∈ {0, . . . , N−1}d, we let xm := 1
N (m1+1/2, . . . ,md+1/2)

and we denote by Cm the cube of side-length 1
N centered at xm, with sides parallel to the axes. We

see that the Nd cubes Cm decompose the cube [0, 1]d in smaller parts which, up to negligible sets
which will not be problematic, form a partition of [0, 1]d. We will use this decomposition to construct
a packing of Fs,d. Denoting ‖ · ‖ the sup norm in Rd, we define the C∞ test function φ : Rd → R

by:

φ(x) = exp

(

−
‖x‖2

1− ‖x‖2

)

,

for any x ∈ Rd such that ‖x‖ < 1, and φ(x) = 0 otherwise. Recalling that n ∈ N and α ∈ (0, 1] are
such that s = n+ α, and since all the high-order partial derivatives of φ are uniformly bounded on
[0, 1]d, ‖φ‖Cn,α is thus finite and is nonzero.

Let cs = 1
2 (2N)−s‖φ‖−1

Cn,α and consider, for any tensor of signs σ = (σm)m∈{0,··· ,N−1}d ∈

{−1, 1}N
d

, the function fσ defined as follows:

fσ(x) = cs
∑

m∈{0,...,N−1}d

σmφ (2N(x− xm)) ,

for all x ∈ [0, 1]d. There are 2N
d

different functions fσ .

Let us prove that, for all σ ∈ {−1, 1}N
d

, fσ ∈ Fs,d. To do so, we study the constituents of
‖fσ‖Cn,α separately and show that they are all bounded by 1. For m ∈ {0, · · · , N − 1}d, we define
the function gm(x) = csσmφ (2N(x− xm)). Note that because φ cancels outside (−1, 1)d, we have
that gm cancels everywhere outside the interior of Cm, and the same holds for Dngm for all n ∈ Nd

such that |n| ≤ n. For any such n, we have

‖Dngm‖∞ = cs(2N)|n|‖Dnφ‖∞ ≤ cs(2N)s‖φ‖Cn,α ≤
1

2
.

Therefore,
max

n:|n|≤n
‖Dnfσ‖∞ ≤ 1.

Now for any n ∈ Nd such that |n| = n, any x, y ∈ [0, 1]d, we have
|Dnfσ(x) −Dnfσ(y)|

‖x− y‖α2
=

|Dngm(x) −Dngm′(y)|

‖x− y‖α2
,

where x ∈ Cm and y ∈ Cm′ for some multi-indexes m and m′. We have to distinguish between the
cases m = m′ and m 6= m′. In the former case, we have

|Dnfσ(x) −Dnfσ(y)|

‖x− y‖α2
= cs(2N)n+α |D

nφ(2N(x− xm))−Dnφ(2N(y − xm))|

‖2N(x− xm)− 2N(y − xm)‖α2

= cs(2N)s
|Dnφ(x′)−Dnφ(y′)|

‖x′ − y′‖α2

≤ cs(2N)s‖φ‖Cn,α =
1

2
,
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where at the second line, we used the changes of variables x′ = 2N(x− xm) and y′ = 2N(y− xm).
In the case m = m′ (x and y belong to the same cube), we thus have

|Dnfσ(x) −Dnfσ(y)|

‖x− y‖α2
≤ 1.

In the case m 6= m′, observe that we have

|Dngm(x)−Dngm′(y)| ≤ 2max{|Dngm(x)|, |D
ngm′(y)|}. (25)

Besides, recall that Dngm and Dngm′ both cancel outside of the interiors of Cm and Cm′ respectively.
We can thus rewrite (25) as

|Dngm(x) −Dngm′(y)| ≤ 2max{|Dngm(x)−Dngm(y)|, |D
ngm′(x) −Dngm′(y)|}

≤ 2cs(2N)n max{|Dnφ(2N(x− xm))−Dnφ(2N(y − xm))|,

|Dnφ(2N(y − xm′))−Dnφ(2N(y − ym′))|}.

This entails

|Dnfσ(x) −Dnfσ(y)|

‖x− y‖α2
≤ cs2(2N)s max

{

|Dnφ(x′)−Dnφ(y′)|

‖x′ − y′‖α2
,
|Dnφ(x′′)−Dnφ(y′′)|

‖x′′ − y′′‖α2

}

≤ cs2(2N)s‖φ‖Cn,α = 1,

where x′ = 2N(x− xm) and y′ = 2N(y − xm), and x′′ = 2N(x− xm′) and y′′ = 2N(y − xm′).

We showed that, simultaneously, maxn:|n|≤n ‖D
nfσ‖∞ ≤ 1, and

maxn:|n|=n supx 6=y
|Dnfσ(x)−Dnfσ(y)|

‖x−y‖α
2

≤ 1. We conclude that for all σ ∈ {−1, 1}N
d

‖fσ‖Cn,α ≤ 1,

and therefore {fσ : σ ∈ {−1, 1}N
d

} ⊂ Fs,d.

