
HAL Id: hal-03690039
https://hal.science/hal-03690039

Submitted on 7 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Guidance of a Refinement-based Acting Engine with a
Hierarchical Temporal Planner

Jérémy Turi, Arthur Bit-Monnot

To cite this version:
Jérémy Turi, Arthur Bit-Monnot. Guidance of a Refinement-based Acting Engine with a Hierarchical
Temporal Planner. ICAPS Workshop on Integrated Planning, Acting, and Execution (IntEx), Jun
2022, Singapore (virtual), Singapore. �hal-03690039�

https://hal.science/hal-03690039
https://hal.archives-ouvertes.fr

Guidance of a Refinement-based Acting Engine
with a Hierarchical Temporal Planner

Jérémy Turi, Arthur Bit-Monnot
LAAS-CNRS, Université de Toulouse, INSA, CNRS, Toulouse, France

jeremy.turi@laas.fr, abitmonnot@laas.fr

Abstract

Endowing robotic platforms with advanced deliberation ca-
pabilities to support autonomous and intelligent behavior has
been a key objective of the scientific community for several
decades. Where many acting systems propose to first perform
offline planning and then execute the plan, we propose here
the OMPAS system, based on hierarchical operational mod-
els, which proposes to leverage planning as a guidance to an
otherwise reactive system.
For these hierarchical operational models, this paper proposes
both a Lisp-based language to define them, and its automatic
analysis to generate predictive models of the system’s behav-
ior that can be leveraged by a hierarchical planner. The gener-
ation of predictive models allows to have a unified language
for execution and planning, while having a rich structure to
program operational models.

Introduction
In robotics, deliberation has always been a key component
of autonomous systems. Endowing them with advanced de-
liberation capabilities allows them to be deployed in com-
plex environments, in which they will be able to make wise
decisions based on knowledge about the world collected via
perception systems, the mission they have to carry out, and
their own capabilities, while being able to cope with unex-
pected events.

Acting systems such as the Procedural Reasoning Sys-
tem (PRS) (Ingrand et al. 1996) and the Refinement Acting
Engine (RAE) (Ghallab, Nau, and Traverso 2016) take ad-
vantage of a hierarchical representation of the agent skills,
which allows reasoning about high-level goals, and the
methods for achieving them by performing lower level tasks.

The agent skills can be represented as an acting domain
A∆, a tuple (A, T,Mt) where A is the set actions (low-level
skills), T the set of task (high-level skills), and Mt the set
of methods to perform tasks in T , each method representing
a different way to perform an abstract task t ∈ T . In acting
systems, a method is an executable procedure that we call an
operational model.

As skills of an agent are defined in A∆, the acting engine
will use this knowledge to achieve an abstract task t ∈ T
by selecting a method m during the task refinement pro-
cess. The refinement strategy of reactive systems is to ex-
ecute an arbitrary method in a trial and repair manner until

the mission succeeds. But such greedy approach has sev-
eral shortcomings, as a suboptimal choice of method, can
provoke inefficiencies, unnecessary failures or even lead the
system into deadlocks. Such problems may be avoided by
endowing the system with the capability of evaluating the
long-term impact of a method. With such lookahead capa-
bilities, the acting system is able to choose the method that
will maximize its long-term success. One lookahead tech-
nique is planning, that exploits a model of the agent capa-
bilities to modify its environment, to generate a sequence of
commands called a plan to solve a goal.

As noted by Ghallab, Nau, and Traverso (2016), planning
and acting require different models. Planners exploit a de-
scriptive model of the environment that makes explicit the
dynamics of the environment (the actor’s ”know what”). On
the other hand, the acting part typically relies on operational
models (the actor’s ”know how”), which are defined using
general purpose languages, such that existing rich program-
ming tools can be used to define the agent behavior (includ-
ing, e.g., error handling, conditions, loops). This discrep-
ancy in representations can be the source of many integra-
tion problems, in particular when the descriptive model di-
verges from the observed evolution of the environment and
the agent’s capabilities.

In this paper, we focus on an integrated planning and
acting engine that is centered on a hierarchical operational
model, from which a descriptive model can be extracted for
planning purposes. We propose to exploit planning to make
an informed choice when selecting a procedure or method
for a given task. To do that we propose a new implementa-
tion of RAE named Operational Model Planning and Acting
System (OMPAS), together with a Lisp dialect based on the
Scheme (Moretti 1979) variant to define operational models
for RAE systems. Unlike previous implementations of RAE,
this custom language enables the automated analysis of the
operational model to extract planning domains from acting
domains. We can then rely on existing planners (and in par-
ticular an extension of LCP (Bit-Monnot 2018) for hierar-
chical planning) to select the best method to achieve each
task faced by the system.

Related Work
The deliberation community proposed several supervision
approaches for acting systems. In the late 90s, PRS (In-

grand et al. 1996) was proposed as a goal oriented acting
system. The skills are represented in a hierarchical fashion,
which eases the definition of the problem and permits to di-
vide the resolution into smaller and easier problems. Like in
PRS, RAE (Ghallab, Nau, and Traverso 2016) needs to re-
fine high-level objectives into a set of lower-level objectives.
While PRS proposes a goal-oriented representation, RAE
uses a hierarchical task representation closer to a Hierar-
chical Task Network (HTN) (Georgievski and Aiello 2014)
representation, which eases the use of planning techniques
to guide the refinement process.

