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Institut Denis Poisson, CNRS UMR 7013
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Abstract

We study the isolated singularities of functions satisfying

(E) (−∆)sv±|v|p−1v = 0 in Ω\{0}, v = 0 in RN\Ω,

where 0 < s < 1, p > 1 and Ω is a bounded domain containing the origin. We use the Caffarelli-Silvestre

extension to R+×RN . We emphasize the obtention of a priori estimates and analyse the set of self-similar

solutions via energy methods to characterize the singularities.
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1 Introduction

In the past forty years a large series of articles have been devoted to study of the singular
behaviour of solutions for the following two classes of semilinear equations

−∆v + εvp = 0 in B1 \ {0}, (1.1)

where p > 1, ε = ±1 and vp = |v|p−1v. The first empirical studies of radial solutions to the Lane-
Emden equation (ε = −1) are due to J. Lane and R. Emden when analyzing the structure of
polytropic objects submitted to their gravitational fields. A comprehensive presentation can be
found in Chandrasekhar’s book [11, pp 84-182]. The so-called Emden-Fowler equation (ε = 1),
was treated in details by R. Fowler in the radial case. For some specific values of p (3

2 and 5
2) this

equation appeared in the study of the density of the electronic cloud in the Thomas-Fermi-Dirac
model of atoms (see e.g. [34]).

The study of non-radial solutions started in the heighties in connection with conformal
deformation of a Riemannian metric to a metric with constant scalar curvature (K = 1 or
K = −1 and p = N+2

N−2). The first important results concerning the Lane-Emden equation are

due to Lions [30] in the case 1 < p < N
N−2 who proved that any positive solution of

−∆v − vp = 0 in B1 \ {0} (1.2)

satisfies
v(x) = k|x|2−N +O(1) as x→ 0 (1.3)

when N ≥ 3, (with standard modification if N = 2) and the following holds

−∆v − vp = cNkδ0 ∈ D′(B1).

In the case N
N−2 < p < N+2

N−2 , Gidas and Spruck [24] introduced new powerful methods and
proved that any positive solution of (1.2) satisfies

v(x) ≤ cp|x|−
2
p−1 for x ∈ B 1

2
\ {0}.

As a consequence, a positive solution is either regular at x = 0 or has the following behaviour

v(x) = αN,p|x|−
2
p−1
(
1 + o(1)

)
as x→ 0. (1.4)

When p = N+2
N−2 , the energy method used in [24] failed because of the conformal invariance of the

equation. In [9] a new method of asymptotic symmetry allowed to treat this case showing that
the positive solutions behaved like the radial ones, which in turn were easy to describe because
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of this invariance. Finally, when p = N
N−2 the result of [24] was sharpened by Aviles [2] who

proved that either the positive solutions are smooth or they satisfy

lim
x→0
|x|N−2(− ln |x|)

N−2
2 v(x) =

(N − 2√
2

)N−2
.

The non-radial study of the Emden-Fowler equations started with the works of Brezis and
Lieb who obtained in [5] the universal a priori estimate (also called Keller-Osserman estimate),
valid for signed solutions of

−∆v + vp = 0 in B1 \ {0}, (1.5)

and is expressed as follows:

|v(x)| ≤ c′p|x|
− 2
p−1 for any x ∈ B 1

2
\ {0}.

With this estimate, Brezis and Véron proved in [6] that if p ≥ N
N−2 any solution is at least C2 in

B1. When 1 < p < N
N−2 the precise description of singular solutions was obtained by Véron who

proved that any positive solution v is either smooth, either satisfies (1.3) or (1.4) (with a new
constant positive α̃N,p), all these behaviours being effective. Furthermore when N+1

N−1 ≤ p <
N
N−2

the assumption of positivity could be removed, the sign of k not prescribed in (1.3), and (1.4)
is replaced by there exists ` ∈ R such that

lim
x→0
|x|

2
p−1 v(x) = ` ∈ {α̃N,p,−α̃N,p, 0} as x→ 0.

In the case N = 2, the requirement p ≥ N+1
N−1 (i.e. q ≥ 3) for signed solutions was removed

by Chen, Matano and Véron [14] who proved that for any solution v of (1.5) there exists a
2π-periodic solution of

−ωθθ −
(

2

p− 1

)2

ω + ωp = 0

such that
lim
x→0
|x|

2
p−1 v(x) = lim

r→0
r

2
p−1 v(r, θ) = ω(θ) as r = |x| → 0.

This panorama of the classical Emden equations intended to show what could be expected
when the ordinary Laplacian is replaced by the fractional Laplacian in these equations. If
s ∈ (0, 1) and (−∆)s the fractional Laplacian in RN \ {0} is defined on functions u ∈ C2(RN \
{0}) ∩ L1

µs(R
N ) with µs(x) = (1 + |x|)−N−2s by the expression

(−∆)su(x) = cN,s lim
ε→0

∫
|x−y|>ε

u(x)− u(y)

|x− y|N+2s
dy for x ∈ RN \ {0}, (1.6)

where cN,s = 22sπ−
N
2

Γ(N+2s
2

)

Γ(1−s) . The singularity problem for the fractional Emden equations in a

punctured domain Ω containing B1 is

(−∆)sv + εvp = 0 in Ω \ {0}

v = 0 in Ωc,
(1.7)
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where ε = ±1 and Ωc = RN \ Ω. Some results concerning this equation in the case ε = −1 (the
fractional Lane-Emden equation) have already been obtained in particular in the case p = N+2s

N−2s ,
see [10]. Therein it is proved that either the solution is smooth at 0, or there exists some constant
c ≥ 1 such that

1

c
|x|−

N−2s
2 ≤ v(x) ≤ c|x|−

N−2s
2 for all x ∈ B 1

2
\ {0}.

Furthermore, there exists a radial solution ṽ of (1.7) such that

v(x) = ṽ(|x|)(1 + o(1)) as x→ 0.

In the general case N
N−2s < p < N+2s

N−2s , Yang and Zou obtained in [37] (also in [38]) the analogous
of Gidas and Spruck estimates, namely any positive solution of

(−∆)sv − vp = 0 in Ω \ {0}

v = 0 in Ωc,
(1.8)

either is smooth or satisfies for some constant c > 0

1

c
|x|−

2s
p−1 ≤ v(x) ≤ c|x|−

2s
p−1 for all x ∈ B 1

2
\ {0}.

Concerning the fractional Emden-Fowler equation

(−∆)sv + vp = 0 in Ω \ {0}

v = 0 in Ωc
(1.9)

not so many results are known. The problem

(−∆)sv + vp = µ in D′(Ω)

v = 0 in Ωc,

where µ is a positive bounded Radon measure in Ω, is studied in [15] in a more general framework,
that is by replacing up by a nondecreasing nonlinearity g(u). The particular case where µ = kδ0

and g(u) = up is analyzed in [16]. In particular, the asymptotics of the solutions uk (they are
unique) when k →∞ are thoroughly studied in [16].

The aim of this article is to present a unified analysis of the isolated singularities for problem
(1.7). This analysis is based upon the Caffarelli-Silvestre lifting of the equation which associates
to it the following degenerate elliptic equation in RN+1

+ =
{
ξ = (x, z) : x ∈ RN , z > 0

}
,

div(z1−2s∇u) = 0 in RN+1
+

u(·, 0) = v in RN ∼ ∂RN+1
+ ,

(1.10)

with the property that

(−∆)sv(x) = − lim
z→0

z1−2suz(x, z) := ∂νsu(x, 0).
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The study of (1.7) is replaced by

div(z1−2s∇u) = 0 in RN+1
+

∂νsu(·, 0) + εu(·, 0)p = 0 in Ω \ {0}

u(·, 0) = 0 in RN \ Ω,

(1.11)

and
v = u(·, 0) in RN .

We prove that any positive solution of (1.10) admits a trace on RN which is a nonnegative
Radon measure µ satisfying that ∫

RN

dµ

(1 + |x|)N+2s
< +∞.

The first step for describing the behaviour of solutions of (1.11) near 0 is to obtain an a
priori estimate of u(x, z).

In the case ε = 1, we use a blow-up technique combined with the trace theorem to prove
that when p ≥ 1 + 2s

N , any positive solution u(x, z) of (1.11) satisfies

u(x, z) ≤ cρ−
2s
p−1 for all (x, z) ∈ B̃

+
1
2
\ {0}, (1.12)

where ρ =
√
|x|2 + z2 and B̃+

a :=
{

(x, z) ∈ RN+1
+ : ρ < a

}
. This estimate implies that any

positive solution of (1.9) verifies

v(x) ≤ c|x|−
2s
p−1 for all x ∈ B̃+

1
2

\ {0}. (1.13)

Note that this estimate has no interest if p ≥ N
N−2s since the solution v is smooth.

In the case ε = −1, we use the estimate (1.13) proved [37, Proposition 3.1] in the case 1 < p <
N+2s
N−2s combined with the expression of the Poisson kernel of the operator u 7→ div(z1−2s∇u) in

RN+1
+ obtained by [8] to prove that positive solutions of (1.11) satisfy also (1.12). Furthermore,

when v is a radially symmetric decreasing solution of (1.8), we prove that (1.13) holds for any
p > 1.

The second step in our study is to consider the self-similar solutions of (1.11) in RN+1
+ \ {0},

with Ω = RN . In spherical coordinates in RN+1
+ , these solutions have the following expression

u(x, z) = u(ρ, σ) = ρ
− 2s
p−1ω(σ) for all (ρ, σ) ∈ R+ × SN+ ,

and, up to a rotation and a good choice of spherical variables on SN , ω satisfies

As[ω] + Λs,p,Nω = 0 in SN+
∂ω

∂νs
+ ε|ω|p−1ω = 0 in SN−1.

(1.14)
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Therein, As is a degenerate elliptic operator on theN -sphere SN , ∂
∂νs the corresponding conormal

outward derivative on ∂SN+ = SN−1 and

Λs,p,N =
2s

p− 1

( 2s

p− 1
+ 2s−N

)
.

The sign of Λs,p,N which is fundamental in the study of (1.14) depends on the value of p with
respect to 2s

p−1 . The structure of the set Eε (resp. E+
ε ) of solutions (resp. positive solutions)

plays a key role in our study.

Theorem A Let s ∈ (0, 1), ε = 1 and p > 1.

1- If p ≥ N
N−2s , then E1 = {0}.

2- If 1 < p ≤ 1 + 2s
N , then E+

1 = {0}.
3- If 1 + 2s

N < p < N
N−2s , then E+

1 = {0, ω1}, where ω1 is a positive solution of (1.14).

Besides the case p ≥ N
N−2s we can describe the set E1 in another case.

Theorem B There exists p∗ = p∗(s,N) ∈ (1, N
N−2s) such that if p∗ ≤ p < N

N−2s , then E1 =
{0, ω1,−ω1}.

The exponent p∗ is explicitly given by (3.8) below and its algebraic expression is heavy.
However if N ≥ 3 or N = 2 and 1

2 ≤ s < 1 one has p∗ ≤ 1 + 2s
N . The set of positive self-similar

solutions of the Lane-Emden is characterized by the following statement.

Theorem C Let s ∈ (0, 1), ε = −1 and p > 1.

1- If p ≤ N
N−2s , then E+

−1 = {0}.
2- If p > N

N−2s , then E+
−1 = {0, ω2}, where ω2 is a positive solution of (1.14) depending only on

one variable.

We use the classical ln ρ variable in order to transform (1.14) into an autonomous equation,
writing any u under the form

u(x, z) = ρ
− 2s
p−1w(t, σ) with t = ln ρ. (1.15)

We introduce standard tools of the dynamical systems theory such as energy functional and
limit sets and prove the following general theorem.

Theorem D Assume s ∈ (0, 1), ε = ±1, p ∈ (1,+∞) \ {N+2s
N−2s}. Let u be a solution of (1.11)

satisfying (1.12), even with u replaced by |u| and w be defined by (1.15). Then the limit set at
−∞ of the negative trajectory T−[w] :=

⋃{
w(t, ·) : t < 0

}
of w is a nonempty, compact and

connected subset of E+
ε in the C2s(SN+ )-topology.

Thanks to this result and the properties of E+
ε , we can give the precise behaviour of positive

solutions of (1.7) near the origin. This happens when Eε is disconnected, the limit set is reduced
to a single element usually ωj (j=1,2) or 0. When this limit set is zero, the solutions have either
a weak singularity or regular, according to the value of ε.
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Theorem E Let s ∈ (0, 1), ε = 1 and 1 + 2s
N < p < N

N−2s . If u is a positive solution of (1.11)
satisfying

lim
(x,z)→0

ρ
2s
p−1u(x, z) = 0, (1.16)

then there exists k > 0 such that

u(x, z) = CN,sk
z2s

(|x|2 + z2)
N
2

+s
+O(1) as x→ 0,

and vk = u(·, 0) satisfies
(−∆)sv + vp = kδ0 in D′(Ω), (1.17)

where CN,s = 1
4π

N+2−2s
2 Γ(N−2s

2 ).
Furthermore, if k = 0, v0 is identically zero and u is smooth.

Theorem F Let s ∈ (0, 1), ε = −1 and p ∈
(

N
N−2s ,+∞

)
\ {N+2s

N−2s}. If u is a positive solution of

(1.11) satisfying (1.16), then u is smooth in RN+1
+ .

Finally, we can give precise classification of nonnegative solutions to the fractional Emden-
Fowler equation.

Theorem G Let s ∈ (0, 1), p > 1 and vk be the solution of (1.17) for k ≥ 0 vanishing in Ωc.

1- For p ∈
(
1, 1 + 2s

N

]
, the set of nonnegative solutions of (1.9) is the set of {vk}k≥0.

2- For p ∈
(
1 + 2s

N ,
N

N−2s

)
, the set of nonnegative solutions of (1.9) is the set of {vk}k≥0 ∪{v∞},

where v∞ = lim
k→+∞

vk.

3- For p ≥ N
N−2s , the set of nonnegative solutions to (1.9) is reduced to {0}.

