N

N

Learning Operational Models from Demonstrations:
Parameterization and Model Quality Evaluation
Philippe Hérail, Arthur Bit-Monnot

» To cite this version:

Philippe Hérail, Arthur Bit-Monnot. Learning Operational Models from Demonstrations: Parameter-
ization and Model Quality Evaluation. ICAPS Hierarchical Planning Workshop (HPlan), Jun 2022,
Singapore (virtual), Singapore. hal-03690025

HAL Id: hal-03690025
https://hal.science/hal-03690025

Submitted on 7 Jun 2022

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-03690025
https://hal.archives-ouvertes.fr

Learning Operational Models from Demonstrations:
Parameterization and Model Quality Evaluation

Philippe Hérail, Arthur Bit-Monnot

LAAS-CNRS, Université de Toulouse, INSA, CNRS, Toulouse, France
philippe.herail @laas.fr, abitmonnot @laas.fr

Abstract

When acting in non-deterministic environments, autonomous
agents must balance between long-term, complex goals with
unpredictable events and reactive behavior. In this context, hi-
erarchical operational models are attractive in that they allow
the execution of complex behavior either in a purely reactive
fashion or guided by a planning process. Just like for HTN
models with which they share most characteristics, one key
bottleneck in the exploitation of operational models is their
acquisition.

In this paper, we introduce an algorithm for learning hier-
archical operational models from a set of demonstrations.
Given an initial vocabulary of tasks and some demonstrations
of how they could be achieved, we present how each task can
be associated to a set of methods capturing the operational
knowledge of how it can be achieved. We present the struc-
ture of the learned models, the algorithm used to learn them
as well as a preliminary evaluation of this algorithm.

Introduction

To allow an autonomous agent to operate in its environment,
we can differentiate two family of approaches, split by the
way they select their next action: reactive or deliberative.
While a reactive approach may cover several distinct acting
techniques, these often present the common characteristic
of being fast to act but short-sighted. Meanwhile, delibera-
tive approaches typically rely on planning to consider long-
term impacts of a decision, at the cost of increased delibera-
tion time. In order to find a compromise between both these
approaches hierarchical operational models (Ghallab, Nau,
and Traverso 2014) have been developed along with acting
engines such as in (Patra et al. 2021). This combination al-
lows to have models that distinguish between different ways
to achieve a given task through methods. These hierarchical
models allow the agent to act either reactively, selecting one
method without any reasoning about the future, or to make
more elaborate choices. Furthermore, the hierarchical aspect
allows to reduce the possibilities that need to be considered
at any given time, similarly as in hierarchical planning.
Even though these hierarchical models are a formalism
that allows to act more efficiently while remaining inter-
pretable by human engineers, it is cumbersome to design
such models from scratch. This difficulty stems from the
quickly exploding number of possible contexts that need to

be considered when carrying out even basic tasks in a sim-
ple environment. To address this issue, we intend to allow
the agent to learn such operational models from previously
observed execution traces, and in particular the ones result-
ing from a tutor’s demonstration.

The goal of such a learning system would be to be able
to solve any previously demonstrated tasks through a solu-
tion of at least equivalent quality to the demonstrated one.
It should also be able to generalize the demonstrations to
solve new unseen tasks, or previously demonstrated tasks
in a new environment. This is done by learning, for any
given task in the considered domain, a set of methods that
achieve the high-level objectives associated to the task. This
set of methods should cover all possible ways of achieving
this task with the exception of clearly suboptimal ways. Any
method should be associated with a validity scope that define
whether it is applicable in a given state. When applicable, it
should achieve the task.

Intuitively, if a learned operational model has these de-
sirable properties, an acting engine facing a task to achieve
could pick any applicable method and have the guarantee
that it will fulfill the objectives associated to the task. While
this might lead to suboptimal behavior, it should be possible
for an automated planner to guide the choice of the method
to obtain the optimal behavior.

The objective of this paper is to present a method for
building hierarchical operational models based on past ex-
periences. The experience takes the form of execution traces
that can be the result of the agent’s own activity or of demon-
strations by a tutor. The agent is assumed to have a fixed
set of primitive capabilities and to act in a Fully Observable
Non-Deterministic (FOND) environment.

Related Work

Over the years, several approaches have been developed to
learn hierarchical models.

HTN-MAKER (Hogg, Muiioz-Avila, and Kuter 2008)
learns Hierarchical Task Networks (HTNs), for use in fully-
observable deterministic domains from execution traces.
This approach uses tasks annotated with preconditions and
postconditions so as to extract sequences that allow to
achieve the postconditions starting from a state where the
preconditions hold. The method was later extended by Hogg,
Kuter, and Muiioz-Avila (2009) to handle non-deterministic

domains, through the use of a right recursive structure in-
stead of sequences. However, the models learned are re-
stricted to a limited task and method structure, resulting in
rather flat hierarchies, which limits the guidance offered to
an agent using them for planning.

HTNLearn (Zhuo, Muifioz-Avila, and Yang 2014) also
learns HTNs with similarly annotated tasks, through con-
verting the learning problem into one of constraint satis-
faction, building the constraints from, e.g., the ordering of
tasks within the examples and the state preceding the ap-
plication of a method. The problem is then solved using a
MAXSAT approach and the solution converted back into an
HTN model. While this approach does not handle nonde-
terminism, it supports partially observable states. A similar
approach is even able to use partial, disordered input traces
(Zhuo, Peng, and Kambhampati 2019).

