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In this work, Continuous Wavelet Transform (CWT) based features are proposed for Voice Liveness Detection (VLD). In particular, bump wavelet features are extracted from raw speech and classified using our proposed CNN architecture for VLD task. Determining whether a speech is coming from a live speaker enables us in developing robust countermeasures against spoofing attacks on Automatic Speaker Verification (ASV) systems, specially against replay attacks. Liveness of a speaker is attributed by the pop noise present in the live (genuine) speech signal. We utilize this characteristic of live speech for VLD task. We perform VLD using our approach and compare the experimental results with two existing approaches: 1) STFT-based baseline approach, 2) CQT-based approach, which gave accuracy as 62.08% and 66.49%, respectively. On the other hand, we achieve a highly improved accuracy of 80.19%. Furthermore, we also perform phoneme-based analysis and achieve higher accuracy values for all the phoneme types when compared with the two existing approaches.

Introduction

Automatic Speaker Verification (ASV) systems (also called as voice biometric systems) use human speech to authenticate enrolled speakers with the help of machines. However, ASV systems have been vulnerable to spoofing techniques, such as Voice Conversion (VC) [START_REF] Stylianou | Voice transformation: A survey[END_REF], Speech Synthesis (SS) [START_REF] De Leon | Evaluation of speaker verification security and detection of HMM-based synthetic speech[END_REF][START_REF] Zen | Statistical parametric speech synthesis[END_REF], replay [START_REF] Alegre | Re-assessing the threat of replay spoofing attacks against automatic speaker verification[END_REF][START_REF] Paul | Countermeasure to handle replay attacks in practical speaker verification systems[END_REF], twins [START_REF] Wu | Spoofing and countermeasures for speaker verification: A survey[END_REF], and impersonation [START_REF] Lau | Vulnerability of speaker verification to voice mimicking[END_REF]. To mitigate the vulnerabilities of ASV systems, several countermeasure systems have been proposed in the recent years by the research community in the form of ASVspoof challenges [START_REF] Jung | Replay attack detection with complementary high-resolution information using end-to-end DNN for the ASVSpoof 2019 challenge[END_REF][START_REF] Wang | Feature selection based on CQCCs for automatic speaker verification spoofing[END_REF][START_REF] Xiao | Spoofing speech detection using high-dimensional magnitude and phase features: The NTU approach for asvspoof 2015 challenge[END_REF]. A detailed review of theses challenges can be studied from [START_REF] Sahidullah | Introduction to voice presentation attack detection and recent advances[END_REF]. However, not much consideration is given to Voice Liveness Detection (VLD). VLD systems intends to reject the speech signal which does not show liveness characteristics, i.e., pop noise. Live (genuine) speech of a human speaker is characterized by the breath released during speech production. Microphones have the ability to capture the effect of the breath in the form of pop noise generated from live speech [START_REF] Nishida | Monitoring of breath sound under daily environment by ceiling dome microphone[END_REF][START_REF] Shiota | Voice liveness detection algorithms based on pop noise caused by human breath for automatic speaker verification[END_REF][START_REF] Prasad Naraharisetti | Enhancement of breathing signal using delayless subband adaptive filter with HPF[END_REF]. Pop noise is a common distortion in live speech, occurring due to the proximity of the live speaker with the microphone [START_REF] Shiota | Voice liveness detection algorithms based on pop noise caused by human breath for automatic speaker verification[END_REF]. Furthermore, pop noise is said to be poorly reproduced by playback devices and loudspeakers [START_REF] Elko | Electronic pop protection for microphones[END_REF][START_REF] Hsu | Spectrum analysis of base-line-popping noise in MR heads[END_REF]. This has led to research on VLD focused on pop noise [START_REF] Mochizuki | Voice liveness detection using phoneme-based pop-noise detector for speaker verification[END_REF][START_REF] Shiota | Voice liveness detection algorithms based on pop noise caused by human breath for automatic speaker verification[END_REF][START_REF] Shiota | Voice liveness detection for speaker verification based on a tandem single/double-channel pop noise detector[END_REF][START_REF] Wang | Voicepop: A pop noise based anti-spoofing system for voice authentication on smartphones[END_REF]. To that effect, POCO (POp noise COrpus) dataset was released, wherein it is known that pop noise occurs at low frequency regions in the speech signal (< 40 Hz) [START_REF] Akimoto | POCO: A voice spoofing and liveness detection corpus based on pop noise[END_REF]. VLD for spoofing detection was proposed for the first time in [START_REF] Shiota | Voice liveness detection algorithms based on pop noise caused by human breath for automatic speaker verification[END_REF], where liveness detection was performed using Short-Time Fourier Transform (STFT)-based features, wherein two methods were used. The first approach utilizes the low frequency regions for detection of pop noise. However, the second approach utilizes the complete frequency spectrum by subtracting the signal without pop noise from the signal with pop noise to get the pop noise. Phoneme-based VLD is done in [START_REF] Mochizuki | Voice liveness detection using phoneme-based pop-noise detector for speaker verification[END_REF]. In [START_REF] Wang | Voicepop: A pop noise based anti-spoofing system for voice authentication on smartphones[END_REF], Gammatone Frequency Cepstral Coefficients (GFCC) and phoneme-based correction is used for VLD task. Another recent work for VLD utilizes Constant-Q Transform (CQT) for liveness detection [START_REF] Khoria | Significance of Constant-Q transform for voice liveness detection[END_REF]. The work in [START_REF] Khoria | Significance of Constant-Q transform for voice liveness detection[END_REF] uses CQT due to improved frequency resolution in low frequency regions.