Let us now evaluate the distance between distinct elements of {fσ : σ ∈ {−1, 1}N
d

}. Let σ1,
σ2 ∈ {−1, 1}N

d

, with σ1 6= σ2, and let m ∈ {0, . . . , N − 1}d be such that σ1
m = −σ2

m. Let us
estimate ∆p the Lp := Lp(λ) discrepancy between fσ1 and fσ2 on the cube Cm, that is

∆p
p =

∫

Cm

|fσ1(x)− fσ2(x)|pdx

= 2pcps

∫

Cm

|φ (2N(x− xm)) |
pdx

= 2pcps(2N)−d‖φ‖pLp .

It remains to find a subset among the functions fσ such that any two functions of this set differ on
a significant number of cubes Cm. According to the Varshamov-Gilbert Lemma [Yu97], there exists
Γ ⊂ {−1, 1}N

d

with cardinal at least exp(Nd/8) such that for any σ1, σ2 ∈ Γ, such that σ1 6= σ2,

σ1 and σ2 differ on at least one fourth of their coordinates; i.e.,
∑Nd

k=1 1σ1
k 6=σ2

k
≥ Nd

4 . We thus fix

such a set Γ ⊂ {−1, 1}N
d

. For any σ1, σ2 ∈ Γ, with σ1 6= σ2,

‖fσ1 − fσ2‖pLp =
∑

m:σ1
m 6=σ2

m

∫

Cm

|fσ1(x) − fσ2(x)|pdx

≥
Nd

4
∆p

p =
2p−dcps

4
‖φ‖pLp .

Finally, recalling the definition of cs, we have for any σ1, σ2 ∈ Γ, with σ1 6= σ2,

‖fσ1 − fσ2‖Lp ≥ 21−
d+2
p

1

2
(2N)−s‖φ‖−1

Cn,α‖φ‖Lp = cN−s,

where c = 2−s− d+2
p

‖φ‖Lp

‖φ‖Cn,α
.
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It follows that {fσ : σ ∈ Γ} is a cN−s-packing of Fs,d. Given the lower bound on the size of Γ,
this implies

M
(

cN−s, Fs,d, ‖ · ‖Lp

)

≥ exp(Nd/8),

for all n ∈ N∗. Consider now ε > 0, with ε ≤ c, and let N be the smallest integer such that
cN−s ≥ ε ≥ c(2N)−s. Since we impose N ≥ 1, this implies an upper bound ε0 := c on ε. On one
side, we have

M (ε, Fs,d, ‖ · ‖Lp) ≥ M
(

cN−s, Fs,d, ‖ · ‖Lp

)

,

and on the other side, since 2N ≥ c
1
s ε−

1
s ,

exp(Nd/8) ≥ exp(2−dc
d
s ε−

d
s /8).

Combining the last three inequalities and setting c0 = 2−dc
d
s /8, we finally obtain

logM (ε, Fs,d, ‖ · ‖Lp) ≥ c0ε
−d/s,

for all 0 < ε ≤ ε0.

E Monotonic functions

E.1 Proof of Proposition 6

E.1.1 Representing piecewise-constant functions with Heaviside neural networks

We first explain how to represent piecewise-constant functions on cubes with a feed-forward neural
network, for some specific architecture and the Heaviside activation function.

Proposition 10. Let d ∈ N∗, M ∈ N∗ and suppose that (Cn)1≤n≤M is a partition of [0, 1]d into M
cubes. There exists an architecture A with two-hidden layers, 2(d+1)2M weights and the Heaviside

activation function, such that for any (αn)1≤n≤M ∈ R
M , the function f̃ : [0, 1]d → [0, 1] defined by

∀x ∈ [0, 1]d, f̃(x) =
∑

1≤i≤M

αi1Ci(x) (26)

satisfies f̃ ∈ HA.

Proof. Define σ : R → R by σ(x) = 1x≥0 for all x ∈ R.

Let i ∈ {1, . . . ,M}. The cube Ci has 2d faces, that belong to the cube or not. These faces are
supported by hyperplanes whose equations are of the form 〈w, x〉+ b = 0, with w ∈ R

d and b ∈ R.
Let Ji be the number of faces that belong to Ci. We index the Ji faces that belong to the cube from
1 to Ji, and the other faces from Ji + 1 to 2d. Thus,

Ci =
Ji
⋂

j=1

{x ∈ R
d :
〈

w
i
j , x
〉

+ bij ≥ 0} ∩
2d
⋂

j=Ji+1

{x ∈ R
d :
〈

w
i
j, x
〉

+ bij > 0} (27)

with w
i
j ∈ Rd, bij ∈ R for all j ∈ {1, . . . , 2d}. This set can be written as:







x ∈ R
d :

Ji
∑

j=1

1{〈wi
j ,x〉+bij≥0} +

2d
∑

j=Ji+1

1{〈wi
j ,x〉+bij>0} ≥ 2d







. (28)

Thus, to be on the “good” side of the j-th face can be coded by a perceptron (see Figure 1):

pj : x ∈ R
d 7→

{

1{〈wi
j ,x〉+bij≥0} if the j-th face is included in Ci,

1{〈wi
j ,x〉+bij>0} otherwise,

(29)

where j ∈ {1, . . . , 2d} and the w
i
j ∈ Rd, bij ∈ R parametrize the equation of the hyperplane

supporting the face. Let us remark that for all x ∈ R:

1x>0 = 1−x<0 = 1− 1−x≥0 = 1− σ(−x). (30)
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Figure 1: Values of the sum of the perceptrons around a face in dimension 2.