The remainder of this paper is organized as follows. In Section 2, we provide preliminary
tools: Caffarelli-Silvestre extension, the related Poisson kernel and basic setting. In Section
3, we classify singular self-similar solutions of (1.7). Section 4 is devoted to obtain some piori
estimates the upper bounds of singular solutions (1.7) near the origin. Finally, we give the proof
of the classification of isolated singularities of (1.7).

2 The lifting

2.1 Caffarelli-Silvestre extension and its Poisson’s kernel

Caffarelli and Silvestre [8] introduced a general method of lifting from RN to RN × (0,+∞)
allowing to define the fractional Laplacian as the weighted trace of the normal derivative. Setting

RN+1
+ =

{
ξ = (x, z) : x ∈ RN , z > 0

}
,

they proved that if v ∈ C2(RN ) ∩ L1
µs(R

N ) and u ∈ C2(RN+1
+ ) satisfy

Dsu := div(z1−2s∇u) = 0 in RN+1
+

u(·, 0) = v in RN ,
(2.1)
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then
(−∆)sv(x) = − lim

z→0
z1−2suz(x, z).

In the sequel we denote
∂νsu(x, 0) := − lim

z→0
z1−2suz(x, z).

Set

µs(x) = (1 + |x|)−N−2s for x ∈ RN . (2.2)

The Poisson’s kernel for the operator u 7→ Dsu has been obtained in [8, (2.1)]

Ps(x, z) = CN,s
z2s

(|x|2 + z2)
N
2

+s
, (2.3)

where CN,s = 1
4π

N+2−2s
2 Γ(N−2s

2 ). If v ∈ L1
µs(R

N ), then

u(x, z) := Ps[v](x, z) = CN,sz
2s

∫
RN

v(y)dy

(|x− y|2 + z2)
N
2

+s
(2.4)

satisfies (2.1).

2.2 The trace theorem

The counter part of Caffarelli-Silvestre theorem is the following.

Theorem 2.1 Let s ∈ (0, 1) and u ∈ L1
loc(R

N+1
+ ) satisfies u ≥ 0 and

Dsu = 0 in RN+1
+ . (2.5)

Then u ∈ C∞(RN+1
+ ) and u admits a boundary trace on ∂RN+1

+ , which is a nonnegative Radon
measure µ in the sense that for any ζ ∈ C∞0 (RN ),

lim
z→0

∫
RN
u(x, z)ζ(x)dx =

∫
RN
ζdµ(x),

and µ satisfies ∫
RN

dµ(x)

(|x|+ 1)N+2s
< +∞. (2.6)

Furthermore, if ‖u(z, ·)‖L1(RN ) = o(z2s) when z →∞, then

u(x, z) = CN,sz
2s

∫
RN

dµ(y)

(|x− y|2 + z2)
N
2

+s
for all (x, z) ∈ RN+1

+ . (2.7)

Proof. The fact that u ∈ C∞(RN+1) follows from the standard theory of elliptic operators.
Furthermore, the equation (2.5) not only holds in the sense of distributions but also in the strong
sense. The core of the proof is an adaptation of the Brezis-Lions wellknown note on isolated
singularities of linear elliptic equations [7].
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Let R > 0, λR,1 > 0 be first eigenvalue of −∆ in BR ⊂ RN under the zero Dirichlet boundary
condition and φR,1 be the related first eigenfunction. We set

X(z) =

∫
BR

u(x, z)φR,1(x)dx.

Then X satisfies the ODE

(z1−2sX ′)′(z)− λR,1z1−2sX(z) ≤ 0 for z ∈ (0,∞).

Integrating the equation on (z, T ), we obtain that

z1−2sX ′(z) ≥ T 1−2sX ′(T )− λR,1
∫ T

z
t1−2sX(t)dt = T 1−2sX ′(T )− λR,1F (z),

where we have denoted

F (z) =

∫ T

z
t1−2sX(t)dt.

The function F is decreasing and

X(z) ≤ X(T )− 1

2s
(T − T 1−2sz2s)X ′(T ) + λR,1

∫ T

z
t2s−1F (t)dt

≤ X(T )− 1

2s
(T − T 1−2sz2s)X ′(T ) +

λR,1
2s

(T 2s − z2s)F (z).

(2.8)

Hence F ′(z) = −z1−2sX(z) and (2.8) becomes

−F ′(z) ≤ z1−2sX(T )− 1

2s
(Tz1−2s − T 1−2sz)X ′(T ) +

λR,1
2s

(
T 2sz1−2s − z

)
F (z)

=: A(z) +B(z)F (z)

(2.9)

for z ∈ (0,∞). Since A,B ∈ L1(0, T ) and F (T ) = 0, we deduce by integration,

F (z) ≤ e−
∫ T
z B(t)dt

∫ T

z
e
∫ T
t B(τ)dτA(t)dt. (2.10)

Therefore F is uniformly bounded on (0, T ), and from (2.8) the function X shares the same
property. This implies that u ∈ L1

loc(RN × [0,+∞)).
Next, let ζ ∈ C∞0 (RN ) with support in BR for some R. We set

Y (z) =

∫
RN

u(x, z)ζ(x)dx and Φ(z) =

∫
RN

u(x, z)∆xζ(x)dx.

Then (
z1−2sY ′(z)

)′
+ z1−2sΦ(z) = 0.

Consequently, we have that

Y (z) = Y (1)− 1− z2s

2s
Y ′(1)− 1

2s

∫ 1

z
(t2s − z2s)Φ(t)dt.

9



Since ∫ 1

z
|(t2s − z2s)Φ(t)|dt ≤ ‖∆ζ‖L∞

∫ 1

0

∫
BR

u(x, t)dxdt < +∞,

it follows that Y (z) admits a limit when z → 0, which defines a positive linear functional on
C∞0 (RN ), hence a Radon measure denoted by µ.

Let R > 0 and ε > 0. For k > 0 we set

QTR,R+k,ε = BR+k × (ε, T ),

and we consider the problem

Dsw = 0 in QTR,R+k,ε

w = 0 in ∂BR+k × [ε, T ] ∪BR+k × {T}
w(·, ε) = u(·, ε)χBR in BR+k × {ε}.

The solution w = wε,R,k,T is unique and satisfies

wε,R,k,T ≤ u in QTR,R+k,ε.

The correspondence (R, k, T ) 7→ wε,R,k,T is increasing and we have that

wε,R := lim
k,T→∞

wε,R,k,T ≤ u in RN × (ε,+∞).

When ε→ 0, wε,R(·, ε) converges to χBRµ. Hence its limit wR is expressed by the Poisson kernel
(2.3), then

wR(x, z) = CN,sz
2s

∫
RN

χBR (y)dµ(y)

(|x− y|2 + z2)
N
2

+s
in RN × (0,+∞).

As a consequence, letting R→ +∞, we get

u(0, 1) ≥ CN,s
∫
BR

dµ(y)

(|y|2 + 1)
N
2

+s
,

which implies (2.6).
Finally, since R 7→ wR is increasing and wR is upper bounded by u, we obtain that wR admits

a limit w when R→ +∞. The function w is a positive solution of (2.5) in RN+1
+ which satisfies

w(x, z) = CN,sz
2s

∫
RN

dµ(y)

(|x− y|2 + z2)
N
2

+s
≤ u(x, z) for (x, z) ∈ RN × (0,+∞). (2.11)

Thus w is the minimal positive solution of (2.5) in RN+1
+ with trace µ on ∂RN+1

+ . Set ψ = u−w,

then ψ is a nonnegative solution of (2.5) in RN+1
+ with trace 0 on ∂RN+1

+ . The even extension
of ψ to whole RN+1 defined by [8, Lemma 4.1] is a nonnegative solution of (2.5) in RN+1. It
is therefore continuous and it satisfies Harnack inequality [26]. For proving uniqueness, we set

t =
(
z
2s

)2s
and ψ̃(x, t) = ψ(x, z). Then φ̃ satisfies (see[8, 1.8])

t
2s−1
s ψ̃tt + ∆xψ̃ = 0.
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Since the operator −∆x is accretive in L1(RN ), the function t 7→
∥∥∥ψ̃(·, t)

∥∥∥
L1(RN )

is convex on

(0,∞). If
∥∥∥ψ̃(·, 0)

∥∥∥
L1(RN )

= 0 and
∥∥∥ψ̃(·, t)

∥∥∥
L1(RN )

= o(t) when t→∞, then
∥∥∥ψ̃(·, t)

∥∥∥
L1(RN )

= 0

for all t > 0. The condition
∥∥∥ψ̃(·, t)

∥∥∥
L1(RN )

= o(t) is equivalent to ‖ψ(·, z)‖L1(RN ) = o(z2s).

Therefore, the uniqueness and (2.11) implies (2.7), which ends the proof. �

2.3 Spherical coordinates

We recall spherical coordinates (r, σ) ∈ (0,+∞) × SN . The parametrization of RN+1
+ is the

following
RN+1

+ =
{
ξ = (r, σ) : r > 0, σ ∈ SN+

}
,

where
SN+ =

{
σ = (x, z) = (σ′ cosφ, sinφ) : σ′ ∈ SN−1, φ ∈

[
0,
π

2

]}
.

Without confusion, we also use the next notation

SN−1 = ∂SN+ =
{

(0, σ′) ∈ RN+1 : |σ′| = 1
}
.

With this parametrization

∆SNu = uφφ − (N − 1)(tanφ)uφ +
1

cos2 φ
∆SN−1u.

We define the operator As in C2(SN+ ) by

As[w] =
1

λs(φ)(cosφ)N−1

(
λs(φ)(cosφ)N−1 wφ

)
φ

+
1

cos2 φ
∆SN−1w,

where
λs(φ) = (sinφ)1−2s.

We denote by dS the invariant measure obtained by the isometric imbedding of SN into
RN+1, then

dS(σ) = (cosφ)N−1dS′(σ′)dφ,

and by ∇′ the covariant gradient in the canonical metric on SN identified with the tangential
gradient on the unit sphere of RN+1. The bilinear form associated to As is

B[w, w̃] =

∫
SN+

(
wφw̃φ +

1

cos2 φ
∇′w.∇′w̃

)
λs(φ)dS = −

∫
SN+
w̃As(w)λs(φ)dS,

and we have the corresponding Green’s formula∫
SN+
w̃As(w)λsdS =

∫
SN−1

w̃∂φsωdS
′ − B[w, w̃].

If u = Ps[v], then

(−∆)sv(r, σ′) = − lim
φ→0

(sinφ)1−2s uφ(r, σ′, φ) := ∂φsu(r, σ′, 0).

11



3 Self-Similar solutions

Let Ω ⊂ RN be a bounded domain containing the origin. A function v ∈ C2(Ω \ {0})∩L1
µs(R

N )
satisfies the fractional Emden equations in Ω \ {0} with zero exterior value if

(−∆)sv + εvp = 0 in Ω \ {0},

v = 0 in Ωc,
(3.1)

where p > 1 and ε = ±1. If ε = 1 the equation considered is called the fractional Emden-Fowler
equation while if ε = −1 it is called the fractional Lane-Emden equation. We denote u = Ps[v],
which is admissible since v ∈ L1(RN ), then

Dsu = 0 in RN+1
+

∂νsu(·, 0) + εu(·, 0)p = 0 in Ω \ {0}

u(·, 0) = 0 in Ωc.

(3.2)

Hence (3.2) implies that

urr +
N + 1− 2s

r
ur +

1

r2
As[u] = 0 in (0,∞)× SN+

− lim
φ→0

(sinφ)1−2suφ(r, θ, φ) + εu(r, θ, 0)p = 0 in (0,∞)× SN−1.
(3.3)

Equation (3.2) is equivariant under the family of transformations S`, ` > 0, defined by

S`[u](x, z) = `
2s
p−1u(`x, `z) = `

2s
p−1u(`ξ).

Therefore self-similar solutions of (3.2) have the form

u(r, σ) = r
− 2s
p−1ω(σ) with (r, σ) ∈ (0,∞)× SN+ ,

and ω satisfies
As[ω] + Λs,p,Nω = 0 in SN+

∂ω

∂νs
+ εωp = 0 in SN−1,

(3.4)

where

Λs,p,N =
2s

p− 1

( 2s

p− 1
+ 2s−N

)
.

We denote by Eε (resp. E+
ε ) the set of functions (resp. positive functions) ω ∈ C(SN+ ) ∩C2(SN+ )

satisfying (3.4). There are several critical exponents will play some role later on:

(i) 1 < p ≤ N
N−2s ⇐⇒ Λs,p,N ≥ 0;

(ii) p ≥ 1 + 2s
N ⇐⇒ Λs,p,N ≤ 2sN ;

(iii) p = N+2s
N−2s ⇐⇒ Θs,p,N := N − 2sp+1

p−1 = 0.

(3.5)
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3.1 Fractional Emden-Fowler equation

The structure of E1 is described as follows.

Theorem 3.1 Assume s ∈ (0, 1), ε = 1 and p > 1.

1- If p ≥ N
N−2s , then E1 = {0}.

2- If 1 < p ≤ 1 + 2s
N , then E+

1 = {0}.
3- If 1 + 2s

N < p < N
N−2s , then E+

1 = {0, ω1}, where ω1 is a positive solution of (3.4) depending
only on the variable φ.

Proof. 1- Let ω be a solution, then

∫
SN+

(
ω2
φ +

1

cos2 φ
|∇′w|2 − Λs,p,Nω

2
)
λs(φ)dS =

∫
SN−1

ω∂φsωdS
′ = −

∫
SN−1

|ω|p+1dS′.

If p ≥ N
N−2s , then ΛN,s,p ≤ 0. This implies that ω = 0.

2- It is easy to check that the first eigenfunction ψ1 of As in W 1,2
0 (SN+ ) is φ 7→ ψ1(θ, φ) = (sinφ)2s

with corresponding eigenvalue `1 = 2sN . Assume now that ω is a positive solution of (3.4), then,
multiplying the equation by ψ1 and integrating yields

(Λs,p,N − 2sN)

∫
SN+
ωψ1λs(φ)dS =

∫
SN−1

∂ψ1

∂νs
ωdS′ = −2s

∫
SN−1

ωdS′.

The claim follows by (3.5)-(ii).