In this paper, we propose to exploit a wavelet-based approach for pop noise detection for VLD task. We design a classifier based on CNN architecture using bump wavelet-based CWT as features. The motivation of utilizing CWT for this study is the improved frequency resolution of CWT-based scalograms at lower frequencies as compared to the CQT-based technique [START_REF] Khoria | Significance of Constant-Q transform for voice liveness detection[END_REF]. Given that the pop noise also exists in low frequency regions (< 40 Hz), our proposed approach effectively captures distinguishing cues between live and non-live speech. This is proved by the improved accuracy obtained from our experiments as discussed in Section 4. We also show phoneme-based analysis of our experimental results pertaining to the fact that pop noise energy is phoneme-dependent [START_REF] Akimoto | POCO: A voice spoofing and liveness detection corpus based on pop noise[END_REF][START_REF] Mochizuki | Voice livness detection based on pop-noise detector with phoneme information for speaker verification[END_REF].

Proposed Approach

Live speech contains pop noise, which is caused by sudden burst of human breath on the microphone [START_REF] Akimoto | POCO: A voice spoofing and liveness detection corpus based on pop noise[END_REF]. Time-frequency representations, such as spectrograms have been used in the past to locate pop noise [START_REF] Shiota | Voice liveness detection algorithms based on pop noise caused by human breath for automatic speaker verification[END_REF][START_REF] Wang | Voicepop: A pop noise based anti-spoofing system for voice authentication on smartphones[END_REF]. However, to get better detection of pop noise, we propose CWT-based features using bump wavelet in this work. Figure 1 shows the bump wavelet-based scalograms of the words 'thong'. One can observe a distinct signature of the pop noise in a live speech signal, shown in Panel I. On the other hand, the pop noise signature is absent for the case of non-live speech as shown in Panel II of Figure 1.

A wavelet is a waveform of effectively limited duration that has zero average. It is defined as:

ψ a,b (t) = 1 √ a ψ * t -b a , a ∈ R + , b ∈ R, ( 1 
)
where a is called the dilation (scale) parameter, and b is called the translation (position) parameter. The mother bump wavelet is defined in the frequency- domain and is given by equation [START_REF]MATLAB Documentation: Bump wavelet[END_REF]:

Ψ (sω) = e 1- 1 1-(sω-σ) 2 /σ 2 1 [(µ-σ)/s,(µ+σ)/s] , (2) 
where 1 [(µ-σ)/s,(µ+σ)/s] denotes the indicator function over the interval [(µσ)/s, (µ + σ)/s]. In eq. ( 2), the value of µ lies in the interval [START_REF] De Leon | Evaluation of speaker verification security and detection of HMM-based synthetic speech[END_REF][START_REF] Jung | Replay attack detection with complementary high-resolution information using end-to-end DNN for the ASVSpoof 2019 challenge[END_REF], whereas the value of σ lies in the interval [0.1, 1.2]. For smaller values of σ, we get a wavelet with superior frequency resolution as compared to the time resolution. For larger values of σ, we get a wavelet with superior time resolution as compared to the frequency resolution. For, our experiments in this study, we have taken µ = 5 and σ = 0.6. These values enable us to get optimum resolution in both the time and frequency-domains.