Thus the functions pj can be expressed with the activation function σ:

∀j ∈ {1, . . . , 2d}, ∀x ∈ R
d, pj(x) =

{

σ
(〈

w
i
j , x
〉

+ bij
)

if the j-th face is included in Ci,

1− σ
(

−
〈

w
i
j , x
〉

− bij
)

otherwise.
(31)

Let us return to the expression of f̃ . For all x ∈ Rd,

1Ci(x) =

{

1 if
∑2d

j=1 pj(x) ≥ 2d,
0 otherwise,

(32)

= σ





2d
∑

j=1

pj(x)− 2d



 . (33)

We deduce that f̃ is of the form, for all x ∈ [0, 1]d:

f̃(x) =
∑

1≤i≤M

αiσ





Ji
∑

j=1

σ
(〈

w
i
j , x
〉

+ bij
)

+

2d
∑

j=Ji+1

(

1− σ
(

−
〈

w
i
j , x
〉

− bij
))

− 2d



 (34)

=
∑

1≤i≤M

αiσ





2d
∑

j=1

εi,jσ
(

〈

w̃
i
j , x
〉

+ b̃ij

)

− Ji



 , (35)

where εi,j = ±1, depending on the j-th face is in Ci or not. This is the action of a Heaviside neural
network with two hidden layers (see Figure 2).

It remains to count the weights and biases of f̃ :

• the architecture has M edges going to the output layer, due to the αi;

• it has M biases associated to the neurons of the second hidden layer (they correspond to
the terms −Ji);

• between the second and the first hidden layer, the architecture has M × 2d edges (corre-
sponding to the εi,j);

• it has M × 2d biases associated to the neurons of the first hidden layer (the b̃ij);

• it has M × 2d× d edges between the first hidden layer and the entry (the w̃i
j).

Thus there are 2M + 2M × 2d +M × 2d × d = 2(d2 + 2d + 1)M = 2(d + 1)2M weights and
biases in total.
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Figure 2: The function f̃ represented as a neural network.

E.1.2 Main proof

Let N ∈ N and f ∈ Md. In this section, we partition [0, 1)d into cubes whose sizes depend on the
maximal variation of f . Then we use this partition to construct a piecewise constant approximation
f̃ of f ; we will bound from above the Lp(λ) approximation error ‖f − f̃‖Lp(λ) in function of N .
This part is a direct reinterpretation of the proof of Proposition 3.1 in [GW07]. The result will then
follow by an application of Proposition 10.

We first define some notation that will be used in the rest of the section, then we explain the algorithm
used to divide [0, 1)d into cubes. We fix the constant K > 1 the following way:

K :=

{

2d if p = 1,

2β otherwise, where β = 1
2 (d− 1 + 1

p−1 ).

We also define an integer l that corresponds to the number of cube decompositions:

l :=

⌈

N log 2

logK

⌉

=

{⌈

N
d

⌉

if p = 1,
⌈

N
β

⌉

otherwise .

It is worth noting that this implies K−l ≤ 2−N < K−l+1.

Now we partition [0, 1)d into dyadic cubes of the form [a1, b1)× · · · × [ad, bd). If C is such a cube,
we use the following convenient notation:

C := (a1, . . . , ad) ∈ R
d, C := (b1, . . . , bd) ∈ R

d,

to refer to the smallest and largest vertices of C. The cube decompositions process reads as follow:

• First we partition [0, 1)d into 2Nd cubes of side-length 2−N . We denote by S0 the set of
these cubes C such that f(C)− f(C) ≤ K2−N and by R0 the set of the remaining cubes.

• For 1 ≤ i < l, we partition each cube in the set Ri−1 (the remaining cubes at the step i−1)
into 2d cubes of equal size, and we denote by Si the set of obtained cubes C of side-length
2−(i+N) such that

f(C)− f(C) ≤ Ki+12−N . (36)

Again, the set of remaining cubes is denoted by Ri.
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• Lastly, we partition each cube in the set Rl−1 into 2d cubes of equal size, and we denote
by Sl the set of obtained cubes of side-length 2−(l+N).

Once the algorithm is done, each point in [0, 1)d clearly belongs to one single cube of ∪l
i=0Si. For

i ∈ {0, . . . , l}, we let S̃i = ∪C∈SiC.

