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We study the isolated singularities of functions satisfying

where 0 < s < 1, p > 1 and Ω is a bounded domain containing the origin. We use the Caffarelli-Silvestre extension to R + ×R N . We emphasize the obtention of a priori estimates and analyse the set of self-similar solutions via energy methods to characterize the singularities.

Introduction

In the past forty years a large series of articles have been devoted to study of the singular behaviour of solutions for the following two classes of semilinear equations

-∆v + v p = 0 in B 1 \ {0}, (1.1) 
where p > 1, = ±1 and v p = |v| p-1 v. The first empirical studies of radial solutions to the Lane-Emden equation ( = -1) are due to J. Lane and R. Emden when analyzing the structure of polytropic objects submitted to their gravitational fields. A comprehensive presentation can be found in Chandrasekhar's book [11, pp 84-182]. The so-called Emden-Fowler equation ( = 1), was treated in details by R. Fowler in the radial case. For some specific values of p ( 3 2 and 5 2 ) this equation appeared in the study of the density of the electronic cloud in the Thomas-Fermi-Dirac model of atoms (see e.g. [START_REF] Sommerfeld | Asymptotische integration der differential-gleichung des Thomas-Fermischen atoms[END_REF]).

The study of non-radial solutions started in the heighties in connection with conformal deformation of a Riemannian metric to a metric with constant scalar curvature (K = 1 or K = -1 and p = N +2 N -2 ). The first important results concerning the Lane-Emden equation are due to Lions [START_REF] Lions | Isolated singularities in semilinear problems[END_REF] in the case 1 < p < N N -2 who proved that any positive solution of

-∆v -v p = 0 in B 1 \ {0} (1.2) satisfies v(x) = k|x| 2-N + O(1) as x → 0 (1.3)
when N ≥ 3, (with standard modification if N = 2) and the following holds -∆v -v p = c N kδ 0 ∈ D (B 1 ).

In the case N N -2 < p < N +2 N -2 , Gidas and Spruck [START_REF] Gidas | A priori bounds for positive solutions of nonlinear elliptic equations[END_REF] introduced new powerful methods and proved that any positive solution of (1.2) satisfies v(x) ≤ c p |x|

-2 p-1 for x ∈ B 1 2 \ {0}.
As a consequence, a positive solution is either regular at x = 0 or has the following behaviour v(x) = α N ,p |x| -2 p-1 1 + o(1) as x → 0.

(1.4)

When p = N +2 N -2 , the energy method used in [START_REF] Gidas | A priori bounds for positive solutions of nonlinear elliptic equations[END_REF] failed because of the conformal invariance of the equation. In [START_REF] Caffarelli | Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth[END_REF] a new method of asymptotic symmetry allowed to treat this case showing that the positive solutions behaved like the radial ones, which in turn were easy to describe because of this invariance. Finally, when p = N N -2 the result of [START_REF] Gidas | A priori bounds for positive solutions of nonlinear elliptic equations[END_REF] was sharpened by Aviles [START_REF] Aviles | Local behavior of solutions of some elliptic equations[END_REF] who proved that either the positive solutions are smooth or they satisfy lim

x→0 |x| N -2 (-ln |x|) N -2 2 v(x) = N -2 √ 2 N -2
.

The non-radial study of the Emden-Fowler equations started with the works of Brezis and Lieb who obtained in [START_REF] Brezis | Long range atomic potentials in Thomas-Fermi theory[END_REF] the universal a priori estimate (also called Keller-Osserman estimate), valid for signed solutions of -∆v

+ v p = 0 in B 1 \ {0}, (1.5) 
and is expressed as follows:

|v(x)| ≤ c p |x| -2 p-1 for any x ∈ B 1 2 \ {0}.
With this estimate, Brezis and Véron proved in [START_REF] Brezis | Removable Singularities for Some Nonlinear Elliptic Equations[END_REF] that if p ≥ N N -2 any solution is at least C 2 in B 1 . When 1 < p < N N -2 the precise description of singular solutions was obtained by Véron who proved that any positive solution v is either smooth, either satisfies (1.3) or (1.4) (with a new constant positive αN,p ), all these behaviours being effective. Furthermore when

N +1 N -1 ≤ p < N N -2
the assumption of positivity could be removed, the sign of k not prescribed in (1.3), and (1. In the case N = 2, the requirement p ≥ N +1 N -1 (i.e. q ≥ 3) for signed solutions was removed by Chen, Matano and Véron [START_REF] Chen | Anisotropic Singularities of Solutions of Nonlinear Elliptic Equations in R 2[END_REF] who proved that for any solution v of (1.5) there exists a 2π-periodic solution of -ω θθ -2 p -1 Γ(1-s) . The singularity problem for the fractional Emden equations in a punctured domain Ω containing B 1 is

(-∆) s v + v p = 0 in Ω \ {0} v = 0 in Ω c , (1.7) 
where = ±1 and Ω c = R N \ Ω. Some results concerning this equation in the case = -1 (the fractional Lane-Emden equation) have already been obtained in particular in the case p = N +2s N -2s , see [START_REF] Caffarelli | Local analysis of solutions of fractional semi-linear elliptic equations with isolated singularities[END_REF]. Therein it is proved that either the solution is smooth at 0, or there exists some constant c ≥ 1 such that

1 c |x| -N -2s 2 ≤ v(x) ≤ c|x| -N -2s 2 for all x ∈ B 1 2 \ {0}.
Furthermore, there exists a radial solution ṽ of (1.7) such that v(x) = ṽ(|x|)(1 + o(1)) as x → 0.

In the general case N N -2s < p < N +2s N -2s , Yang and Zou obtained in [START_REF] Yang | On isolated singularities of fractional semi-linear elliptic equations[END_REF] (also in [START_REF] Yang | Sharp blow up estimates and precise asymptotic behavior of singular positive solutions to fractional Hardy-Hénon equations[END_REF]) the analogous of Gidas and Spruck estimates, namely any positive solution of

(-∆) s v -v p = 0 in Ω \ {0} v = 0 in Ω c , (1.8)
either is smooth or satisfies for some constant c > 0

1 c |x| -2s p-1 ≤ v(x) ≤ c|x| -2s p-1 for all x ∈ B 1 2 \ {0}.
Concerning the fractional Emden-Fowler equation

(-∆) s v + v p = 0 in Ω \ {0} v = 0 in Ω c
(1.9) not so many results are known. The problem

(-∆) s v + v p = µ in D (Ω) v = 0 in Ω c ,
where µ is a positive bounded Radon measure in Ω, is studied in [START_REF] Chen | Semilinear fractional elliptic equations involving measures[END_REF] in a more general framework, that is by replacing u p by a nondecreasing nonlinearity g(u). The particular case where µ = kδ 0 and g(u) = u p is analyzed in [START_REF] Chen | Weakly and strongly singular solutions of semilinear fractional elliptic equations[END_REF]. In particular, the asymptotics of the solutions u k (they are unique) when k → ∞ are thoroughly studied in [START_REF] Chen | Weakly and strongly singular solutions of semilinear fractional elliptic equations[END_REF].

The aim of this article is to present a unified analysis of the isolated singularities for problem (1.7). This analysis is based upon the Caffarelli-Silvestre lifting of the equation which associates to it the following degenerate elliptic equation in

R N +1 + = ξ = (x, z) : x ∈ R N , z > 0 , div(z 1-2s ∇u) = 0 in R N +1 + u(•, 0) = v in R N ∼ ∂R N +1 + , (1.10) 
with the property that (-∆) s v(x) = -lim z→0 z 1-2s u z (x, z) := ∂ ν s u(x, 0).

The study of (1.7) is replaced by

div(z 1-2s ∇u) = 0 in R N +1 + ∂ ν s u(•, 0) + u(•, 0) p = 0 in Ω \ {0} u(•, 0) = 0 in R N \ Ω, (1.11 
)

and v = u(•, 0) in R N .
We prove that any positive solution of (1.10) admits a trace on R N which is a nonnegative Radon measure µ satisfying that

R N dµ (1 + |x|) N +2s < +∞.
The first step for describing the behaviour of solutions of (1.11) near 0 is to obtain an a priori estimate of u(x, z).

In the case = 1, we use a blow-up technique combined with the trace theorem to prove that when p ≥ 1 + 2s N , any positive solution u(x, z) of (1.11) satisfies u(x, z) ≤ cρ

-2s p-1
for all (x, z) ∈ B+

1 2 \ {0}, (1.12) 
where ρ = |x| 2 + z 2 and B+ a := (x, z) ∈ R N +1 + : ρ < a . This estimate implies that any positive solution of (1.9) verifies v(x) ≤ c|x| -2s p-1 for all x ∈ B+ 1 2 \ {0}.

(1.13)

Note that this estimate has no interest if p ≥ N N -2s since the solution v is smooth. In the case = -1, we use the estimate (1.13) proved [START_REF] Yang | On isolated singularities of fractional semi-linear elliptic equations[END_REF]Proposition 3.1] in the case 1 < p < N +2s N -2s combined with the expression of the Poisson kernel of the operator u → div(z 1-2s ∇u) in R N +1 + obtained by [START_REF] Caffarelli | An extension problem related to the fractional Laplacian[END_REF] to prove that positive solutions of (1.11) satisfy also (1.12). Furthermore, when v is a radially symmetric decreasing solution of (1.8), we prove that (1.13) holds for any p > 1.

The second step in our study is to consider the self-similar solutions of (1.11) 

in R N +1 + \ {0}, with Ω = R N . In spherical coordinates in R N +1 + , these solutions have the following expression u(x, z) = u(ρ, σ) = ρ -2s p-1 ω(σ) for all (ρ, σ) ∈ R + × S N + ,
and, up to a rotation and a good choice of spherical variables on S N , ω satisfies

A s [ω] + Λ s,p,N ω = 0 in S N + ∂ω ∂ν s + |ω| p-1 ω = 0 in S N -1 .
(1.14) Therein, A s is a degenerate elliptic operator on the N -sphere S N , ∂ ∂ν s the corresponding conormal outward derivative on ∂S N + = S N -1 and

Λ s,p,N = 2s p -1 2s p -1 + 2s -N .
The sign of Λ s,p,N which is fundamental in the study of (1.14) depends on the value of p with respect to 2s p-1 . The structure of the set E (resp. E + ) of solutions (resp. positive solutions) plays a key role in our study.

Theorem A Let s ∈ (0, 1), = 1 and p > 1.

1-If p ≥ N N -2s , then E 1 = {0}. 2-If 1 < p ≤ 1 + 2s N , then E + 1 = {0}. 3-If 1 + 2s N < p < N N -2s , then E + 1 = {0, ω 1 },
where ω 1 is a positive solution of (1.14). Besides the case p ≥ N N -2s we can describe the set E 1 in another case. Theorem B There exists

p * = p * (s, N ) ∈ (1, N N -2s ) such that if p * ≤ p < N N -2s , then E 1 = {0, ω 1 , -ω 1 }.
The exponent p * is explicitly given by (3.8) below and its algebraic expression is heavy. However if N ≥ 3 or N = 2 and 1 2 ≤ s < 1 one has p * ≤ 1 + 2s N . The set of positive self-similar solutions of the Lane-Emden is characterized by the following statement. Theorem C Let s ∈ (0, 1), = -1 and p > 1.

1-If p ≤ N N -2s , then E + -1 = {0}. 2-If p > N N -2s , then E + -1 = {0, ω 2 }
, where ω 2 is a positive solution of (1.14) depending only on one variable.

We use the classical ln ρ variable in order to transform (1.14) into an autonomous equation, writing any u under the form u(x, z) = ρ -2s p-1 w(t, σ) with t = ln ρ.

(1.15)

We introduce standard tools of the dynamical systems theory such as energy functional and limit sets and prove the following general theorem.

Theorem D Assume s ∈ (0, 1), = ±1, p ∈ (1, +∞) \ { N +2s N -2s }.
Let u be a solution of (1.11) satisfying (1.12), even with u replaced by |u| and w be defined by (1.15). Then the limit set at -∞ of the negative trajectory T -[w] := w(t, •) : t < 0 of w is a nonempty, compact and connected subset of E + in the C 2s (S N + )-topology. Thanks to this result and the properties of E + , we can give the precise behaviour of positive solutions of (1.7) near the origin. This happens when E is disconnected, the limit set is reduced to a single element usually ω j (j=1,2) or 0. When this limit set is zero, the solutions have either a weak singularity or regular, according to the value of .

Theorem E Let s ∈ (0, 1), = 1 and 1 + 2s N < p < N N -2s . If u is a positive solution of (1.11) satisfying lim (x,z)→0 ρ 2s p-1 u(x, z) = 0, (1.16) 
then there exists k > 0 such that

u(x, z) = C N ,s k z 2s (|x| 2 + z 2 ) N 2 +s
+ O(1) as x → 0,

and v k = u(•, 0) satisfies (-∆) s v + v p = kδ 0 in D (Ω), (1.17) 
where

C N ,s = 1 4 π N +2-2s 2 Γ( N - 2s 
2 ). Furthermore, if k = 0, v 0 is identically zero and u is smooth.

Theorem F Let s ∈ (0, 1), = -1 and p ∈ N N -2s , +∞ \ { N +2s N -2s }. If u is a positive solution of (1.11) satisfying (1.16), then u is smooth in R N +1 + .
Finally, we can give precise classification of nonnegative solutions to the fractional Emden-Fowler equation.

Theorem G Let s ∈ (0, 1), p > 1 and v k be the solution of (1.17) 

for k ≥ 0 vanishing in Ω c . 1-For p ∈ 1, 1 + 2s
N , the set of nonnegative solutions of (1.9) is the set of {v k } k≥0 . 2-For p ∈ 1 + 2s N , N N -2s , the set of nonnegative solutions of (1.9) is the set of

{v k } k≥0 ∪ {v ∞ }, where v ∞ = lim k→+∞ v k . 3-For p ≥ N N -2s
, the set of nonnegative solutions to (1.9) is reduced to {0}. The remainder of this paper is organized as follows. In Section 2, we provide preliminary tools: Caffarelli-Silvestre extension, the related Poisson kernel and basic setting. In Section 3, we classify singular self-similar solutions of (1.7). Section 4 is devoted to obtain some piori estimates the upper bounds of singular solutions (1.7) near the origin. Finally, we give the proof of the classification of isolated singularities of (1.7).