To maximize long-term efficiency and success rate of the
execution platform, many acting systems work jointly with
automated planners. A first approach is to first call a plan-
ner, wait for a plan, and then execute it. Propice-Plan (De-
spouys and Ingrand 2000), proposed an architecture extend-
ing PRS with both (i) planning capabilities for long-term
choices and (ii) an anytime anticipation module (based on
simulated execution) which returns an estimation of the best
method with an anytime algorithm. The addition of an any-
time module makes the system more reactive, and less lim-
ited by the planner whose computation time largely domi-
nates the one of other processes. IxTeT-eXeC (Lemai 2004)
is yet another approach where acting and planning are in-
terleaved, the planning process being continuously updated
with task status and state updates to generate a valid plan.

Extensions to RAE have been proposed to endow the sys-
tem with lookahead capabilities similar to Propice-Plan to
guide the choice on the method to achieve the goal, taking
into account both the current state of the system, and possi-
ble refinements of subtasks. RAEPlan (Patra et al. 2019) is
an anytime planning system using MCTS techniques to sam-
ple results of low-level commands in each method, which
gives two metrics to sort methods: their cost and efficiency.
It has been extended with UPOM (Patra et al. 2020), tak-
ing into account the nondeterministic result of commands
to guide the exploration of the search tree, and using learn-
ing techniques to speed up search and produce useful heuris-
tics. Several techniques have been proposed along UPOM (i)
Learnπ maps a tuple (τ, ξ) of a task and a state to a method,
and is used when no time is allowed by the acting system
to find a method, (ii) Learnπi returns the best instantiation
of arbitrary parameters for a method in a given state ξ and
LearnH gives heuristic for the branching in UPOM. While
they do speed up search and increase the quality of the cho-
sen methods, no guarantee is given on the long-term validity
of the plan, and on the possibility to reach the high-level
goal. In this paper we propose to address those issues by
guiding the refinement process thanks to planning.

Recent works by Bansod et al. (2021) propose to extend
the Run-Lazy-Lookahead algorithm first described by Ghal-
lab, Nau, and Traverso (2016) with Run-Lazy-Refineahead.
While the former executes a plan π as far as possible, calling
Lookahead again only when π ends or a plan simulator says
that π will no longer work properly, Run-Lazy-Refineahead
proposes to extend the former one with a hierarchical repre-
sentation of the domain. The algorithm can be linked to any
online HTN planner that provides the solution as a refined
task network, and that provides control over its backtrack-

ing features. This extension takes into account the whole
refinement while checking the consistency of the plan, and
thus fix some limitations of Run-Lazy-Lookahead. Bansod
et al. (2021) put forward the integration of RAE with IPy-
Hop, an HTN Planner extending the previous iteration of
Python planners Pyhop and GTPyHop (Nau et al. 2021).
The use of Python to define operational models is justified as
an easier approach to define an acting domain, and makes it
more accessible. However, it limits the automatic analysis of
operational models, and the extraction of descriptive mod-
els. Therefore, the definition of the planning domain relies
on dedicated descriptive languages such as PDDL (Fox and
Long 2003) and ANML (Smith, Frank, and Cushing 2008).

System Overview
OMPAS is an acting system based on RAE. Skills of an agent
are modelled as hierarchical operational models, where an
operational model is defined as a procedure, encoded in
a general purpose language, that can be executed by the
acting engine. The hierarchical combination of operational
models allows the definition of abstract tasks, that can be
refined by several methods. We define an acting domain
A∆ (A, T,Mt) as the structure representing the skills of
an agent, where A is the set of actions also called primi-
tive tasks, achieving low-level goals, T the set of abstract
tasks, achieving high-level goals, and Mt the set of meth-
ods, where each method m ∈Mt is a possible refinement of
a task t ∈ T .

In this section, we present the overall architecture of OM-
PAS as well as the main refinement process. Finally, we pro-
pose a specific operational language based on the Scheme
variant of Lisp: Scheme OMPAS (SOMPAS).

Architecture of the system

OMPAS is a complete system that embeds the acting engine
and a monitoring system, presented in Figure 1. The acting
engine is connected to a platform, that is in charge of exe-
cuting primitive commands and gathering the perceived state
of the environment. In addition to update of the world, the
platform communicates the current status of previously sent
commands {Pending, Running, Failure, Success}. The mon-
itor is an external process that can send tasks to the system
or retrieve information about its internal status. The monitor
can either be a program, or a human operator through the
command line.

RAE
A∆

Planner
P∆

Monitor Platform

Launch,
Trigger Task

Internal State

Actions

Platform State,
Action Status

Human,
Program

Figure 1: A global view on the architecture of OMPAS.