Fig. 2: Proposed approach for VLD task.

For our experiments in this paper, the lowest frequency bin is at 6.4564 Hz. Two consecutive bins are separated by a factor of 1.0718. Therefore, the index k of the bin corresponding to 40 Hz is calculated as: 40 = (1.0718) k * 6.4564.

( 3 Experimental Setup

Database Used

The dataset used for our experiments is the POp noise COrpus (POCO) dataset [START_REF] Akimoto | POCO: A voice spoofing and liveness detection corpus based on pop noise[END_REF]. It is based on the fact that most of the microphones are very sensitive to human breath noise [START_REF] Nishida | Monitoring of breath sound under daily environment by ceiling dome microphone[END_REF][START_REF] Shiota | Voice liveness detection algorithms based on pop noise caused by human breath for automatic speaker verification[END_REF][START_REF] Prasad Naraharisetti | Enhancement of breathing signal using delayless subband adaptive filter with HPF[END_REF]. Speech recordings in this dataset are sampled at 22.05 kHz of 34 female and 32 male speakers. The dataset includes speech recordings corresponding to a pop filter, and without a pop filter. The case without a pop filter is equivalent to live speech because it contains pop noise prominently. The speech data recorded with a pop filter is equivalent to a replay spoof signal because it does not contain pop noise prominently and signified speech recorded from a distance. For each of the two cases, there are 3 repetitions of each of the 44 words in the dataset. The 44 words cover the 44 phonemes in the English language.

Classifier Used: Convolutional Neural Network (CNN)

In recent times, Convolutional Neural Network (CNN) are proven to perform exceptionally well in image classification task. Since, we have used scalogram images as features for our deep learning model, we confirm through our experimental results that, CNN will be able to detect distinguishing features from the images to classify instances of pop noise in the scalogram. A CNN consists of one or more convolution layer that applies convolutions operation. Convolution operation is implemented by using a multi-dimensional kernel of weights over a multi-dimensional input matrix, such as images. The kernel slides over an image implementing element-wise multiplication between the input and the weights. These element-wise multiplications are then added to get the output. The kernel slides over the input until the complete input is covered. In a convolution layer, convolution operation is usually followed by max-pooling operation in which the maximum value is chosen from the input for the size of the kernel. Together, multiple convolution layers perform the task of feature extraction. In addition, CNN also consists of fully connected layers for the purpose of classification. Fully connected layers are Multi-layer Perceptrons (MLP) in which the input from the previous layer is fed to each perceptron having different weights and biases.
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Fig. 3: The CNN architecture used for classification of the proposed bump wavelet scalogram-based features. Representation based on [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF] In our proposed CNN model, as shown in figure 3, we use three convolution layers and three fully connected layers. Each convolution layers consists of a 2-D convolution operation with a kernel size of 3 × 3. Batch normalization is done for the output of the convolution operation to remove irregularities. A maxpooling operation is then performed with a kernel size of 3 × 3. Each of the three convolution layers follows the same structure. The output of the final layer is then flattened, and fed to a cascade of three fully connected layers. The output of the final fully-connected layer is a single numerical value. The final output is then activated using the Sigmoid activation function to convert the value into a probability. All the hidden layer in the network applies ReLU activation function to introduce non-linearities into the output. Since the task is binary classification, Binary Cross-Entropy (BCE) is used as the loss function. Optimization is done using Stochastic Gradient Descent (SGD) with a learning rate of 0.0001. The network was trained with a batch size of 32 for a total of 500 epochs.