Recently, the learning of Hierarchical Goal Networks
(HGN) structure instead of HTNs, for nondeterministic do-
mains, has been proposed as a preliminary work by Fine-
Morris and Mufioz-Avila (2019), leveraging a vector repre-
sentation of the states and unsupervised learning procedures
to learn such networks while limiting the burden of annotat-
ing demonstration data.

Due to their similarities with HTNs, some work aiming
at learning grammars is relevant and in particular the work
on learning Combinatory Categorial Grammars (CCGs) for
plan and goal recognition (Geib and Goldman 2011; Kan-
tharaju, Ontafién, and Geib 2019). While the learned CCGs
are not always practically usable, the authors propose sev-
eral ideas for extracting interesting patterns from a set of
execution traces.

The algorithm for learning probabilistic primitive action
models (i.e. not hierarchical) presented by Pasula, Zettle-
moyer, and Kaelbling (2007) develop interesting solutions
for handling the specificities of FOND environments.

Work has been done on the automated learning of Behav-
ior Trees (BTs), a common framework for implementing hi-
erarchical, reactive operational models. Colledanchise, Para-
suraman, and Ogren (2018) and Zhang et al. (2018) develop
techniques to efficiently apply genetic programming to these
structures.

Learning Problem
Operational Model

For an agent acting in its environment, an operational model,
as defined by Ghallab, Nau, and Traverso (2014), represents
an agent’s knowledge about how to carry out a given activ-
ity in its environment. In this work, we are specifically inter-
ested in nondeterministic, fully observable environments.

We define an operational model O as an HTN-like struc-
ture which can be written as a tuple O = (T', A, M) where T'
is a set of abstract tasks, A a set of primitive actions and M
a set of possible methods decomposing the tasks ¢ € T into
subtasks {tq | tq4 € {T'U A}}. We consider the tasks to be
possibly annotated with postconditions, similarly as Hogg,
Muiioz-Avila, and Kuter (2008).

A primitive action a € A models the basic acting capa-
bilities of the agent, and represent directly executable prim-

itives. They are represented using an identifier and a set of
parameters, such as ¢ = action_name(arg, .. .,arg,). We
do not assume any knowledge on the preconditions and ef-
fects of a primitive action. Furthermore, as we consider a
non-deterministic environment, there is no guarantee that
applying an action twice in the same state will produce an
identical result.

An abstract (or non-primitive) task t € 7' is defined as
a tuple t = (Post;, My), where Post; are the postcondi-
tions of the task, that is the predicates that must hold after
executing ¢ for it to be considered a success. These are espe-
cially important in nondeterministic domains. A task with-
out postconditions is considered successful whenever one of
its method has been executed without failure. M; is the set
of methods decomposing t.

A method m € M, is a tuple m = (Pre,,, N,,), where
Pre,, are the preconditions of the method, and V,,, is a task
network defining a way to decompose ¢ into subtasks. This
task network represents a way to advance the task ¢ towards
its intended effects, in the case of a task with postconditions,
or a way to achieve ¢ if Post; = (). A method is applicable
in a given state s iff its preconditions hold in this state. For
the sake of simplicity, we will assume that the set N,, of
subtasks is totally ordered.

We define an acting problem as an initial task network
N, representing the activity we wish to carry out, as well as
an associated environment and a starting state s; described
by a set of boolean state variables. When trying to solve an
acting problem p, we associate it to an operational model O
that will be used to select the actions to execute. We consider
that at any instant, the current state s is fully observable and
that it only evolves when a primitive action is executed (i.e.
there are no exogenous events). This evolution may however
be nondeterministic.

Acting with an Operational Model

To act with an operational model, abstract tasks are refined
down to a sequence of executable primitive actions. This re-
finement is achieved through the methods associated with
the tasks: each time the agent must choose an action to ex-
ecute, the current best applicable method decomposing the
task at hand is chosen. The process is iteratively repeated un-
til a sequence of tasks starting with a primitive action is ob-
tained. This sequence is then executed until a non-primitive
task is encountered, at which point the same process is ap-
plied again. The choice of the best method may be done ei-
ther reactively or deliberatively. In the first case, the best
method is chosen greedily according to some metric, while
in the second one an acting engine, such as the one described
by Patra et al. (2021), may use planning techniques to select
a method considering the long term implications of the ac-
tions.

During the refinement of a task ¢ using the method m
starting in a state s, several failure types may occur:

1. A primitive action fails to be executed, causing the whole
parent method to be considered a failure.

2. A non-primitive descendant ¢’ from m has no applicable
method. Then, the parent method of ¢’ is considered to

have failed.

3. t can be completely refined, but the postconditions of ¢
do not hold in the final state. This case is obviously valid
only for a task ¢ such that Post; # ().

In the first two cases, when a method m decomposing a
task ¢ is detected as having failed, then some retrial strategy
must be used to continue acting. A simple strategy could be
to try another applicable method m/ applicable in the current
state s. If no such method is available in the hierarchy, then
the failure is to be propagated upwards to the parent task ¢,
until we reach either a task with an applicable method or
the root task, the latter case leading to a failure to solve the
acting problem.

Learning of an Operational Model

Inputs to the Learning Problem For the learning prob-
lem itself, we consider as input a fixed set A of primitive
actions as well as a vocabulary of non-primitive tasks 77.

Recall that each primitive action has the form
action_name(param,, ...,param,) and corresponds to
a primitive directly executable by the agent. For a non-
primitive task £; € T, we assume its postconditions Posty,
to be non-empty, as they are required to assess the success
of the task execution in the agent’s nondeterministic envi-
ronment. Note that these postconditions might be learned
independently of the methods, which is out of the scope of
this paper.