Refinement process
When facing a task t ∈ T the role of the acting engine is to
choose one applicable method m ∈Mt that will achieve the
high-level objective of t. The system typically has the choice
between several methods, each representing a particular pro-
cedure that might be used to achieve it. Initially, the refine-
ment engine should select an arbitrary methodm ∈Mt such
that m is applicable in the current state, which is verified
thanks to its preconditions that define the set of states in
which the execution of m is possible. When a method m
is chosen, its body is executed and should result either in
a success (i.e. achievement of t) or a failure. The body of
a method might contain arbitrary logic (if conditions, loops,
. . .), computations as well as the requirement to execute sub-
tasks in T or actions in A. If m succeeds, the task t is con-
sidered successful. However, if m fails the refinement sys-
tem resorts to a retry procedure where it selects another (not
previously tried) applicable method m′ ∈ Mt and executes
it. This procedure continues until either (i) a method suc-
ceeds, in which case the task is successful or (ii) all appli-
cable methods have been tried unsuccessfully in which case
the task is considered failed.

This task execution procedure is the same regardless of
whether the execution was requested by an external process
(t is a top level task) or as a result of executing a method of
which t is a subtask.

Choices and programs In the previous definition of the
refinement process, it should be obvious that the algorithm
will have to make choices, primarily regarding the choice
of the method to execute. Ideally we would like the first
selected method to be successful as the contrary will typi-
cally result in the controlled agent acting in useless, counter-
productive or even dangerous manner. As the choice of the
method is arbitrary, the refinement engine is free to use any
heuristic to guide his choice. In this paper, we are interested
in guiding this choice by the analysis of the impact of a
method on the state evolution. A key requirement for this
is the ability to inspect the body of methods to predict the
behavior they will induce in the controlled agent.

Acting language
As methods can be thought of as programs, their defini-
tions are made through an acting language. In this work
we propose to use an expression oriented language based on
Scheme. An expression can be either an atom (boolean, num-
ber, symbol or procedure), or a list of expressions. When the
first element of a list is a function symbol, it can be evalu-
ated as the application of the function with the rest of the list
as parameters. As the language is expression oriented, we
consider body of methods as a single expression. The execu-
tion of such a language is based on the recursive evaluation
of the root expression by an Eval function (Algorithm 1).
Eval takes as input an expression and returns its evaluation,
resulting from the recursive computation of all subexpres-
sions. As everything is defined as a symbol, an evaluation
environment env is used to bind symbols to values (them-
selves expressions).

Algorithm 1 Overview of the recursive evaluation of expres-
sions in Lisp

function EVAL(expr, env)
if expr is an atom then return VALUE(expr)
else if expr is a list then

f← EVAL(expr[0], env)
args← []
for i do in [1..|expr|]

arg← EVAL(expr[i], env)
PUSH(args, arg)

return APPLY(f, args)

The core of the implementation is based on the operators
define (binds a symbol to an expression in env), begin (eval-
uates expressions sequentially and returns the result of the
last one), if (evaluates expression conditionally), quote (re-
turns the expression without evaluation) and lambda (creates
a user-defined procedure). The language being purely func-
tional, we consider all computations as pure (i.e. the result
of a function application depends only on its parameters and
has no side effects), except for a few identified acting prim-
itives.

Acting primitives On top of Scheme, the acting language
proposes several primitives offering ways to program par-
allelism, concurrency, and synchronization in the body of
method. To keep the presentation focused, we only present
here a restricted set of acting primitives that interest us in the
present matter. Note that the following primitives are consid-
ered as impure.

• exec-task takes as argument a task label and a list of in-
stantiated parameters. When it is an action, the engine
sends a request to the platform to execute it. In the case of
an abstract task, the refinement engine is called to find a
suitable method to execute.

• read-state takes as argument a state-variable and returns
its value at the time of evaluation.

Domain definition Several facilities are provided to de-
fine an acting domain using the same language. We illus-
trate them with the specification of the well-known gripper
domain. A robot robby should transport balls in different
rooms. Robby is equipped with two grippers left and right,
each gripper can carry one ball. The domain contains 3 prim-
itive actions: (move ?from ?to), (pick ?ball ?room ?gripper)
and (drop ?ball ?room ?gripper). The abstract task (pick-
and-drop ?b ?r) transports the ball ?b to room ?r. It can be
refined by two methods m-noop, when it is already in the
target room, and m-pick-and-drop for other cases. The state
is represented via 3 state-functions: (i) at-robby : room re-
turns the position of robby, (ii) at : ball→ room returns the
position of a ball or no place if robby is carrying the ball,
(iii) carry : gripper → ball returns the ball that a gripper is
holding or no ball if the gripper is empty. The following list
of functions defines the acting domain.

• def-state-function takes as parameter the label of the state-
function, a list of parameters with their annotated types,
and a typed result.

(d e f− s t a t e− f u n c t i o n c a r r y
’ (? g g r i p p e r) ’ (? b b a l l))

• def-action takes as parameter the action label and a list of
typed parameters.

(def−a c t i o n drop ’ (? o b j b a l l)
’ (? room room)
’ (? g r i p p e r g r i p p e r))

• def-task takes as parameter the task label and a list of
typed parameters.