We now define the piecewise constant approximation of f by

∀x ∈ [0, 1]d, f̃(x) =
∑

C∈
⋃

0≤i≤l Si

f(C)1x∈C ,

where 1x∈C denotes the indicator function of the cube C. The number of cubes over which f̃ is
constant is

∑l
i=0 |Si|. This quantity is key in Proposition 10; in the next lemma, we bound from

above |Si| for all i = 0, . . . , l. Then, we will estimate the error ‖f − f̃‖Lp(λ).

Lemma 7. With the above notation:

∀i ∈ {0, . . . , l}, |Si| ≤ dK−i2i(d−1)+Nd+1

Moreover,

λ(S̃i) ≤

{

1 if i = 0,
2d(2K)−i , otherwise.

(37)

Proof. By construction, we have

∀i ∈ {1, . . . , l}, |Si|+ |Ri| = 2d|Ri−1|,

since the set Si ∪Ri contains all the cubes of side-length 2−(i+N), that have been constructed from
the cubes of Ri−1. In particular,

∀i ∈ {1, . . . , l}, |Si| ≤ 2d|Ri−1|. (38)

It remains to bound |Ri−1| from above for i ≥ 1. Define V := {C : C ∈ Ri−1} the set of the
smallest vertices of the cubes in Ri−1. We consider the classes of these vertices under the “laying
on the same extended diagonal” equivalence relation. Since the cubes have side-length 2−(i−1+N),
there are less than d2(i−1+N)(d−1) equivalence classes. According to the pigeonhole principle, the

largest class has at least
⌈

|V |
d2(i−1+N)(d−1)

⌉

elements; let us refer to this class as D. Let (Cj)1≤j≤J

be the set of cubes in Ri−1 having a point in D as lowest vertex. Since f is non-decreasing and
according to (36), we have:

1 ≥ f(1, . . . , 1)− f(0, . . . , 0) ≥
J
∑

j=1

f(Cj)− f(Cj) ≥ JKi2−N

≥
|V |

d2(i−1+N)(d−1)
Ki2−N =

|Ri−1|

d2(i−1+N)(d−1)
Ki2−N .

Thus
|Ri−1| ≤ d2i(d−1)+Nd+1−dK−i.

The first statement of Lemma 7 follows from (38).

For i = 0, λ(S̃0) ≤ 1. For 1 ≤ i ≤ l, using the first statement of this lemma, we bound from above
the measure of S̃i:

λ(S̃i) =
(

2−(i+N)
)d

|Si| ≤ dK−i2i(d−1)+Nd+12−d(i+N),

= 2d(2K)−i.

To show that f̃ is close to f in Lp(λ) norm, let us use the fact that (Si)0≤i≤l is a partition of [0, 1)d

and decompose the error in three parts:

‖f − f̃‖pLp(λ) =

∫

S̃0

|f(x)− f̃(x)|pdx+

l−1
∑

i=1

∫

S̃i

|f(x)− f̃(x)|pdx+

∫

S̃l

|f(x)− f̃(x)|pdx.
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In the next lemma, we control each term in the right-hand-side sum above to bound from above
‖f − f̃‖Lp(λ) by a function of N that is independent from f and tends towards 0 when N tends
to +∞.

Lemma 8. For any 1 ≤ p < +∞, there exists a constant cd,p > 0 depending only on d and p such
that

‖f − f̃‖Lp(λ) ≤ cd,p











2−N if p(d− 1) < d,

2−N (1+1/β)
p if p(d− 1) > d,

N
1
p 2−N if p(d− 1) = d.

(39)

Proof. For 0 ≤ i < l, on any cube C ∈ Si, we have

∀x ∈ C, |f(x)− f̃(x)| = |f(x)− f(C)| ≤ f(C)− f(C) ≤ Ki+12−N , (40)

since f is non-decreasing, and by definition of f̃ and Si.

• Using the fact that λ(S̃0) ≤ 1 and by (40):
∫

S̃0

|f(x)− f̃(x)|pdx ≤ (2−NK)p. (41)

• Using (37) and (40), we get for all i ∈ {1, . . . , l − 1}
∫

S̃i

|f(x)− f̃(x)|pdx ≤ (Ki+12−N)p2d(2K)−i. (42)

• On any C ∈ Sl, we have, for all x ∈ C, |f(x) − f̃(x)| ≤ |f(x) − f(C)| ≤ 1, and we get,
using (37):

∫

S̃l

|f(x)− f̃(x)|pdx ≤ 2d(2K)−l. (43)

Combining (41), (42) and (43) we get:

‖f − f̃‖pLp(λ) ≤ (2−NK)p +
l−1
∑

i=1

(Ki+12−N)p2d(2K)−i + 2d(2K)−l

≤ (2−NK)p + 21−NpKpd
l−1
∑

i=1

(

Kp−1

2

)i

+ 2d(2K)−l. (44)

It remains to bound the right-hand side of (44), depending on the value of p. Note that the behavior
of this term depends on whether Kp−1

2 is bigger or smaller than 1.