3- Existence. We denote by W (SN+ ) the space of functions w such that B[w,w] < +∞, where

B[w, v] =

∫
SN+

(
wφvφ +

1

cos2 φ
∇′w · ∇′v

)
λs(φ)dS.

Then w 7→
√
B[w,w] is a semi-norm on W (SN+ ) and it is a norm on the subspace C∞c (SN+ ).

Indeed

B[w,w] ≥ 2sN

∫
SN+
w2λs(φ)dS for all w ∈ C∞c (SN+ ).

The closure of C∞c (SN+ ) into W (SN+ ) is denoted by W0(SN+ ). We define the functional

J(w) =
1

2

∫
SN+

(
w2
φ +

1

cos2 φ
|∇′w|2 − Λs,p,Nw

2
)
λs(φ)dS +

1

p+ 1

∫
SN−1

|γ0(w)|p+1dS′,

where γ0 denotes the trace operator from W (SN+ ) onto L2(SN−1) identified with w(0, θ). Then J
is a quadratic perturbation of a convex lower semicontinous functional defined in W (SN+ ), hence
it is weakly lower continuous with domain of definition

D(J) = {w ∈W (SN+ ) : γ0(w) ∈ Lp+1(SN−1)}.
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Let w ∈W (SN+ ) and
w = w1 + w2,

where w1 ∈W0(SN+ ) is defined by

B[w1, ζ] = B[w, ζ] for all ζ ∈W0(SN+ ).

Since B is a continuous quadratic form in W (SN+ ), ζ 7→ B[w, ζ] is a continuous linear form in
W (SN+ ) and there holds

B[ζ, ζ] ≥ (2sN − Λs,p,N)

∫
SN+
ζ2λs(φ)dS for all ζ ∈W0(SN+ ),

the function w1 is uniquelly defined. Thus, one has

J(w) = J(w1 + w2) =
1

2
B[w1, w1] +

1

2
B[w2, w2] + 2B[w1, w2] +

1

p+ 1

∫
SN−1

|γ0(w)|p+1dS′.

We have B[w1, w1] = B[w,w1] = B[w1, w1] + B[w2, w1], therefore

B[w2, w1] = B[w1, w2] = 0.

Furthermore w2(φ, θ) = w2(φ, θ)− w2(0, θ) + w2(0, θ). Since for any ε > 0,

w2
2(φ, θ) ≤ (1 + ε) (w2(φ, θ)− w2(0, θ))2 +

(
1 +

1

ε

)
w2

2(0, θ),

and (φ, θ) 7→ w2(φ, θ)− w2(0, θ) belongs to W 1,2
0 (SN+ ), we have the inequality

B[w2, w2] ≥
∫
SN+

1

cos2 φ
|∇w2|2λs(φ)dS +

∫
SN+

(
(w2(φ, θ)− w2(0, θ))φ

)2
λs(φ)dS

− (1 + ε)Λs,p,N

∫
SN+

(w2(φ, θ)− w2(0, θ))2 λs(φ)dS

−
(

1 +
1

ε

)
Λs,p,N

∫
SN+
w2

2(0, θ)λs(φ)dS.

We choose ε such that
(1 + ε)Λs,p,N < 2sN

and we get

B[w2, w2] ≥
(

1− (1 + ε)Λs,p,N
2sN

)∫
SN+

(
w2

2φ +
1

cos2 φ
|∇′w2|2

)
λs(φ)dS

−
(

1 +
1

ε

)
Λs,p,N

∫
SN+
w2

2(0, θ)λs(φ)dS.
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Notice that ∫
SN+
w2

2(0, θ)λsdS =

∫ π
2

0
(sinφ)1−2s(cosφ)N−1dφ

∫
SN−1

w2
2(0, θ)dS′

≤ c1

(∫
SN−1

|w2(0, θ)|p+1dS′
) 2
p+1

,

where c1 = c1(s, p,N) > 0. Because w1 ∈W 1,2
0 (SN+ ), there holds also

B[w1, w1] ≥
(

1− Λs,p,N
2sN

)∫
SN+

(
w2

1φ +
1

cos2 φ
|∇′w1|2

)
λs(φ)dS.

Combining the previous inequalities, we finally obtain

J(w) ≥
(

1− (1 + ε)Λs,p,N
2sN

)∫
SN+

(
w2
φ +

1

cos2 φ
|∇′w|2

)
λs(φ)dS

−
(

1 +
1

ε

)
MΛs,p,N

(∫
SN−1

|γ0w|p+1dS′
) 2
p+1

+
2

p+ 1

∫
SN−1

|γ0w|p+1dS′.

This implies that J(w) tends to ∞ when min
{√
B[w,w], ‖γ0(w)‖Lp+1(SN−1)

}
tends to infinity.

Consequently the functional J admits a minimum ω in W (SN+ ). Moreover, since J(|ω|) = J(ω)
the minimum is achieved by a nonnegative function and it is therefore classical that ω is a
solution of (3.4), and it is positive by the strong maximum principle.

Finally, if we consider the restriction Jrad of J to the space Wrad(SN+ ) of function of W (SN+ )
depending only on the variable φ (they are called radial), then γ0(wp+1) is a real number and
Jrad(w) has the following form provided we write w = w(φ),

Jrad(w) =
|SN−1|

2

∫ π
2

0

(
w2
φ − Λs,p,Nw

2
)
λs(φ)(cosφ)N−1dφ+

|SN−1|
p+ 1

|w(0)|p+1.

The functional Jrad is also a quadratic perturbation of a convex lower semicontinuous functional
defined in Wrad(SN+ ) and it tends to∞ at∞. Thus it admits a minimum which is achieved by a
nonnegative function due to Jrad(w) = Jrad(|w|). Hence there exists a minimizing nonnegative
solution of (3.4) which depends only on the variable φ.

3- Uniqueness. Let ω and ω̃ be two positive solutions of (3.4), then

0 =

∫
SN+

(As[ω]

ω
− As[ω̃]

ω̃

)
(ω2 − ω̃2)λsdS

=

∫
SN−1

(
∂φsω

(
ω − ω̃2

ω

)
− ∂φsω̃

(
ω̃ − ω2

ω̃

))
dS′ −

(
B
[
ω, ω − ω̃2

ω

]
− B

[
ω̃, ω̃ − ω2

ω̃

])
= A−B.
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Furthermore

A =

∫
SN−1

(
−ωp

(
ω − ω̃2

ω

)
+ ω̃p

(
ω̃ − ω2

ω̃

))
dS′

= −
∫
SN−1

(
ω2 − ω̃2

) (
ωp−1 − ω̃p−1

)
dS′ ≤ 0

and

B =

∫
SN−1

( 1

ω2
+

1

ω̃2

)((
ωω̃φ − ω̃ωφ

)2
+

1

cos2 φ

∣∣ω∇′ω̃ − ω̃∇′ω∣∣2 )λs(φ)dS′ ≥ 0.

Therefore, A = B = 0 and ω = ω̃. �

Remark. To the unique positive element ω1 of E+
1 corresponds a unique positive singular

self-similar solution Up of
(−∆)sv + vp = 0 in RN \ {0},

where Up(x) = cp|x|−
2s
p−1 with

cp = ω1(1) =

(
−22s

Γ
(
N
2 −

s
p−1

)
Γ
(
s+ s

p−1

)
Γ
(

s
p−1

)
Γ
(
N
2 − s−

s
p−1

)) 1
p−1

.

In order to prove Theorem 3.4, we need the following intermediate result.

Proposition 3.2 Assume Λ 6= 0, then for any a 6= 0, there exists a unique function ωa satisfy-
ing

ωa(φ) = a− Λ

∫ π
2

φ
(sinσ)2s−1(cosσ)1−N

∫ π
2

σ
ωa(θ)(sin θ)

1−2s(cos θ)N−1dθdσ in
(
0,
π

2

)
. (3.6)

Furthermore a = ωa(
π
2 ) and ωa = aω1. If a > 0, then ωa is positive and increasing (resp.

decreasing) on
(
0, π2

)
if Λ < 0 (resp. Λ > 0).

Proof. Let a > 0 and ω̃a(φ) = ωa(
π
2 − φ). To find a function ωa satisfying (3.6) is equivalent

to finding ω̃a satisfying

ω̃a(φ) = a− Λ

∫ φ

0
(cosσ)2s−1(sinσ)1−N

∫ σ

0
ω̃a(θ)(cos θ)1−2s(sin θ)N−1dθdσ in

(
0,
π

2

)
.

We define the operator T on C([0, π2 ]) by

T [w](φ) = a− Λ

∫ φ

0
(cosσ)2s−1(sinσ)1−N

∫ σ

0
w(θ)(cos θ)1−2s(sin θ)N−1dθdσ in

(
0,
π

2

)
.

We have that

|T [w − w′](φ)|

≤ |Λ|
(∫ φ

0
(cosσ)2s−1(sinσ)1−N

∫ σ

0
(cos θ)1−2s(sin θ)N−1dθdσ

)
sup
[0,φ]
|(w − w′)(θ)|.
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1- We first assume that 1− 2s ≥ 0, then∫ φ

0
(cosσ)2s−1(sinσ)1−N

∫ σ

0
(cos θ)1−2s(sin θ)N−1dθdσ ≤

∫ φ

0
(cosσ)2s−1σdσ

≤ π

2

∫ φ

0
(cosσ)2s−1 sinσdσ ≤ c2,

where c2 = π
4s , we used here the monotonicity θ ∈ (0, π2 ) 7→ (sin θ)N−1 and (cos θ)1−2s ≤ 1.

Hence
|T [w − w′](φ)| ≤ c2 sup

[0,φ]
|(w − w′)(θ).

It is therefore straightforward to check by induction that for k ∈ N∗,

|T k[w − w′](φ)| ≤ ck2
k!

sup
[0,φ]
|(w − w′)(θ), (3.7)

then T k admits a unique fixed point ω̃a, and uniqueness implies that ω̃a is also a fixed point of
T and it is unique.

2- Assume that 1− 2s < 0. Then∫ φ

0
(cosσ)2s−1(sinσ)1−N

∫ σ

0
(cos θ)1−2s(sin θ)N−1dθdσ

≤
∫ φ

0

∫ σ

0
dθdσ =

φ2

2
≤ π2

8

by there the monotonicity θ ∈ (0, π2 ) 7→ (cos θ)1−2s(sin θ)N−1. Then (3.7) holds and the conclu-
sion follows.

If Λ < 0 (resp. Λ < 0), the function ωa is increasing (resp. decreasing). The fact that
ωa = aω1 is a consequence of the linearity of T and uniqueness. �

The following critical exponent corresponds to the sequel of isotropy of solutions of (3.4) in
the case ε = 1,

p∗ :=
N + 2s+

√
N2 + 4(N − s) + 4s2 − 4

N − 2s+
√
N2 + 4(N − s) + 4s2 − 4

. (3.8)

This exponent corresponds to the fact that 2s
p∗−1 is the positive root of the equation

Q(X) := X2 + (2s−N)X + 1−N = 0. (3.9)

Theorem 3.3 Assume s ∈ (0, 1), ε = 1 and p∗ ≤ p < N
N−2s . Then E1 = {0, ω1,−ω1}, where ω1

is a positive solution of (3.4) depending only on the variable φ.

Proof. Step 1. We first prove that under the condition p ≥ p∗ any element of E1 does not
depend on the variable σ′ ∈ SN−1. If ψ is any function defined on SN , we set

ψ(φ) =
1

|SN−1|

∫
SN−1

ψ(φ, σ′)dS′.
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By averaging (3.4) we obtained that ω̄ satisfies

As[ω] + Λs,p,Nω = 0 in SN+
∂ω

∂νs
+ ωp = 0 in SN−1,

where

As[ω] =
1

λs(φ)(cosφ)N−1

(
λs(φ)(cosφ)N−1ω

)
φ
.

Multiplying the equation by (ω − ω)λs and integrating over SN+ , we obtain∫
SN−1

(ω − ω)(|ω|p−1ω − |ω|p−1ω)dS′ +

∫ π
2

0

∫
SN−1

(
(ωφ − ωφ)2 +

1

cos2 φ
|∇′(ω − ω)|2

)
λs(φ)dS

= Λs,p,N

∫
SN+

(ω − ω)2λsdS.

(3.10)
There holds∫

SN−1

(ω − ω)
(
ωp − ωp

)
dS′ =

∫
SN−1

(ω − ω)(ωp − ωp)dS′ + (ωp − ωp)
∫
SN−1

(ω − ω)dS′

=

∫
SN−1

(ω − ω)
(
ωp − ωp

)
dS′

≥ 2−p
∫
SN−1

|ω − ω|p+1dS′.

Furthermore, we see that∫ π
2

0

∫
SN−1

(
(ωφ − ωφ)2 +

1

cos2 φ
|∇′(ω − ω)|2

)
λs(φ)dS

≥
∫ π

2

0

(∫
SN−1

|∇′(ω − ω)|2dS′
)

(cosφ)N−3λs(φ)dφ

(3.11)

and the inequality is strict unless ωφ = ωφ. By Wirtinger’s inequality, there holds∫
SN−1

|∇′(ω − ω)|2dS′ ≥ (N − 1)

∫
SN−1

(ω − ω)2dS′.

Since (cosφ)N−3 ≥ (cosφ)N−1, we obtain∫ π
2

0

∫
SN−1

(
(ωφ − ωφ)2 +

1

cos2 φ
|∇′(ω − ω)|2

)
λs(φ)dS ≥ (N − 1)

∫
SN+

(ω − ω)2λs(φ)dS.

Finally we have that

(Λs,p,N + 1−N)

∫
SN+

(ω − ω)2λs(φ)dS ≥ 2−p
∫
SN−1

|ω − ω|p+1dS′.
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Introducing the polynomial Q defined in (3.9) and setting X = 2s
p−1 , then (3.10) becomes

Q(X)

∫
SN+

(ω − ω)2λs(φ)dS ≥ 2−p
∫
SN−1

|ω − ω|p+1dS′.

Hence if X < X∗, where X∗ is the positive root of Q, then ω − ω = 0 in SN+ . If X = X∗ we
deduce that ω(0, θ) = ω(0) = 0. Then we use that fact that the inequality (3.11) is strict unless
ωφ = ωφ. If this holds, combining with ω(θ)− ω(0) = 0 we deduce that ω = ω in SN+ .