The lifting 2.1 Caffarelli-Silvestre extension and its Poisson's kernel

Caffarelli and Silvestre [START_REF] Caffarelli | An extension problem related to the fractional Laplacian[END_REF] introduced a general method of lifting from R N to R N × (0, +∞) allowing to define the fractional Laplacian as the weighted trace of the normal derivative. Setting

R N +1 + = ξ = (x, z) : x ∈ R N , z > 0 , they proved that if v ∈ C 2 (R N ) ∩ L 1 µs (R N ) and u ∈ C 2 (R N +1 + ) satisfy D s u := div(z 1-2s ∇u) = 0 in R N +1 + u(•, 0) = v in R N , (2.1) 
then

(-∆) s v(x) = -lim z→0 z 1-2s u z (x, z).
In the sequel we denote

∂ ν s u(x, 0) := -lim z→0 z 1-2s u z (x, z). Set µ s (x) = (1 + |x|) -N -2s for x ∈ R N . (2.
2)

The Poisson's kernel for the operator u → D s u has been obtained in [8, (2.1)]

P s (x, z) = C N ,s z 2s (|x| 2 + z 2 ) N 2 +s , (2.3) 
where

C N ,s = 1 4 π N +2-2s 2 Γ( N -2s 2 ). If v ∈ L 1 µs (R N ), then u(x, z) := P s [v](x, z) = C N ,s z 2s R N v(y)dy (|x -y| 2 + z 2 ) N 2 +s
(2.4) satisfies (2.1).

The trace theorem

The counter part of Caffarelli-Silvestre theorem is the following.

Theorem 2.1 Let s ∈ (0, 1) and u ∈ L 1 loc (R N +1

+

) satisfies u ≥ 0 and

D s u = 0 in R N +1 + .
(2.5)

Then u ∈ C ∞ (R N +1 +
) and u admits a boundary trace on ∂R N +1 + , which is a nonnegative Radon measure µ in the sense that for any

ζ ∈ C ∞ 0 (R N ), lim z→0 R N u(x, z)ζ(x)dx = R N ζdµ(x),
and µ satisfies

R N dµ(x) (|x| + 1) N +2s < +∞. (2.6) Furthermore, if u(z, •) L 1 (R N ) = o(z 2s ) when z → ∞, then u(x, z) = C N ,s z 2s R N dµ(y) (|x -y| 2 + z 2 ) N 2 +s for all (x, z) ∈ R N +1 + . (2.7)
Proof. The fact that u ∈ C ∞ (R N +1 ) follows from the standard theory of elliptic operators. Furthermore, the equation (2.5) not only holds in the sense of distributions but also in the strong sense. The core of the proof is an adaptation of the Brezis-Lions wellknown note on isolated singularities of linear elliptic equations [START_REF] Brezis | A note on isolated singularities for linear elliptic equations[END_REF].

Let R > 0, λ R,1 > 0 be first eigenvalue of -∆ in B R ⊂ R N under the zero Dirichlet boundary condition and φ R,1 be the related first eigenfunction. We set

X(z) = B R u(x, z)φ R,1 (x)dx. Then X satisfies the ODE (z 1-2s X ) (z) -λ R,1 z 1-2s X(z) ≤ 0 for z ∈ (0, ∞).
Integrating the equation on (z, T ), we obtain that

z 1-2s X (z) ≥ T 1-2s X (T ) -λ R,1 T z t 1-2s X(t)dt = T 1-2s X (T ) -λ R,1 F (z),
where we have denoted

F (z) = T z t 1-2s X(t)dt.
The function F is decreasing and

X(z) ≤ X(T ) - 1 2s (T -T 1-2s z 2s )X (T ) + λ R,1 T z t 2s-1 F (t)dt ≤ X(T ) - 1 2s (T -T 1-2s z 2s )X (T ) + λ R,1 2s (T 2s -z 2s )F (z). (2.8) 
Hence F (z) = -z 1-2s X(z) and (2.8) becomes

-F (z) ≤ z 1-2s X(T ) - 1 2s (T z 1-2s -T 1-2s z)X (T ) + λ R,1 2s T 2s z 1-2s -z F (z) =: A(z) + B(z)F (z) (2.9)
for z ∈ (0, ∞). Since A, B ∈ L 1 (0, T ) and F (T ) = 0, we deduce by integration,

F (z) ≤ e -T z B(t)dt T z e T t B(τ )dτ A(t)dt. (2.10)
Therefore F is uniformly bounded on (0, T ), and from (2.8) the function X shares the same property. This implies that u

∈ L 1 loc (R N × [0, +∞)). Next, let ζ ∈ C ∞ 0 (R N ) with support in B R for some R. We set Y (z) = R N u(x, z)ζ(x)dx and Φ(z) = R N u(x, z)∆ x ζ(x)dx. Then z 1-2s Y (z) + z 1-2s Φ(z) = 0.
Consequently, we have that

Y (z) = Y (1) - 1 -z 2s 2s Y (1) - 1 2s 1 z (t 2s -z 2s )Φ(t)dt. Since 1 z |(t 2s -z 2s )Φ(t)|dt ≤ ∆ζ L ∞ 1 0 B R u(x, t)dxdt < +∞,
it follows that Y (z) admits a limit when z → 0, which defines a positive linear functional on C ∞ 0 (R N ), hence a Radon measure denoted by µ.

Let R > 0 and ε > 0. For k > 0 we set

Q T R,R+k,ε = B R+k × (ε, T ),
and we consider the problem

D s w = 0 in Q T R,R+k,ε w = 0 in ∂B R+k × [ε, T ] ∪ B R+k × {T } w(•, ε) = u(•, ε)χ B R in B R+k × {ε}.
The solution w = w ε,R,k,T is unique and satisfies

w ε,R,k,T ≤ u in Q T R,R+k,ε .
The correspondence (R, k, T ) → w ε,R,k,T is increasing and we have that

w ε,R := lim k,T →∞ w ε,R,k,T ≤ u in R N × (ε, +∞).
When ε → 0, w ε,R (•, ε) converges to χ B R µ. Hence its limit w R is expressed by the Poisson kernel (2.3), then

w R (x, z) = C N ,s z 2s R N χ B R (y)dµ(y) (|x -y| 2 + z 2 ) N 2 +s in R N × (0, +∞).
As a consequence, letting R → +∞, we get

u(0, 1) ≥ C N ,s B R dµ(y) (|y| 2 + 1) N 2 +s
, which implies (2.6). Finally, since R → w R is increasing and w R is upper bounded by u, we obtain that w R admits a limit w when R → +∞. The function w is a positive solution of (2.5) 

in R N +1 + which satisfies w(x, z) = C N ,s z 2s R N dµ(y) (|x -y| 2 + z 2 ) N 2 +s ≤ u(x, z) for (x, z) ∈ R N × (0, +∞).
(2.11)

Thus w is the minimal positive solution of (2.5) in R N +1 + with trace µ on ∂R N +1 + . Set ψ = u -w, then ψ is a nonnegative solution of (2.5) in R N +1 + with trace 0 on ∂R N +1 + . The even extension of ψ to whole R N +1 defined by [8, Lemma 4.1] is a nonnegative solution of (2.5) in R N +1 . It is therefore continuous and it satisfies Harnack inequality [START_REF] Fabes | The local regularity of solutions of degenerate elliptic equations[END_REF]. For proving uniqueness, we set t = z 2s 2s and ψ(x, t) = ψ(x, z). Then φ satisfies (see [8, 1.8])

t 2s-1 s ψtt + ∆ x ψ = 0.
Since the operator -∆ x is accretive in L 1 (R N ), the function t → ψ(•, t)

L 1 (R N ) is convex on (0, ∞). If ψ(•, 0) L 1 (R N )
= 0 and ψ(•, t)

L 1 (R N ) = o(t) when t → ∞, then ψ(•, t) L 1 (R N )
= 0 for all t > 0. The condition ψ(•, t)

L 1 (R N ) = o(t) is equivalent to ψ(•, z) L 1 (R N ) = o(z 2s ).
Therefore, the uniqueness and (2.11) implies (2.7), which ends the proof.

Spherical coordinates

We recall spherical coordinates (r, σ) ∈ (0, +∞) × S N . The parametrization of R N +1 + is the following

R N +1 + = ξ = (r, σ) : r > 0, σ ∈ S N + , where S N + = σ = (x, z) = (σ cos φ, sin φ) : σ ∈ S N -1 , φ ∈ 0, π 2 .
Without confusion, we also use the next notation

S N -1 = ∂S N + = (0, σ ) ∈ R N +1 : |σ | = 1 .
With this parametrization

∆ S N u = u φφ -(N -1)(tan φ) u φ + 1 cos 2 φ ∆ S N -1 u.
We define the operator A s in C 2 (S N + ) by

A s [w] = 1 λ s (φ)(cos φ) N -1 λ s (φ)(cos φ) N -1 w φ φ + 1 cos 2 φ ∆ S N -1 w,
where λ s (φ) = (sin φ) 1-2s .

We denote by dS the invariant measure obtained by the isometric imbedding of

S N into R N +1 , then dS(σ) = (cos φ) N -1 dS (σ )dφ,
and by ∇ the covariant gradient in the canonical metric on S N identified with the tangential gradient on the unit sphere of R N +1 . The bilinear form associated to A s is

B[w, w] = S N + w φ wφ + 1 cos 2 φ ∇ w.∇ w λ s (φ)dS = - S N + wA s (w)λ s (φ)dS,
and we have the corresponding Green's formula

S N + wA s (w)λ s dS = S N -1 w∂ φ s ωdS -B[w, w]. If u = P s [v], then (-∆) s v(r, σ ) = -lim φ→0 (sin φ) 1-2s u φ (r, σ , φ) := ∂ φ s u(r, σ , 0).

Self-Similar solutions

Let Ω ⊂ R N be a bounded domain containing the origin. A function v ∈ C 2 (Ω \ {0}) ∩ L 1 µs (R N ) satisfies the fractional Emden equations in Ω \ {0} with zero exterior value if

(-∆) s v + v p = 0 in Ω \ {0}, v = 0 in Ω c , (3.1)
where p > 1 and = ±1. If = 1 the equation considered is called the fractional Emden-Fowler equation while if = -1 it is called the fractional Lane-Emden equation. We denote u = P s [v], which is admissible since v ∈ L 1 (R N ), then

D s u = 0 in R N +1 + ∂ ν s u(•, 0) + u(•, 0) p = 0 in Ω \ {0} u(•, 0) = 0 in Ω c . (3.2)
Hence (3.2) implies that

u rr + N + 1 -2s r u r + 1 r 2 A s [u] = 0 in (0, ∞) × S N + -lim φ→0 (sin φ) 1-2s u φ (r, θ, φ) + u(r, θ, 0) p = 0 in (0, ∞) × S N -1 . (3.3) 
Equation (3.2) is equivariant under the family of transformations S , > 0, defined by

S [u](x, z) = 2s p-1 u( x, z) = 2s p-1 u( ξ).
Therefore self-similar solutions of (3.2) have the form

u(r, σ) = r -2s p-1 ω(σ) with (r, σ) ∈ (0, ∞) × S N + ,
and ω satisfies

A s [ω] + Λ s,p,N ω = 0 in S N + ∂ω ∂ν s + ω p = 0 in S N -1 , (3.4) 
where Λ s,p,N = 2s p -

1 2s p -1 + 2s -N .
We denote by E (resp. E + ) the set of functions (resp. positive functions) ω ∈ C(S N + ) ∩ C 2 (S N + ) satisfying (3.4). There are several critical exponents will play some role later on:

(i) 1 < p ≤ N N -2s ⇐⇒ Λ s,p,N ≥ 0; (ii) p ≥ 1 + 2s N ⇐⇒ Λ s,p,N ≤ 2sN ; (iii) p = N +2s N -2s
⇐⇒ Θ s,p,N := N -2s p+1 p-1 = 0.

(3.5)

Fractional Emden-Fowler equation

The structure of E 1 is described as follows.

Theorem 3.1 Assume s ∈ (0, 1), = 1 and p > 1.

1-If p ≥ N N -2s , then E 1 = {0}. 2-If 1 < p ≤ 1 + 2s N , then E + 1 = {0}. 3-If 1 + 2s N < p < N N -2s , then E + 1 = {0, ω 1 },
where ω 1 is a positive solution of (3.4) depending only on the variable φ.

Proof. 1-Let ω be a solution, then

S N + ω 2 φ + 1 cos 2 φ |∇ w| 2 -Λ s,p,N ω 2 λ s (φ)dS = S N -1 ω∂ φ s ωdS = - S N -1 |ω| p+1 dS . If p ≥ N N -2s , then Λ N ,s,p ≤ 0. This implies that ω = 0. 2-It is easy to check that the first eigenfunction ψ 1 of A s in W 1,2 0 (S N + ) is φ → ψ 1 (θ, φ) = (sin φ) 2s
with corresponding eigenvalue 1 = 2sN . Assume now that ω is a positive solution of (3.4), then, multiplying the equation by ψ 1 and integrating yields (Λ s,p,N -2sN )

S N + ωψ 1 λ s (φ)dS = S N -1 ∂ψ 1 ∂ν s ωdS = -2s S N -1 ωdS .
The claim follows by (3.5)-(ii).