Then, for each task ¢; € 77, the agent is given a set D,
of demonstration traces from the tutor. Each trace d € Dy,
is an alternating sequence of states and tasks (either primi-
tive or non-primitive), starting from a given initial state and
ending in a final state in which the task ¢; has been suc-
cessfully achieved. d is considered optimal and maximally
abstract with regard to the initial task vocabulary: for every
demonstrated task, no other more abstract task from the ini-
tial vocabulary 77 may be used to abstract a subsequence of
d, and each demonstration is optimal according to a chosen
metric. For a case where actions are uniform in cost, one
may naturally consider the total number of primitive actions
required to achieve ¢; as the optimality metric.

Learner Objectives Given a learned operational model
and an acting problem, we say that the operational model
solves the problem if, when used by the acting engine, it
allows to refine a given task network into an executable se-
quence of primitives. Considering a successful solution to
the problem, we define the soundness metric as the number
of failed method execution (i.e. number of times we had to
resort to recovery behavior) within the execution, to allow
the evaluation of the quality of the learned preconditions of
the methods. We also define the efficiency metric as the ra-
tio between the cost of the executed behavior and the cost of
executing an optimal model.

These metrics have been defined for a single acting prob-
lem. To assess the generalization capabilities of the model,
we should consider a set of acting problems not encountered
during learning. We define three metrics over this test set,
namely the ratio of solved problems (coverage), the average

o}

Mcheck Mdo /@
my || M2 || M3 my || mb || mj

(a) Task with postconditions. (b) Task without postconditions.

Figure 1: Structure of a task, with or without postconditions.
The arguments of tasks and methods are omitted for clarity.

number of method failures (average soundness), and the av-
erage efficiency.

Finally, to evaluate the algorithm as a whole, we should
consider a set of demonstration and a set of acting problems.
The performance of the algorithm is defined as the average
performance of the model produced from the demonstrations
on the acting problems, as defined in the previous paragraph.

Approach to Model Learning

In our approach, we develop operational models designed to
handle nondeterministic environments. To this end we dis-
tinguish tasks with and without postconditions, as shown in
figure 1, presenting the structural differences a task ¢ with
postconditions and a task ¢’ without.

In the case of ¢, (Post; # 0, figure 1a), we observe that
t has two methods, m pecr, and mg,, and a right recursive
structure. The former has no subtask, and its preconditions
correspond to the postconditions of ¢, while the latter has no
preconditions and two subtasks, do; and t, recursively. The
methods m; of do; encode different possible ways to act for
the agent, with the intent to try and achieve ¢.

When decomposing ¢, m pecx has priority over m4,, and
is used to assess whether the goal associated with ¢ has been
achieved. We can note that ¢ will thus be decomposed recur-
sively until its associated goal is achieved, even in the case
of unexpected events, provided there is a valid m; to han-
dle it, as in HTN-MAKER (Hogg, Kuter, and Mufioz-Avila
2009). Therefore, when decomposing ¢, in the case where its
postconditions do not hold, we will choose one of the avail-
able method of do,, refine and execute it, and then try to re-
fine the original instance of ¢ again, hoping to have achieved
the intended effects. It should be noted that a method of a
task may either represent a way to completely achieve it, or
merely to advance it (or recover from mistakes), leveraging
the recursive call to finally achieve the original endeavor.

In the case of ¢/, a task without postconditions
(Posty = (), figure 1b), we have a task with a more stan-
dard structure, as a method will then always be considered
successful if it is refined and executed to its completion. In-
deed, it would not be possible to decide if the task should be
recursively retried or not.

Requirements of Model Selection

Let us now give an initial intuition about the shape of mod-
els that could be learned and the implication for the learn-

R

t—abe
t—abd

Mcheck

Mdo

(a) Available demonstrations, showing that £ (b) Common right recursive structure, miss-

was once achieved with the a b ¢ action se- ing the refinement of the do task. A handful (c) Generic model where the actor might pick
quence and once with the a b d action se- of possible models for the do task are shown any of the primitive actions and rely on the

quence. in the subsequent figures.

recursive call in m, to continue if needed.

my ma
w g w

my ma
Ox0

(e) Intermediate model the common a b se-

(d) Model where each demonstration is fully quence is grouped. It relies on the recursive (f) Model where the a b sequence is shared,

encoded into a dedicated method.

call to t in mg, to produce a full sequence.

requiring a synthetic task ¢

Figure 2: Illustration of the possible structures of the learned model for a simple learning task with two demonstration of how
to perform a task ¢. Note that for conciseness the parameters or preconditions or the task and methods are omitted.

ing process. Figure 2 presents several possible models (fig-
ures 2c-2f) that could be generated based on two example
sequences (figure 2a). All candidate models share the same
recursive structure that we just saw (figure 2b) and only dif-
fer in the refinement of the do task.

The first one (2c) allows the choice of any of the
four primitive actions {a, b, ¢, d}, each placed in a specific
method. This model relies on the recursion to repropose the
same choice until the task’s postconditions are achieved.
While this model allows building any sequence of actions
it does not help the agent towards a meaningful sequence
based on demonstrations. The second model (2d) takes the
opposite approach and records each known trace into a
method. This model is obviously strongly tied to the demon-
stration set and would fail to generalize to new problems.
In between these two extreme, we have the models (2e) and
(2f) that take different options to abstract common subse-
quences. The former encodes the repeated a b sequence in
a single method and relies on the recursive call to complete
the sequence. The latter delays the choice between c and d
to after the execution of a and b, using a synthetic task .