• Suppose that p(d− 1) < d. If p = 1, we have Kp−1

2 = 1
2 < 1. If p > 1, we have:

(d− 1)p < d ⇐⇒ dp− p− d < 0 ⇐⇒ d(p− 1) < p ⇐⇒
d

p
<

1

p− 1
.

Since we assumed that (d− 1)p < d, we have d− 1 < 1
p−1 . Thus, β being the arithmetic

mean of d − 1 and 1
p−1 , we have d− 1 < β < 1

p−1 . Then K = 2β < 21/(p−1) and hence
Kp−1

2 < 1 and 1
2K < K−p. Therefore

l−1
∑

i=1

(

Kp−1

2

)i

≤
Kp−1

2−Kp−1
and (2K)−l ≤ K−pl.

When p ≥ 1 and since K−l ≤ 2−N , this leads to

‖f − f̃‖pLp(λ) ≤ (2−NK)p + 21−NpKpd
Kp−1

2−Kp−1
+ 2dK−pl

≤

(

Kp + 2Kpd
Kp−1

2−Kp−1
+ 2d

)

2−Np.
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We thus have, setting c1 :=

(

Kp + 2Kpd
Kp−1

2−Kp−1
+ 2d

)
1
p

,

‖f − f̃‖Lp(λ) ≤ c12
−N .

• Suppose that p(d − 1) > d. We have d − 1 > β > 1
p−1 . Then K = 2β > 21/(p−1) and

hence Kp−1

2 > 1, which entails

‖f − f̃‖pLp(λ) ≤ (2−NK)p + 21−NpKpd
(Kp−1/2)l

Kp−1/2− 1
+ 2d(2K)−l

≤ 2−NpKp + 2−NpKpl 2Kpd

Kp−1/2− 1
(2K)−l + 2d(2K)−l.

Since p > 1 + 1
β , we have 2−Np ≤ 2−N(1+ 1

β ). Also, since K = 2β , (2K)−l = 2−l(β+1),

and since l ≥ N log(2)
log(K) = N

β , we have (2K)−l ≤ 2−
N
β (β+1) = 2−N(1+ 1

β ). Finally, since

2−NK l < K ,

‖f − f̃‖pLp(λ) ≤

(

Kp +Kp 2Kpd

Kp−1/2− 1
+ 2d

)

2−N(1+1/β)

We thus have, setting c2 :=
(

Kp + 2K2pd
Kp−1/2−1 + 2d

)
1
p

,

‖f − f̃‖Lp(λ) ≤ c22
−N(1+1/β)

p .

• Suppose that p(d − 1) = d. It implies that p − 1 = 1
d−1 , then β = d − 1. We thus have

Kp−1 = 2(d−1)(p−1) = 2. Therefore,

‖f − f̃‖pLp(λ) ≤ 2−NpKp + 2−Np2Kpd(l − 1) + 2d(Kp)−l.

On the one hand, we have K−l ≤ 2−N . On the other, we have 2−N < K−l+1, so
l − 1 < N log 2

logK = N
d−1 . Putting it all together, we get

‖f − f̃‖pLp(λ) ≤ 2−NpKp + 2−Np2Kpd(l − 1) + 2d2−Np

≤

(

Kp + 2Kp d

d− 1
+ 2d

)

N2−Np.

We thus have, setting c3 :=
(

Kp + 2Kp d
d−1 + 2d

)
1
p

,

‖f − f̃‖Lp(λ) ≤ c3N
1
p 2−N .

Finally, c1, c2 and c3, only depend on p and d. Hence, letting cd,p = max{c1, c2, c3} yield the
result.

According to Proposition 10, the function f̃ can be implemented by a Heaviside neural network with
two hidden layers and W = 2(d+ 1)2

∑l
i=0 |Si| weights. Using Lemma 7, we obtain

W = 2(d+ 1)2
l
∑

i=0

|Si| ≤ 2(d+ 1)2
l
∑

i=0

dK−i2i(d−1)+Nd+1

≤ 2Nd+2d(d+ 1)2
l
∑

i=0

(

2d−1

K

)i

.

We let

WN := 2Nd+2d(d+ 1)2
l
∑

i=0

(

2d−1

K

)i

.

Although we do not make the dependence explicit, WN also depends on d and p. We have
limN→+∞ WN = +∞.
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Lemma 9. With the above notation: For any +∞ > p ≥ 1, there exist constants W ′
min, c

′
d,p > 0

depending only on d and p ≥ 1 such that for all N satisfying WN ≥ W ′
min

‖f − f̃‖Lp(λ) ≤ c′d,p g(WN+1)

where, for all W ≥ 1,

g(W ) =











W−1/d if (d− 1)p < d,

W− 1
p(d−1) if (d− 1)p > d,

W−1/d logW if (d− 1)p = d.