3-Existence. We denote by W (S N

+ ) the space of functions w such that B[w, w] < +∞, where

B[w, v] = S N + w φ v φ + 1 cos 2 φ ∇ w • ∇ v λ s (φ)dS. Then w → B[w, w] is a semi-norm on W (S N + ) and it is a norm on the subspace C ∞ c (S N + ). Indeed B[w, w] ≥ 2sN S N + w 2 λ s (φ)dS for all w ∈ C ∞ c (S N + ). The closure of C ∞ c (S N + ) into W (S N + ) is denoted by W 0 (S N + )
. We define the functional

J(w) = 1 2 S N + w 2 φ + 1 cos 2 φ |∇ w| 2 -Λ s,p,N w 2 λ s (φ)dS + 1 p + 1 S N -1 |γ 0 (w)| p+1 dS ,
where γ 0 denotes the trace operator from W (S N + ) onto L 2 (S N -1 ) identified with w(0, θ). Then J is a quadratic perturbation of a convex lower semicontinous functional defined in W (S N + ), hence it is weakly lower continuous with domain of definition

D(J) = {w ∈ W (S N + ) : γ 0 (w) ∈ L p+1 (S N -1 )}. Let w ∈ W (S N + ) and w = w 1 + w 2 ,
where w 1 ∈ W 0 (S N + ) is defined by

B[w 1 , ζ] = B[w, ζ] for all ζ ∈ W 0 (S N + ). Since B is a continuous quadratic form in W (S N + ), ζ → B[w, ζ] is a continuous linear form in W (S N
+ ) and there holds

B[ζ, ζ] ≥ (2sN -Λ s,p,N ) S N + ζ 2 λ s (φ)dS for all ζ ∈ W 0 (S N + ),
the function w 1 is uniquelly defined. Thus, one has

J(w) = J(w 1 + w 2 ) = 1 2 B[w 1 , w 1 ] + 1 2 B[w 2 , w 2 ] + 2B[w 1 , w 2 ] + 1 p + 1 S N -1 |γ 0 (w)| p+1 dS . We have B[w 1 , w 1 ] = B[w, w 1 ] = B[w 1 , w 1 ] + B[w 2 , w 1 ], therefore B[w 2 , w 1 ] = B[w 1 , w 2 ] = 0. Furthermore w 2 (φ, θ) = w 2 (φ, θ) -w 2 (0, θ) + w 2 (0, θ). Since for any ε > 0, w 2 2 (φ, θ) ≤ (1 + ε) (w 2 (φ, θ) -w 2 (0, θ)) 2 + 1 + 1 ε w 2 2 (0, θ),
and (φ, θ) → w 2 (φ, θ) -w 2 (0, θ) belongs to W 1,2 0 (S N + ), we have the inequality

B[w 2 , w 2 ] ≥ S N + 1 cos 2 φ |∇w 2 | 2 λ s (φ)dS + S N + (w 2 (φ, θ) -w 2 (0, θ)) φ 2 λ s (φ)dS -(1 + ε)Λ s,p,N S N + (w 2 (φ, θ) -w 2 (0, θ)) 2 λ s (φ)dS -1 + 1 ε Λ s,p,N S N + w 2 2 (0, θ)λ s (φ)dS.
We choose ε such that

(1 + ε)Λ s,p,N < 2sN
and we get

B[w 2 , w 2 ] ≥ 1 - (1 + ε)Λ s,p,N 2sN S N + w 2 2 φ + 1 cos 2 φ |∇ w 2 | 2 λ s (φ)dS -1 + 1 ε Λ s,p,N S N + w 2 2 (0, θ)λ s (φ)dS.
Notice that

S N + w 2 2 (0, θ)λ s dS = π 2 0 (sin φ) 1-2s (cos φ) N -1 dφ S N -1 w 2 2 (0, θ)dS ≤ c 1 S N -1 |w 2 (0, θ)| p+1 dS 2 p+1 ,
where

c 1 = c 1 (s, p, N ) > 0. Because w 1 ∈ W 1,2 0 (S N + )
, there holds also

B[w 1 , w 1 ] ≥ 1 - Λ s,p,N 2sN 
S N + w 2 1 φ + 1 cos 2 φ |∇ w 1 | 2 λ s (φ)dS.
Combining the previous inequalities, we finally obtain

J(w) ≥ 1 - (1 + ε)Λ s,p,N 2sN S N + w 2 φ + 1 cos 2 φ |∇ w| 2 λ s (φ)dS -1 + 1 ε M Λ s,p,N S N -1 |γ 0 w| p+1 dS 2 p+1 + 2 p + 1 S N -1 |γ 0 w| p+1 dS .
This implies that J(w) tends to ∞ when min B[w, w], γ 0 (w) L p+1 (S N -1 ) tends to infinity.

Consequently the functional J admits a minimum ω in W (S N + ). Moreover, since J(|ω|) = J(ω) the minimum is achieved by a nonnegative function and it is therefore classical that ω is a solution of (3.4), and it is positive by the strong maximum principle.

Finally, if we consider the restriction J rad of J to the space W rad (S N + ) of function of W (S N + ) depending only on the variable φ (they are called radial), then γ 0 (w p+1 ) is a real number and J rad (w) has the following form provided we write w = w(φ),

J rad (w) = |S N -1 | 2 π 2 0 w 2 φ -Λ s,p,N w 2 λ s (φ)(cos φ) N -1 dφ + |S N -1 | p + 1 |w(0)| p+1 .
The functional J rad is also a quadratic perturbation of a convex lower semicontinuous functional defined in W rad (S N + ) and it tends to ∞ at ∞. Thus it admits a minimum which is achieved by a nonnegative function due to J rad (w) = J rad (|w|). Hence there exists a minimizing nonnegative solution of (3.4) which depends only on the variable φ.

3-Uniqueness.

Let ω and ω be two positive solutions of (3.4), then

0 = S N + A s [ω] ω - A s [ω] ω (ω 2 -ω2 )λ s dS = S N -1 ∂ φ s ω ω - ω2 ω -∂ φ s ω ω - ω 2 ω dS -B ω, ω - ω2 ω -B ω, ω - ω 2 ω = A -B. Furthermore A = S N -1 -ω p ω - ω2 ω + ωp ω - ω 2 ω dS = - S N -1 ω 2 -ω2 ω p-1 -ωp-1 dS ≤ 0 and B = S N -1 1 ω 2 + 1 ω2 ω ωφ -ωω φ 2 + 1 cos 2 φ ω∇ ω -ω∇ ω 2 λ s (φ)dS ≥ 0.
Therefore, A = B = 0 and ω = ω.

Remark. To the unique positive element

ω 1 of E + 1 corresponds a unique positive singular self-similar solution U p of (-∆) s v + v p = 0 in R N \ {0}, where U p (x) = c p |x| -2s p-1 with c p = ω 1 (1) = -2 2s Γ N 2 -s p-1 Γ s + s p-1 Γ s p-1 Γ N 2 -s -s p-1 1 p-1 .
In order to prove Theorem 3.4, we need the following intermediate result.

Proposition 3.2 Assume Λ = 0, then for any a = 0, there exists a unique function ω a satisfying

ω a (φ) = a -Λ π 2 φ (sin σ) 2s-1 (cos σ) 1-N π 2 σ ω a (θ)(sin θ) 1-2s (cos θ) N -1 dθdσ in 0, π 2 . (3.6) Furthermore a = ω a ( π 2 )
and ω a = aω 1 . If a > 0, then ω a is positive and increasing (resp. decreasing) on 0, π 2 if Λ < 0 (resp. Λ > 0). Proof. Let a > 0 and ωa (φ) = ω a ( π 2 -φ). To find a function ω a satisfying (3.6) is equivalent to finding ωa satisfying

ωa (φ) = a -Λ φ 0 (cos σ) 2s-1 (sin σ) 1-N σ 0 ωa (θ)(cos θ) 1-2s (sin θ) N -1 dθdσ in 0, π 2 .
We define the operator T on C([0, π 2 ]) by

T [w](φ) = a -Λ φ 0 (cos σ) 2s-1 (sin σ) 1-N σ 0 w(θ)(cos θ) 1-2s (sin θ) N -1 dθdσ in 0, π 2 .
We have that

|T [w -w ](φ)| ≤ |Λ| φ 0 (cos σ) 2s-1 (sin σ) 1-N σ 0 (cos θ) 1-2s (sin θ) N -1 dθdσ sup [0,φ] |(w -w )(θ)|. 1-We first assume that 1 -2s ≥ 0, then φ 0 (cos σ) 2s-1 (sin σ) 1-N σ 0 (cos θ) 1-2s (sin θ) N -1 dθdσ ≤ φ 0 (cos σ) 2s-1 σdσ ≤ π 2 φ 0 (cos σ) 2s-1 sin σdσ ≤ c 2 ,
where c 2 = π 4s , we used here the monotonicity θ ∈ (0, π 2 ) → (sin θ) N -1 and (cos θ)

1-2s ≤ 1. Hence |T [w -w ](φ)| ≤ c 2 sup [0,φ] |(w -w )(θ).
It is therefore straightforward to check by induction that for k ∈ N * ,

|T k [w -w ](φ)| ≤ c k 2 k! sup [0,φ] |(w -w )(θ), (3.7) 
then T k admits a unique fixed point ωa , and uniqueness implies that ωa is also a fixed point of T and it is unique.

2-Assume that 1 -2s < 0. Then φ 0 (cos σ) 2s-1 (sin σ) 1-N σ 0 (cos θ) 1-2s (sin θ) N -1 dθdσ ≤ φ 0 σ 0 dθdσ = φ 2 2 ≤ π 2 8
by there the monotonicity θ ∈ (0, π 2 ) → (cos θ) 1-2s (sin θ) N -1 . Then (3.7) holds and the conclusion follows.

If Λ < 0 (resp. Λ < 0), the function ω a is increasing (resp. decreasing). The fact that ω a = aω 1 is a consequence of the linearity of T and uniqueness.

The following critical exponent corresponds to the sequel of isotropy of solutions of (3.4) in the case = 1,

p * := N + 2s + N 2 + 4(N -s) + 4s 2 -4 N -2s + N 2 + 4(N -s) + 4s 2 -4 . (3.8)
This exponent corresponds to the fact that 2s p * -1 is the positive root of the equation

Q(X) := X 2 + (2s -N )X + 1 -N = 0. (3.9) Theorem 3.3 Assume s ∈ (0, 1), = 1 and p * ≤ p < N N -2s . Then E 1 = {0, ω 1 , -ω 1 },
where ω 1 is a positive solution of (3.4) depending only on the variable φ.

Proof. Step 1. We first prove that under the condition p ≥ p * any element of E 1 does not depend on the variable σ ∈ S N -1 . If ψ is any function defined on S N , we set

ψ(φ) = 1 |S N -1 | S N -1 ψ(φ, σ )dS .
By averaging (3.4) we obtained that ω satisfies

A s [ω] + Λ s,p,N ω = 0 in S N + ∂ω ∂ν s + ω p = 0 in S N -1 , where A s [ω] = 1 λ s (φ)(cos φ) N -1 λ s (φ)(cos φ) N -1 ω φ .
Multiplying the equation by (ω -ω)λ s and integrating over S N + , we obtain

S N -1 (ω -ω)(|ω| p-1 ω -|ω| p-1 ω)dS + π 2 0 S N -1 (ω φ -ω φ ) 2 + 1 cos 2 φ |∇ (ω -ω)| 2 λ s (φ)dS = Λ s,p,N S N + (ω -ω) 2 λ s dS.
(3.10) There holds

S N -1 (ω -ω) ω p -ω p dS = S N -1 (ω -ω)(ω p -ω p )dS + (ω p -ω p ) S N -1 (ω -ω)dS = S N -1 (ω -ω) ω p -ω p dS ≥ 2 -p S N -1 |ω -ω| p+1 dS .
Furthermore, we see that

π 2 0 S N -1 (ω φ -ω φ ) 2 + 1 cos 2 φ |∇ (ω -ω)| 2 λ s (φ)dS ≥ π 2 0 S N -1 |∇ (ω -ω)| 2 dS (cos φ) N -3 λ s (φ)dφ (3.11)
and the inequality is strict unless ω φ = ω φ . By Wirtinger's inequality, there holds

S N -1 |∇ (ω -ω)| 2 dS ≥ (N -1) S N -1 (ω -ω) 2 dS . Since (cos φ) N -3 ≥ (cos φ) N -1 , we obtain π 2 0 S N -1 (ω φ -ω φ ) 2 + 1 cos 2 φ |∇ (ω -ω)| 2 λ s (φ)dS ≥ (N -1) S N + (ω -ω) 2 λ s (φ)dS.
Finally we have that

(Λ s,p,N + 1 -N ) S N + (ω -ω) 2 λ s (φ)dS ≥ 2 -p S N -1
|ω -ω| p+1 dS .

Introducing the polynomial Q defined in (3.9) and setting X = 2s p-1 , then (3.10) becomes

Q(X) S N + (ω -ω) 2 λ s (φ)dS ≥ 2 -p S N -1
|ω -ω| p+1 dS .

Hence if X < X * , where X * is the positive root of Q, then ω -ω = 0 in S N + . If X = X * we deduce that ω(0, θ) = ω(0) = 0. Then we use that fact that the inequality (3.11) is strict unless ω φ = ω φ . If this holds, combining with ω(θ) -ω(0) = 0 we deduce that ω = ω in S N + .

Step 2. We prove that E 1 = {0, ω 1 , -ω 1 }, where ω 1 is a positive solution of (3.4) with = 1, depending only on φ. For this sake, it suffices to prove uniqueness among the radial solutions. If φ → ω(φ) is a solution of (3.4) with = 1, we have

- d dφ (sin φ) 1-2s (cos φ) N -1 dω dφ = Λ s,p,N (sin φ) 1-2s (cos φ) N -1 ω in 0, π 2 dω(0) dφ s + ω(0) p = 0, (3.12)
where dω(0)

dφ s = -lim φ→0 (sin φ) 1-2s dω(φ) dφ .
Since ω ( π 2 ) = 0, by integrating (3.12) we obtain that dω(φ) dφ = Λ s,p,N (sin φ) 2s-1 (cos φ)

1-N π 2 φ ω(θ)(sin θ) 1-2s (cos θ) N -1 dθ (3.13) on 0, π 2 . Therefore for φ ∈ 0, π 2 , ω(φ) = ω( π 2 ) -Λ s,p,N π 2 φ (sin σ) 2s-1 (cos σ) 1-N π 2 σ ω(θ)(sin θ) 1-2s (cos θ) N -1 dθdσ. (3.14) From (3.13), dω dφ s (0) = -Λ s,p,N π 2 0 ω(θ)(sin θ) 1-2s (cos θ) N -1 dθ. (3.15) 
Note that for p < N N -2s , Λ s,p,N > 0. As a parameter we take the value a = ω( π 2 ), and by linearity ω a = aω 1 . We define the mapping F * : R + → R by

F * (a) = dω a dφ s (0) + (ω a (0)) p = a dω 1 dφ s (0) + a p-1 (ω 1 (0)) p .
If dω 1 dφ s (0) ≥ 0, then for any a > 0 we have 1 a F * (a) > 0. Since F * is increasing, there is no solution of (3.12), then no radial solution of (3.4) with = 1, which contradicts Theorem 3.1, which states that there exists a radial solution, even a positive one. Therefore dω 1 dφ s (0) < 0. The mapping a → 1 a F * (a) is increasing and negative at a = 0. Since F * tends to infinity as a → +∞, it follows that there exists a unique a * > 0 such that F * (a * ) = 0, equivalently a unique solution ω := ω a * of (3.12) verifying a * = ω a * ( π 2 ). We end the proof as follows. From Step 1 the solutions ω depends only on φ. Such a solution satisfying ω( π 2 ) > 0 is unique, thus it coincides with the radial positive solution obtained by minimization among radial functions.