(def−t a s k p ick−and−drop
’ (? b a l l b a l l)
’ (? room room))

• def-method takes the following list of parameters:
:task the label of the task the method refines.
:params the list of typed parameters of the method. It
contains the same list of parameters as the task, and more
if necessary.
:pre-conditions a list of expressions that returns true if a
method is applicable, an error otherwise.
:body the operational model of the method.

(def−method m1
’ ((: t a s k p ick−and−drop)

(: params (? b a l l b a l l)
(? room room)
(? g r i p p e r g r i p p e r)
(? d e p a r t u r e room))

(: pre−c o n d i t i o n s
(= (c a r r y ? g r i p p e r) n o b a l l)
(= ? d e p a r t u r e (a t−robby)))

(: body
(do

(i f (! = (a t ? b a l l) (a t−robby))
(move ? d e p a r t u r e (a t ? b a l l)))

(p i c k ? b a l l ? d e p a r t u r e ? g r i p p e r)
(move ? d e p a r t u r e ? room)
(drop ? b a l l ? room ? g r i p p e r)))))

• Types and constants: A domain can define new types and
constants. As the engine does not support undefined val-
ues for state-variable yet, we define constants no ball to
represent the absence of ball, and no place for the repre-
sentation of the lack of information about the exact posi-
tion of a ball.

(def−t y p e s room g r i p p e r b a l l)
(def−c o n s t a n t s

’ (l e f t r i g h t g r i p p e r)
’ (n o p l a c e room)
’ (n o b a l l b a l l))

In this section, we presented OMPAS, a supervision sys-
tem using its own acting language to define operational mod-
els. The following section describes our exploitation of this
language to extract descriptive models in the form of chroni-
cles and the of a constraint-based planner to generate a plan.

Intermediate Representation of a Program
For our purpose of using planning as guidance of the re-
finement process in RAE, we propose to extract high-level
descriptive models from the body of methods. The extrac-
tion process requires an intermediate representation that is
more structured and amenable to automated analysis. In this
section, we propose an interpretation of an expression (e.g.
the body of a method) into a Single Static Assignment (SSA)
form. A program in SSA has a structure like the following
one:

. . .

t1 : r1 ← prim-expr1

t2 : r2 ← prim-expr2

t3 : r3 ← prim-expr3

. . .

where each ti uniquely identifies a line, ri is a label asso-
ciated to the value computed by a primitive expression that
is only allowed to refer to previous labels. This intermedi-
ate representation defines all steps in the evaluation of an
expression in terms of the low-level capabilities of the inter-
preter.

To derive this representation, we start from a single line,

t : r ← body

where body, a non-primitive expression, is the body of the
method. Each line containing a non-primitive expression is
systematically replaced by one or multiple lines based on
a set of rules reflecting how each non-primitive expression
should be interpreted.

For any SSA statement of the form,

t : r ← expr

we define below the rules for expanding the line based on
the form of expr.

expr is an atom that evaluates to the value v. The corre-
sponding SSA representation is the following:

t : r ← cst(v)

expr is a list (f e1...en) In SOMPAS this corresponds to
the application of the function f to the ei parameters (where
each ei might be an arbitrary expression). Following the def-
inition of the Eval function, it is expanded to:

t0 : r0 ← f

t1 : r1 ← e1

. . .

tn : rn ← en

tn+1 : r ← apply(r0, r1, . . . , rn)

Note that after this expansion, other expansions will be trig-
gered to, e.g., refine the computation e1 into primitive ex-
pression or specialize the last line (function application) into
a primitive expression depending on the nature of r0.

expr matches (define var val) The operator defines a
name for the value val and returns nil. It is translated as

t1 : r1 ← val

t2 : r ← nil

and all subsequent uses of var name are replaced by r1.

expr matches (begin e1...en) The operator begin evalu-
ates sequentially a list of expressions, and returns the result
of the last expression. It is translated as

t1 : r1 ← e1

. . .

tn : r ← en

where the original label r is given the value of the last ex-
pression en.

expr matches apply(r0, r1, . . . , rn) where r0 is a user de-
fined function f with parameters x1 . . . xn. In this case we
replace the expression by the body of the function f where
each parameter xi has been substituted by the corresponding
ri value.

t : r ← body(f)[xi/ri]

expr matches apply(r0, r1, . . . , rn) where r0 is the read-
state primitive:

t : r ← read-state(r1, . . . , rn)

expr matches apply(r0, r1, . . . , rn) where r0 is a task
symbol. In the acting engine, a task is either a primitive task,
or an abstract task that is refined into a method, and the task
ends when the method ends.

t : r ← exec-task(r0, r1, . . . , rn)

expr matches (if cond a b) The operator if first evaluates
the expression cond that returns a boolean atom. If cond is
true, a is evaluated and is the result of the expression, other-
wise b will be evaluated. This is a form of conditional eval-
uation of the a and b expressions for which we rely on the
existing semantics of tasks and methods. Hence, it is trans-
lated as, first an evaluation of the condition, and then the in-
vocation of a newly created task τ that is given as parameter
the result of cond.

t1 : r1 ← cond

t2 : r ← exec-task(τ, r1, . . .)