These four models are just a handful of examples among
the many possible models that could be generated. Denoting
as O the set of possible models, the objective of a learning
system is to find, or at least approach, the optimal model
UANSNS)

0* = arg min cost(6)
0O
where cost(6) is a function that measures the cost of a par-
ticular model and should typically account for the size of the
model as well as its capacity to solve both demonstrated and
unseen problems. With this in mind we now turn our atten-
tion to the characterization of the set of possible models ©.
In a later section, we will propose a cost function to evaluate

the models.

Generation of Candidate Operational Models

At a high level, the goal of the learning problem is to gener-
ate a model where some subtasks group together behaviors
that happen repeatedly, with a sensible parameterization of
methods depending on the current task, as well as reason-
able preconditions to limit the search effort of the acting en-
gine. It is easy to imagine an iterative process for this: we
may extract some subsequence as a new task ¢, with a sin-
gle method m; consisting of this subsequence. Once this is
done, we may find another subsequence that achieves a sim-
ilar goal, but using different tasks, thus allowing us to add
a new method ms to t. Next, we may be able to extract a
new task ¢’ using t as a subtask of this method. This pro-
cess is to be repeated until it produces a model that become
too complex, not improving the score defined in the previous
section.

Devising such an iterative learning process is however
error-prone as it is easy to get stuck in a local minimum due
to bad decision in the early stages of learning. Because the
quality of a model depends not only on its structure, but also
on its parameterization, in order to efficiently develop this
latter part of the learning algorithm, we developed a method
for generating a large number models so as to conduct a pre-
liminary evaluation and relegate a more efficient exploration
of the set of possible models to future work.

Considering a set of primitive actions and a set of demon-
strations, it is easy to imagine a way to generate a number
of operational models that can be used to achieve any of
the given demonstration. For instance, we could start with a
basic flat model, and add any number of possible subtasks
whose methods correspond to arbitrary sequences of primi-
tive actions, with possible duplications. This model can al-

ways fall back to choosing one of the single primitive ac-
tions if no subtask’s method can be used, and therefore will
always remain valid. As an infinite number of possible se-
quences can be used as subtasks, an infinite number of such
models can be elicited, thus foregoing an exhaustive genera-
tion procedure. We therefore chose to restrict ourselves to a
certain structure, described below, so that we could generate
models exhaustively within this limited search space.
Considering an initial set of primitive actions {a, b, ¢, d},

we try and find all the ways to partition it, i.e. P =
({{a}{b}{c}{d}} {{a,bH{cH{d}}, {{a, b, cHd}} . ..).

For each new set in P, we recursively apply the same
process to each subpartition. The resulting sets will have
a format such as {{{a}{b,c}}{d}} each of which corre-
sponding to a particular model (e.g. see the one presented in
figure 3 for this particular example). To build such a model,
we consider each level, starting from the first one (here,
this first level contains the subpartitions {{a}{b,c}} and
{d}), considering that it shows different ways to decompose
some task ¢ that has been demonstrated. We then consider
the subpartitions. If it is not further subpartitioned (as {d}
here), we create a method refining ¢ down to the primitive
action contained. Otherwise, we create a subtask st and a
method that refines ¢ into st and recursively apply the same
procedure, considering that this subpartition shows ways to
decompose st.

Figure 3: Model corresponding to the {{{a}{b,c}}{d}}
partitioning.

With this procedure, we will obtain models that are lim-
ited, as they will, e.g., never use the same primitive to de-
compose two different subtasks, nor will they contain meth-
ods that decompose as sequences of tasks. However, this
generation process produces a number of models that scales
exponentially with the number of primitive tasks given as
input, due to the number of possible subpartitions of a set,
therefore quickly making the use of the generated model set
for evaluating our algorithm impractical. Adding more pos-
sible model structures would only worsen this issue, thus
warranting the use of some local search procedure.

While this generation procedure allows us to generate
new model structures, we still need to parameterize their
tasks and methods to evaluate them properly on the existing
demonstration set, and to eventually use the corresponding
models for acting. This parameterization as well the extrac-
tion of methods’ preconditions is detailed in the next section.

Parameters & Preconditions Extraction

For each method in the model, we need to identify the pa-
rameters that should be passed to its subtasks. When consid-
ering the abstract tasks, we need to distinguish two cases:

1. The set T of tasks given as the starting vocabulary for
which arguments and postconditions are known.

2. The tasks that are inferred during learning, by grouping
common subsequences for example, for which arguments
must be extracted. This second type of tasks are called
synthetic tasks and their set is called T’s. For these tasks,
we do not consider the identification of intended effects
in this work.

Process Overview Parameterization is a bottom-up, it-
erative process that selects a task or method whose sub-
components are already parameterized (i.e. their parameters
are given or were previously identified). Those subcompo-
nents are analyzed to identify the parameters of the cur-
rent task/method, which in turn will enable the analysis of
tasks/methods higher-up in the hierarchy.

1. We first consider any method m whose subtasks are all
parameterized. For each such method we:

* Identify its parameters based on the parameters of its
subtasks

 Extract its preconditions by considering each state that
precedes an instance of the method in the demonstra-
tions.

2. For any synthetic task t € T's whose methods are all pa-
rameterized (as a result of the previous step), we identify
the parameters of ¢ based on the ones of its methods.

3. For any initial task ¢ € 77 whose methods are all param-
eterized (as a result of the previous step), we associate
the parameters of ¢ to the parameters of its methods.