Fractional Lane-Emden equation

Theorem 3.4 Assume s ∈ (0, 1), = -1 and p > 1.

1-If p ≤ N N -2s , then E + -1 = {0}. 2-If p > N N -2s , then E + -1 = {0, ω 2 }
, where ω 2 is a positive solution of (3.4) depending only on φ.

Proof.

1-A direct computation implies that Λ s,p,N S N + ωλ s dS + S N + ∂ φ s ωdS = Λ s,p,N S N + ωλ s dS + S N + ω p dS = 0. Since 1 < p ≤ N N -2s
, Λ s,p,N ≥ 0 and the assertion 1 follows. 2-Existence of a unique positive solution depending only on φ. If ω is a solution of (3.4) with = -1 depending only on φ, then

- d dφ (sin φ) 1-2s (cos φ) N -1 ω φ = Λ s,p,N (sin φ) 1-2s (cos φ) N -1 ω in 0, π 2 dω(0) dφ s = ω(0) p . (3.16)
Since ω ( π 2 ) = 0, the identities (3.13), (3.14), and (3.15) obtained by integrating (3.16) are still valid. Because p > N N -2s , we have that Λ s,p,N < 0, hence dω dφ s (0) > 0 from identity (3.15). By linearity, ω a = aω 1 . We define the mapping F from [0, ∞) to (-∞, ∞) by

F (a) = dω a (0) dφ s -ω a (0) p = a dω 1 (0) dφ s -a p-1 ω 1 (0) p .
This implies that a → 1 a F (a) is decreasing, with a positive limit at a = 0, and tends to -∞ when a → +∞. Therefore, F admits a unique positive zero point for some a 0 , and the function ω a 0 is the unique positive solution of (3.4) which depends only on φ.

3-Any positive solution depends only on φ.

Symmetry in the case s = 1 2 . In that case s = 1 2 , the problem (3.4) reduces to

∆ S N ω + Λ 1 2 ,p,N ω = 0 in S N + ∂ω ∂ν -ω p = 0 in S N -1 , (3.17) 
where ∆ S N is the Laplace-Beltrami operator on S N and

Λ 1 2 ,p,N = 1 p -1 1 p -1 + 1 -N .
We denote the coordinates in

R N by (x 1 , • • • , x N ) and by (x 1 , • • • , x N , z), z > 0, the coordinates in R N +1 + . If φ 0 ∈ (0, π 2 )
, let H φ 0 be the hyperplane of R N +1 passing through the (N-1)-plane

D x 1 := (0, x 2 , • • • , x N , 0) ∈ R N +1 : x j ∈ R, j = 2, • • • , N
with angle φ 0 with the hyperplane z = 0. We denote by Γ φ 0 the domain of S N with boundary

H φ 0 ∩ ∂R N +1 + ∩ (x 1 , • • • , x N , z) :
x 1 ≥ 0 and by Γφ 0 the symmetric of this domain with respect to the plane H φ 0 . If ω is a positive solution of (3.4), we define the function

(φ, σ ) → (φ, σ ) := ω(φ, σ ) -ω(2φ 0 -φ, σ ) for (φ, σ ) ∈ (0, φ 0 ) × S N -1 . (3.18)
Since φ can be larger than π 2 , we make the convention that ω(φ, σ ) = ω(π -φ, -σ ) if π 2 < φ < π. The symmetry with respect to H φ 0 is an isometry of R N +1 , hence satisfies

∆ S N + Λ 1 2 ,p,N = 0 in Γ φ 0 = 0 in H φ 0 ∩ S N + (0, •) = ω(0, •) -ω(2φ 0 , •) in S N -1 ∩ {(x 1 , x 2 , ..., x N , 0) : x 1 > 0}.
Since ∂ω ∂ν s = ω p on ∂S N + , the function φ → ω(φ, σ ) is strictly decreasing if (φ, σ ) ∈ (0, φ 0 )×S N -1 for φ 0 small enough. Hence (0, σ ) > 0 in S N -1 ∩ {x = (x 1 , x 2 , ..., x N , 0) : x 1 > 0}, and by the maximum principle we have that > 0 in (0, φ 0 ) × S N -1 . We proceed as in the Gidas-Ni-Nirenberg paper [START_REF] Gidas | Symmetry and related properties via the maximum principle[END_REF]: we denote by φ * the maximum of the φ 0 ∈ (0, π 2 ] such that

ω(φ, σ ) -ω(2φ 0 -φ, σ ) > 0 for (φ, σ ) ∈ (0, φ 0 ) × S N -1 . (3.19) 
We assume by contradiction that φ * < π 2 . Then there exists σ * ∈ S N -1 such that v(φ * , σ * ) = 0. By the Hopf's Lemma, (φ * , σ * ) cannot belong to S N -1 + , hence it belongs to S N + ∩ {z = 0}. Since Hopf's lemma is also valid at this point, we get a contradiction. Therefore φ * = π 2 . As a consequence, ω(0, σ ) -ω(2φ * -φ, σ ) ≥ 0 for all σ ∈ S N -1 ∩ {(0, x 2 , ..., x N , z) : z > 0}.

Similarly, starting the reflexion from x 1 < 0, we get

ω(0, σ ) -ω(2φ * -φ, σ ) ≤ 0 for all σ ∈ S N -1 ∩ {(0, x 2 , ..., x N , z) : z > 0}.
This implies that the gradient of ω alongside the "great circle" S N + ∩ {(0, x 2 , ..., x N , z) : z > 0} is zero, which can be written as

∇ ω • e 1 = 0 on S N + ∩ (0, x 2 , ..., x N , z) : z > 0 .
Performing a rotation we conclude that ∇ (ωφ, σ ) = 0 for all σ ∈ S N -1 . This implies that ω depends only on φ.

Sketch of the proof for s ∈ (0, 1). We perform the same reflection method as in the case s = 1 2 , defining as in (3.18), it satisfies

A s [ ] + Λ s,p,N = 0 in Γ φ 0 = 0 in H φ 0 ∩ S N + (0, •) = ω(0, •) -ω(2φ 0 , •) in S N -1 ∩ {(x 1 , x 2 , ..., x N , 0) : x 1 > 0},
where

A s [ ] = ∆ S N + (1 -2s) cot(φ) φ .
Since ∂ω ∂ν s = ω p on ∂S N + , the function φ → ω(φ, σ ) should be decreasing if (φ, σ ) ∈ (0, φ 0 ) × S N -1 for φ 0 small enough. Let φ * be the maximum of φ 0 ∈ (0, π 2 ] such that (3.19 ) holds. If φ * = π 2 , we are done. If not, we can assume that φ * ∈ (0, π 2 ) and let (φ * , σ * ) be the point verifying (φ * , σ * ) = 0. Note that (1 -2s) cot(•) is always bounded in a neighborhood of (φ * , σ * ). Thus, the Hopf's lemma could be applied and the remaining of the proof is the same as in the case s = Remark. From the unique positive solution ω 2 obtained in 2 in above theorem, the fractional Lane-Emden equation

(-∆) s v -v p = 0 in R N \ {0}
has an explicit self-similar solution U p . From (4.11) and (4.10) below (also see [START_REF] Fall | Semilinear elliptic equations for the fractional Laplacian with Hardy potential[END_REF]Lemma 3.1]), we have that

U p (x) = c p |x| -2s p-1 , where c p = ω 2 (1) = 2 2s Γ N 2 -s p-1 Γ s + s p-1 Γ s p-1 Γ N 2 -s -s p-1 1 p-1 .
Remark. Another approach could be to transform the problem on the half-sphere S N + into a problem on the unit ball B 1 of R N using a stereographic projection from the antipodal point S of the North pole N on S N . This stereographic projection P N is an isomorphism from S N \ {S} onto R N . Then the image of S N + is the unit ball B 1 . It is well known that P N is a conformal diffeomorphism with conformal factor D 4 N -2 , where

D(x) = 2 1 + |x| 2 N -2 2 .
If ω is a solution of (3.17), and if w(x) = ω(σ)D(x) with σ = P -1 N (x). Then the above boundary value follows from the fact that

tan φ = 1 -|x| 2 2|x|
and if ω is defined on S N + , we have that

∂ω ∂ν φ=0 = ∂ω ∂ν |x|=1 + N -2 2 w |x|=1 .
As a consequence, w satisfies

∆ w + 4 (1 + |x| 2 ) 2 Λ 1 2 ,p,N + N (N -2) 4 w = 0 in B 1 ∂ w ∂ν -wp + N -2 2 w = 0 on ∂B 1 .
Strong Maximum Principle and Hopf's Lemma could imply that w > N -2
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p-1 and the standard method of moving planes could be applied to obtain the radial symmetry.

A priori estimates 4.1 The lifting estimates

Our aim in this sections is to obtain the upper bounds for the positive solutions of

(-∆) s v + v p = 0 in Ω \ {0} v = 0 in Ω c , (4.1) 
under the form

|v(x)| ≤ c 3 |x| -2s p-1 for all x ∈ Ω \ {0}, (4.2) 
where Ω ⊂ R N is a bounded regular domain containing the origin.

In order to study the asymptotics of singular solutions near the origin, we use the Caffarelli-Silvestre lifting of v and the Poisson kernel associated to the operator D s by formula (2.3), (2.4). Set

µ s (x) = (|x| + 1) -N -2s . If v ∈ L 1 µs (R N ) := L 1 (R N , µ s dx), then, with ξ = (x, z), u(ξ) = u(x, z) = R N P s (x -y, z)v(y)dy (4.3) satisfies D s u = 0 in R N +1 + , u(•, 0) = v on R N . Proposition 4.1 Assume that p > 1 + 2s N and u is a positive solution of D s u = 0 in R N +1
+ such that v(x) = u(x, 0) satisfies estimate (4.2). Then there exists c 4 > 0 such that

u(x, z) ≤ c 4 |x| 2 + z 2 -s p-1 for all (x, z) ∈ R N × R + . (4.4) 
Proof. Assume that u(•, 0) is nonnegative and satisfies (4.2). If

p > 1 + 2s N , then v ∈ L 1 µs (R N ) and u(x, z) = R N P s (x -y, z)v(y)dy ≤ c 5 R N z 2s (|x -y| 2 + z 2 ) N +2s 2 |y| -2s p-1 dy = c 5 z -2s p-1 R N |y| -2s p-1 (|x z -y| 2 + 1) N +2s 2 dy, (4.5) 
where we take

x z = x z . When 0 ≤ |x z | ≤ 8, we obtain that R N |y| -2s p-1 (|x z -y| 2 + 1) N +2s 2 dy ≤ R N |y| 2 + 1 -N +2s 2 |y| -2s p-1 dy := c 6 < +∞. When |x z | > 8, letting r = 1 2 |x z |, we have that Br(0) |y| -2s p-1 (|x z -y| 2 + 1) N +2s 2 dy ≤ (1 + |x z | 2 ) -N +2s 2 Br(0) |y| -2s p-1 dy = c 7 |x z | -N -2s r N -2s p-1 , Br(xz) |y| -2s p-1 (|x z -y| 2 + 1) N +2s 2 dy ≤ r 2 -2s p-1 Br(xz) |x z -y| 2 + 1 -N +2s 2 dy ≤ c 8 r -2s p-1 1 + r -2s ,
and

R N \ Br(xz)∪Br(0) |y| -2s p-1 (|x z -y| 2 + 1) N +2s 2 dy ≤ c 9 R N \Br(0) |y| 2 + 1 -N +2s 2 |y| -2s p-1 dy ≤ c 10 r -2s p-1 -2s .
Thus, we conclude that for

|x z | ≥ 8, R N |y| -2s p-1 (|x z -y| 2 + 1) N +2s 2 dy ≤ c 11 |x z | -2s p-1 .
As a consequence, we obtain that for

|x z | > 0, u(x, z) ≤ c 12 z 2s (1 + |x z | 2 ) -s p-1 ≤ c 12 (z 2 + |x| 2 ) -s p-1 .
Which ends the proof.

Remark. Since (4.4) can imply (4.2) immediately by taking z = 0, the previous result shows that these two estimates are equivalent when p > 1 + 2s N . Furthermore, if v p ∈ L 1 (Ω),which is always satisfied for = -1, there exists k ≥ 0 such that

Integral estimates

(-∆) s v + v p = kδ 0 in D (Ω). (4.7)
Proof. Without loss of generality, we can assume that

B 2 ⊂ Ω. Let η 0 : R N → [0, 1] be a nonnegative cut-off function in C ∞ c (R N ), equal to 1 in B 1 , vanishing in B c 2 . For 0 < ε < 1 we set ηε (x) = η 0 (εx)(1 -η 0 (x/ε) and denote v ε = ηε v. Then (-∆) s v ε (x) = ηε (x)(-∆) s v(x) + v(x)(-∆) s ηε (x) -c N,s R N (v(x) -v(y))(η ε (x) -ηε (y)) |x -y| N +2s dy, ∀ x ∈ B 1 \ {0}.
Furthermore,

(-∆) s v ε (0) = lim x→0 (-∆) s v ε (x) = -c N,s B 2 ε \Bε v(y)η ε (y) |y| N +2s dy.
We can assume that ξ vanishes in B r and we choose 0 < ε < r/8. By integration, there holds

B 1 ξ(-∆) s v ε dx = B 1 v ε (-∆) s ξ dx. Since v = v ε + (1 -ηε )v and ξ(1 -ηε ) = 0, we have that B 1 [v(-∆) s ξ + v p ξ] dx = B 1 [ξv(-∆) s ηε + (1 -ηε )v(-∆) s ξ] dx -c N,s B 1 \Br R N (v(x) -v(y))(η ε (x) -ηε (y)) |x -y| N +2α dy ξ(x) dx = A 1,ε + A 2,ε + A 3,ε . Since v ∈ L 1 (B 1 ) and |(-∆) s ξ(x)| ≤ c 13 (1 + |x|) -N -2s
for any x ∈ R N and some c 13 > 0, A 2,ε → 0 when ε → 0. We have also for r < |x| < 1 (where ξ(x) may not vanish),

|(-∆) s ηε (x)| ≤ c N,s B 2ε 1 |x -y| N +2s dy + c N,s B 2/ε 1 |x -y| N +2s dy ≤ c 14 ε N (r -2ε) -N -2s + ε 2s ,
for some c 14 > 0 independent of ε. This implies that A 1,ε → 0 when ε → 0. Finally, for x ∈ B 1 \ B r and ε < r 4 , there holds

|A 3,ε | ≤ ξ L ∞ B 1 \Br B 2ε |v(x) -v(y)| |x -y| N +2s dydx + B 1 \Br B c 1 |v(x) -v(y)| |x -y| N +2s dydx ≤ c 15 (r -2ε) -N -2s ξ L ∞ (ε N + 2s ) B 1 v(x) dx + B 2ε v(y)dy + B 1 ε v(y)dµ s (y) ,
where c 15 > 0 is independent of ε. Hence A 3,ε → 0 as ε → 0. This implies (4.6).