The synthetic task τ must be associated with two methods:
one with precondition r1 and body a and one with precon-
dition ¬r1 and body b. Note that for completeness, the syn-
thetic task τ should also be given as parameter any variable
that appears in the body of either a or b.

expr matches (quote e) The operator quote avoids evalu-
ating an expression. The expression is therefore considered
as an atom, and we obtain

t : r ← cst(e)

(do
(move (a t−robby) (a t ? b a l l))
(check (= (a t−robby) (a t ? b a l l)))
(p i c k ? b a l l (a t ? b a l l) ? g r i p p e r)))

(a) The body of a method that first move to the location of a ball,
check if the action succeeded, and then pick the ball.

t1 : r1 ← cst(move)

t2 : r2 ← cst(at-robby)
t3 : r3 ← read-state(r2)
t4 : r4 ← cst(at)
t5 : r5 ← cst(value(?ball))
t6 : r6 ← read-state(r4, r5)
t7 : r7 ← exec-task(r1, r3, r6)

(b) Part of the SSA form.

Figure 2: An example of conversion of the body of a method
into SSA form.

Termination If no more rules are applicable, then the pro-
gram has been transformed into SSA, meaning that all ex-
pressions are in primitive form. In our case it means that
each statement corresponds to one of the primitives: cst,
read-state, exec-task or apply (with the restriction that the
first parameter of apply must be a built-in function as all
user-defined ones have been expanded).

A partial example of the conversion from a method into
SSA form is given in Figure 2.

Translation into a Planning Model
Given a method m with a body in SSA form, we want to
translate it into a form that is amenable for planning using a
hierarchical temporal planner. For this, we first discuss how
causes of failures can be identified when constructing the
SSA form and then propose a way to encode the method into
hierarchical chronicles, a rich temporal model for primitive
and abstract tasks (Godet and Bit-Monnot 2022).

Excluding error cases
The objective of planning is to find a choice of methods that
would not result in any failure, i.e., that the final return value
r is not err (r 6= err). This imposes a first requirement on
the output of the program that can be propagated to other
intermediate values.

Notably, an if-expression (if cond a b) is successful, if and
only if the chosen branch is successful. If a branch cannot
succeed then it must never be taken. For instance, if a is the
err symbol, one can infer that cond should always be false
in order to lead to a successful execution. Two notable cases
where this happens is in the do and check constructs that
are syntactic sugar around if expression where one branch
returns an error. If a (do e1 . . . en) is required to succeed,
then all intermediate expressions are required to succeed as
well. If a (check c) is required to succeed, then c is required
to be true.

During the translation into SSA, this identification of nec-
essarily successful outcomes and associated boolean con-
straints on conditions is done mechanically at each expan-
sion, leading to a set of requirements on intermediate values.

Methods as chronicles
Having this SSA representation, it becomes quite natural to
express them as predictive models adapted for planning and
in particular into the formalism of hierarchical chronicles of
Godet and Bit-Monnot (2022).

Each chronicle is associated to the task achieved by the
method it represents. For a given method, a chronicle will
contain a temporal variable for each of the ti timepoints and
a variable for each of the ri intermediate results. In addition,
a chronicle allows the definition of conditions that we ex-
ploit to represent the read-state primitive and subtasks that
we exploit to represent the exec-task primitive. The other
primitives will be translated as constraints, restricting the set
of valid values for the variables.

For a given method, the corresponding chronicle is con-
structed by iterating through the SSA form and applying for
each line the corresponding rule below.
Constant ti : ri ← cst(v)
The constraint ri = v is added to the chronicle.
Read state ti : ri ← read-state(sv, p1, . . . , pn)
The condition [ti, ti] sv(p1, . . . , pn) = ri is added to the
chronicle.
Subtask ti : ri ← exec-task(τ, p1, . . . , pn)
The subtask [ti, t

′
i] τ(p1, . . . , pn) is added to the chronicle,

together with variable t′i and the constraint ti ≤ t′i ≤ ti+1.
Note that in a hierarchical planner, all subtasks of a method
must be successfully decomposed and do not provide any
result value. The above translation is thus only valid when
the ri result was identified as necessarily successful by the
error propagation.
Function application ti : ri ← apply(f, p1, . . . , pn)
A new variable ri is added to the chronicle, together with the
constraint ri = f(p1, . . . , pn). Note that by construction, f
is a built-in function so it is assumed that the solver is able
to handle it, possibly with semantic attachment.
Success and ordering constraints We rely on the error
analysis, to enforce that the plan is failure free if deemed
valid by an automated planner. In particular, if a condition
was detected as requiring a particular value, we enforce this
as an additional constraint on the corresponding variable. We
also enforce the order in the different statements, that is ti ≤
ti+1 for any two subsequent timepoints in the SSA.