We repeat this process until all tasks and methods are pa-
rameterized, resulting in a bottom up identification of the
parameters of the tasks and methods.

For this process, we need to know how our model would
have been used if it had to generate the demonstrations,
while not having yet access to its parameterization. To this
end, we use the technique developed for HTN plan verifica-
tion (Holler et al. 2021) to obtain such a trace from an HTN
planner. To use this strategy with a candidate model O., we
generate an HTN model by removing every argument and
method precondition. We also replace each instance of a
primitive action a by a new task aq,s whose methods each
correspond to a single observation of an instance of a in the
currently considered demonstration d. Each such method has
a single precondition: being currently at the right point in the
sequence. This means the method containing the 6 obser-
vation in the demonstration can only be selected between
adding the 5" and 7" to the final plan.

Identifying the Arguments of a Method from its Sub-
tasks When extracting the arguments of a method, we

leverage the fact that we know the arguments of its sub-
tasks as well as, for each method demonstration instance,
their mapping to the ground arguments.

This allows us to unify the arguments of the sub-
tasks as much as possible, by identifying the subtask ar-
guments that are always bound to the same constant in
each example. For instance, consider for a method m with
st1(X1, X2) and sto(Y7,Ys,Y3) as its subtasks. In this ex-
ample, without any unification, the arguments of m could
be (X1, X5,Y1,Ys,Y3), that is, the union of the arguments
of its subtasks. If X; and Y7 are bound to the same con-
stant in each instantiation of the method (over all traces),
we can unify them using a new variable Z;. Therefore, the
arguments of m become (Z7, X5,Y>,Ys), and its subtasks
become parameterized as st1(Z1, Xo) and sto(Z1,Ys, Y3)

To make the explanation clearer, let us consider an exam-
ple deliver with truck method as presented in figure 4b, con-
sidering we also have two demonstration instances of this
method, as presented in figure 4a. Since 7% and 7% are al-
ways bound to the same variable in each of the examples, we
can introduce a new variable 7', to replace each occurrence
of 1% or T5. This leads to the method presented in figure 4c.

B {Sé > 00 (11,1, 12)
< 51 — unloaduek (t1, 1) — 53
Es: {Sg — 2010y (P2, 13, 1)
< s — unloadiek (t2,p1) — 85

(a) Example traces associated to the method.

deliver with truck deliver with truck

(Th, L1, Ly, T», P) (T, Ly, Ly, P)
20Oy ek unloadiyck 20t0yryekc unloadiyck
(T, Ly, La) (T, P) (T, Ly, L) (T, P)

(b) Before unification. (c) After unification.

package_in (¢1,p1)
truck_at(t1, 1)
road(l, l2)

package_in(t2, p1)
truck_at(t2, I3)
road(ls, l4)

sunny(l2) cloudy(l2)
truck_at(t2, l2) truck_at(ts, l2)
T—ti Pw—p Tt Prpr
Li— 11 Lo — 1o Li—ls Loy
1 2
ER) 50

(d) State in the examples, with the mapping from method argu-
ments to constants.

Figure 4: Example method structure before and after argu-
ment identification.

Extracting the Preconditions of a Method Having
identified the arguments of a method m, we can extract its
preconditions. As we know the mapping between method
arguments and constants, we can easily filter the predicates
in the states preceding every instance of m to keep only the

ones fully specified by its arguments. Then, we take the in-
tersection of these sets of predicates.

Consider the method deliver with truck from figure 4,
and the starting states as defined in figure 4d. Then, us-
ing our knowledge of the mappings between the method
parameters and the examples’ constants, we can first ex-
clude the last fruck_at predicate from both examples, as
at least one constant is not unified with a parameter.
The preconditions of the method are therefore the in-
tersection of the lifted and filtered states, i.e. Pre =
{package_in(T, P), truck_at(T, L1),road(L1, L2)}.

Associating the Arguments of a Method to the Known
Arguments of the Task it achieves When learning meth-
ods for a task ¢ in our initial vocabulary 77, we have to map
the (known) arguments of ¢ to the arguments of its meth-
ods, which were extracted as described previously. These
arguments are mapped in the same way as when unifying
arguments for methods subtasks. Having some examples of
decompositions of £, we follow the same logic as for the sub-
tasks in a method: all parameters that are always bound the
same value are unified.

Consider a task t(Z, Zy, Z3) being decomposable with
two methods, m; (X1, Xo) and mo(Y1,Y2,Ys,Y,). Based
on the traces of equation 1, we can replace X; and Y; with
Z1, X9 with Z5 and Y3 with Z3. We can therefore rewrite the
methods’ arguments as m1 (21, Z2) and mo(Z1, Yo, Z3,Yy).

Ei =t(a,b,¢) : mi(a,b), t(a,b,c): ma(a,c,c,d)
Ey =t(z,y,z) : mi(z,y)
E3 = t(m,n,o0) : ma(m,n,o,q)

(X1 a),(X2—0)
Ei:{(Yi—a),Yo—c),(Ys—c), Yard)

(Z1—a),(Z2—b),(Zs — ¢)

(X2 — y)

Z1—x),(Z2 = y), (Z3 — x)

()]

Y1 — m), (Y2 — n), (Ys — 0), (Ya — q)
Z1 v+ m), (Za — n), (Z3 +— 0)

To illustrate this with an example, let us consider the task
described in figure 5a that represents the act of delivering a
package P to a location L. It can be achieved either through
a method delivering it via a truck (the same as described in
the previous paragraph) or by a plane. Assuming we have
some supporting examples, we can unify the arguments as
presented in figure 5b.