If = -1, it follows from [29, Theorem 3] that v p ∈ L 1 (B 1 ) and there exists k ≥ 0 such that (4.7) holds.

If = 1 and we assume now that F := v p ∈ L 1 (B 1 ), the function w = v + G s,1 [F ] is s-harmonic and positive in B 1 \ {0}. By the extension to s-harmonic functions of Bôcher's theorem [START_REF] Li | Maximum principles and Bôcher type theorems[END_REF]Theorem 4], there exists k ≥ 0 such that (-∆) s w = kδ 0 in D (B 1 (0)), and this is (4.7).

A priori estimate for Lane-Emden equation

The following result is proved in [START_REF] Yang | On isolated singularities of fractional semi-linear elliptic equations[END_REF].

Proposition 4.3 Assume that 0 < s < 1, 1 < p < N +2s
N -2s and u is a nonnegative solution of

D s u = 0 in B 1 ∩ R N +1 + ∂ ν s u(•, 0) -u(•, 0) p = 0 in B 1 ∩ R N \ {0}.
Then there exists a constant c 16 = c 16 (N, p, s) > 0 such that

u(x, 0) := v(x) ≤ c 16 |x| -2s p-1 for all x ∈ B 1 2 ∩ R N \ {0}. (4.8)
The upper bound of v comes from the technique used in the proof which is based upon a blow-up argument and a Liouville type theorem only valid in this range of exponents. When v is a radial function, we have a much shorter proof. 

B 1 v p ζ p n (x)dx = B 1 v(-∆) s ζ p n (x)dx.
From [15, Lemma 2.3], there holds

(-∆) s ζ p n = p ζ p -1 n (-∆) s ζ n -K 2 ,
where

K 2 := K 2 (x) = p (p -1) 2 ζ p -2 n (z x ) B 1 (ζ n (x) -ζ n (y)) 2 |x -y| N +2s dy for some z x ∈ B 1 . Hence B 1 v p ζ p n (x)dx = B 1 v(-∆) s ζ p n (x)dx ≤ p B 1 vζ p -1 n (-∆) s ζ n (x)dx. Now B 1 vζ p -1 n (-∆) s ζ n (x)dx = 1 8n <|x|< 1 n vζ p -1 n (-∆) s ζ n (x)dx ≤ 1 8n <|x|< 1 n v p ζ p n (x)dx 1 p 1 8n <|x|< 1 n |(-∆) s ζ n (x)| p dx 1 p . Therefore B 1 v p ζ p n (x)dx = 1 8n <|x|< 1 n v p ζ p n (x)dx ≤ p p 1 8n <|x|< 1 n |(-∆) s ζ n (x)| p dx. Now 1 8n <|x|< 1 n v p ζ p n (x)dx ≥ 1 4n <|x|< 1 2n v p ζ p n (x)dx ≥ ω N 4 N -1 4 N n -N v p 1 2n , and 
1 8n <|x|< 1 n |(-∆) s ζ n (x)| p dx = n 2sp -N 1 8 <|y|<1 |(-∆) s ζ(y)| p dy. Since ζ vanishes in B c 1 , (-∆) s ζ(x) =          c N ,s p.v. B 1 ζ(x) -ζ(y) |x -y| N +2s dy + c N,s ζ(x) B c 1 dy |x -y| N +2s for x ∈ B 1 -c N ,s B 1 ζ(y) |x -y| N +2s dy for x ∈ B c 1 .
Therefore, (-∆) s ζ L k (Bn) is bounded independently of k and n. Combining the previous inequalities, we obtain Taking r = 1 2n , we infer (2.1). Remark. When Ω = B 1 , it is easy to prove that any positive solution v of (4.1) satisfying lim x→0 v(x) = +∞ is radially symmetric and decreasing.

ω N 4 N -1 4 N n -N v p 1 2n ≤ n 2sp -N

Some maximum principles

In this section we recall some fundamental maximum principles which will be used in the sequel. Their proof can be found in [START_REF] Chen | Large solutions to elliptic equations involving fractional Laplacian[END_REF]. Furthermore equality holds if and only if

v(x) = v(x 0 ) for all x ∈ O.
The following corollaries follow from the strong maximum principle. 

(-∆) s v ≤ 0 in O, v = h in O c ,
where h is continuous and bounded in O c . Then

sup x∈O v(x) ≤ sup x∈O c h(x).
Corollary 4.7 Let O ⊂ R N be a bounded regular domain, g : R → R be a continuous nondecreasing function and v j ∈ C(O) (j=1,2) satisfy the two inequalities

(-∆) s v 1 + g(v 1 ) ≥ 0 and (-∆) s v 2 + g(v 2 ) ≤ 0 in O. Assume furthermore that v 1 ≥ v 2 a.e. in O c . Then either v 1 > v 2 in O or v 1 ≡ v 2 in R N .
The next statement proved in [15, Lemma 3.1] is the analogue of the classical local regularity result for the Laplace operator, see also [START_REF] Jin | On a fractional Nirenberg problem, part I: blow up analysis and compactness of solutions[END_REF]Theorem 2.2] for local Schauder estimates.

Lemma 4.8 Assume that w ∈ C 2s+ε (B 1 ) ∩ L 1 µs (R N ) for some ε ∈ (0, 1) satisfies (-∆) s w = f in B 1 ,
where f ∈ C 1 (B 1 ). Then for β ∈ (0, 2s), there exist c 19 , c 20 > 0 such that

w C β ( B1/2 ) ≤ c 19 w L ∞ (B 1 ) + f L ∞ (B 1 ) + w L 1 µs (R N ) and w C 2s+β ( B1/4 ) ≤ c 20 w C β (B 1 2 ) + f C β (B 1 2 ) + w L 1 µs (R N ) .
The next general result proved in [START_REF] Fang | Method of sub-super solutions for fractional elliptic equations[END_REF] is an important tool for obtaining the existence of solutions of semilinear equations. Proposition 4.9 Assume that Ω ⊂ R N is a bounded regular domain, g : R → R is a continuous nondeacreasing function, f ∈ C β (Ω) with β ∈ (0, 1). If there exist a super-solution v and a sub-solution v of (-∆)

s v + g(v) = f in Ω \ {0} v ≥ 0 in Ω \ {0} v = 0 in Ω c (4.9) such that v, v ∈ C 2 (Ω \ {0}) ∩ L 1 (Ω), v ≥ v ≥ 0 in Ω \ {0} and v ≥ 0 ≥ v in Ω c .
Then there exists at least one solution v of (4.9) which satisfies v ≤ v ≤ v in Ω \ {0}.

We end this subsection with some comparison statements. 

then v ≡ 0 in R N .
Proof. The function x → w(x) := |x| 2s-N + 1 is s-harmonic in R N \ {0} and for any ε > 0 the function v -εw is s-subharmonic in R N \ {0} and negative in B c R for R > 0 large enough and in B δ for δ > 0 small enough. Taking O = B R \ B δ and h = 0 in Corollary 4.6, it implies that for any ε > 0, 0 ≤ v ≤ εw in R N \ {0}.

Thus passing to the limit as ε → 0 implies the claim.

As a variant of this result we have Corollary 4.11 Let Ω ⊂ R N be a bounded regular domain containing the origin, g : R + → R + be a continuous function such that g(0) = 0 and h be a nonnegative function bounded in R N \ Ω.

If v is a nonnegative solution of

(-∆) s v + g(v) = 0 in Ω \ {0}, v = h in Ω c , satisfying lim x→0 v(x)|x| N -2s = 0. Then v ≤ h L ∞ in R N .

Fractional Hardy operator

For τ ∈ (-N, 2s), we define C s (τ ) by the expression

C s (τ ) = 2 2s Γ( N +τ 2 )Γ( 2s-τ 2 ) Γ(-τ 2 )Γ( N -2s+τ 2 ) = - c N,s 2 R N |e 1 + z| τ + |e 1 -z| τ -2 |z| N +2s dz,
where

e 1 = (1, 0, • • • , 0) ∈ R N .
Since the function Γ is infinite at 0, C s vanishes at 0 and 2s -N , i.e.

C s (0) = C s (2s -N ) = 0.
The role of C s (τ ) is enlighted by the following identity [START_REF] Chen | The Poisson problem for the fractional Hardy operator: distributional identities and singular solutions[END_REF] (-∆) Let

s |x| τ = C s (τ )|x| τ -2s for all x ∈ R N \ {0}.
c p =    C s (τ p ) 1 p-1 if 1 + 2s N < p < N N -2s -C s (τ p ) 1 p-1 if p > N N -2s , (4.10) 
then the function U p expressed by

U p (x) := c p |x| -2s p-1 in R N \ {0}, (4.11) satisfies, for 1 + 2s N < p < N N -2s , (-∆) s U p + U p p = 0 in R N \ {0},
and for p > N N -2s

(-∆) s U p = U p p in R N \ {0}.
The fractional Hardy operator is defined by

L s µ v(x) = (-∆) s v(x) + µ |x| 2s v(x), under the condition µ ≥ µ 0 := -2 2s Γ 2 ( N +2s 4 ) Γ 2 ( N -2s 4 )
.

It is shown in [START_REF] Chen | The Poisson problem for the fractional Hardy operator: distributional identities and singular solutions[END_REF] that the linear equation

L s µ v = 0 in R N \ {0}
has two distinct radial solutions Φ µ and Γ µ defined by

Φ µ (x) =    |x| τ -(µ) if µ > µ 0 |x| -N -2s 2 ln 1 |x| if µ = µ 0 and Γ µ (x) = |x| τ + (µ) ,
where the exponents τ -(µ) ≤ τ + (µ) verify the relations

τ -(µ) + τ + (µ) = 2s -N for all µ ≥ µ 0 , τ -(µ 0 ) = τ + (µ 0 ) = 2s-N 2 , τ -(0) = 2s -N, τ + (0) = 0, lim µ→+∞ τ -(µ) = -N and lim µ→+∞ τ + (µ) = 2s.
In the remaining of the paper and when there is no ambiguity, we use the notations τ + = τ + (µ), τ -= τ -(µ). The following inequalities are proved in [START_REF] Chen | The Poisson problem for the fractional Hardy operator: distributional identities and singular solutions[END_REF],

C s (τ ) + µ > 0 for τ ∈ (τ -, τ + ) and C s (τ ) + µ < 0 for τ ∈ (-N, τ -) ∪ (τ + , 2s). Definition 3.1 We denote by W s (Ω) the space of functions v ∈ L 1 (R N , dµ s ) such that v Ω ∈ L 2 (Ω) which satisfy E s Ω,Ω (v, v) < +∞ for some domain Ω ⊂ R N
with Ω ⊂⊂ Ω , where we have set

E s A,B (v, w) = c N,s 2 A×B (v(x) -v(y))(w(x) -w(y)) |x -y| N +2s dxdy.
We define W s * (Ω) as the space of functions v ∈ L 1 (R N , dµ s ) such that v| Ω\B ∈ W s (Ω \ B ) for every > 0.

The comparison principle for the fractional Hardy operator is the following, see [START_REF] Chen | The Poisson problem for the fractional Hardy operator: distributional identities and singular solutions[END_REF]Lemma 4.11],

Lemma 4.12 Let v ∈ W s * (Ω) satisfy L s µ v ≥ 0 in Ω \ {0} and v ≥ 0 in R N \ Ω, lim inf x→0 v(x) Φ µ (x) ≥ 0. Then v ≥ 0 in R N .
As an application we have the following Liouville type result.

Corollary 4.13 Let 0 < s < 1 and p > 0. If v is a solution of

(-∆) s v + |v| p-1 v = 0 in R N \ {0}, (4.12 
)

satisfying lim x→0 |x| N -2s v + (x) = 0 and lim |x|→+∞ |x| τ 0 v + (x) = 0, (4.13) 
for some τ 0 ∈ (0, 2s) ∩ [2s(p + 1) -N p, +∞), then v + ≡ 0.

Proof. Let ε > 0 and

w ε (x) = ε(|x| 2s-N + 1) + ε p+1 |x| τ 0 for x ∈ R N \ {0}. Then w p ε (x) ≥ ε p (|x| (2s-N )p + 1), and (-∆) s w ε (x) + w p ε (x) = ε p+1 C s (τ 0 )|x| τ 0 -2s + w p ε (x) ≥ ε p εC s (τ 0 )|x| τ 0 -2s + |x| (2s-N )p + 1 , (4.14)
where C s (τ 0 ) < 0. Since τ 0 ∈ (0, 2s) ∩ [2s(p + 1) -N p, +∞), we have that τ 0 -2s ≥ (2s -N )p. Thus, taking ε > 0 small enough we infer that the right-hand side of (4.14) is nonnegative. Hence w ε is a supersolution of (4.12), larger than v at 0 and at ∞. Thus v ≤ w ε . Letting ε → 0 yields the claim. .

Emden-Fowler equation with Dirac mass

The Emden-Fowler equation with right-hand side measure is studied in [START_REF] Chen | Semilinear fractional elliptic equations involving measures[END_REF] and [START_REF] Chen | Weakly and strongly singular solutions of semilinear fractional elliptic equations[END_REF]. A particular case which is important in our present study is the following problem

(-∆) s v + v p = kδ 0 in D (Ω) v = 0 in Ω c , (4.15) 
where Ω ⊂ R N is a bounded domain containing the origin. We set

X s,Ω = ζ ∈ C(R N ) : ζ = 0 in Ω c , |(-∆) s ζ| ∈ L ∞ (R N ), |(-∆) s ε ζ| ≤ φ if 0 < ε ≤ ε 0 ,
where

(-∆) s ε ζ(x) = |x-y|>ε ζ(x) -ζ(y) |x -y| N +2s dy and φ ∈ L 1 (Ω, d ∂Ω dx) with d ∂Ω (x) = dist (x, Ω c ).
The following result is proved in [START_REF] Chen | Semilinear fractional elliptic equations involving measures[END_REF].