Post processing
With this automated process, we would like to obtain a
chronicle such as the one of Figure 3. However, our auto-
mated conversion of a method into a chronicle has several
shortcomings: redundant constraints can be present, vari-
ables might be duplicated and some timepoints might not
be used in expressions of the chronicle. We propose sev-
eral post-processing steps in order to simplify the resulting

variables : {s, e, ?ball, ?gripper, r1, r2, r3, r4, t1, t2}
constraints : {r1 = r2, r3 6= r4,

s ≤ t1 ≤ t2 ≤ e}
conditions : {[s, s] at(?ball) = r1

[s, s] at-robby() = r2

[t2, t2] at-robby() = r3

[t2, t2] at(?ball) = r4}
subtasks : {[s, t1] move(r2, r1)

[t2, e] pick(?ball, r4, ?gripper)}

Figure 3: The chronicle resulting from the conversion of the
method of figure 2a (after post processing).

chronicle, and speed up planning by removing unnecessary
variables and constraints.
Variable binding The program analyzes the set of con-
straints, and for each equality constraint (e1 = e2), such that
e1 and e2 are atoms, binds the atoms following some rules
depending on the kind of the atoms. Three kinds of atoms are
distinguishable: (i) constant values, (ii) parameter variables
of the method and (iii) local variables, which are generated
during the conversion into the SSA form (as timepoints and
results). We use an algorithm inspired by the union-find al-
gorithm (Charguéraud and Pottier 2019) to bind two atoms
a1 and a2, such that binding a2 to a1 means that (i) a1 re-
places a2 everywhere it appears in the program and (ii) the
allowed values of a1 are restricted to only contain allowed
values of a2 (i.e. their domains are intersected).1 Note that
as a consequence of an unsatisfiable constraint, this domain
restriction might result in a variable with no allowed value
(which is also a contradiction). Given two atoms a1 and a2

required to be equal, we propose to bind a2 to a1 in the fol-
lowing cases:

• a1 is a constant and a2 a variable (parameter or local)

• a1 is a parameter and a2 a local

• a1 and a2 are of the same kind. Note that this last case is
symmetric with respect to a1 and a2, so either a1 or a2

could be substituted.

After binding, we remove the constraint from the chronicle.
Simplification of temporal constraints During the con-
version process, some unnecessary constraints with time-
points not involved in any expression of the chronicle are
still in the set of constraints. We call those timepoints ghost
timepoints, and propose an algorithm to check if such time-
points can be removed without modifying the properties of
the chronicle. For this purpose we use Point Algebra (PA) as
defined by Gerevini (2005), to first check path consistency
of the Temporal Network resulting from constraints of the
chronicle, and then shrink the set of constraints by removing
ghost timepoints.

1To make this fully general, note that a constant can be inter-
preted as a variable with a single allowed value.

We define p : (timepoint, timepoint) → {<,>,=,≤
,≥, 6=,>,⊥} as the PA relation between two timepoints.
Any ghost timepoint t′ can be certainly removed from the
chronicle in the following cases:
• t′ has at most one relation. Any relation it is implied in

can also be removed from the chronicle.
• t′ has two relations with timepoints t1 and t2, with p1 =
p(t1, t

′), p2 = p(t′, t2), and p3 = p(t1, t2) the respective
paths between t1 and t′, t′ and t2, and t1 and t2 in the
network. We define p′3 = p1 ◦ p2 as the path between
t1 and t2 through t′ and state that p3 can be replaced by
p′′3 = p3 ∩ p′3 the resulting path constrained by both p3

and p′3 as path consistency has been checked beforehand.
Relations p1 and p2 are then removed from the chronicle,
and p3 is overwritten by p′′3 .
Here is an example where t2 and t3 can be removed from

the chronicle.

variables : {t1, t2, t3, t4, r1} → {t1, t4, r1}
constraints : {t1 ≤ t2 ≤ t3 < t4, → {t1 < t4}

t1 ≤ t4}
subtasks : {[t1, t4](t r1)} → {[t1, t4](t r1)}

Merge conditions To avoid duplications of read-state
of the same state-variables at the same instant, the program
merges conditions c1 and c2, such that:

c1 :[s1, e1] sf(a1, ..., an) = x

c2 :[s2, e2] sf(b1, ..., bn) = y

If s1 = s2 ∧ e1 = e2 ∧ a1 = b1 ∧ ... ∧ an = bn, then x and
y are bound, and c2 is removed. Here is an example of use
case and the resulting chronicle.

variables : {s, ?b1, x, y, r1, r2} → {s, ?b1, x, y, r1}
constraints : {r1 = x, r2 = y} → {r1 = x, r1 = y}
conditions : {[s] at(?b1) = r1 → {[s] at(?b1) = r1}

[s] at(?b1) = r2}

Simplify constraints We propose to simplify constraints
of the form (true = c) where c is a constraint and replace it
directly by c, which gives (true = c)→ c.
Remove useless variables During the translation into the
SSA form, many temporal and result variables are created.
The set of variables is analyzed to remove from the chronicle
any local variable l which is neither in the set of constraints,
conditions, effects nor subtasks.

Planning-based Method Selection
Planning-based lookahead while Acting
Having now a hierarchical predictive model of available
methods, we would like to exploit it to guide the acting sys-
tem in the selection of the method to apply when facing a
task t to execute, using a hierarchical planner.

This is done through the PLANSELECTMETHOD of Al-
gorithm 2. The most important part of the algorithm is the
invocation of the planner (line 7) that, based on the current

state ξ, will attempt to find a plan that refines the task t. This
plan is then analyzed (line 8) to identify the method m that
is used to refine t. If this succeeds and the method is one
of the allowed methods in M , then the method is returned
to be attempted by the acting engine (line 10). Otherwise,
the system might resort to an arbitrary heuristic to select one
of the allowed methods (line 12). The latter case might no-
tably occur if the translation into chronicles fails (e.g. due
to unsupported language features in the translation) or if the
planner fails to find a plan within its allocated time.