Extracting the Arguments of a Synthesized Task from
the Arguments of its Methods We now turn our attention
to the identification of the arguments of synthetic tasks. This
is done by leveraging the context of the instances of ¢ to
find method parameters that are always bound to the same
constant in a given context.

Let us consider a new task ¢ € Tg, for which we do not
know the arguments, and whose methods’ arguments have
been identified. We assume that ¢ has a parent task ,,, possi-
bly several levels higher in the hierarchy, whose arguments

deliver(P, L) deliver(P, L)

mgo(P, L) mqo(P, L)

Mcheck Mcheck

deliver with truck | | deliver with plane

deliver with truck | | deliver with plane
(T, L1, L, P) (Pl, Ly, L, P)

(T, Ly, Ly, P) (PL, L}, L, P)

(a) Example task before unifica- (b) Example task after unifica-
tion. tion.

Figure 5: Example task before and after unification.

are known (i.e. t, € T7). We note C; the context surround-
ing an instantiation of ¢, defined as the variables bound from
the instantiation of ¢, and from all the definitive parts of
the methods’ instantiations on the path down to ¢. Figure 6a
shows an example for such a task ¢, for which a context
would be an instantiation of X1, Xo, Y7, Y5, Z;.

Mao(X1, X2)

args(t) = {a1, a2}
ay — {W1, W5}
az —r {W4, W5}

Mo 2(V1, Va, V3)
b(V1, V2, Va)

Mo (?)

(b) Example of a
valid parameteriza-
tion, assuming some
(a) Example task structure for contexts. supporting contexts.

me (Wi, Wa) my,2(Ws) me,3(Wa, Ws, We)

Figure 6: Example method structure and parameterization.

After extracting all the contexts from the demonstrations,
we wish to find a valid and relevant parameterization of
t, such as the one of figure 6b. A valid parameterization
is a mapping from args(t) (the set of arguments of ¢) to
args(My) (the set of arguments of its methods) such that
Va; € args(t),3b; € args(My) : a; — b;.

A single task parameter a; € args(t) may map to several
method arguments in args(My). The core process for iden-
tifying the a; arguments lies in identifying subsets of the
methods’ parameters that can be bound to the same task pa-
rameter. Intuitively, two methods parameters b; and by can
be bound to the same task parameter a; iff:

* there is a context C; where both b; and b, map to the
same constant (positive example, noted b; =¢, by), and

* there is no context C; where b; and by, map to a different
constant (counter-example, noted b; Z¢, by,).

More formally, a parameterization of a task can be seen
as a set of grouped methods parameters U = {Uy,...,U,}
where each U is the subset of args(M;) that the a; param-
eter maps to. To be valid, a parameterization J/ must be such

that: b)
t -0 =¢, Ok
bj,b, € U; = { }
/ 3C: 1 b #e, by
UiﬂUj:Q) ifi #j
Among all the possible valid parameterizations, the one
leading to the smallest number of task arguments and con-
taining the largest total number of method arguments is to
be favored, in order to find relevant unifications. In practice,
we implemented it by enumerating possible sets U;, which
we then try and combine together.

Evaluation of Operational Models

Now that we are able to generate a set of full operational
models from an initial structure candidate, we ought to com-
pare these in order to find the best one among all candidates.

The metric used to evaluate the operational model should
compromise between models that generalize too much and
models that overfit. Indeed, as described earlier, we wish to
allow our agent to generate solutions to new acting prob-
lems, but we also want these solutions to be sound, i.e., with
limited failures during execution.

To devise such a metric, we turn to the Minimum Descrip-
tion Length (MDL) principle (Griinwald 1996). This princi-
ple, coming from information theory, states that learning can
be viewed as a form of data compression, as both intend to
find some regularity in some source material. Therefore, in
this framework, the best model is the one that can compress
the data the most. Furthermore, as the total size of the com-
pressed data includes the size of the model itself, used to re-
construct the source, this principle naturally guards against
overly specific models.

Example uses of this technique range from learning Con-
text Free Grammars (CFGs) of which HTNs, and thus our
operational models, are close (Sapkota, Bryant, and Sprague
2012), to finding common graph patterns (Bariatti, Cellier,
and Ferré 2020).

Framing our problem in the context of this MDL prin-
ciple, we can say that a desirable model should be able to
“compress’’ the demonstrations, while not being so specific
that nothing else can be generated, thus limiting the com-
plexity and therefore the size of this model.

Assuming we have generated an operational model can-
didate O, as part of our search process, we define the de-
scription length of the operational model Lopmod(O.) and
the description length of the demonstrations in D knowing
O., written as Lgen (D]O,). In order to compute the global
length of the model and the demonstration set, we combine
these two metrics, using a factor « to balance their relative
importance, as defined in equation 2.

L(Om D) = aLopmod(Oc) + Ldem(D|Oc) (2)

To compute Lopmod(Oc), we consider a simple (arbitrary)
alphabet to describe our candidate model O, and compute
the length of an optimal encoding of this description of our
model. Considering a random variable X that takes as
possible values the symbols in our alphabet, information
theory tells us that the entropy H(Xp,) of this variable
bounds the expected codeword length of our optimal code

as H(Xo,) < E(L) < H(Xo,) + 1. Noting z1,...,2,
the symbols of our alphabet, and their occurrence probabil-
ity P(x1),...,P(x,), the entropy formula is: H(Xp,_) =
— > P(z;)log(P(x;)). As we know the frequency of
each symbol in our model as well as their total number, we
can therefore compute a bound on the optimal model encod-
ing length as in the example below.