Proposition 4.14 Let 0 < p < N N -2s , then for any k ≥ 0 there exists a unique function

v = v k belonging to L 1 (Ω) such that v p k ∈ L 1 (Ω, d ∂Ω dx), satisfying Ω v k (-∆) s ζ + v p k ζ dx = kζ(0) for all ζ ∈ X s,Ω v k = 0 in Ω c
and the following estimate holds kG s,Ω (x, 0) -c 21 k p ≤ v k (x) ≤ kG s,Ω (x, 0) ≤ kG s (x, 0) for all x ∈ Ω \ {0}, (4.16)

where c 21 > 0, G s,Ω and G s denote the Green functions of (-∆) s in Ω and R N respectively. Furthermore, the mapping k → v k is increasing and it is stable in the sense that if {ρ } is a sequence of nonnegative functions with compact support in Ω converging to kδ 0 in the sense of distributions in Ω, then the sequence of solutions v := v ρ of

(-∆) s v + v p = ρ in D (Ω), v = 0 in Ω c , converges to v Ω,k uniformly on any compact subset of Ω \ {0}, and v ρ converges to v Ω,k in L p (Ω, d ∂Ω dx). Since k → v k is increasing, we set v ∞ (x) = lim k→+∞ v k (x) for all x ∈ Ω \ {0}. Proposition 4.15 Let 0 < p < N N -2s , then 1-If 0 < p ≤ 1 + 2s N , then v ∞ (x) = ∞ for all x ∈ Ω. 2-If 1 + 2s N < p < N N -2s , then v ∞ is a positive solution of (-∆) s v + v p = 0 in Ω \ {0}, v = 0 in Ω c , (4.17) satisfying lim x→0 |x| 2s p-1 v ∞ (x) = c p , (4.18) 
and

U p (x) -c * ≤ v ∞ (x) ≤ U p (x) for all x ∈ Ω \ {0}, (4.19) 
where c * > 0, c p and U p are defined in (4.10) and (4.11) respectively.

Proof.

When 1 + 2s N ≥ 2s N -2s , the above result is proved in [16, Theorem 1.1], but when 1 + 2s N < 2s N -2s the situation is not yet completely clarified [START_REF] Chen | Weakly and strongly singular solutions of semilinear fractional elliptic equations[END_REF]Theorem 1.2]. In this proof, we give a proof to overcome this gap.

To distinguish the effect of domain, we replace v k by v Ω,k and for simplicity in the proof of this proposition, we set

v 0,k = v R N ,k , v 0,∞ = v R N ,∞ and v 1,k = v B 1 ,k , v 1,∞ = v B 1 ,∞ .
From [START_REF] Chen | Semilinear fractional elliptic equations with measures in unbounded domain[END_REF]Theorem 1.4] for Ω = R N , there holds

(i) If p ∈ 0, 1 + 2s N , then v 0,∞ (x) = ∞ for all x ∈ R N \ {0}; (ii) If p ∈ 1 + 2s N , N N -2s ), then v 0,∞ (x) = U p (x) = c p |x| -2s p-1 , x ∈ R N \ {0}.
Assume that B 1 ⊂ Ω, then it follows by the comparison principle that for any k > 0,

v 1,k ≤ v Ω,k ≤ v 0,k in R N \ {0}. (4.20) 
Moreover, we see that v 1,k is radially symmetric and decreasing with respect to |x|, and

lim x→0 v 1,k (x)|x| N -2s = c N k.
Step 1: we prove that v Ω,∞ is infinite everywhere in Ω when p ∈ (0, 1

+ 2s N ]. Since the mapping k → v 1,k is monotone, if there is one point x 0 ∈ B 1 \ {0} such that lim k→+∞ v 1,k (x 0
) is finite,, then up to changing x 0 we can assume that lim

k→+∞ v 1,k (z) < ∞ for all z such that |z| ≥ |x 0 | -for some > 0. Hence v p 1,k (x 0 ) = c N,s |y|<|x 0 |- v 1,k (y) -v 1,k (x 0 ) |y -x 0 | N +2s dy + c N,s P.V. |y|>|x 0 |- v 1,k (y) -v 1,k (x 0 ) |y -x 0 | N +2s dy = A k + B k . Since v 1,k (y) is uniformly bounded in B 1 \ B |x 0 |-, the term B k remains bounded too. If there exists y 0 ∈ B |x 0 |-\{0} such that lim k→+∞ v 1,k (y 0 ) = ∞ then lim k→+∞ v 1,k (y) = ∞ for all y ∈ B y 0 \{0}, hence A k → ∞ which contradicts the fact that v p 1,k (x 0 ) is uniformly bounded. Consequently, (i) either lim k→+∞ v 1,k (x) = ∞ for all x ∈ B 1 \ {0}, (ii) or lim k→+∞ v 1,k (x) := v 1,∞ (x) < ∞ for all x ∈ B 1 \ {0}. Let us assume that (ii) occurs. Then v 1,∞ is a classical solution of (-∆) s v + v p = 0 in B 1 \ {0} v = 0 in B c 1 . (4.21) 
Let η 0 : R N → [0, 1] be a smooth, radially symmetric function such that

η 0 = 1 in B 1 2 and η 0 = 0 in B c 3 4 
.

Set ṽ = v 1,k η 0 for k ≤ ∞.
A straightforward calculation shows that there exists c 22 > 0 independent of k, such that

|(-∆) s ṽ(x) + ṽp (x)| ≤ c 22 (1 + |x|) -N -2s for all x ∈ R N \ {0}.
Therefore there exists l 0 = l 0 (N, s, p) > 0 such that

(-∆) s (2ṽ + l 0 ) + (2ṽ + l 0 ) p > 0 in R N \ {0}.
Hence 2ṽ + l 0 is a positive super solution of

(-∆) s v + v p = 0 in R N \ {0}.
From ( [START_REF] Chen | Weakly and strongly singular solutions of semilinear fractional elliptic equations[END_REF]) we have that for any finite k > 0

lim x→0 v 0,k (x) v 1,k (x) = 1 and lim |x|→+∞ v 0,k (x) = 0.
The comparison principle applies and we obtain that for any k > 0, there holds

v 0,k ≤ 2ṽ + l 0 in R N \ {0}. Since p ∈ (0, 1 + 2s N ] it is proved in ([16]) that lim k→+∞ v 0,k (x) = ∞ for all x ∈ R N \ {0}, which is a contradiction. Therefore v 1,∞ ≡ ∞. Since v 1,k ≤ v Ω,k ≤ v 0,k we infer that v Ω,∞ ≡ ∞.
Step

2: Asymptotics of v Ω,∞ for 1 + 2s N < p < N N -2s . If 1 + 2s N < p < N N -2s , it is proved in ([16]) that lim k→+∞ v 0,k = U p .
Let H s be the s-harmonic extension of U p in B 1 , i.e.

(-∆) s H s = 0 in B 1 , H s = U p in B c 1 .
Then H s is bounded and positive in B 1 . Note that H s ≥ v 0,k in B c 1 for any k > 0. We define

W k in R N \ {0} by W k = v 0,k -H s .
Then there exists a sequence {r k } ⊂ (0, 1) such that r k → 1 and W k (x) > 0 for 0 < |x| < r k . Actually, this is due to the fact that for any k > 0

v 0,k = c N k|x| 2s-N (1 + o(1)) as x → 0 and lim k→+∞ v k = 0.
Moreover, W k is a subsolution of (4.21). Therefore, comparison principle implies that for any

k > 0 v Ω,k ≥ v 1,k ≥ W k in B 1 \ {0}.
Passing to the limit as k → +∞, we have that

v Ω,∞ ≥ v 1,∞ ≥ U p -H s in B 1 \ {0},
and from (4.20

) letting k → +∞, we obtain that v Ω,∞ ≤ v 0,∞ = U p in B 1 \ {0}.
As a consequence, we have that

U p -sup R N H s ≤ v Ω,∞ ≤ U p in B 1 \ {0},
which also implies (4.18).

The next result leads to an integral criteria for characterizing positive solutions of Emden-Fowler equations with strong singularity without a priori estimate. Proposition 4.16 Assume p ∈ (0, N N -2s ) and B 1 ⊂ Ω. If v is a positive solution of (4.17) such that

B 1 v p dx = +∞, (4.22) 
then v ≥ v 1,k in B 1 \ {0} for any k > 0, where v 1,k is the solution of (4.17). As a consequence,

v ≥ v 1,∞ . Proof. Let α > 1, then w k = α -1 p-1 v 1,k satisfies (-∆) s w k + αw p k = α -1 p-1 kδ 0 in B 1 w k = 0 in B c 1 . (4.23) 
The equation satisfied by v can be written under the form

(-∆) s v + αv p = (α -1)v p in Ω \ {0} v = 0 in Ω c .
From (4.22) and regularity of v in Ω \ {0}, for any ε ∈ (0, 1) there holds

Bε v p dx = +∞.
Hence for any k > 0, there exists = (ε) > 0 such that (α -1)

Bε (min{v, }) p dx = k.
Let ṽε be the unique solution of

(-∆) s v + αv p = (α -1) min{v, } p χ Bε in B 1 v = 0 in B c 1 .
Note that ṽε is bounded in B 1 .

The comparison principle (see Corollary 4.7) shows that for any l > 0,

v ≥ ṽε in R N \ {0}. Since ε → ∞ when ε → 0 and (α -1)(min{v, }) p χ Bε α -1 p-1 kδ 0 ,
then it follows by Proposition 4.14 that ṽε converges to the solution w k of (4.23). Thus, we deduce that v ≥ α

-1 p-1 v 1,k .
Since k > 0 is arbitrary, we infer the claim.

In the following we establish a local integral a priori estimate Proposition 4.17 Let p > 1 + 2s N and v be a nonnegative solution of (4.17). Then for any 1 ≤ q < p 1+ 2s N , there holds

B 1 2 v q dx 1 q ≤ c 23 + c 24 Ω\B 1 2 vdx,
where c 23 and c 24 are positive constants depending on p, q, s and N .

Proof.

We use the same test function ζ as in the proof of Proposition 4.4 and we set ζn

(x) = ζ(2 n x) and Γ n = B 2 -n-1 \ B 2 -n-2 , Γn v p dx ≤ Γn v p ζn dx = Ω (-∆) s ζn vdx ≤ 2 2ns (-∆) s ζ L ∞ (R N ) v L 1 (Ω) . Then Γn v q dx ≤ Γn v p dx q p Γn dx 1-q p ≤ c 25 2 -N p p-q(1+ 2s 
N ) n (-∆) s ζ q p L ∞ (R N ) v q p L 1 (Ω) . Since 1 ≤ q < p 1+ 2s N , we set α 0 = N p p -q(1 + 2s N ) > 0 by our assumption that q < p 1+ 2s N .
Summing the above inequalities from n = 0 to +∞, we derive

B 1 2 v q dx ≤ 2 α 0 c 25 2 α 0 -1 (-∆) s ζ q p L ∞ (R N ) v q p L 1 (Ω) , 36 therefore B 1 2 v q dx p q ≤ 2 α 0 c 25 2 α 0 -1 p q (-∆) s ζ L ∞ (R N ) v L 1 (Ω) ≤ c 26 v L 1 (Ω\B 1 2 ) + c 27 B 1 2 v q dx 1 q , (4.24) 
where c 26 and c 27 are positive constants depending on N , p, q and s.

If we set X = v q p L q (B 1 2 
) , (4.24) becomes

X p ≤ c 26 v L 1 (Ω\B 12 ) + c 27 X.
Standard algebraic computations combined with a convexity argument lead to

v L q (B 1 2 ) ≤ c 1 p-1 27 + c 26 (p -1)c 27 v L 1 (Ω\B 1 2 
) .

We complete the proof.

A priori estimate for Emden-Fowler equation

Without loss of generality, we can assume that B 1 ⊂ Ω ⊂ Ω ⊂ B for some > 1. The main estimate is the following Proposition 4.18 Assume that s ∈ (0, 1), p > 1 + N 2s and v is a nonnegative function satisfying (4.17). Then there exists a constant c 28 = c 28 (N, p, s) > 0 such that v(x) ≤ c 28 |x|

-2s p-1 for all x ∈ B 1 2 \ {0}. (4.25) 
Proof. The proof follows the technique introduced by Gidas and Spruck in [START_REF] Gidas | A priori bounds for positive solutions of nonlinear elliptic equations[END_REF] dealing with the classical Lane-Emden equation and extended to the fractional Lane-Emden equation in [START_REF] Jin | On a fractional Nirenberg problem, part I: blow up analysis and compactness of solutions[END_REF] and [START_REF] Yang | On isolated singularities of fractional semi-linear elliptic equations[END_REF]. Only the final argument is different and specific to the Emden-Fowler equation. We assume by contradiction that there exists a sequence {x k } ⊂ B 1 \ {0} converging to 0 such that

|x k | 2s p-1 v(x k ) = max |x k |≤|x|≤1 |x| 2s p-1 v(x) → +∞ as k → +∞.
We set

φ k (x) = |x k | 2 -|x -x k | 2s p-1 v(x), φ k (x k ) = max |x-x k |≤ |x k | 2 φ k (x). Since (2ν k ) 2s p-1 v(x k ) = φ k (x k ) ≥ φ k (x) ≥ ν 2s p-1 k v(x) for all x ∈ B ν k (x k ), which implies 2 2s p-1 v(x k ) ≥ v(x) if |x -xk | ≤ ν k . Since 1 2 |x k | ≥ 1 2 |x k | -|x k -x k |, we obtain |x k | 2s p-1 v(x k ) ≥ |x k | 2s p-1 v(x k ) ≥ |x| 2s p-1 v(x) for all x ∈ B 1 \ B |x k | and (2ν k ) 2s p-1 v(x k ) = φ(x k ) ≥ φ(x k ) ≥ |x k | 2 2s p-1 v(x k ) → +∞ as k → +∞.
Therefore,

w k (y) ≤ 2 2s p-1 for all |y| ≤ r k := (v(x k )) p-1 2s ν k .
As in [START_REF] Yang | On isolated singularities of fractional semi-linear elliptic equations[END_REF] we define the function W k by

W k (y, z) = 1 v(x k ) v y (v(x k )) p-1 2s + xk , z (v(x k )) p-1 2s
for all (y, z)

∈ Ω k \ {(ξ k , 0)},
where

Ω k = (y, z) ∈ R N +1 + : y (v(x k )) p-1 2s + xk , z (v(x k )) p-1 2s
∈ Ω × (0, 1)

and

ξ k = -(v(x k )) p-1 2s xk .
We set

w k = W k (•, 0) and O k = Ω k ∩ ∂R N +1 + . The function W k satisfies D s W k = 0 in Ω k \ {(ξ k , 0)} ∂ ν s W k (•, 0) + W k (•, 0) p = 0 in O k \ {(ξ k , 0)} W k (•, 0) = 0 in O c k ,
where It is a consequence of the Harnack inequality [37, Proposition 2.2] and the invariance of the problem by scaling. From this inequality follows a local regularity estimate of W k , independent of k already obtained in [START_REF] Yang | On isolated singularities of fractional semi-linear elliptic equations[END_REF] that we recall

W k W 1,2 (B R ×(0,R),z 1-2s ) + W k C α (B R ×[0,R]) + w k C 2,α (B R ) ≤ C(R)
for some α > 0 and any R > 0, where W 1,2 (B R × (0, R), z 1-2s ) denotes the weighted Sobolev space with weight z 1-2s dxdz. Therefore there exists a subsequence of {W k } still denoted by {W k } and a nonnegative bounded function W such that

W k → W weakly in W 1,2 (R N +1 + , z 1-2s ) and in C s loc (R N +1 +
) and such that w k → w := W (•, 0) ∈ C 2 loc (R N ) . Therefore the functions W , w satisfy w(0) = 1 and, because of (4.26), it is a nonnegative and bounded solution of

D s W = 0 in R N +1 + ∂ ν s W (•, 0) + W (•, 0) p = 0 in R N .
By Theorem 2.1 w belongs to L 1 µs (R N ), thus ∂ ν s W (•, 0) = (-∆) s w and w satisfies (4.12). By Corollary 4.13 such a function cannot exist. This implies that (4.25) holds.