Proof. Again, we separate the cases in function of p.

• Suppose that p(d − 1) < d: if p = 1, 2d−1

K = 1
2 < 1; if p > 1, β > d − 1 and

2d−1

K = 2d−1−β < 1. Thus, for all N ≥ 1,

WN ≤ 2Nd

(

4d(d+ 1)2

1− 2d−1−β

)

=: 2Ndc′′d,p.

Writing the inequality for N + 1, we obtain

WN+1 ≤ 2Nd2dc′′d,p .

That is: 2−N ≤ 2
(

c′′d,p
WN+1

)1/d

. Combined with (39), this provides

‖f − f̃‖Lp(λ) ≤ 2cd,p

(

c′′d,p
WN+1

)1/d

= c1d,pW
−1/d
N+1 ,

for c1d,p = 2cd,p(c
′′
d,p)

1/d.

• If p(d− 1) > d, then β < d− 1 and 2d−1

K = 2d−1−β > 1. Thus,

WN ≤ 2Nd2(d−1−β)(l+1)

(

4d(d+ 1)2

2d−1−β − 1

)

≤ 2Nd2(d−1−β)(N/β+2)

(

4d(d+ 1)2

2d−1−β − 1

)

= 2N(d+(d−1)/β−1)

(

4d(d+ 1)222(d−1−β)

2d−1−β − 1

)

=: 2N(1+ 1
β )(d−1)c′′d,p,

for a different constant c′′d,p. Writing again this inequality for N + 1, we obtain

WN+1 ≤ c′′d,p2
(1+ 1

β )(d−1) 2N(1+ 1
β )(d−1),

which we can write 2−N(1+ 1
β ) ≤ 2(1+

1
β )
(

c′′d,p
WN+1

)
1

d−1

. And thus using (39),

‖f − f̃‖Lp(λ) ≤ 2(1+
1
β )/pcd,p

(

c′′d,p
WN+1

)

1
p(d−1)

= c2d,pW
− 1

p(d−1)

N+1 ,

for c2d,p = cd,p 2
(1+ 1

β )/p (c′′d,p)
1

p(d−1) .

• If p(d− 1) = d, β = d− 1 and 2d−1

K = 1. Thus,

WN = 2Nd+2d(d+ 1)2(l + 1) ≤ 2Nd+2d(d+ 1)2
(

N

β
+ 2

)

= 2Nd

(

N

β
+ 2

)

(

4d(d+ 1)2
)

=: 2Nd

(

N

d− 1
+ 2

)

c′′d,p

≤ 2d(d−1)( N
d−1+2)

(

N

d− 1
+ 2

)

c′′d,p

= exp

(

d(d− 1)

(

N

d− 1
+ 2

)

log 2

)(

N

d− 1
+ 2

)

c′′d,p. (45)
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Setting:

W̃N :=
d(d− 1)WN log 2

c′′d,p
Ñ := d(d− 1)

(

N

d− 1
+ 2

)

log 2,

we can rewrite (45) as:
W̃N ≤ Ñ exp(Ñ ) . (46)

Since d ≥ 2, there exists W ′
min such that, when such that WN ≥ W ′

min we have
log(W̃N ) > 1. We show by contradiction that (46) implies that

Ñ ≥ log W̃N − log log W̃N ,

which in turn gives

N ≥

(

log W̃N − log log W̃N

d(d− 1) log 2
− 2

)

(d− 1)

≥
log(W̃N )

d log(2)
−

log log W̃N

d log(2)
+ c,

for an appropriate constant c. Since (WN )N∈N is non-decreasing, WN+1 ≥ W ′
min and the

inequality also holds for N + 1. That is

N + 1 ≥
log(W̃N+1)

d log(2)
−

log log W̃N+1

d log(2)
+ c (47)

Using (39), we obtain:

‖f − f̃‖Lp(λ) ≤ cd,pN
1
p 2−N ≤ 2cd,p(N + 1)

1
p 2−(N+1),

and since the function t 7−→ t
1
p 2−t is non-increasing for t sufficiently large, up to a modi-

fication of W ′
min, using (47), we obtain

‖f − f̃‖Lp(λ) ≤ 2c+1cd,p

(

log(WN+1)

d log(2)

)
1
p

2−
log(WN+1)

d log(2) 2
log log WN+1

d log(2) ,

≤ c3d,pW
− 1

d

N+1(logWN+1)
1
p+

1
d = c3d,pW

− 1
d

N+1 logWN+1,

for an appropriate constant c3d,p.

Taking c′d,p = max(c1d,p, c
2
d,p, c

3
d,p) provides the announced statement.

Proof of Proposition 6. Take Wmin = max(W ′
min,W0) and c = c′d,p, where W ′

min and c′d,p are
from Lemma 9. Let W ≥ Wmin, there exists N such that

WN ≤ W < WN+1.