Note that if t is a subtask of a method that was selected
based on a plan π, then t will also appear in this earlier plan.
When this occurs it is possible to check whether the previous
plan π is still valid and if this is the case, avoid calling the
planner to compute a new one (lines 5-6).

Algorithm 2 Plan-based method selection for a task τ .
1: function PLANSELECTMETHOD(τ)
2: m← ∅
3: ξ← GET-STATE
4: M ← APPLICABLE(τ , ξ) \ TRIED(τ)
5: π← GET-PARENT-PLAN(τ)
6: if π = ∅ or not IS-VALID(π) then
7: π ← CALL-PLANNER(τ , ξ)
8: m← GET-METHOD-FROM-PLAN(π, τ)
9: if m 6= ∅ ∧m ∈M then

10: return m
11: else
12: return arbitrary m′ ∈M

Generation of the planning problem
In order to implement the CALLPLANNER function, we
need a set of chronicles in order to represent (i) the initial
state and objectives, (ii) the available actions and (iii) the
available methods. While we have already covered how to
generate a chronicle template for each method, we now turn
our attention to the generation of the initial chronicle and of
the action models.

Initial state generation The initial chronicle C0 is instan-
tiated with the current state ξ, such that for each state vari-
able sv(p1, ..., pn) with value v of the system, we define an
initial effect [0, 0] sv(p1, ..., pn) ← v. The task t to be re-
fined is defined as a subtask of the initial chronicle.

Assuming we want to select a method for a task (pick-and-
drop b1 kitchen) in a state where robby is in the living-room
and the ball is currently in the bedroom, we would obtain a
state like the following

effects : {[0, 0] at(b1)← bedroom,

[0, 0] at-robby()← living-room, . . . }
subtasks : {[0, t] pick-and-drop(b1, kitchen)}

In nominal functioning, OMPAS will take a snapshot of the
state returned by the platform. We can also use OMPAS as a
simulator, in which the execution is simulated by the evalu-
ation of the operational models of actions.

Primitive Action Model To state the planning problem,
we suppose in this work that models of actions are available
and can be converted into chronicles. In practice, we exploit
a PDDL-like (Fox and Long 2003) representation of an ac-
tion, with :params a set of typed parameters, :pre-conditions
a set of pre-conditions, :effects a set of effects.

(def−a c t i o n−model move
’ ((: params (? from room) (? t o room))

(: pre−c o n d i t i o n s
(= (a t−robby) ? from)
(! = ? from ? t o))

(: e f f e c t s
(a s s e r t ’ a t−robby ? t o))))

The above def-action-model macro expresses this as an op-
erational model that can be converted into a chronicle (using
the same procedure as for methods). Note the presence of
the assert keyword that sets the value of a state variable. It is
only allowed in primitive actions and will (i) be mapped to
a new set-state primitive in SSA and (ii) results in an effect
in the chronicle describing the action.

Preliminary Results
We experimented the present integration with Aries2 (a hier-
archical extension of the LCP planner) on a selection of do-
mains. One of them is gripper-door in which several robots
must displace balls in rooms that are connected by doors.

An abstract task t move is used for the displacement of a
robot in a target room, which associated methods are m noop
that is applicable if the robot is already at the goal, and
m recursive that is applicable if the robot is not at the goal
position, the method performs the action move to an arbi-
trary location that is connected to the current position of the
robot, and call again t move. As in gripper, the state is de-
fined by at, and carry; at-rob : robot → room gives the
position of a robot, and connected : (room, room)→ bool
states if it is possible to pass from a room to another. Note
that in some problems, some doors can be passed in one di-
rection only, possibly leading robots into loops or dead ends.

In this work we compare (1) the reactive system, (2) the
system using Aries, and (3) the system using the optimal ver-
sion of Aries (Aries-opt) in terms of total number of primi-
tive actions and total refinement time to complete the task.

The plots in Figure 4 present the mean results on a series
of runs for each of the 10 problems. For each problem we
ran in simulation 30 times in reactive mode, 10 times with
Aries, and once with Aries-opt. For small problems, both
the total refinement time and the number of executed ac-
tions are equivalent between different techniques. However,
as the complexity of the problem increases with the addition
of rooms and connections, both Aries and Aries-opt outper-
form the purely reactive system on the total refinement time
and the number of actions. This is explained by the structure
of the problems, which makes the reactive system perform
useless move actions, as it has no heuristic on the distance he
is from the final destination, while planning systems finds a
path in the topology of rooms. We can note that Aries and

2https://github.com/plaans/aries

2 4 6 8 10
0

20

40

60

80 Greedy
Aries
Aries with opt

(a) Mean number of executed actions in function of the num-
ber of rooms defined in the problem. Note that the number of
actions is strictly the same using either Aries or Aries-opt.