The next statement is a surprising consequence of Proposition 4.18. Set m = r -τ + (μ) v(r). For any ε > 0 the function w ε,m := εΦ μ + mΓ μ satisfies L s μw ε,m = 0. Therefore the function w ε,m -u satisfies in turn

L s μ(w ε,m -v) = -g ≥ 0 in B r \ {0}.
This function is nonnegative in R N \ B r and there holds

lim inf x→0 (w ε,m -u)(x) Φ μ(x) = ε > 0.
By Lemma 4.12, w ε,m -v ≥ 0. Letting ε → 0 yields v(x) ≤ mΓ μ(x). Thus (4.27) does not hold and no such μ exists, which implies the claim.

5 Singularity of solutions 5.1 Energy method and limit set

The estimates (4.8) and (4.25) combined with the lifting estimate (4.4) allow to use an energy method to describe the behaviour of signed solutions of (3.2). Furthermore, this energy method does not depend of the signs of solutions, even if the bounds do. If we set

u(ξ) = u(r, σ) = r -2s
p-1 w(t, σ) with t = ln r (5.1) and w(t, σ) = w(t, σ , φ). Then w satisfies

w tt + Θ s,p,N w t + Λ s,p,N w + A s [w] = 0 in R × S N + ∂w ∂ν s + |w| p-1 w = 0 in R × S N -1 ,
where Θ s,p,N and Λ s,p,N are defined in (3.5) and

∂w ∂ν s (t, σ ) = -lim φ→0 sin φ) 1-2s w φ (t, σ , φ) .
We define the negative (resp. positive) trajectory of w by

T -[w] = w(t, •), t ≤ 0 , respectively T + [w] = w(t, •), t ≥ 0 .
The trajectory of w denoted by

T [w] = T -[w] ∪ T + [w].
We also define the α-limit set Γ -[w] and the ω-limit set Γ + [w] of a trajectory by

Γ -[w] = t≤0 {w(τ, •), τ ≤ t} X and Γ + [w] = t≥0 {w(τ, •), τ ≥ t} X , where X = ζ ∈ C s (S N + ) : ζ(•, 0) ∈ C 2 (S N -1
) . If we assume that the set {w(t,

•)} is bounded in R -× S N + (resp. in R + × S N + ), its trajectory T -[w] (resp. T + [w]) is uniformly bounded in ζ ∈ C α (S N + ) : ζ(•, 0) ∈ C 2+α (S N -1 )
. By Ascoli's theorem they are relatively compact in X. By the general theory of limit sets, Γ ± [w] are compact and connected subsets of X. We first give a general result about these limit sets under the assumption that the solutions are signed and satisfy a priori estimate which is indeed only proved for nonnegative solutions. for some c 31 > 0, then Γ -[w] (resp. Γ + [w]) is a nonempty compact connected subset of the set E , which is the set of solutions of (3.4).

Proof. We give the proof for Γ -[w], the case Γ + [w] being the same up to changing t in -t.

We define the energy function

I [w](t) = 1 2 S N + |∇ w| 2 -Λ s,p,N w 2 -w 2 t dµ s - p + 1 S N -1 |w| p dS .
The function w is bounded in C 2 (S N + × (-∞, -1]) and there holds

d dt I [w](t) = p - 2s(p + 1) p -1 S N + w 2 t dµ s = Θ s,p,N S N + w 2 t dµ s . (5.3) 
Since p = N +2s N -2s , Θ s,p,N = 0, and we have the damping estimate

S N + w 2 t dµ s < +∞.
We conclude by using the uniform continuity of w t that w t (t, •) → 0 uniformly on S N + when t → -∞. Let ω ∈ Γ -. There exists a sequence {t n } converging to -∞ such that w(t n , •) → w uniformly on S N + , and since w t (t, •) → 0 uniformly on S N + , for any T > 0, w(t,

•) → w uniformly on [t n -T, t n + T ] × S N + . Let ζ ∈ C 2 (S N + ) such that ∂ ν s ζ = 0, then S N + (w t (T + t n , •) -w t (T -t n , •)) ζdµ s + Θ s,p,N S N + (w(T + t n , •) -w(T -t n , •)) ζdµ s -Λ s,p,N T -T S N + w(t n + t, •)ζdµ s dt - T -T S N + w(t n + t, •)A s [ζ]dµ s dt + T -T S N -1 (|w| p-1 w)(t n + t, •)ζdS dt = 0. Letting t n → -∞ yields T -T S N + (Λ s,p,N ωζ + ωA s [ζ]) dµ s dt - T -T S N -1 |ω| p-1 ωζdS dt = 0.
This implies that ω is a weak solution of (3.4) and therefore a strong one.

Remark. The case p = N +2s N -2s is not covered since the damping coefficient Θ s,p,N in (5.3) vanishes.

Singularities of Emden-Fowler equation

The next result concerns the singularities of solutions to the Emden-Fowler equations.

Theorem 5.2 Assume that s ∈ (0, 1), = 1 and u

∈ C 1 R N +1 + \ {(0, 0)} ∩ C 2 (R N +1 +
) is a solution of (3.2) satisfying (5.2), v = u(•, 0) and w is defined by (5.1). The following convergences hold when t → -∞.

1-a If p ≥ N

N -2s , then w(t, •) converges uniformly in S N + to 0, v ≡ 0, hence u is a smooth solution; 1-b If 1 + 2s N < p < N N -2s and u is nonnegative, then either w(t, •) converges uniformly in S N + to ω 1 or it converges to 0;

1-c If p * ≤ p < N N -2s , then w(t, •) converges uniformly in S N + to some ∈ {0, ω 1 , -ω 1 }; 1-d If 1 < p ≤ 1 + 2s
N , and u is nonnegative, then w(t, •) converges uniformly in

S N + to 0. 2. Let 1 < p < N N -2s , u is nonnegative, if w(t, •) converges uniformly in S N + to 0, then there exists k ∈ R + such that e (N -2s p-1 )t w(t, σ , φ) → k sin 2s (φ) uniformly in S N + .
If k = 0, then w ≡ 0 and u is smooth.

Proof. 1-a. If p ≥ N N -2s , the set E 1 is reduced to the zero function. Therefore w(t, •) converges to 0 when t → -∞. By (3.3) the function ũ(t, σ) = u(r, σ) with t = ln r satisfies

ũtt + (N -2s)ũ t + A s [ũ] = 0 in (-∞, 0) × S N + ∂ ũ ∂ν s + |ũ| p-1 ũ = 0 in (-∞, 0) × S N -1 .
(5.4)

Since 2s

p-1 ≤ N -2s, we have that ũ(t, •) = o(e (2s-N )t ) when t → -∞. Let m = max |ũ(0, •)|. For any ε > 0, t → εe (2s-N )t + m is a supersolution of (5.4), larger than ũ at t = 0 and t → -∞. Hence ũ(t, σ) ≤ εe (2s-N )t + m. Letting ε → 0 + yields ũ(t, σ) ≤ m. Similarly ũ(t, σ) ≥ -m, hence ũ is bounded and so is u. Therefore

v = u(•, 0) ∈ L 1 µs (R N ), ∂ ũ ∂ν s = (-∆) s v,
and v is a bounded solution of the fractional Emden-Fowler equation in Ω \ {0} vanishing on Ω c . It is therefore identically 0. By the even extension of u to R N +1 , it follows that u is smooth. is satisfied. If k = 0, then v is identically 0 and u is smooth as in the previous case.

1-b Since

E + 1 = {ω 1 , 0} and is disconnected, the result follows. 1-c Since E 1 = {ω 1 , -ω 1 , 0} and is disconnected, the result follows. 1-d Since E + 1 = {0} the result follows. 2. If u is nonnegative, then v ∈ L 1 µs (R N ),

Singularities for Lane-Emden equation

In the case of Lane-Emden equation we have the following.

Theorem 5.3 Assume that s ∈ (0, 1), = -1, p > 1 and p = N +2s N -2s and u

∈ C(R N +1 + \{(0, 0)})∩ C 2 (R N +1 +
) is a nonnegative solution of (2.2) satisfying (5.2). The following convergences hold when t → ∞. Proof. Assertions 1-a and 1-b follow from Theorem 5.1 and the description of E + -given in Theorem 3.4. Furthermore, by Lemma 4.2 there exists k ≥ 0 such that (4.7) holds with = -1. Observe that v(x) ≥ kG s,Ω (x, 0), where G s,Ω is the Green function of (-∆) s in Ω subject to zero Dirichlet condition in Ω c . If p ≥ N N -2s , then G s,Ω / ∈ L p (B 1 ), therefore k = 0 in that case.

2-a.

Step 1: If w(t, •) converges to 0, we first prove that there exist ε > 0 and c 32 > 0 such that 0 ≤ w(t, σ) ≤ c 32 e εt for all (t, σ) ∈ (-∞] × S N + .

(5.5)

Set ρ(t) = w(t, .) C 0 (S N + ) . If (5.5) does not hold we have that lim sup t→-∞ e -εt ρ(t) = +∞ for all ε > 0.

By [14, Lemma 2.1] there exists a function η ∈ C ∞ (-∞, 0] such that

(i) η > 0, η > 0, lim t→-∞ η(t) = 0; (ii) 0 < lim sup t→-∞ ρ(t) η(t) < +∞; (iii) lim t→-∞ e -εt η(t) = +∞ for all ε > 0; (iv) η η , η η ∈ L 1 ((-∞, 0)); (v) lim t→-∞ η (t) η(t) = lim t→-∞ η (t) η(t) = 0.
(5.6)

We define ψ by w(t, •) = η(t)ψ(t, •), then

ψ tt + 1 ψ t + 2 ψ + A s [ψ] = 0 in (-∞, 0) × S N + ∂ψ ∂ν s -η p-1 ψ p = 0 in (-∞, 0) × S N -1 , (5.7) 
where

1 = Θ s,p,N + 2 η η and 2 = Λ s,p,N + η η Θ s,p,N + η η .
The function ψ is uniformly bounded. Then by standard regularity theory for degenerate elliptic operators (see e.g. [START_REF] Fabes | The local regularity of solutions of degenerate elliptic equations[END_REF]), ψ is bounded in C 2 (-∞, -1]×S N + ). Therefore, the trajectory of 

T -[ψ] := {ψ(t, •) : t ≤ 0} is relatively compact in X = φ ∈ C s (S N + ) : φ(•, 0) ∈ C 2 (S N -1
dt F[ψ](t) = 1 S N + ψ 2 t dµ s - 1 2 2 S N + ψ 2 dµ s - p -1 p + 1 η η p-2 S N -1 ψ p+1 dS , (5.8) 
where

2 = η η Θ s,p,N + η η and F[ψ](t) := 1 2 S N + |∇ w| 2 -2 ψ 2 dµ s - η p-1 p + 1 S N -1 ψ p+1 dS .
By properties (i), (iv) and (v) in (5.6), we have that

η η p-2 = η η η p-1 , 2 , η (t) η(t) ∈ L 1 ((-∞, 0)) as t → ∞. Since F[ψ](t) is bounded independently of t, it follows that 0 -∞ S N + ψ 2 t dµ s dt < +∞ using the regularity estimates it implies that lim t→-∞ S N + ψ 2 t dµ s = 0.
This implies that the convergence of ψ(t n , •) to θ holds in the stronger following way: for any

T > 0, ψ(t, •) → θ uniformly in [t n -T, t n + T ] × S N + . Let ζ ∈ C 2 (S N + ) such that ∂ ν s ζ = 0, then from (5.7), S N + (w t (T + t n , •) -w t (T -t n , •)) ζdµ s + Θ s,p,N S N + (w(T + t n , •) -w(T -t n , •)) ζdµ s -Λ s,p,N T -T S N + ψ(t n + t, •)ζdµ s dt - T -T S N + ψ(t n + t, •)A s [ζ]dµ s dt = 2 T -T S N + η η ψ t (t n + t, •) + 2 ψ(t n + t, •) ζdµ s dt + T -T S N -1 η p-1 ψ p (t n + t, •)ζdS dt.
(5.9)

When t n → -∞, the right-hand side of (5.9) tends to 0. Since ∂ ν s θ = 0 on S N -1 from the equation satisfied by ψ and the convergence of ψ, it follows, as in the proof of Theorem 5.1, that θ satisfies

A s [θ] + Λ s,p,N θ = 0 in S N + ∂θ ∂ν s = 0 in S N -1 .
As Λ s,p,N < 0 we derive θ = 0 by integration, contradiction. Hence (5.5) holds for some ε > 0. The same analysis carried on in Step 1 shows that there exists a nonnegative nonzero element in the limit set of the trajectory of υ * which satisfies the same equation as θ * in (5.10), contradiction. Therefore ε * = z 1 which implies that v is bounded and therefore regular. The function X ε satisfies -X ε -3 X ε -4 X ε ≤ c 34 e (p-1)εt on (-∞, 0].