As an example, consider the structure of the simple model
learned for performing a task ¢ shown in figure 2c. View-
ing our model as a grammar-like structure, we can describe
it with the following rule: do : a | b | ¢ | d ;. The fre-
quency table of each symbol is given in the table in figure 7a,
giving us the entropy H (X,). Given that there are 9 sym-
bols occurrence in the rule, this bounds the optimal value
of Lopmod(Oc) as shown in the equation in figure 7b. As
this value will only be used for comparison, we arbitrarily
choose the lower bound as Lopmod-

Symbol do a b ¢ d | ; Total
Frequency 1 1 1 1 1 3 1 9
(a) Frequency table

1 1 3 3
H(Xo,) =— =1 = —1 -
o= (ogre(5)) + 3w 3))

= 2.64 bits
Lopmoa(O) € [9 % 2.64,9 x 3.64] = [23.76, 32.76] bits

(b) Entropy and model length bounds.

Figure 7: Model length calculation for the one presented in
figure 2c.

To compute Lgem(D | O,.), we need to evaluate the cost
of encoding a trace d € D based on our operational model.
The trace can be mapped to a sequence of refinements from
the original task to the primitive sequence. When planning
or acting, each refinement of a task constitutes a choice point
at which the engine must select one method among the ap-
plicable ones in the current state. Recalling all choices, we
can reconstruct the refinement sequence and the correspond-
ing trace. We define Lgem (D | O.) as the encoding size of all
choice points, averaged over all examples. This leads us to
equation 3, where C is the set of choices an optimal planner
has to make to reconstruct d from O, and My, ., is the set
of applicable methods at a choice point cp.

1
= @ Z Z log (| Mapp,cpl))

deD cpeC

Ldem (D | Oc)

As an example, we will study the set of demonstration
presented in figure 2a using again the model of figure 2c,
assuming the methods have no preconditions. For each of
the sequences in the demonstration set, we know that we
have to choose three times among four methods, therefore
Lgem = 3 (3log(4) 4 3log(4)) = 6 bits

To show how this metric can be used, table 1 presents
the different values computed for the examples presented in
figure 2, using o = 0.505. In order to normalize the tree

length and the sequence, based on the value obtained from
the most basic model, i.e. the one presented in figure 2c. Us-
ing %a instead of « reduces the relative importance accorded
to the model size compared to its efficiency at compressing
the demonstrations.

L(O.,D)
Oc Lopmod (Oc) Ldem (D | Oc) T

(0% Ea
Fig. 2¢ 23.76 12 24 18
Fig. 2d 24.57 2 14.4 8.2
Fig. 2e 22 6.34 13.1 11.89
Fig. 2f 29.21 2 16.75 9.37

Table 1: Description length in bits for the examples pre-
sented in figure 2.

As the previous paragraph should have made clear, we
need to know the choices that are required while acting
with our candidate model O,, in order to generate a given
demonstration trace d, for which we use again the tech-
nique presented by Holler et al. (2021). We can then recover
the choices made and their associated state by analyzing
the resulting trace. Using an optimal planner, the computed
demonstration length will be the true value of Ly (D | O..),
while a non-optimal one may lead to an overestimation.

Preliminary Evaluation

While we are still implementing the ideas presented in this
paper, we have been able to obtain some preliminary results
on the metric to evaluate a candidate model for which pre-
conditions and parameters have been identified as previously
discussed.

A preliminary evaluation using these models on a given
set of demonstration traces show that our metric appears in-
deed to favor structures that allow to efficiently generate the
demonstrations, while still being of limited complexity, i.e.
not favoring the deepest hierarchies, nor ones that are com-
pletely flat.

While we have shown some results earlier in table 1, the
examples were too simple to show the interest of the met-
ric, favoring the “lookup” model. However, working with
more realistic examples, even simple ones, show the inter-
est of our metric. Table 2 shows the results from an example
dataset from a nondeterministic logistics domain with six
primitive actions and three demonstration sequences long of
respectively 11, 18 and 23 tasks. In the same way as before,
we compute o = 1.35 to normalize the model length based
on the flat model. As we can see, reducing the model size
relative importance « allows our metric indeed to favor a
balanced tree. Evaluation on datasets with smaller traces for
which it is possible to analyze all the generated tree struc-
tures by hand shows that the best scoring tree is indeed the
one most efficient to regenerate the demonstrations.

Conclusion and Future Work

Our current work is focused on implementing a basic reac-
tive acting engine to evaluate the currently generated models

L(O.,D)
Oc Lopmod (Oc) Ldem (DlOc) R

(6 ECE
Flat 24.57 33.15 66.3 49.7
Lookup 141.2 1.58 1922 96.9
Balanced 37.71 20.98 71.9 464

Table 2: Description length in bits for some real examples.

on a test set of acting problems. This will allow us to conduct
a first partial evaluation of the performance of the higher
scoring models on some unseen acting problems. With this
done, we will implement a local search strategy in lieu of the
present crude generation method, to generate more complex
models by removing the current structural restrictions. The
next step will then be to integrate these operational mod-
els in a deliberative acting engine in order to leverage its
lookahead capabilities, to make a better evaluation of the
real world applicability of our models.