Consider the architecture A with W weights, as in Proposition 10, which allows to represent
piecewise-constant functions with W

2(d+1)2 cubic pieces, therefore it can also represent piecewise-

constant functions with WN

2(d+1)2 pieces.

For any f ∈ Md, the function f̃ obtained for the parameter N is a piecewise-constant function with
at most WN

2(d+1)2 pieces, therefore we have f̃ ∈ HA and, according to Lemma 9, f̃ satisfies

‖f − f̃‖Lp(λ) ≤ c′d,pg(WN+1).

Moreover, since g is non-increasing, we have

‖f − f̃‖Lp(λ) ≤ c′d,pg(W ).

Therefore, for any f ∈ Md,
inf

g∈HA

‖f − g‖Lp(λ) ≤ c′d,pg(W )

and so does the supremum over f in Md.

This concludes the proof of Proposition 6.
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E.2 Proof of Proposition 4

We first need some topological results.

E.2.1 Some useful topological results

In the following lemma, for any topological set X and any subset S ⊂ X , we say that a point x ∈ S
is an isolated point of S if there exists a neighborhood of x that does not contain any other point of
S.

Lemma 10. Let F be a closed set. Then an isolated point of ∂F is an isolated point of F .

Proof. Since F is closed, ∂F = F \ F̊ . Let x be an isolated point of ∂F . Then there exists r > 0

such that B(x, r)∩∂F = {x}. Denote by B̃ := B(x, r)\{x} the open ball without its center. Then
B̃ ∩F = B̃ ∩ F̊ since B̃ ∩ ∂F = ∅ and F̊ ⊂ F . Observe that B̃ ∩F is a closed set of B̃ and B̃ ∩ F̊
is an open set of B̃. Since B̃ is connected, either B̃ ∩ F = ∅ or B̃ ∩ F = B̃. The latter cannot be
true, for otherwise we would have B(x, r) ⊂ F , contradicting x ∈ ∂F . Hence B̃ ∩ F = ∅, i.e., x is
isolated in F .

Proposition 11. Let C be a compact, convex set which is not a singleton. Then ∂C does not contain
any isolated point.

Proof. We use a proof by contradiction. If ∂C contains an isolated point x, then x is also an isolated
point of C by Lemma 10 since C is closed. Let y ∈ C. We have [x, y] ⊂ C by convexity, hence y = x
(if not, x would not be isolated). Thus we have C = {x}, which contradicts the fact that C is not a
singleton.

E.2.2 Proof of Proposition 4

Step 1: we prove the result in dimension d = 2. We define

C =

{

x ∈ R
2 :

2
∑

i=1

(xi − 1)2 ≤ 1

}

,

whose intersection with [0, 1]2 is displayed on Figure 3. We denote by f : [0, 1]2 → {0, 1} the
indicator function of the set C ∩ [0, 1]2.

Note that C satisfies the hypothesis of Proposition 11. Since in addition no point in Cc ∩ [0, 1]2 has
all its coordinates strictly larger than those of a point in C, we can see that f lies in M2 (monotonic
functions of 2 variables). Let g ∈ HA. The idea of the proof is to show that ∂C intersects the
“discontinuity set” (or jump set) of g in only a finite number of points. Since f takes its values in
{0, 1}, this implies that there are some points x where either f(x) = 0 and g(x) ≥ 1

2 or f(x) = 1

and g(x) ≤ 1
2 . We now give more details.

We show that ‖f − g‖∞ ≥ 1
2 by contradiction. Let W ≥ 1 be the number of weights in the

architecture A. First note that g =
∑K

j=1 αj1Aj , where K ≤ 2W , and the Aj are convex polytopes
forming a partition of [0, 1]2. Suppose that ‖f − g‖∞ < 1

2 for a moment. This implies that g > 1
2

on C, and g < 1
2 elsewhere.

Observe that under this assumption, ∂C∩(0, 1)2 is included in the finite union
⋃

1≤j≤K ∂Aj . Indeed,

if it were not true, then there would exist x ∈ ∂C∩(0, 1)2 and j ∈ {1, . . . ,K} such that x ∈ Åj . Let
ǫ > 0 such that B(x, ǫ) ⊂ Åj . We have B(x, ǫ) 6⊂ C (otherwise, the open ball would be included
in the interior of C and x would not lie on the boundary). Thus there exists z ∈ B(x, ǫ) \ C, which
satisfies g(z) < 1

2 < g(x) (recall that g > 1
2 on C, and g < 1

2 elsewhere), which is not possible

since x, z ∈ Åj and g is constant on Aj . This proves that ∂C ∩ (0, 1)2 is included in the finite union
⋃

1≤j≤K ∂Aj .

Since the Aj are polygons (recall that we work in dimension 2), their boundaries are finite unions
of line segments. Then ∂C ∩ (0, 1)2 is included in a finite union of line segments. Let us show that
it is not possible, contradicting the assumption that ‖f − g‖∞ < 1

2 .
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Figure 3: The set C and its indicator function f .