Step 2. We prove that E1 = {0, ω1,−ω1}, where ω1 is a positive solution of (3.4) with ε = 1,
depending only on φ. For this sake, it suffices to prove uniqueness among the radial solutions.
If φ 7→ ω(φ) is a solution of (3.4) with ε = 1, we have

− d

dφ

(
(sinφ)1−2s(cosφ)N−1dω

dφ

)
= Λs,p,N(sinφ)1−2s(cosφ)N−1ω in

(
0,
π

2

)
dω(0)

dφs
+ ω(0)p = 0,

(3.12)

where
dω(0)

dφs
= − lim

φ→0
(sinφ)1−2sdω(φ)

dφ
.

Since ω′(π2 ) = 0, by integrating (3.12) we obtain that

dω(φ)

dφ
= Λs,p,N(sinφ)2s−1(cosφ)1−N

∫ π
2

φ
ω(θ)(sin θ)1−2s(cos θ)N−1dθ (3.13)

on
(
0, π2

)
. Therefore for φ ∈

(
0, π2

)
,

ω(φ) = ω(π2 )− Λs,p,N

∫ π
2

φ
(sinσ)2s−1(cosσ)1−N

∫ π
2

σ
ω(θ)(sin θ)1−2s(cos θ)N−1dθdσ. (3.14)

From (3.13),

dω

dφs
(0) = −Λs,p,N

∫ π
2

0
ω(θ)(sin θ)1−2s(cos θ)N−1dθ. (3.15)

Note that for p < N
N−2s , Λs,p,N > 0. As a parameter we take the value a = ω(π2 ), and by linearity

ωa = aω1. We define the mapping F ∗ : R+ 7→ R by

F ∗(a) =
dωa
dφs

(0) + (ωa(0))p = a
(dω1

dφs
(0) + ap−1(ω1(0))p

)
.

If dω1
dφs (0) ≥ 0, then for any a > 0 we have 1

aF
∗(a) > 0. Since F ∗ is increasing, there is no

solution of (3.12), then no radial solution of (3.4) with ε = 1, which contradicts Theorem 3.1,
which states that there exists a radial solution, even a positive one. Therefore dω1

dφs (0) < 0. The

mapping a 7→ 1
aF
∗(a) is increasing and negative at a = 0. Since F ∗ tends to infinity as a→ +∞,

it follows that there exists a unique a∗ > 0 such that F ∗(a∗) = 0, equivalently a unique solution
ω := ωa∗ of (3.12) verifying a∗ = ωa∗(

π
2 ).

We end the proof as follows. From Step 1 the solutions ω depends only on φ. Such a solution
satisfying ω(π2 ) > 0 is unique, thus it coincides with the radial positive solution obtained by
minimization among radial functions. �
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3.2 Fractional Lane-Emden equation

Theorem 3.4 Assume s ∈ (0, 1), ε = −1 and p > 1.

1- If p ≤ N
N−2s , then E+

−1 = {0}.
2- If p > N

N−2s , then E+
−1 = {0, ω2}, where ω2 is a positive solution of (3.4) depending only on φ.

Proof. 1- A direct computation implies that

Λs,p,N

∫
SN+
ωλsdS +

∫
SN+
∂φsωdS

′ = Λs,p,N

∫
SN+
ωλsdS +

∫
SN+
ωpdS′ = 0.

Since 1 < p ≤ N
N−2s , Λs,p,N ≥ 0 and the assertion 1 follows.

2- Existence of a unique positive solution depending only on φ. If ω is a solution of (3.4) with
ε = −1 depending only on φ, then

− d

dφ

(
(sinφ)1−2s(cosφ)N−1ωφ

)
= Λs,p,N(sinφ)1−2s(cosφ)N−1ω in

(
0,
π

2

)
dω(0)

dφs
= ω(0)p.

(3.16)

Since ω′(π2 ) = 0, the identities (3.13), (3.14), and (3.15) obtained by integrating (3.16) are still

valid. Because p > N
N−2s , we have that Λs,p,N < 0, hence dω

dφs (0) > 0 from identity (3.15). By
linearity, ωa = aω1. We define the mapping F from [0,∞) to (−∞,∞) by

F (a) =
dωa(0)

dφs
− ωa(0)p = a

(dω1(0)

dφs
− ap−1ω1(0)p

)
.

This implies that a 7→ 1
aF (a) is decreasing, with a positive limit at a = 0, and tends to −∞

when a→ +∞. Therefore, F admits a unique positive zero point for some a0, and the function
ωa0 is the unique positive solution of (3.4) which depends only on φ.

3- Any positive solution depends only on φ.

Symmetry in the case s = 1
2 . In that case s = 1

2 , the problem (3.4) reduces to

∆SNω + Λ 1
2
,p,Nω = 0 in SN+

∂ω

∂ν
− ωp = 0 in SN−1,

(3.17)

where ∆SN is the Laplace-Beltrami operator on SN and

Λ 1
2
,p,N =

1

p− 1

( 1

p− 1
+ 1−N

)
.

We denote the coordinates in RN by (x1, · · · , xN) and by (x1, · · · , xN , z), z > 0, the coordinates
in RN+1

+ . If φ0 ∈ (0, π2 ), let Hφ0 be the hyperplane of RN+1 passing through the (N-1)-plane
Dx1 :=

{
(0, x2, · · · , xN , 0) ∈ RN+1 : xj ∈ R, j = 2, · · · , N

}
with angle φ0 with the hyperplane

z = 0. We denote by Γφ0 the domain of SN with boundary Hφ0 ∩ ∂R
N+1
+ ∩

{
(x1, · · · , xN , z) :
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x1 ≥ 0
}

and by Γ̃φ0 the symmetric of this domain with respect to the plane Hφ0 . If ω is a
positive solution of (3.4), we define the function

(φ, σ′) 7→ $(φ, σ′) := ω(φ, σ′)− ω(2φ0 − φ, σ′) for (φ, σ′) ∈ (0, φ0)× SN−1. (3.18)

Since φ can be larger than π
2 , we make the convention that ω(φ, σ′) = ω(π−φ,−σ′) if π2 < φ < π.

The symmetry with respect to Hφ0 is an isometry of RN+1, hence $ satisfies

∆SN$ + Λ 1
2
,p,N$ = 0 in Γφ0

$ = 0 in Hφ0 ∩ SN+
$(0, ·) = ω(0, ·)− ω(2φ0, ·) in SN−1 ∩ {(x1, x2, ..., xN , 0) : x1 > 0}.

Since ∂ω
∂νs = ωp on ∂SN+ , the function φ 7→ ω(φ, σ′) is strictly decreasing if (φ, σ′) ∈ (0, φ0)×SN−1

for φ0 small enough. Hence $(0, σ′) > 0 in SN−1 ∩ {x = (x1, x2, ..., xN , 0) : x1 > 0}, and by
the maximum principle we have that $ > 0 in (0, φ0)× SN−1. We proceed as in the Gidas-Ni-
Nirenberg paper [23]: we denote by φ∗ the maximum of the φ0 ∈ (0, π2 ] such that

ω(φ, σ′)− ω(2φ0 − φ, σ′) > 0 for (φ, σ′) ∈ (0, φ0)× SN−1. (3.19)

We assume by contradiction that φ∗ < π
2 . Then there exists σ∗ ∈ SN−1 such that v(φ∗, σ∗) = 0.

By the Hopf’s Lemma, (φ∗, σ∗) cannot belong to SN−1
+ , hence it belongs to SN+ ∩ {z = 0}. Since

Hopf’s lemma is also valid at this point, we get a contradiction. Therefore φ∗ = π
2 . As a

consequence,

ω(0, σ′)− ω(2φ∗ − φ, σ′) ≥ 0 for all σ′ ∈ SN−1 ∩ {(0, x2, ..., xN , z) : z > 0}.

Similarly, starting the reflexion from x1 < 0, we get

ω(0, σ′)− ω(2φ∗ − φ, σ′) ≤ 0 for all σ′ ∈ SN−1 ∩ {(0, x2, ..., xN , z) : z > 0}.

This implies that the gradient of ω alongside the “great circle” SN+ ∩ {(0, x2, ..., xN , z) : z > 0}
is zero, which can be written as

∇′ω · e1 = 0 on SN+ ∩
{

(0, x2, ..., xN , z) : z > 0
}
.

Performing a rotation we conclude that ∇′(ωφ, σ′) = 0 for all σ′ ∈ SN−1. This implies that ω
depends only on φ.

Sketch of the proof for s ∈ (0, 1). We perform the same reflection method as in the case s = 1
2 ,

defining $ as in (3.18), it satisfies

As[$] + Λs,p,N$ = 0 in Γφ0

$ = 0 in Hφ0 ∩ SN+
$(0, ·) = ω(0, ·)− ω(2φ0, ·) in SN−1 ∩ {(x1, x2, ..., xN , 0) : x1 > 0},

where
As[$] = ∆SN$ + (1− 2s) cot(φ)$φ.
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Since ∂ω
∂νs = ωp on ∂SN+ , the function φ 7→ ω(φ, σ′) should be decreasing if (φ, σ′) ∈ (0, φ0)×

SN−1 for φ0 small enough. Let φ∗ be the maximum of φ0 ∈ (0, π2 ] such that (3.19 ) holds.
If φ∗ = π

2 , we are done. If not, we can assume that φ∗ ∈ (0, π2 ) and let (φ∗, σ∗) be the
point verifying $(φ∗, σ∗) = 0. Note that (1− 2s) cot(·) is always bounded in a neighborhood of
(φ∗, σ∗). Thus, the Hopf’s lemma could be applied and the remaining of the proof is the same
as in the case s = 1

2 . �

Proofs of Theorem A–C. Theorem A–C are exact Theorem 3.1, Theorem 3.3 and Theo-
rem 3.4 respectively. �

Remark. From the unique positive solution ω2 obtained in 2 in above theorem, the fractional
Lane-Emden equation

(−∆)sv − vp = 0 in RN \ {0}
has an explicit self-similar solution Up. From (4.11) and (4.10) below (also see [19, Lemma 3.1]),
we have that

Up(x) = cp|x|−
2s
p−1 , where cp = ω2(1) =

(
22s

Γ
(
N
2 −

s
p−1

)
Γ
(
s+ s

p−1

)
Γ
(

s
p−1

)
Γ
(
N
2 − s−

s
p−1

)) 1
p−1

.

Remark. Another approach could be to transform the problem on the half-sphere SN+ into a
problem on the unit ball B1 of RN using a stereographic projection from the antipodal point S
of the North pole N on SN . This stereographic projection PN is an isomorphism from SN \ {S}
onto RN . Then the image of SN+ is the unit ball B1. It is well known that PN is a conformal

diffeomorphism with conformal factor D
4

N−2 , where

D(x) =
( 2

1 + |x|2
)N−2

2
.

If ω is a solution of (3.17), and if

w̃(x) = ω(σ)D(x) with σ = P−1
N (x).

Then the above boundary value follows from the fact that

tanφ =
1− |x|2

2|x|

and if ω is defined on SN+ , we have that

∂ω

∂ν

⌊
φ=0

=
∂ω

∂ν

⌊
|x|=1

+
N − 2

2
w
⌊
|x|=1

.

As a consequence, w̃ satisfies

∆w̃ +
4

(1 + |x|2)2

(
Λ 1

2
,p,N +

N(N − 2)

4

)
w̃ = 0 in B1

∂w̃

∂ν
− w̃p +

N − 2

2
w̃ = 0 on ∂B1.

Strong Maximum Principle and Hopf’s Lemma could imply that w̃ >
(
N−2

2

) 1
p−1 and the standard

method of moving planes could be applied to obtain the radial symmetry.
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4 A priori estimates

4.1 The lifting estimates

Our aim in this sections is to obtain the upper bounds for the positive solutions of

(−∆)sv + εvp = 0 in Ω \ {0}

v = 0 in Ωc,
(4.1)

under the form

|v(x)| ≤ c3|x|−
2s
p−1 for all x ∈ Ω \ {0}, (4.2)

where Ω ⊂ RN is a bounded regular domain containing the origin.
In order to study the asymptotics of singular solutions near the origin, we use the Caffarelli-

Silvestre lifting of v and the Poisson kernel associated to the operator Ds by formula (2.3), (2.4).
Set µs(x) = (|x|+ 1)−N−2s. If v ∈ L1

µs(R
N ) := L1(RN , µsdx), then, with ξ = (x, z),

u(ξ) = u(x, z) =

∫
RN
Ps(x− y, z)v(y)dy (4.3)

satisfies
Dsu = 0 in RN+1

+ , u(·, 0) = v on RN .

Proposition 4.1 Assume that p > 1 + 2s
N and u is a positive solution of Dsu = 0 in RN+1

+ such
that v(x) = u(x, 0) satisfies estimate (4.2). Then there exists c4 > 0 such that

u(x, z) ≤ c4

(
|x|2 + z2

)− s
p−1 for all (x, z) ∈ RN × R+. (4.4)

Proof. Assume that u(·, 0) is nonnegative and satisfies (4.2). If p > 1 + 2s
N , then v ∈ L1

µs(R
N )

and

u(x, z) =

∫
RN
Ps(x− y, z)v(y)dy

≤ c5

∫
RN

z2s

(|x− y|2 + z2)
N+2s

2

|y|−
2s
p−1dy

= c5z
− 2s
p−1

∫
RN

|y|−
2s
p−1

(|xz − y|2 + 1)
N+2s

2

dy,

(4.5)

where we take xz = x
z .

When 0 ≤ |xz| ≤ 8, we obtain that∫
RN

|y|−
2s
p−1

(|xz − y|2 + 1)
N+2s

2

dy ≤
∫
RN

(
|y|2 + 1

)−N+2s
2 |y|−

2s
p−1dy := c6 < +∞.