While we are still working on the implementation of the
algorithm presented in the previous parts, there are some
limitations that we are aware of and intend on addressing
when the main algorithm will have been implemented. First,
the current approach for extracting method preconditions is
limited in which part of the preceding states is considered,
which could be improved by integrating deictic references
(Pasula, Zettlemoyer, and Kaelbling 2007), and superfluous
predicates may be removed with an adaptation of the ap-
proach of Martinez (2017). Second, we wish to extract the
postconditions of synthetic tasks with possibly disjunct in-
tended effects, which may be done similarly to the extraction
of the set of changes of an action of Pasula, Zettlemoyer, and
Kaelbling (2007). Finally, it would be interesting to try and
relax the assumptions made on the demonstration traces for-
mat.

References

Bariatti, F.; Cellier, P.; and Ferré, S. 2020. GraphMDL:
Graph Pattern Selection Based on Minimum Description
Length. In IDA 2020 - Symposium on Intelligent Data Anal-
ysis. Konstanz, Germany.

Colledanchise, M.; Parasuraman, R.; and Ogren, P. 2018.
Learning of Behavior Trees for Autonomous Agents. /[EEE
Transactions on Games, 11(2): 183-189.

Fine-Morris, M.; and Muifioz-Avila, H. 2019. Learning Do-
main Structure in HGNs for Nondeterministic Planning. In
Proceedings of the 2nd ICAPS Workshop on Hierarchical
Planning (HPlan 2019), 22-30.

Geib, C. W.; and Goldman, R. P. 2011. Recognizing Plans
with Loops Represented in a Lexicalized Grammar. In Bur-
gard, W.; and Roth, D., eds., Proceedings of the Twenty-
Fifth AAAI Conference on Artificial Intelligence, AAAI 2011,
San Francisco, California, USA, August 7-11, 2011. AAAI
Press.

Ghallab, M.; Nau, D.; and Traverso, P. 2014. Automated
Planning and Acting. Cambridge: Cambridge University
Press. ISBN 978-1-139-58392-3.

Griinwald, P. 1996. A Minimum Description Length Ap-
proach to Grammar Inference. In Carbonell, J. G.; Siek-
mann, J.; Goos, G.; Hartmanis, J.; Leeuwen, J.; Wermter,
S.; Riloff, E.; and Scheler, G., eds., Connectionist, Statisti-
cal and Symbolic Approaches to Learning for Natural Lan-
guage Processing, volume 1040, 203-216. Berlin, Heidel-
berg: Springer Berlin Heidelberg. ISBN 978-3-540-60925-4
978-3-540-49738-7.

Hogg, C.; Kuter, U.; and Muifioz-Avila, H. 2009. Learning
Hierarchical Task Networks for Nondeterministic Planning
Domains. In Boutilier, C., ed., IJCAI 2009, Proceedings of
the 21st International Joint Conference on Artificial Intelli-
gence, Pasadena, California, USA, July 11-17, 2009, 1708—
1714.

Hogg, C.; Mufioz-Avila, H.; and Kuter, U. 2008. HTN-
MAKER: Learning HTNs with Minimal Additional Knowl-
edge Engineering Required. In Proceedings of the 23rd
National Conference on Artificial Intelligence - Volume 2,
AAATI’08, 950-956. Chicago, Illinois: AAAI Press. ISBN
978-1-57735-368-3.

Holler, D.; Wichlacz, J.; Bercher, P.; and Behnke, G. 2021.
Compiling HTN Plan Verification Problems into HTN Plan-
ning Problems. In Proceedings of the 4th ICAPS Workshop
on Hierarchical Planning (HPlan 2021), 8—15.

Kantharaju, P.; Ontafidn, S.; and Geib, C. W. 2019. Extract-
ing CCGs for Plan Recognition in RTS Games. In Guz-
dial, M.; Osborn, J. C.; and Snodgrass, S., eds., Proceedings
of the 2nd Workshop on Knowledge Extraction from Games
Co-Located with 33rd AAAI Conference on Artificial Intelli-
gence, KEG@AAAI 2019, Honolulu, Hawaii, January 27th,
2019, volume 2313 of CEUR Workshop Proceedings, 9-16.
CEUR-WS.org.

Martinez, D. 2017. Learning Relational Models with Human
Interaction for Planning in Robotics. Ph.D. thesis, Univer-
sitat Politecnica de Catalunya.

Pasula, H. M.; Zettlemoyer, L. S.; and Kaelbling, L. P. 2007.
Learning Symbolic Models of Stochastic Domains. Journal
of Artificial Intelligence Research, 29: 309-352.

Patra, S.; Mason, J.; Ghallab, M.; Nau, D.; and Traverso, P.
2021. Deliberative Acting, Planning and Learning with Hi-
erarchical Operational Models. Artificial Intelligence, 299:
103523.

Sapkota, U.; Bryant, B. R.; and Sprague, A. 2012. Unsuper-
vised Grammar Inference Using the Minimum Description
Length Principle. In Perner, P., ed., Machine Learning and
Data Mining in Pattern Recognition, Lecture Notes in Com-
puter Science, 141-153. Berlin, Heidelberg: Springer. ISBN
978-3-642-31537-4.

Zhang, Q.; Yao, J.; Yin, Q.; and Zha, Y. 2018. Learning
Behavior Trees for Autonomous Agents with Hybrid Con-
straints Evolution. Applied Sciences, 8(7): 1077.

Zhuo, H. H.; Mufioz-Avila, H.; and Yang, Q. 2014. Learn-

ing Hierarchical Task Network Domains from Partially Ob-
served Plan Traces. Artificial Intelligence, 212: 134—157.

Zhuo, H. H.; Peng, J.; and Kambhampati, S. 2019. Learn-
ing Action Models from Disordered and Noisy Plan Traces.
arXiv:1908.09800 [cs].