Since it tends to 0 when t → -∞, X ε is bounded from above by the solution Xε of -X -3 X ε -4 Xε = c 34 e (p-1)εt on (-∞, 0] Xε (0) = X (0), lim t→-∞ Xε (t) = 0.

The solution of this last differential equation is easily computable as we can always assume that (p -1)ε = 2s p-1 -ε (the equality is called the resonance phenomenon) and we have Xε (t) = X ε (0)e Now we take m 0 = -N -2s 2s < 0 and for some r 1 > 0 there holds (-∆) s w m 0 (x) ≥ 0 in B r 1 (0) \ {0}.

Now we assume that Ω ⊂ B r 1 , then εw m 0 is a super solution of (5.11) for any ε > 0 in B r 1 , then comparison principle implies that v ≤ εw m 0 , which by the arbitrary of ε > 0, implies that v = 0.

When Ω is general domain, if v is a nontrivial singular solution of (5.11) in Ω, then by the super and sub solution method, (5.11) in B r 1 has a solution ṽ such that

lim x→0 ṽ v = 1.
Then a contradiction could be obtained. -ω(σ) in S N + ∩ {x 1 < 0}, where σ is the symmetric of σ with respect to the plane x 1 = 0, is a signed solution of (2.2) with = 1. It vanishes on the plane {(x, z) : x 1 = 0}. It could be interesting to see if the condition for existence of such a solution coincides with the condition p < p * . Problem 2. It could be interesting to investigate the type of operators in R N + which could lead by a trace process somehow similar to the one of [START_REF] Caffarelli | An extension problem related to the fractional Laplacian[END_REF] to perturbations of (-∆) s such as (-∆ + mI) s or to Hardy type operators (-∆) s + µ|x| -2s . This could be usefull for studying a wider class of nonlinear semilinear equations involving fractional type-Laplacians. Problem 3. The description of the singular behaviour in the case p = N N -2s is more complicated due to the fact that Λ s,p,N = 0 and the linear blow-up rate 2s -N coincides with the nonlinear blow-up rate 2s p-1 . This phenomenon has been described by Aviles [START_REF] Aviles | Local behavior of solutions of some elliptic equations[END_REF] in the case s = 1. In a very recent article [START_REF] Wei | Local behavior of solutions to a fractional equation with isolated singularity and critical Serrin exponent[END_REF] Wei and Wu proved that the function v either is smooth at 0 or satisfies for some positive explicit constant C(N, s).

Open problems

Problem 4. In an impotant article, Simon [START_REF] Simon | Isolated singularities of extrema of geometric variational problems[END_REF] studied the unique limit problem for bounded solutions of analytic functional. His results were used in [START_REF] Bidaut-Véron | Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations[END_REF] to obtained the precise asymptotics of solutions of -∆u = λe u in B 1 \ {0} ⊂ R 3 with λ > 0 satisfying |x| 2 e u(x) ∈ L ∞ (B 1 2

), or positive solutions of

-∆u = u p + |x| 2 u in B 1 \ {0} ⊂ R N with p > 1 satisfying |x| 2 p-1 ∈ L ∞ (B 1 2 
). The technique was to reduce the problem to a semilinear ellictic equations in an infinite cylinder and to prove that the limit set of the renormalized corresponding solutions was reduced to a single element whatever is the structure of the set of possible limits (or self-similar solutions). It is natural to investigate similar questions concerning where Θ s,p,N and Λ s,p,N are unchanged.
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4 )

 4 The function C s is concave and achieves its maximum in (-N, 2s) for τ = 2s-N 2 with corresponding maximal value 2 2s Γ 2 ( N +2s 4 ) Γ 2 ( N -2s (see[START_REF] Chen | The Poisson problem for the fractional Hardy operator: distributional identities and singular solutions[END_REF] Lemma 2.3]). Furthermore,C s (τ ) = C s (2s -N -τ ) for τ ∈ (-N, 2s),and lim τ →-N C s (τ ) = lim τ →2s C s (τ ) = -∞. Let τ p = -2s p-1 , then we have that for 1 + 2s N < p < N N -2s , τ p ∈ (-N, 2s -N ) and C s (τ p ) > 0 and for p > N N -2s τ p ∈ (2s -N, 0) and C s (τ p ) < 0.

. Since w p- 1 k≤ 2 2 ×

 122 O c k denotes the complement of O k in ∂R N +1 + 2s in B r k , there exists a constant c 29 > 0 depending on N, p and s such that 0 ≤ W k (y, z) ≤ c 29 for all (y, z) ∈ B r k

Corollary 4 . 19

 419 Assume that 1 + 2s N < p < N N -2s . If v is a positive function satisfying (4.17) and Ω v p dx = +∞. v(x) = c p . Proof. By Proposition 4.15 and Proposition 4.16 we have lim inf x→0 |x| 2s p-1 v(x) ≥ c p . Therefore we proceed by contradiction assuming that there exists a nonnegative solution v and μ > 0 such that c p < μ1/(p-1) < lim inf x→0 |x| 2s p-1 v(x) < +∞. (4.27) We can write the equation satisfied by v under the form L s μv = g(x) := μ |x| 2s v -v p . The mapping µ → τ -(µ) is continuous and monotone decreasing from [µ 0 , +∞) onto (-∞, 2s-N 2 ] and τ -(c p-1 p ) = -2s p-1 . Therefore, there exists τ > 2s p-1 such that τ -(μ) = -τ . By (4.25) we have lim inf x→0 |x| τ v(x) = 0 for any τ > 2s p-1 . Choosing τ = τ we see that there exist r, c 30 > 0 such that 0 < -g(x) ≤ c 30 |x| -pτ for any 0 < |x| < r.

Theorem 5 . 1

 51 Assume that s ∈ (0, 1), p ∈ (1, +∞) \ { N +2s N -2s }, = ±1 and u ∈ C(R N +1 + \ {(0, 0)}) ∩ C 2 (R N +1 + ) is a solution of (3.2). If u satisfies |u(x, z)| ≤ c 31 |x| 2 + z 2 -s p-1for 0 < |x| < 1, (resp. for |x| > 1)(5.2)

1- a

 a If p > N N -2s , then w(t, •) converges uniformly in S N + either to ω 1 or to 0.1-b If 1 < p ≤ N N -2s , then w(t, •) converges uniformly to 0 in S N + . 2-a If p > N N -2s and w(t, •) converges to 0, then u is a smooth function in R N +1 +and so is v.2-b If 1 < p < N N -2s , there exists k ≥ 0 such that e (N -2sp-1 )t w(t, σ , φ) → k(sin φ) 2s uniformly in S N + .

2-a. Step 2 .- 1 .

 21 Next we prove that there exist c 33 > 0 such that w(t, σ) ≤ c 33 e 2s p-1 t for all (t, σ) ∈ (-∞, 0] × S N + .The set Q of ε > 0 such that (5.5) holds is a non-empty interval and it admits an upper boundε * which is finite if v is not identically 0. If ε ∈ Q, we set ψ ε (t, •) = e -εt w(t, •)If ε * ∈ Q, we take ε = ε * and denote ψ ε * = ψ * . Then ψ * is bounded and satisfiesψ * tt + * 3 ψ * t + * 4 ψ * + A s [ψ * ] = 0 in (-∞, 0) × S N + ∂ψ * ∂ν s -e (p-1)ε * t ψ * p = 0 in (-∞, 0) × S N -1 ,where * 3 = Θ s,p,N + 2ε * and * 4 = Λ s,p,N + ε * Θ s,p,N + ε * 2 . Because ψ * is bounded, the same analysis as in the previous cases shows that any element θ * in the limit set of the trajectory of {ψ * } is a nonnegative function satisfying *4 θ * + A s [θ * ] = 0 in S N + , ∂θ * ∂ν s = 0 in S N -1 .(5.10)The polynomial P (z) = z 2 + Θ s,p,N z + Λ s,p,N admits two roots z 2 < 0 < z 1 , wherez 1 = 2s p -1 and z 2 = 2s -N + 2s p Notice that 0 < ε * ≤ z 1 since v(0) > 0. If ε * < z 1 ,the limit set is reduced to {0}, hence we proceed as is Step 1, by introducing a function η * which has the same properties as the function η shown in (5.6), except that (5.6)-(ii) is replaced by0 < lim sup t→-∞ ρ * (t) η * (t) < +∞ with ρ * (t) = ψ * (t, .) L ∞ (S N + ) .Defining the function υ * = w * η * which satisfiesυ * tt + * 5 υ * t + * 6 υ * + A[υ * ] = 0 in (-∞, 0) × S N + ∂υ * ∂ν s -e (p-1)ε * t η * p-1 υ * p = 0 in (-∞, 0) × S N -1 , where * 5 = Θ s,p,N + 2ε * + 2 η * η * and * 6 = Λ s,p,N + ε * + η * η * Θ s,p,N + ε * 2 + η * η * .

  If ε * / ∈ Q, then for any ε < ε * the function ψ ε (t, .) = e -εt w(t, •) is bounded, tends to 0 when t → -∞ and satisfiesψ ε tt + 3 ψ ε t + 4 ψ ε + A s [ψ ε ] = 0 in (-∞, 0) × S N + ∂ψ ε ∂ν s -e (p-1)εt ψ p ε = 0 in (-∞, 0) × S N -1 ,where3 = Θ s,p,N + 2ε and 4 = Λ s,p,N + εΘ s,p,N + ε 2 . Put X ε (t) = S N + ψ ε (t, .)dµ s and F ε (t) = S N -1 ψ p ε dS , then X ε + 3 X ε + 4 X ε + e (p-1)εt F ε = 0.The equation Y + 3 Y + 4 Y = 0 admits the two linearly independent solutions Y 1 (t) = e 2s p-1 -ε t and Y 2 (t) = e 2s-N + 2s p-1 -ε t .

2s p- 1

 1 -ε t + c 35 e (p-1)εt

Problem 1 .

 1 Non-radial elements of E 1 can be formally constructed in the following way: setS N +,1 = S N ∩ {(x 1 , ..., x N , z) : x 1 > 0, z > 0}.Construct by minimization a positive function ω satisfyingA s [ω] + Λ s,p,N ω = 0 in S N +,1 ∂ω ∂ν s + ω p = 0 in S N -1 ∩ {x 1 > 0}

c 1

 1 |x| 2s-N (-ln |x|) 2s-N 2s ≤ v(x) ≤ c 2 |x| 2s-N (-ln |x|) 2s-N 2s for all x ∈ B 1 \ {0}. for some constants c 1 , c 2 > 0. We conjecture that the following result holds: either the function v can be extended as a smooth solution at 0, or lim x→0 |x| N -2s (-ln |x|) N -2s 2s v(x) = C(N, s)

u zz + 1 --lim z→0 z 1 - 2 )

 112 2s z u z + ∆ x u + |x| 2 + z 2 u = 0 in R N +1 + 2s u z (x, z) -u p (x, 0) = 0 in B 1 \ {0} ⊂ R N .Assuming that a solution u satisfies (|x| 2 + z 2 ) s p-1 ∈ L ∞ (B 1 and using the variable (5.1) the new function w(t, σ) = r 2s p-1 u(r, σ), t = ln r, satisfiesw tt + Θ s,p,N w t + (Λ s,p,N + ) w + A s [w] = 0 in R × S N + ∂w ∂ν s + w p = 0 in R × S N -1 ,(5.16)

  ) . By (5.6)-(ii) there exist a nonzero nonnegative function θ ∈ C 2 (S N + ) and a sequence {t n } tending to -∞ such that ψ(t n , •) → θ in C 2 (S N + ). If we multiply by ψ t the equation (5.7) which is satisfied by ψ and integrate over S N + , we obtain the following energy formula d

for some explicit constant c 35 depending on the coefficients. This implies Applying Harnack inequality [START_REF] Yang | On isolated singularities of fractional semi-linear elliptic equations[END_REF]Proposition 3.1] we obtain that w(t, •) ≤ c 36 e 2s p-1 t + c 37 e pεt for all t ≤ T 0 .

Because ε can be taken arbitrarily close to ε * , we have that min{pε, 2s p-1 } > ε * , which contradicts the definition of ε * . Hence ε * ∈ Q, which ends the proof of 2-a.

, there exists k ≥ 0 such that (4.7) holds, and

where c 38 > 0.

Proofs of Theorem E-F. Theorem E is Theorem 5.1, Theorem F follows Theorem 5.2 part 2 and Theorem E does Theorem 5.3 part 1-a, 2-a.

Classification of fractional Emden-Fowler equation

Proof of Theorem G. Let v be a nontrivial nonnegative solution of (1.9). It suffices to prove that

If Ω v p dx = +∞, from Proposition 4.16, we have that

If p ∈ 0, 1 + 2s N , then v ∞ = +∞ in Ω, which implies that v can be taken in this case. 

Note that εv ∞ is a super solution of (5.11) for any ε > 0 and by the comparison principle, we have that v ≤ εv ∞ in Ω.

By the arbitrary of ε > 0, we have that v ≤ 0. This is impossible from our setting that v > v ∞ . Therefore, v ≡ v ∞ . Part 3. From Proposition 4.18 we have that v(x) ≤ c 28 |x|

in Ω \ {0}.

When p > N N -2s , we have that -2s p-1 > 2s -N and ε| • | 2s-N is a super solution of (5.11) for any ε > 0, then comparison principle implies that v ≤ ε| • | 2s-N , which by the arbitrary of ε > 0, implies that v = 0.

When p = N N -2s , there holds -2s p-1 = 2s -N . For m ∈ R let ν m be a smooth, radially symmetric function such that

From [13, Proposition 2.1] for m = 0, we denote

where C s (0) < 0 and C s (0) < 0. Then I m > 0 for m < 0, and there exist r 0 ∈ (0, 1 e 2 ] and c 5 > 0 such that for 0 < |x| < r 0 (-∆) s w m (x) -I m |x| -N (-ln |x|) m-1 -J m |x| -N (-ln |x|) m-2 ≤ c 5 |x| -N (-ln |x|) m-3 .