When |xz| > 8, letting r = 1
2 |xz|, we have that∫

Br(0)

|y|−
2s
p−1

(|xz − y|2 + 1)
N+2s

2

dy ≤ (1 + |xz|2)−
N+2s

2

∫
Br(0)

|y|−
2s
p−1dy

= c7|xz|−N−2sr
N− 2s

p−1 ,
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∫
Br(xz)

|y|−
2s
p−1

(|xz − y|2 + 1)
N+2s

2

dy ≤
(
r
2

)− 2s
p−1

∫
Br(xz)

(
|xz − y|2 + 1

)−N+2s
2 dy

≤ c8r
− 2s
p−1
(
1 + r−2s

)
,

and ∫
RN\
(
Br(xz)∪Br(0)

) |y|−
2s
p−1

(|xz − y|2 + 1)
N+2s

2

dy ≤ c9

∫
RN\Br(0)

(
|y|2 + 1

)−N+2s
2 |y|−

2s
p−1dy

≤ c10r
− 2s
p−1
−2s

.

Thus, we conclude that for |xz| ≥ 8,∫
RN

|y|−
2s
p−1

(|xz − y|2 + 1)
N+2s

2

dy ≤ c11|xz|−
2s
p−1 .

As a consequence, we obtain that for |xz| > 0,

u(x, z) ≤ c12z
2s(1 + |xz|2)

− s
p−1 ≤ c12(z2 + |x|2)

− s
p−1 .

Which ends the proof. �

Remark. Since (4.4) can imply (4.2) immediately by taking z = 0, the previous result shows
that these two estimates are equivalent when p > 1 + 2s

N .

4.2 Integral estimates

Lemma 4.2 Let p > 0 and v ∈ C1,s(Ω\{0}) be a nonnegative solution of (4.1) in Ω\{0}, which
vanishes in Ωc. Then for any ξ ∈ C1,s(Ω \ {0}) with compact support in Ω \ {0}, there holds∫

Ω

(
v(−∆)sξ + εvpξ

)
dx = 0. (4.6)

Furthermore, if vp ∈ L1(Ω),which is always satisfied for ε = −1, there exists k ≥ 0 such that

(−∆)sv + εvp = kδ0 in D′(Ω). (4.7)

Proof. Without loss of generality, we can assume that B2 ⊂ Ω. Let η0 : RN → [0, 1] be a
nonnegative cut-off function in C∞c (RN ), equal to 1 in B1, vanishing in Bc

2. For 0 < ε < 1 we
set η̃ε(x) = η0(εx)(1− η0(x/ε) and denote vε = η̃εv. Then

(−∆)svε(x) = η̃ε(x)(−∆)sv(x) + v(x)(−∆)sη̃ε(x)

− cN,s
∫
RN

(v(x)− v(y))(η̃ε(x)− η̃ε(y))

|x− y|N+2s
dy, ∀x ∈ B1 \ {0}.

Furthermore,

(−∆)svε(0) = lim
x→0

(−∆)svε(x) = −cN,s
∫
B 2
ε
\Bε

v(y)ηε(y)

|y|N+2s
dy.

24



We can assume that ξ vanishes in Br and we choose 0 < ε < r/8. By integration, there holds∫
B1

ξ(−∆)svε dx =

∫
B1

vε(−∆)sξ dx.

Since v = vε + (1− η̃ε)v and ξ(1− η̃ε) = 0, we have that∫
B1

[v(−∆)sξ + εvpξ] dx =

∫
B1

[ξv(−∆)sη̃ε + (1− η̃ε)v(−∆)sξ] dx

− cN,s
∫
B1\Br

(∫
RN

(v(x)− v(y))(η̃ε(x)− η̃ε(y))

|x− y|N+2α
dy

)
ξ(x) dx

= A1,ε +A2,ε +A3,ε.

Since v ∈ L1(B1) and |(−∆)sξ(x)| ≤ c13(1 + |x|)−N−2s for any x ∈ RN and some c13 > 0,
A2,ε → 0 when ε→ 0. We have also for r < |x| < 1 (where ξ(x) may not vanish),

|(−∆)sη̃ε(x)| ≤ cN,s
∫
B2ε

1

|x− y|N+2s
dy + cN,s

∫
B2/ε

1

|x− y|N+2s
dy

≤ c14

(
εN (r − 2ε)−N−2s + ε2s

)
,

for some c14 > 0 independent of ε. This implies that A1,ε → 0 when ε → 0. Finally, for
x ∈ B1 \Br and ε < r

4 , there holds

|A3,ε| ≤ ‖ξ‖L∞
(∫

B1\Br

∫
B2ε

|v(x)− v(y)|
|x− y|N+2s

dydx+

∫
B1\Br

∫
Bc1
ε

|v(x)− v(y)|
|x− y|N+2s

dydx
)

≤ c15(r − 2ε)−N−2s ‖ξ‖L∞
(

(εN + ε2s)

∫
B1

v(x) dx+

∫
B2ε

v(y)dy +

∫
B 1
ε

v(y)dµs(y)
)
,

where c15 > 0 is independent of ε. Hence A3,ε → 0 as ε→ 0. This implies (4.6).

If ε = −1, it follows from [29, Theorem 3] that vp ∈ L1(B1) and there exists k ≥ 0 such that
(4.7) holds.

If ε = 1 and we assume now that F := vp ∈ L1(B1), the function w = v + Gs,1[F ] is
s-harmonic and positive in B1 \ {0}. By the extension to s-harmonic functions of Bôcher’s
theorem [29, Theorem 4], there exists k ≥ 0 such that

(−∆)sw = kδ0 in D′(B1(0)),

and this is (4.7). �

4.3 A priori estimate for Lane-Emden equation

The following result is proved in [37].
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Proposition 4.3 Assume that 0 < s < 1, 1 < p < N+2s
N−2s and u is a nonnegative solution of

Dsu = 0 in B1 ∩ RN+1
+

∂νsu(·, 0)− u(·, 0)p = 0 in B1 ∩ RN \ {0}.

Then there exists a constant c16 = c16(N, p, s) > 0 such that

u(x, 0) := v(x) ≤ c16|x|−
2s
p−1 for all x ∈ B 1

2
∩ RN \ {0}. (4.8)

The upper bound of v comes from the technique used in the proof which is based upon a blow-up
argument and a Liouville type theorem only valid in this range of exponents. When v is a radial
function, we have a much shorter proof.

Proposition 4.4 Let 0 < s < 1, p > 1, Ω = B1 and v be a positive and radially decreasing
solution of (4.1) with ε = −1. Then there exists a constant c17 = c17(N, p, s) > 0 such that

v(x) ≤ c17|x|−
2s
p−1 for all x ∈ B 1

2
\ {0}.

Proof. Let ζ ∈ C∞c (B1) be a radially symmetric function with value in [0, 1] and such that

ζ(x) =

{
1 for x ∈ B 1

2
\B 1

4

0 for x ∈ B 1
8
∪Bc

1

and for n > 1, ζn(x) = ζ(nx). By Lemma 4.2, there holds∫
B1

vpζp
′
n (x)dx =

∫
B1

v(−∆)sζp
′
n (x)dx.

From [15, Lemma 2.3], there holds

(−∆)sζp
′
n = p′ζp

′−1
n (−∆)sζn −K2,

where

K2 := K2(x) =
p′(p′ − 1)

2
ζp
′−2
n (zx)

∫
B1

(ζn(x)− ζn(y))2

|x− y|N+2s
dy

for some zx ∈ B1. Hence∫
B1

vpζp
′
n (x)dx =

∫
B1

v(−∆)sζp
′
n (x)dx ≤ p′

∫
B1

vζp
′−1
n (−∆)sζn(x)dx.

Now∫
B1

vζp
′−1
n (−∆)sζn(x)dx =

∫
1
8n
<|x|< 1

n

vζp
′−1
n (−∆)sζn(x)dx

≤
(∫

1
8n
<|x|< 1

n

vpζp
′
n (x)dx

) 1
p
(∫

1
8n
<|x|< 1

n

|(−∆)sζn(x)|p′dx
) 1
p′
.
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Therefore ∫
B1

vpζp
′
n (x)dx =

∫
1
8n
<|x|< 1

n

vpζp
′
n (x)dx ≤ p′p′

∫
1
8n
<|x|< 1

n

|(−∆)sζn(x)|p′dx.

Now ∫
1
8n
<|x|< 1

n

vpζp
′
n (x)dx ≥

∫
1
4n
<|x|< 1

2n

vpζp
′
n (x)dx ≥ ωN

4N − 1

4N
n−Nvp

( 1

2n

)
,

and ∫
1
8n
<|x|< 1

n

|(−∆)sζn(x)|p′dx = n2sp′−N
∫

1
8
<|y|<1

|(−∆)sζ(y)|p′dy.

Since ζ vanishes in Bc
1,

(−∆)sζ(x) =


cN,sp.v.

∫
B1

ζ(x)− ζ(y)

|x− y|N+2s
dy + cN,sζ(x)

∫
Bc1

dy

|x− y|N+2s
for x ∈ B1

−cN,s
∫
B1

ζ(y)

|x− y|N+2s
dy for x ∈ Bc

1.

Therefore, ‖(−∆)sζ‖Lk(Bn) is bounded independently of k and n. Combining the previous
inequalities, we obtain

ωN
4N − 1

4N
n−Nvp

( 1

2n

)
≤ n2sp′−N

∫
1
8
<|y|<1

|(−∆)sζ(y)|p′dy,

which implies that there holds, for some c18 > 0,

v
( 1

2n

)
≤ c18n

2s
p−1 .

Taking r = 1
2n , we infer (2.1). �

Remark. When Ω = B1, it is easy to prove that any positive solution v of (4.1) satisfying

lim
x→0

v(x) = +∞

is radially symmetric and decreasing.

4.4 Some maximum principles

In this section we recall some fundamental maximum principles which will be used in the sequel.
Their proof can be found in [12].

Lemma 4.5 Let O ⊂ RN be any domain and v ∈ C(O) ∩ L1
µs(O). If v achieves the maximum

at some point x0 ∈ O, then
(−∆)sv(x0) ≥ 0.

Furthermore equality holds if and only if

v(x) = v(x0) for all x ∈ O.
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The following corollaries follow from the strong maximum principle.

Corollary 4.6 Let O ⊂ RN be a bounded regular domain and v ∈ C(O) satisfy

(−∆)sv ≤ 0 in O, v = h in Oc,

where h is continuous and bounded in Oc. Then

sup
x∈O

v(x) ≤ sup
x∈Oc

h(x).

Corollary 4.7 Let O ⊂ RN be a bounded regular domain, g : R → R be a continuous nonde-
creasing function and vj ∈ C(O) (j=1,2) satisfy the two inequalities

(−∆)sv1 + g(v1) ≥ 0 and (−∆)sv2 + g(v2) ≤ 0 in O.

Assume furthermore that v1 ≥ v2 a.e. in Oc. Then either v1 > v2 in O or v1 ≡ v2 in RN .

The next statement proved in [15, Lemma 3.1] is the analogue of the classical local regularity
result for the Laplace operator, see also [28, Theorem 2.2] for local Schauder estimates.

Lemma 4.8 Assume that w ∈ C2s+ε(B1) ∩ L1
µs(R

N ) for some ε ∈ (0, 1) satisfies

(−∆)sw = f in B1,

where f ∈ C1(B1). Then for β ∈ (0, 2s), there exist c19, c20 > 0 such that

‖w‖Cβ(B̄1/2) ≤ c19

(
‖w‖L∞(B1) + ‖f‖L∞(B1) + ‖w‖L1

µs
(RN )

)
and

‖w‖C2s+β(B̄1/4) ≤ c20

(
‖w‖Cβ(B 1

2
) + ‖f‖Cβ(B 1

2
) + ‖w‖L1

µs
(RN )

)
.

The next general result proved in [20] is an important tool for obtaining the existence of
solutions of semilinear equations.

Proposition 4.9 Assume that Ω ⊂ RN is a bounded regular domain, g : R→ R is a continuous
nondeacreasing function, f ∈ Cβ(Ω) with β ∈ (0, 1). If there exist a super-solution v̄ and a
sub-solution v of

(−∆)sv + g(v) = f in Ω \ {0}

v ≥ 0 in Ω \ {0}

v = 0 in Ωc

(4.9)

such that v̄, v ∈ C2(Ω \ {0}) ∩ L1(Ω),

v̄ ≥ v ≥ 0 in Ω \ {0} and v̄ ≥ 0 ≥ v in Ωc.

Then there exists at least one solution v of (4.9) which satisfies v ≤ v ≤ v̄ in Ω \ {0}.
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We end this subsection with some comparison statements.

Proposition 4.10 Let v be a nonnegative s-subharmonic function in RN \ {0} satisfying

lim
x→0
|x|N−2sv(x) = 0 and lim

|x|→+∞
v(x) = 0,

then
v ≡ 0 in RN .

Proof. The function x 7→ w(x) := |x|2s−N + 1 is s-harmonic in RN \ {0} and for any ε > 0
the function v − εw is s-subharmonic in RN \ {0} and negative in Bc

R for R > 0 large enough
and in Bδ for δ > 0 small enough. Taking O = BR \ Bδ and h = 0 in Corollary 4.6, it implies
that for any ε > 0,

0 ≤ v ≤ εw in RN \ {0}.

Thus passing to the limit as ε→ 0 implies the claim. �

As a variant of this result we have

Corollary 4.11 Let Ω ⊂ RN be a bounded regular domain containing the origin, g : R+ → R+

be a continuous function such that g(0) = 0 and h be a nonnegative function bounded in RN \Ω.
If v is a nonnegative solution of

(−∆)sv + g(v) = 0 in Ω \ {0}, v = h in Ωc,

satisfying lim
x→0

v(x)|x|N−2s = 0. Then v ≤ ‖h‖L∞ in RN .

4.5 Fractional Hardy operator

For τ ∈ (−N, 2s), we define Cs(τ) by the expression

Cs(τ) = 22s Γ(N+τ
2 )Γ(2s−τ

2 )

Γ(− τ
2 )Γ(N−2s+τ

2 )
= −

cN,s
2

∫
RN

|e1 + z|τ + |e1 − z|τ − 2

|z|N+2s
dz,

where e1 = (1, 0, · · · , 0) ∈ RN . Since the function Γ is infinite at 0, Cs vanishes at 0 and 2s−N ,
i.e.