Let us prove that the intersection of a line segment with ∂C ∩ (0, 1)2 contains at most 2 points.
Denote by S a closed line segment: C and S are convex and hence connected, thus C ∩ S is either
empty, a singleton or a line segment, as a connected compact set of the line supporting S. If it is
empty, then a fortiori, ∂C ∩ S = ∅. If it is not, denote by x and y its extremities (assuming x = y

in the case of a singleton). By strict convexity, the open line segment (x, y) is included in C̊, hence
∂C ∩ S ⊂ {x, y}. In any case, we have |∂C ∩ S| ≤ 2.

Let M be the finite number of line segments forming the boundaries of the Aj . If ∂C ∩ (0, 1)2 is
included in the union of these line segments, it contains at most 2M points. Since ∂C ∩ (0, 1)2 is
nonempty and finite, all its points are isolated points, thus ∂C contains at least one isolated point.
This would contradict Proposition 11: since ∂C is the boundary of a compact, convex set which is
not a single singleton, it can not have any isolated point. This leads to a contradiction, and proves
the result in dimension 2.

Step 2: we prove the result in any dimension d ≥ 2, by a reduction to dimension 2. We define

C =

{

x ∈ R
d :

d
∑

i=1

(xi − 1)2 ≤ 1

}

,

and the function f : [0, 1]d → R by

f(x1, . . . , xd) = 1(x1,...,xd)∈C .

Let g : [0, 1]d → R be any function in HA, that is, g can be represented by a a Heaviside neural
network with d input neurons. Note that

sup
x1,x2,x3...,xd∈[0,1]

|f(x1, x2, x3 . . . , xd)− g(x1, x2, x3 . . . , xd)|

≥ sup
x1,x2∈[0,1]

|f(x1, x2, 1 . . . , 1)− g(x1, x2, 1 . . . , 1)|

≥
1

2
,

where the last inequality is by the result of Step 1, since (x1, x2) ∈ [0, 1]2 7→ f(x1, x2, 1 . . . , 1) is
the indicator function of Step 1, and (x1, x2) ∈ [0, 1]2 7→ g(x1, x2, 1 . . . , 1) can be represented by
a Heaviside neural network with 2 input neurons. This concludes the proof.

Remark. Note from the above proof that, though we only stated the impossibility result for
piecewise-constant activation functions, it in fact holds more generally for piecewise-affine acti-
vation functions.

F Barron space

In Section 5 we mentioned that the Barron space introduced in [Bar93] is one among several ex-
amples for which approximation theory provides ready-to-use lower bounds on the packing number.
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This space has received renewed attention recently in the deep learning community, in particular
because its “size” is sufficiently small to avoid approximation rates depending exponentially on the
input dimension d. Next we detail how to apply Corollary 1 in this case.

Definition of the Barron space. We start by introducing the Barron space, as defined in [PV21].
Let d ∈ N∗. For any constant C > 0, the Barron space Bd(C) is the set of all functions f for which
there exists a measurable function F : Rd → C and some c ∈ [−C,C] satisfying, for all x ∈ [0, 1]d,

f(x) =

∫

Rd

(eix·ξ − 1)F (ξ)dξ and
∫

Rd

‖ξ‖2|F (ξ)|dξ ≤ C,

where x · ξ denotes the standard scalar product in between x and ξ.

Known lower bound on the packing number. Petersen and Voigtlaender [PV21] showed a tight
lower bound on the log packing number in Lp(λ, [0, 1]d) norm, which we recall below.

Proposition 12 (Proposition 4.6 in [PV21]). Let 1 ≤ p ≤ +∞. There exist constants ε0, c0 > 0
depending only on d and C such that for any ε ≤ ε0,

logM(ε,Bd(C), ‖ · ‖Lp) ≥ c0ε
−1/( 1

2+
1
d ). (48)

Consequence on the approximation rate by piecewise-polynomial neural networks. Plugging
the lower bound of Proposition 12 in Corollary 1, we obtain the following lower bound on the
approximation error of the Barron space by piecewise-polynomial neural networks.

Proposition 13. Let 1 ≤ p < +∞, d ≥ 1. Let σ : R → R be a piecewise-polynomial function on
K ≥ 2 pieces, with maximal degree ν ∈ N. Consider the Barron space Bd(C) defined above, with
C > 0. There exist positive constants c1, c2, c3,Wmin depending only on d, p, C, and σ such that
for any architecture A of depth L ≥ 1, W ≥ Wmin variable weights, the set HA satisfies

sup
f∈Bd(C)

inf
g∈HA

‖f − g‖Lp(λ) ≥











c1W
−1− 2

d log−1− 2
d (W ) if ν ≥ 2 ,

c2(LW )−
1
2−

1
d log−

3
2−

3
d (W ) if ν = 1 ,

c3W
− 1

2−
1
d log−

3
2−

3
d (W ) if ν = 0 .

(49)
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