Experimental Results

In this section, we give detailed experimental results for our proposed technique for VLD task. We achieve an overall accuracy of 80.19%. This is a significant improvement as compared to the existing methods, such as STFT-based and CQT-based methods, having overall accuracies of 62.08% and 66.49%, respectively [START_REF] Akimoto | POCO: A voice spoofing and liveness detection corpus based on pop noise[END_REF][START_REF] Khoria | Significance of Constant-Q transform for voice liveness detection[END_REF]. We show word-wise accuracies for all the three approaches in Figure 4. It can be observed from the Figure 4 that our proposed bump wavelet-based feature performs better for almost every word from the dataset. Furthermore, we grouped the words in the POCO dataset according to phoneme types and analyzed and compared the performance of our approach with the existing two methods. Table 1 shows the phoneme-wise average accuracy of the proposed method, compared with these approaches. We observe that our proposed bump wavelet-based scalogram approach performs better for all the phoneme-types. It can be observed that using proposed features, plosive, frica- tive, and whisper sounds have higher accuracy. This is justified by the nature of pop noise and its dependence on the phoneme type. Plosive, whisper, and fricative sounds have more breathing effect on the microphone as compared to other phonemes [START_REF] Akimoto | POCO: A voice spoofing and liveness detection corpus based on pop noise[END_REF].

Summary and Conclusions

In this study, we performed liveness detection of speech using bump wavelet. Bump wavelet-based scalogram images were generated corresponding to speech signals with and without pop noise. Consequently, binary classification was performed using a CNN architecture, resulting in significantly improved accuracy of 80.19%, as compared to the baseline accuracy of 62.08% and CQT-based accuracy of 66.49%. Furthermore, phoneme-based analysis is done to observe the effect of phoneme type on the accuracy. It is observed that plosives/fricatives give the highest accuracy by our proposed approach. As future work, other wavelet-based techniques can be applied for VLD task. Furthermore, the effect of speaker-microphone distance variability using this approach can be studied in future.

Fig. 1 :

 1 Fig. 1: Panel I represents the case of presence of pop noise (genuine speech) indicated by box. Panel II represents the case of suppressed pop noise (spoofed speech) due to the use of pop filter. (a) Time-domain signal for the word 'thong', (b) corresponding scalogram, and (c) corresponding low-frequency (0 -40 Hz) scalogram. Solid boxes in Panel I indicates the presence of pop noise, while corresponding dotted boxes in Panel II indicates that the pop noise has been suppressed by the use of pop filter.

Fig. 4 :

 4 Fig. 4: Word-wise accuracy of baseline method vs. CQT-based feature vs. proposed bump wavelet-based feature.
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  Therefore, to estimate frequency region below 40 Hz, we get the nearest integer k = 27 for the frequency bin corresponding to 41.9537 Hz. This is the region where the pop noise is located. To that effect, scalogram images are extracted only corresponding to those 27 wavelet coefficients, as shown in the algorithm 1. Each scalogram image is of the size 3 × 512 × 512. Algorithm 1: Handcrafted Wavelet-based Feature Extraction. Low bins ← find (bins≥ 27) 4 Low coeffs ← cwt coeffs (Low bins) 5 Pop energy = abs (Low coeffs) 2

	Input: Speech signal x	
	Output: Low Frequency Scalogram	
	1 w name='bump'	// Taking Bump wavelet
	2 [cwt coeffs, F] ← cwt(x, w name)	
	/* Selecting low frequency bins as calculated by eq. 3	*/
	3 /* Converting these energy values to scalogram image	*/
	6 rescaled energy=rescale(Pop energy)	
	7 ind image=im2uint8(rescaled energy)	// Convert to 8-bit unsigned integers
	8 Scalogram=ind2rgb(ind image)	// Convert to RGB image

Table 1 :

 1 Phoneme-wise Average Accuracy (in %)

	Phoneme	STFT-based	CQT-based	Proposed
	Type	baseline	feature	feature
	Plosives	60.46	63.60	81.58
	Whisper	68.44	73.29	81.09
	Fricatives	67.66	73.78	80.77
	Affricates	58.26	68.92	78.53
	Nasal	54.26	57.78	76.50
	Liquids	69.78	57.16	69.87