Cs(0) = Cs(2s−N) = 0.

The role of Cs(τ) is enlighted by the following identity [17]

(−∆)s|x|τ = Cs(τ)|x|τ−2s for all x ∈ RN \ {0}.

The function Cs is concave and achieves its maximum in (−N, 2s) for τ = 2s−N
2 with corre-

sponding maximal value 22s Γ2(N+2s
4

)

Γ2(N−2s
4

)
(see [17, Lemma 2.3]). Furthermore,

Cs(τ) = Cs(2s−N − τ) for τ ∈ (−N, 2s),
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and
lim

τ→−N
Cs(τ) = lim

τ→2s
Cs(τ) = −∞.

Let τp = − 2s
p−1 , then we have that for 1 + 2s

N < p < N
N−2s ,

τp ∈ (−N, 2s−N) and Cs(τp) > 0

and for p > N
N−2s

τp ∈ (2s−N, 0) and Cs(τp) < 0.

Let

cp =

 Cs(τp)
1
p−1 if 1 + 2s

N < p < N
N−2s(

− Cs(τp)
) 1
p−1 if p > N

N−2s ,
(4.10)

then the function Up expressed by

Up(x) := cp|x|−
2s
p−1 in RN \ {0}, (4.11)

satisfies, for 1 + 2s
N < p < N

N−2s ,

(−∆)sUp + Upp = 0 in RN \ {0},

and for p > N
N−2s

(−∆)sUp = Upp in RN \ {0}.

The fractional Hardy operator is defined by

Lsµv(x) = (−∆)sv(x) +
µ

|x|2s
v(x),

under the condition

µ ≥ µ0 := −22sΓ2(N+2s
4 )

Γ2(N−2s
4 )

.

It is shown in [17] that the linear equation

Lsµv = 0 in RN \ {0}

has two distinct radial solutions Φµ and Γµ defined by

Φµ(x) =

 |x|
τ−(µ) if µ > µ0

|x|−
N−2s

2 ln
(

1
|x|

)
if µ = µ0

and Γµ(x) = |x|τ+(µ),

where the exponents τ−(µ) ≤ τ+(µ) verify the relations

τ−(µ) + τ+(µ) = 2s−N for all µ ≥ µ0,

τ−(µ0) = τ+(µ0) = 2s−N
2 , τ−(0) = 2s−N, τ+(0) = 0,

lim
µ→+∞

τ−(µ) = −N and lim
µ→+∞

τ+(µ) = 2s.
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In the remaining of the paper and when there is no ambiguity, we use the notations τ+ = τ+(µ),
τ− = τ−(µ). The following inequalities are proved in [17],

Cs(τ) + µ > 0 for τ ∈ (τ−, τ+)

and
Cs(τ) + µ < 0 for τ ∈ (−N, τ−) ∪ (τ+, 2s).

Definition 3.1 We denote by W s(Ω) the space of functions v ∈ L1(RN , dµs) such that v
∣∣
Ω
∈

L2(Ω) which satisfy

EsΩ,Ω′(v, v) < +∞ for some domain Ω′ ⊂ RN with Ω ⊂⊂ Ω′,

where we have set

EsA,B(v, w) =
cN,s

2

∫
A×B

(v(x)− v(y))(w(x)− w(y))

|x− y|N+2s
dxdy.

We define W s
∗ (Ω) as the space of functions v ∈ L1(RN , dµs) such that v|Ω\Bε ∈ W s(Ω \ Bε) for

every ε > 0.

The comparison principle for the fractional Hardy operator is the following, see [17, Lemma
4.11],

Lemma 4.12 Let v ∈W s
∗ (Ω) satisfy Lsµv ≥ 0 in Ω \ {0} and

v ≥ 0 in RN \ Ω, lim inf
x→0

v(x)

Φµ(x)
≥ 0.

Then v ≥ 0 in RN .

As an application we have the following Liouville type result.

Corollary 4.13 Let 0 < s < 1 and p > 0. If v is a solution of

(−∆)sv + |v|p−1v = 0 in RN \ {0}, (4.12)

satisfying
lim
x→0
|x|N−2sv+(x) = 0 and lim

|x|→+∞
|x|τ0v+(x) = 0, (4.13)

for some τ0 ∈ (0, 2s) ∩ [2s(p+ 1)−Np,+∞), then v+ ≡ 0.

Proof. Let ε > 0 and

wε(x) = ε(|x|2s−N + 1) + εp+1|x|τ0 for x ∈ RN \ {0}.
Then

wpε(x) ≥ εp(|x|(2s−N)p + 1),

and
(−∆)swε(x) + wpε(x) = εp+1Cs(τ0)|x|τ0−2s + wpε(x)

≥ εp
(
εCs(τ0)|x|τ0−2s + |x|(2s−N)p + 1

)
,

(4.14)

where Cs(τ0) < 0. Since τ0 ∈ (0, 2s) ∩ [2s(p+ 1)−Np,+∞), we have that τ0 − 2s ≥ (2s−N)p.
Thus, taking ε > 0 small enough we infer that the right-hand side of (4.14) is nonnegative.
Hence wε is a supersolution of (4.12), larger than v at 0 and at ∞. Thus v ≤ wε. Letting ε→ 0
yields the claim. �.
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4.6 Emden-Fowler equation with Dirac mass

The Emden-Fowler equation with right-hand side measure is studied in [15] and [16]. A particular
case which is important in our present study is the following problem

(−∆)sv + vp = kδ0 in D′(Ω)

v = 0 in Ωc,
(4.15)

where Ω ⊂ RN is a bounded domain containing the origin. We set

Xs,Ω =
{
ζ ∈ C(RN ) : ζ = 0 in Ωc, |(−∆)sζ| ∈ L∞(RN ), |(−∆)sεζ| ≤ φ if 0 < ε ≤ ε0

}
,

where

(−∆)sεζ(x) =

∫
|x−y|>ε

ζ(x)− ζ(y)

|x− y|N+2s
dy

and φ ∈ L1(Ω, d∂Ωdx) with d∂Ω(x) = dist (x,Ωc). The following result is proved in [15].

Proposition 4.14 Let 0 < p < N
N−2s , then for any k ≥ 0 there exists a unique function v = vk

belonging to L1(Ω) such that vpk ∈ L
1(Ω, d∂Ωdx), satisfying∫

Ω

(
vk(−∆)sζ + vpkζ

)
dx = kζ(0) for all ζ ∈ Xs,Ω

vk = 0 in Ωc

and the following estimate holds

kGs,Ω(x, 0)− c21k
p ≤ vk(x) ≤ kGs,Ω(x, 0) ≤ kGs(x, 0) for all x ∈ Ω \ {0}, (4.16)

where c21 > 0, Gs,Ω and Gs denote the Green functions of (−∆)s in Ω and RN respectively.
Furthermore, the mapping k 7→ vk is increasing and it is stable in the sense that if {ρε} is a
sequence of nonnegative functions with compact support in Ω converging to kδ0 in the sense of
distributions in Ω, then the sequence of solutions v := vρε of

(−∆)sv + vp = ρε in D′(Ω), v = 0 in Ωc,

converges to vΩ,k uniformly on any compact subset of Ω \ {0}, and vρε converges to vΩ,k in
Lp(Ω, d∂Ωdx).

Since k 7→ vk is increasing, we set

v∞(x) = lim
k→+∞

vk(x) for all x ∈ Ω \ {0}.

Proposition 4.15 Let 0 < p < N
N−2s , then

1- If 0 < p ≤ 1 + 2s
N , then v∞(x) =∞ for all x ∈ Ω.

2- If 1 + 2s
N < p < N

N−2s , then v∞ is a positive solution of

(−∆)sv + vp = 0 in Ω \ {0}, v = 0 in Ωc, (4.17)
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satisfying

lim
x→0
|x|

2s
p−1 v∞(x) = cp, (4.18)

and
Up(x)− c∗ ≤ v∞(x) ≤ Up(x) for all x ∈ Ω \ {0}, (4.19)

where c∗ > 0, cp and Up are defined in (4.10) and (4.11) respectively.

Proof. When 1 + 2s
N ≥

2s
N−2s , the above result is proved in [16, Theorem 1.1], but when

1 + 2s
N < 2s

N−2s the situation is not yet completely clarified [16, Theorem 1.2]. In this proof, we
give a proof to overcome this gap.

To distinguish the effect of domain, we replace vk by vΩ,k and for simplicity in the proof of
this proposition, we set

v0,k = vRN ,k, v0,∞ = vRN ,∞

and
v1,k = vB1,k, v1,∞ = vB1,∞.

From [18, Theorem 1.4] for Ω = RN , there holds

(i) If p ∈
(
0, 1 + 2s

N

]
, then v0,∞(x) =∞ for all x ∈ RN \ {0};

(ii) If p ∈
(
1 + 2s

N ,
N

N−2s), then v0,∞(x) = Up(x) = cp|x|−
2s
p−1 , x ∈ RN \ {0}.

Assume that B1 ⊂ Ω, then it follows by the comparison principle that for any k > 0,

v1,k ≤ vΩ,k ≤ v0,k in RN \ {0}. (4.20)

Moreover, we see that v1,k is radially symmetric and decreasing with respect to |x|, and

lim
x→0

v1,k(x)|x|N−2s = cNk.

Step 1: we prove that vΩ,∞ is infinite everywhere in Ω when p ∈ (0, 1 + 2s
N ].

Since the mapping k 7→ v1,k is monotone, if there is one point x0 6∈ B1 \ {0} such that
lim

k→+∞
v1,k(x0) is finite,, then up to changing x0 we can assume that lim

k→+∞
v1,k(z) < ∞ for

all z such that |z| ≥ |x0| − ε for some ε > 0. Hence

vp1,k(x0) = cN,s

∫
|y|<|x0|−ε

v1,k(y)− v1,k(x0)

|y − x0|N+2s
dy + cN,sP.V.

∫
|y|>|x0|−ε

v1,k(y)− v1,k(x0)

|y − x0|N+2s
dy

= Ak +Bk.

Since v1,k(y) is uniformly bounded in B1 \ B|x0|−ε, the term Bk remains bounded too. If there
exists y0 ∈ B|x0|−ε\{0} such that lim

k→+∞
v1,k(y0) =∞ then lim

k→+∞
v1,k(y) =∞ for all y ∈ By0\{0},

hence Ak →∞ which contradicts the fact that vp1,k(x0) is uniformly bounded. Consequently,
(i) either lim

k→+∞
v1,k(x) =∞ for all x ∈ B1 \ {0},
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(ii) or lim
k→+∞

v1,k(x) := v1,∞(x) <∞ for all x ∈ B1 \ {0}.
Let us assume that (ii) occurs. Then v1,∞ is a classical solution of

(−∆)sv + vp = 0 in B1 \ {0}

v = 0 in Bc
1.

(4.21)

Let η0 : RN → [0, 1] be a smooth, radially symmetric function such that

η0 = 1 in B 1
2

and η0 = 0 in Bc
3
4

.

Set
ṽ = v1,kη0 for k ≤ ∞.

A straightforward calculation shows that there exists c22 > 0 independent of k, such that

|(−∆)sṽ(x) + ṽp(x)| ≤ c22(1 + |x|)−N−2s for all x ∈ RN \ {0}.

Therefore there exists l0 = l0(N, s, p) > 0 such that

(−∆)s(2ṽ + l0) + (2ṽ + l0)p > 0 in RN \ {0}.

Hence 2ṽ + l0 is a positive super solution of

(−∆)sv + vp = 0 in RN \ {0}.

From ([16]) we have that for any finite k > 0

lim
x→0

v0,k(x)

v1,k(x)
= 1 and lim

|x|→+∞
v0,k(x) = 0.

The comparison principle applies and we obtain that for any k > 0, there holds

v0,k ≤ 2ṽ + l0 in RN \ {0}.

Since p ∈ (0, 1 + 2s
N ] it is proved in ([16]) that lim

k→+∞
v0,k(x) =∞ for all x ∈ RN \ {0}, which is

a contradiction. Therefore v1,∞ ≡ ∞.
Since v1,k ≤ vΩ,k ≤ v0,k we infer that vΩ,∞ ≡ ∞.

Step 2: Asymptotics of vΩ,∞ for 1 + 2s
N < p < N

N−2s .

If 1 + 2s
N < p < N

N−2s , it is proved in ([16]) that

lim
k→+∞

v0,k = Up.

Let Hs be the s-harmonic extension of Up in B1, i.e.

(−∆)sHs = 0 in B1, Hs = Up in Bc
1.

34



Then Hs is bounded and positive in B1. Note that Hs ≥ v0,k in Bc
1 for any k > 0. We define

Wk in RN \ {0} by
Wk = v0,k −Hs.

Then there exists a sequence {rk} ⊂ (0, 1) such that rk → 1 and Wk(x) > 0 for 0 < |x| < rk.
Actually, this is due to the fact that for any k > 0

v0,k = cNk|x|2s−N (1 + o(1)) as x→ 0 and lim
k→+∞

vk = 0.

Moreover, Wk is a subsolution of (4.21). Therefore, comparison principle implies that for any
k > 0

vΩ,k ≥ v1,k ≥Wk in B1 \ {0}.

Passing to the limit as k → +∞, we have that

vΩ,∞ ≥ v1,∞ ≥ Up −Hs in B1 \ {0},

and from (4.20) letting k → +∞, we obtain that vΩ,∞ ≤ v0,∞ = Up in B1 \ {0}.
As a consequence, we have that

Up − sup
RN

Hs ≤ vΩ,∞ ≤ Up in B1 \ {0},

which also implies (4.18). �

The next result leads to an integral criteria for characterizing positive solutions of Emden-
Fowler equations with strong singularity without a priori estimate.

Proposition 4.16 Assume p ∈ (0, N
N−2s) and B1 ⊂ Ω. If v is a positive solution of (4.17) such

that ∫
B1

vpdx = +∞, (4.22)

then v ≥ v1,k in B1 \ {0} for any k > 0, where v1,k is the solution of (4.17). As a consequence,
v ≥ v1,∞.

Proof. Let α > 1, then wk = α
− 1
p−1 v1,k satisfies

(−∆)swk + αwpk = α
− 1
p−1kδ0 in B1

wk = 0 in Bc
1.