2 4 6 8 10

0

0.2

0.4

0.6 Greedy
Aries
Aries with opt

(b) Mean of the total refinement time (in seconds) in function
of the number of rooms defined in the problem.

Figure 4: Comparison of the number of executed actions and
the total refinement time for several sizes of problems in the
gripper-door domain in simulation.

Aries-opt find very quickly solutions, with the planning cost
compensated by the absence of failures (which in turn re-
duce the burden of selecting a recovery method).

Conclusion and Future works

The present work proposed a successful integration of a re-
active system capable of generating temporal planning prob-
lems from the automatic analysis of operational models.

While a limited number of primitives are currently an-
alyzed, our preliminary results on selected acting domains
show promising results on the capacity of the system to pro-
duce a totally refined plan to advise the supervisor on the
method to choose. Even if those results are on simple acting
domains, the approach is general enough to adapt to larger
and more complex acting domains, and will be tested in the
continuity of this work.

We aim to extend our system to support further program-
ming patterns, such as loops, and translate it as a planning
representation, to tackle a wider set of problems, and enrich
its capacity to use planning on more acting domains. One
limitation of the current work is that the translation requires
the total success of subtasks, and does not take into account
the capability of an operational model to handle failures lo-
cally. Following iterations of the system will address this
problem by taking into account the result of the execution of
a task in the chronicle representation.

https://github.com/plaans/aries
https://github.com/plaans/aries

References
Bansod, Y.; Nau, D.; Patra, S.; and Roberts, M. 2021. Inte-
grating Planning and Acting With a Re-Entrant HTN Plan-
ner 9.
Bit-Monnot, A. 2018. A Constraint-Based Encoding for
Domain-Independent Temporal Planning. In Hooker, J., ed.,
Principles and Practice of Constraint Programming, Lec-
ture Notes in Computer Science, 30–46. Springer Interna-
tional Publishing.
Charguéraud, A.; and Pottier, F. 2019. Verifying the Cor-
rectness and Amortized Complexity of a Union-Find Imple-
mentation in Separation Logic with Time Credits. Journal
of Automated Reasoning 62(3): 331–365.
Despouys, O.; and Ingrand, F. F. 2000. Propice-Plan: To-
ward a Unified Framework for Planning and Execution. In
Goos, G.; Hartmanis, J.; van Leeuwen, J.; Biundo, S.; and
Fox, M., eds., Recent Advances in AI Planning, volume
1809, 278–293. Springer Berlin Heidelberg.
Fox, M.; and Long, D. 2003. PDDL2.1: An Extension to
PDDL for Expressing Temporal Planning Domains. Journal
of Artificial Intelligence Research 20: 61–124.
Georgievski, I.; and Aiello, M. 2014. An overview
of hierarchical task network planning. arXiv preprint
arXiv:1403.7426 .
Gerevini, A. 2005. Incremental Qualitative Temporal Rea-
soning: Algorithms for the Point Algebra and the ORD-Horn
Class. Artificial Intelligence 166(1-2): 37–80.
Ghallab, M.; Nau, D.; and Traverso, P. 2016. Automated
Planning and Acting. Cambridge University Press.
Godet, R.; and Bit-Monnot, A. 2022. Chronicles for Rep-
resenting Hierarchical Planning Problems with Time. In
ICAPS Hierarchical Planning Workshop (HPlan).
Ingrand, F.; Chatila, R.; Alami, R.; and Robert, F. 1996.
PRS: A High Level Supervision and Control Language for
Autonomous Mobile Robots. In Proceedings of IEEE Inter-
national Conference on Robotics and Automation, volume 1,
43–49 vol.1.
Lemai, S. 2004. IxTeT-eXeC: planning, plan repair and ex-
ecution control with time and resource management. Ph.D.
thesis, Institut National Polytechnique de Toulouse-INPT.
Moretti, G. 1979. The λ-scheme. Computers & Fluids 7(3):
191–205.
Nau, D.; Bansod, Y.; Patra, S.; Roberts, M.; and Li, R. 2021.
GTPyhop: A hierarchical goal+ task planner implemented in
Python. HPlan 2021 21.
Patra, S.; Ghallab, M.; Nau, D.; and Traverso, P. 2019. Act-
ing and Planning Using Operational Models. Proceedings
of the AAAI Conference on Artificial Intelligence 33(01):
7691–7698.
Patra, S.; Mason, J.; Kumar, A.; Ghallab, M.; Traverso, P.;
and Nau, D. 2020. Integrating Acting, Planning, and Learn-
ing in Hierarchical Operational Models. Proceedings of
the International Conference on Automated Planning and
Scheduling 30: 478–487.

Smith, D. E.; Frank, J.; and Cushing, W. 2008. The ANML
language. In The ICAPS-08 Workshop on Knowledge Engi-
neering for Planning and Scheduling (KEPS), volume 31.

	Introduction
	Related Work
	System Overview
	Architecture of the system
	Refinement process
	Acting language

	Intermediate Representation of a Program
	Translation into a Planning Model
	Excluding error cases
	Methods as chronicles
	Post processing

	Planning-based Method Selection
	Planning-based lookahead while Acting
	Generation of the planning problem

	Preliminary Results
	Conclusion and Future works