(4.23)

The equation satisfied by v can be written under the form

(−∆)sv + αvp = (α− 1)vp in Ω \ {0}
v = 0 in Ωc.

From (4.22) and regularity of v in Ω \ {0}, for any ε ∈ (0, 1) there holds∫
Bε

vpdx = +∞.
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Hence for any k > 0, there exists ` = `(ε) > 0 such that

(α− 1)

∫
Bε

(min{v, `})pdx = k.

Let ṽε be the unique solution of

(−∆)sv + αvp = (α− 1)
(

min{v, `}
)p
χBε in B1

v = 0 in Bc
1.

Note that ṽε is bounded in B1.
The comparison principle (see Corollary 4.7) shows that for any l > 0,

v ≥ ṽε in RN \ {0}.

Since `ε →∞ when ε→ 0 and

(α− 1)(min{v, `})pχBε ⇀ α
− 1
p−1kδ0,

then it follows by Proposition 4.14 that ṽε converges to the solution wk of (4.23). Thus, we

deduce that v ≥ α−
1
p−1 v1,k. Since k > 0 is arbitrary, we infer the claim. �

In the following we establish a local integral a priori estimate

Proposition 4.17 Let p > 1 + 2s
N and v be a nonnegative solution of (4.17). Then for any

1 ≤ q < p

1+ 2s
N

, there holds

(∫
B 1

2

vqdx
) 1
q ≤ c23 + c24

∫
Ω\B 1

2

vdx,

where c23 and c24 are positive constants depending on p, q, s and N .

Proof. We use the same test function ζ as in the proof of Proposition 4.4 and we set
ζ̃n(x) = ζ(2nx) and Γn = B2−n−1 \B2−n−2 ,∫

Γn

vpdx ≤
∫

Γn

vpζ̃ndx =

∣∣∣∣∫
Ω

(−∆)sζ̃nvdx

∣∣∣∣ ≤ 22ns ‖(−∆)sζ‖L∞(RN ) ‖v‖L1(Ω) .

Then∫
Γn

vqdx ≤
(∫

Γn

vpdx
) q
p
(∫

Γn

dx
)1− q

p ≤ c252
−N
p

(
p−q(1+ 2s

N
)
)
n ‖(−∆)sζ‖

q
p

L∞(RN )
‖v‖

q
p

L1(Ω)
.

Since 1 ≤ q < p

1+ 2s
N

, we set α0 = N
p

(
p − q(1 + 2s

N )
)
> 0 by our assumption that q < p

1+ 2s
N

.

Summing the above inequalities from n = 0 to +∞, we derive∫
B 1

2

vqdx ≤ 2α0c25

2α0 − 1
‖(−∆)sζ‖

q
p

L∞(RN )
‖v‖

q
p

L1(Ω)
,

36



therefore (∫
B 1

2

vqdx
) p
q ≤

( 2α0c25

2α0 − 1

) p
q ‖(−∆)sζ‖L∞(RN ) ‖v‖L1(Ω)

≤ c26 ‖v‖L1(Ω\B 1
2

) + c27

( ∫
B 1

2

vqdx
) 1
q
,

(4.24)

where c26 and c27 are positive constants depending on N , p, q and s. If we set X = ‖v‖
q
p

Lq(B 1
2

),

(4.24) becomes
Xp ≤ c26 ‖v‖L1(Ω\B12) + c27X.

Standard algebraic computations combined with a convexity argument lead to

‖v‖Lq(B 1
2

) ≤ c
1
p−1

27 +
c26

(p− 1)c27
‖v‖L1(Ω\B 1

2
) .

We complete the proof. �

4.7 A priori estimate for Emden-Fowler equation

Without loss of generality, we can assume that B1 ⊂ Ω ⊂ Ω ⊂ B` for some ` > 1. The main
estimate is the following

Proposition 4.18 Assume that s ∈ (0, 1), p > 1+ N
2s and v is a nonnegative function satisfying

(4.17). Then there exists a constant c28 = c28(N, p, s) > 0 such that

v(x) ≤ c28|x|−
2s
p−1 for all x ∈ B 1

2
\ {0}. (4.25)

Proof. The proof follows the technique introduced by Gidas and Spruck in [24] dealing with
the classical Lane-Emden equation and extended to the fractional Lane-Emden equation in [28]
and [37]. Only the final argument is different and specific to the Emden-Fowler equation. We
assume by contradiction that there exists a sequence {xk} ⊂ B1 \ {0} converging to 0 such that

|xk|
2s
p−1 v(xk) = max

|xk|≤|x|≤1
|x|

2s
p−1 v(x)→ +∞ as k → +∞.

We set

φk(x) =
( |xk|

2
− |x− xk|

) 2s
p−1

v(x), φk(x̄k) = max
|x−xk|≤

|xk|
2

φk(x).

Since

(2νk)
2s
p−1 v(x̄k) = φk(x̄k) ≥ φk(x) ≥ ν

2s
p−1

k v(x) for all x ∈ Bνk(x̄k),

which implies

2
2s
p−1 v(x̄k) ≥ v(x) if |x− x̄k| ≤ νk.

Since 1
2 |x̄k| ≥

1
2 |xk| − |x̄k − xk|, we obtain

|x̄k|
2s
p−1 v(x̄k) ≥ |xk|

2s
p−1 v(xk) ≥ |x|

2s
p−1 v(x) for all x ∈ B1 \B|xk|
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and

(2νk)
2s
p−1 v(x̄k) = φ(x̄k) ≥ φ(xk) ≥

( |xk|
2

) 2s
p−1

v(xk)→ +∞ as k → +∞.

Therefore,

wk(y) ≤ 2
2s
p−1 for all |y| ≤ rk := (v(x̄k))

p−1
2s νk.

As in [37] we define the function Wk by

Wk(y, z) =
1

v(x̄k)
v
( y

(v(x̄k))
p−1
2s

+ x̄k,
z

(v(x̄k))
p−1
2s

)
for all (y, z) ∈ Ωk \ {(ξk, 0)},

where
Ωk =

{
(y, z) ∈ RN+1

+ :
( y

(v(x̄k))
p−1
2s

+ x̄k,
z

(v(x̄k))
p−1
2s

)
∈ Ω× (0, 1)

}
and

ξk = −(v(x̄k))
p−1
2s x̄k.

We set wk = Wk(·, 0) and Ok = Ωk ∩ ∂RN+1
+ . The function Wk satisfies

DsWk = 0 in Ωk \ {(ξk, 0)}

∂νsWk(·, 0) +Wk(·, 0)p = 0 in Ok \ {(ξk, 0)}

Wk(·, 0) = 0 in Ock,

where Ock denotes the complement of Ok in ∂RN+1
+ . Since wp−1

k ≤ 22s in Brk , there exists a
constant c29 > 0 depending on N, p and s such that

0 ≤Wk(y, z) ≤ c29 for all (y, z) ∈ B rk
2
× [0, rk2 ]. (4.26)

It is a consequence of the Harnack inequality [37, Proposition 2.2] and the invariance of the
problem by scaling. From this inequality follows a local regularity estimate of Wk, independent
of k already obtained in [37] that we recall

‖Wk‖W 1,2(BR×(0,R),z1−2s) + ‖Wk‖Cα(BR×[0,R]) + ‖wk‖C2,α(BR) ≤ C(R)

for some α > 0 and any R > 0, where W 1,2(BR × (0, R), z1−2s) denotes the weighted Sobolev
space with weight z1−2sdxdz. Therefore there exists a subsequence of {Wk} still denoted by
{Wk} and a nonnegative bounded function W such that Wk →W weakly in W 1,2(RN+1

+ , z1−2s)

and in Csloc(R
N+1
+ ) and such that wk → w := W (·, 0) ∈ C2

loc(RN ) . Therefore the functions W ,
w satisfy w(0) = 1 and, because of (4.26), it is a nonnegative and bounded solution of

DsW = 0 in RN+1
+

∂νsW (·, 0) +W (·, 0)p = 0 in RN .

By Theorem 2.1 w belongs to L1
µs(R

N ), thus ∂νsW (·, 0) = (−∆)sw and w satisfies (4.12). By
Corollary 4.13 such a function cannot exist. This implies that (4.25) holds. �

The next statement is a surprising consequence of Proposition 4.18.
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Corollary 4.19 Assume that 1 + 2s
N < p < N

N−2s . If v is a positive function satisfying (4.17)
and ∫

Ω
vpdx = +∞.

Then there holds
lim inf
x→0

|x|
2s
p−1 v(x) = cp.

Proof. By Proposition 4.15 and Proposition 4.16 we have

lim inf
x→0

|x|
2s
p−1 v(x) ≥ cp.

Therefore we proceed by contradiction assuming that there exists a nonnegative solution v and
µ̄ > 0 such that

cp < µ̄1/(p−1) < lim inf
x→0

|x|
2s
p−1 v(x) < +∞. (4.27)

We can write the equation satisfied by v under the form

Lsµ̄v = g(x) :=
µ̄

|x|2s
v − vp.

The mapping µ 7→ τ−(µ) is continuous and monotone decreasing from [µ0,+∞) onto (−∞, 2s−N
2 ]

and τ−(cp−1
p ) = − 2s

p−1 . Therefore, there exists τ̄ > 2s
p−1 such that τ−(µ̄) = −τ̄ . By (4.25) we

have
lim inf
x→0

|x|τv(x) = 0

for any τ > 2s
p−1 . Choosing τ = τ̄ we see that there exist r, c30 > 0 such that

0 < −g(x) ≤ c30|x|−pτ̄ for any 0 < |x| < r.

Set m = r−τ+(µ̄)v(r). For any ε > 0 the function wε,m := εΦµ̄ + mΓµ̄ satisfies Lsµ̄wε,m = 0.
Therefore the function wε,m − u satisfies in turn

Lsµ̄(wε,m − v) = −g ≥ 0 in Br \ {0}.

This function is nonnegative in RN \Br and there holds

lim inf
x→0

(wε,m − u)(x)

Φµ̄(x)
= ε > 0.

By Lemma 4.12, wε,m − v ≥ 0. Letting ε→ 0 yields v(x) ≤ mΓµ̄(x). Thus (4.27) does not hold
and no such µ̄ exists, which implies the claim. �
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5 Singularity of solutions

5.1 Energy method and limit set

The estimates (4.8) and (4.25) combined with the lifting estimate (4.4) allow to use an energy
method to describe the behaviour of signed solutions of (3.2). Furthermore, this energy method
does not depend of the signs of solutions, even if the bounds do. If we set

u(ξ) = u(r, σ) = r
− 2s
p−1w(t, σ) with t = ln r (5.1)

and w(t, σ) = w(t, σ′, φ). Then w satisfies

wtt + Θs,p,Nwt + Λs,p,Nw +As[w] = 0 in R× SN+
∂w

∂νs
+ ε|w|p−1w = 0 in R× SN−1,

where Θs,p,N and Λs,p,N are defined in (3.5) and

∂w

∂νs
(t, σ′) = − lim

φ→0

(
sinφ)1−2swφ(t, σ′, φ)

)
.

We define the negative (resp. positive) trajectory of w by

T−[w] =
⋃{

w(t, ·), t ≤ 0
}
,

respectively

T+[w] =
⋃{

w(t, ·), t ≥ 0
}
.

The trajectory of w denoted by T [w] = T−[w]∪T+[w]. We also define the α-limit set Γ−[w] and
the ω-limit set Γ+[w] of a trajectory by

Γ−[w] =
⋂
t≤0

(⋃
{w(τ, ·), τ ≤ t}

X
)

and Γ+[w] =
⋂
t≥0

(⋃
{w(τ, ·), τ ≥ t}

X
)
,

where X =
{
ζ ∈ Cs(SN+ ) : ζ(·, 0) ∈ C2(SN−1)

}
. If we assume that the set {w(t, ·)} is bounded

in R− × SN+ (resp. in R+ × SN+ ), its trajectory T−[w] (resp. T+[w]) is uniformly bounded in{
ζ ∈ Cα(SN+ ) : ζ(·, 0) ∈ C2+α(SN−1)

}
. By Ascoli’s theorem they are relatively compact in X.

By the general theory of limit sets, Γ±[w] are compact and connected subsets of X. We first
give a general result about these limit sets under the assumption that the solutions are signed
and satisfy a priori estimate which is indeed only proved for nonnegative solutions.

Theorem 5.1 Assume that s ∈ (0, 1), p ∈ (1,+∞) \ {N+2s
N−2s}, ε = ±1 and u ∈ C(RN+1

+ \
{(0, 0)}) ∩ C2(RN+1

+ ) is a solution of (3.2). If u satisfies

|u(x, z)| ≤ c31

(
|x|2 + z2

)− s
p−1 for 0 < |x| < 1, (resp. for |x| > 1) (5.2)

for some c31 > 0, then Γ−[w] (resp. Γ+[w]) is a nonempty compact connected subset of the set
Eε, which is the set of solutions of (3.4).

40



Proof. We give the proof for Γ−[w], the case Γ+[w] being the same up to changing t in −t.
We define the energy function

Iε[w](t) =
1

2

∫
SN+

(
|∇′w|2 − Λs,p,Nw

2 − w2
t

)
dµs −

ε

p+ 1

∫
SN−1

|w|pdS′.

The function w is bounded in C2(SN+ × (−∞,−1]) and there holds

d

dt
Iε[w](t) =

(
p− 2s(p+ 1)

p− 1

)∫
SN+
w2
t dµs = Θs,p,N

∫
SN+
w2
t dµs. (5.3)

Since p 6= N+2s
N−2s , Θs,p,N 6= 0, and we have the damping estimate∫

SN+
w2
t dµs < +∞.

We conclude by using the uniform continuity of wt that wt(t, ·) → 0 uniformly on SN+ when
t → −∞. Let ω ∈ Γ−. There exists a sequence {tn} converging to −∞ such that w(tn, ·) → w

uniformly on SN+ , and since wt(t, ·)→ 0 uniformly on SN+ , for any T > 0, w(t, ·)→ w uniformly

on [tn − T, tn + T ]× SN+ . Let ζ ∈ C2(SN+ ) such that ∂νsζ = 0, then∫
SN+

(wt(T + tn, ·)− wt(T − tn, ·)) ζdµs + Θs,p,N

∫
SN+

(w(T + tn, ·)− w(T − tn, ·)) ζdµs

− Λs,p,N

∫ T

−T

∫
SN+
w(tn + t, ·)ζdµsdt−

∫ T

−T

∫
SN+
w(tn + t, ·)As[ζ]dµsdt

+ ε

∫ T

−T

∫
SN−1

(|w|p−1w)(tn + t, ·)ζdS′dt = 0.

Letting tn → −∞ yields∫ T

−T

∫
SN+

(Λs,p,Nωζ + ωAs[ζ]) dµsdt− ε
∫ T

−T

∫
SN−1

|ω|p−1ωζdS′dt = 0.

This implies that ω is a weak solution of (3.4) and therefore a strong one. �

Remark. The case p = N+2s
N−2s is not covered since the damping coefficient Θs,p,N in (5.3)

vanishes.

5.2 Singularities of Emden-Fowler equation

The next result concerns the singularities of solutions to the Emden-Fowler equations.

Theorem 5.2 Assume that s ∈ (0, 1), ε = 1 and u ∈ C1
(
RN+1

+ \ {(0, 0)}
)
∩ C2(RN+1

+ ) is a
solution of (3.2) satisfying (5.2), v = u(·, 0) and w is defined by (5.1). The following convergences
hold when t→ −∞.
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1-a If p ≥ N
N−2s , then w(t, ·) converges uniformly in SN+ to 0, v ≡ 0, hence u is a smooth solution;

1-b If 1 + 2s
N < p < N

N−2s and u is nonnegative, then either w(t, ·) converges uniformly in SN+ to
ω1 or it converges to 0;

1-c If p∗ ≤ p < N
N−2s , then w(t, ·) converges uniformly in SN+ to some ` ∈ {0, ω1,−ω1};

1-d If 1 < p ≤ 1 + 2s
N , and u is nonnegative, then w(t, ·) converges uniformly in SN+ to 0.

2. Let 1 < p < N
N−2s , u is nonnegative, if w(t, ·) converges uniformly in SN+ to 0, then there

exists k ∈ R+ such that

e
(N− 2s

p−1
)t
w(t, σ′, φ)→ k sin2s(φ) uniformly in SN+ .

If k = 0, then w ≡ 0 and u is smooth.

Proof. 1-a. If p ≥ N
N−2s , the set E1 is reduced to the zero function. Therefore w(t, ·) converges

to 0 when t→ −∞. By (3.3) the function ũ(t, σ) = u(r, σ) with t = ln r satisfies

ũtt + (N − 2s)ũt +As[ũ] = 0 in (−∞, 0)× SN+
∂ũ

∂νs
+ |ũ|p−1ũ = 0 in (−∞, 0)× SN−1.

(5.4)

Since 2s
p−1 ≤ N − 2s, we have that ũ(t, ·) = o(e(2s−N)t) when t → −∞. Let m = max |ũ(0, ·)|.

For any ε > 0, t 7→ εe(2s−N)t+m is a supersolution of (5.4), larger than ũ at t = 0 and t→ −∞.
Hence ũ(t, σ) ≤ εe(2s−N)t + m. Letting ε → 0+ yields ũ(t, σ) ≤ m. Similarly ũ(t, σ) ≥ −m,
hence ũ is bounded and so is u. Therefore v

(
= u(·, 0)

)
∈ L1

µs(R
N ),

∂ũ

∂νs
= (−∆)sv,

and v is a bounded solution of the fractional Emden-Fowler equation in Ω\{0} vanishing on Ωc.
It is therefore identically 0. By the even extension of u to RN+1, it follows that u is smooth.

1-b Since E+
1 = {ω1, 0} and is disconnected, the result follows.

1-c Since E1 = {ω1,−ω1, 0} and is disconnected, the result follows.

1-d Since E+
1 = {0} the result follows.

2. If u is nonnegative, then v ∈ L1
µs(R

N ), thus (4.17) holds. If (4.22) holds, then

v ≥ v∞ = lim
k→+∞

vk

by Proposition 4.16, which is impossible if w(t, ·) converges to 0. Therefore v ∈ Lp(B1) and by
Lemma 4.2 there exists k ≥ 0 such that (4.15) holds and therefore v = vk. Furthermore, (4.16)
is satisfied. If k = 0, then v is identically 0 and u is smooth as in the previous case. �
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5.3 Singularities for Lane-Emden equation

In the case of Lane-Emden equation we have the following.

Theorem 5.3 Assume that s ∈ (0, 1), ε = −1, p > 1 and p 6= N+2s
N−2s and u ∈ C(RN+1

+ \{(0, 0)})∩
C2(RN+1

+ ) is a nonnegative solution of (2.2) satisfying (5.2). The following convergences hold
when t→∞.

1-a If p > N
N−2s , then w(t, ·) converges uniformly in SN+ either to ω1 or to 0.

1-b If 1 < p ≤ N
N−2s , then w(t, ·) converges uniformly to 0 in SN+ .

2-a If p > N
N−2s and w(t, ·) converges to 0, then u is a smooth function in RN+1

+ and so is v.

2-b If 1 < p < N
N−2s , there exists k ≥ 0 such that

e
(N− 2s

p−1
)t
w(t, σ′, φ)→ k(sinφ)2s uniformly in SN+ .

Proof. Assertions 1-a and 1-b follow from Theorem 5.1 and the description of E+
− given in

Theorem 3.4. Furthermore, by Lemma 4.2 there exists k ≥ 0 such that (4.7) holds with ε = −1.
Observe that v(x) ≥ kGs,Ω(x, 0), where Gs,Ω is the Green function of (−∆)s in Ω subject to
zero Dirichlet condition in Ωc. If p ≥ N

N−2s , then Gs,Ω /∈ Lp(B1), therefore k = 0 in that case.

2-a. Step 1: If w(t, ·) converges to 0, we first prove that there exist ε > 0 and c32 > 0 such that

0 ≤ w(t, σ) ≤ c32e
εt for all (t, σ) ∈ (−∞]× SN+ . (5.5)

Set ρ(t) = ‖w(t, .)‖C0(SN+ ). If (5.5) does not hold we have that

lim sup
t→−∞

e−εtρ(t) = +∞ for all ε > 0.

By [14, Lemma 2.1] there exists a function η ∈ C∞
(
(−∞, 0]

)
such that

(i) η > 0, η′ > 0, lim
t→−∞

η(t) = 0;

(ii) 0 < lim sup
t→−∞

ρ(t)

η(t)
< +∞;

(iii) lim
t→−∞

e−εtη(t) = +∞ for all ε > 0;

(iv)

(
η′

η

)′
,

(
η′′

η

)′
∈ L1((−∞, 0));

(v) lim
t→−∞

η′(t)

η(t)
= lim

t→−∞

η′′(t)

η(t)
= 0.

(5.6)

We define ψ by w(t, ·) = η(t)ψ(t, ·), then

ψtt + %1ψt + %2ψ +As[ψ] = 0 in (−∞, 0)× SN+
∂ψ

∂νs
− ηp−1ψp = 0 in (−∞, 0)× SN−1,

(5.7)
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where

%1 = Θs,p,N + 2
η′

η
and %2 = Λs,p,N +

η′

η
Θs,p,N +

η′′

η
.

The function ψ is uniformly bounded. Then by standard regularity theory for degenerate
elliptic operators (see e.g. [26]), ψ is bounded in C2(−∞,−1]×SN+ ). Therefore, the trajectory of
T−[ψ] := {ψ(t, ·) : t ≤ 0} is relatively compact in X

(
=
{
φ ∈ Cs(SN+ ) : φ(·, 0) ∈ C2(SN−1)

})
. By

(5.6)-(ii) there exist a nonzero nonnegative function θ ∈ C2(SN+ ) and a sequence {tn} tending to

−∞ such that ψ(tn, ·)→ θ in C2(SN+ ). If we multiply by ψt the equation (5.7) which is satisfied
by ψ and integrate over SN+ , we obtain the following energy formula

d

dt
F [ψ](t) = %1

∫
SN+
ψ2
t dµs −

1

2
%′2

∫
SN+
ψ2dµs −

p− 1

p+ 1
η′ηp−2

∫
SN−1

ψp+1dS′, (5.8)

where

%′2 =
(η′
η

)′
Θs,p,N +

(η′′
η

)′
and

F [ψ](t) :=
1

2

∫
SN+

(
|∇′w|2 − %2

)
ψ2dµs −

ηp−1

p+ 1

∫
SN−1

ψp+1dS′.

By properties (i), (iv) and (v) in (5.6), we have that

η′ηp−2
(

=
η′

η
ηp−1

)
, %′2,

η′(t)

η(t)
∈ L1((−∞, 0)) as t→∞.

Since F [ψ](t) is bounded independently of t, it follows that∫ 0

−∞

∫
SN+
ψ2
t dµsdt < +∞

using the regularity estimates it implies that

lim
t→−∞

∫
SN+
ψ2
t dµs = 0.

This implies that the convergence of ψ(tn, ·) to θ holds in the stronger following way: for any
T > 0,

ψ(t, ·)→ θ uniformly in [tn − T, tn + T ]× SN+ .

Let ζ ∈ C2(SN+ ) such that ∂νsζ = 0, then from (5.7),∫
SN+

(wt(T + tn, ·)− wt(T − tn, ·)) ζdµs + Θs,p,N

∫
SN+

(w(T + tn, ·)− w(T − tn, ·)) ζdµs

− Λs,p,N

∫ T

−T

∫
SN+

ψ(tn + t, ·)ζdµsdt−
∫ T

−T

∫
SN+
ψ(tn + t, ·)As[ζ]dµsdt

= 2

∫ T

−T

∫
SN+

(
η′

η
ψt(tn + t, ·) + %′2ψ(tn + t, ·)

)
ζdµsdt+

∫ T

−T

∫
SN−1

ηp−1ψp(tn + t, ·)ζdS′dt.

(5.9)
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When tn → −∞, the right-hand side of (5.9) tends to 0. Since ∂νsθ = 0 on SN−1 from the
equation satisfied by ψ and the convergence of ψ, it follows, as in the proof of Theorem 5.1, that
θ satisfies

As[θ] + Λs,p,Nθ = 0 in SN+
∂θ

∂νs
= 0 in SN−1.

As Λs,p,N < 0 we derive θ = 0 by integration, contradiction. Hence (5.5) holds for some ε > 0.

2-a. Step 2. Next we prove that there exist c33 > 0 such that

w(t, σ) ≤ c33e
2s
p−1

t
for all (t, σ) ∈ (−∞, 0]× SN+ .

The set Q of ε > 0 such that (5.5) holds is a non-empty interval and it admits an upper bound
ε∗ which is finite if v is not identically 0. If ε ∈ Q, we set ψε(t, ·) = e−εtw(t, ·)

If ε∗ ∈ Q, we take ε = ε∗ and denote ψε∗ = ψ∗. Then ψ∗ is bounded and satisfies

ψ∗tt + %∗3ψ
∗
t + %∗4ψ

∗ +As[ψ∗] = 0 in (−∞, 0)× SN+
∂ψ∗

∂νs
− e(p−1)ε∗tψ∗p = 0 in (−∞, 0)× SN−1,

where
%∗3 = Θs,p,N + 2ε∗ and %∗4 = Λs,p,N + ε∗Θs,p,N + ε∗2.

Because ψ∗ is bounded, the same analysis as in the previous cases shows that any element
θ∗ in the limit set of the trajectory of {ψ∗} is a nonnegative function satisfying

%∗4θ
∗ +As[θ∗] = 0 in SN+ ,

∂θ∗

∂νs
= 0 in SN−1. (5.10)

The polynomial P (z) = z2 + Θs,p,Nz + Λs,p,N admits two roots z2 < 0 < z1, where

z1 =
2s

p− 1
and z2 = 2s−N +

2s

p− 1
.

Notice that 0 < ε∗ ≤ z1 since v(0) > 0. If ε∗ < z1, the limit set is reduced to {0}, hence we
proceed as is Step 1, by introducing a function η∗ which has the same properties as the function
η shown in (5.6), except that (5.6)-(ii) is replaced by

0 < lim sup
t→−∞

ρ∗(t)

η∗(t)
< +∞ with ρ∗(t) = ‖ψ∗(t, .)‖L∞(SN+ ) .

Defining the function υ∗ = w∗

η∗ which satisfies

υ∗tt + %∗5υ
∗
t + %∗6υ

∗ +A[υ∗] = 0 in (−∞, 0)× SN+
∂υ∗

∂νs
− e(p−1)ε∗tη∗p−1υ∗p = 0 in (−∞, 0)× SN−1,
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where

%∗5 = Θs,p,N + 2ε∗ + 2
η∗′

η∗
and %∗6 = Λs,p,N +

(
ε∗ +

η∗′

η∗

)
Θs,p,N + ε∗2 +

η∗′′

η∗
.

The same analysis carried on in Step 1 shows that there exists a nonnegative nonzero ele-
ment in the limit set of the trajectory of υ∗ which satisfies the same equation as θ∗ in (5.10),
contradiction. Therefore ε∗ = z1 which implies that v is bounded and therefore regular.

If ε∗ /∈ Q, then for any ε < ε∗ the function ψε(t, .) = e−εtw(t, ·) is bounded, tends to 0 when
t→ −∞ and satisfies

ψε tt + %3ψε t + %4ψε +As[ψε] = 0 in (−∞, 0)× SN+
∂ψε
∂νs
− e(p−1)εtψpε = 0 in (−∞, 0)× SN−1,

where
%3 = Θs,p,N + 2ε and %4 = Λs,p,N + εΘs,p,N + ε2.

Put Xε(t) =

∫
SN+
ψε(t, .)dµs and Fε(t) =

∫
SN−1

ψpεdS
′, then

X ′′ε + %3X
′
ε + %4Xε + e(p−1)εtFε = 0.

The equation
Y ′′ + %3Y

′ + %4Y = 0

admits the two linearly independent solutions

Y1(t) = e

(
2s
p−1
−ε
)
t

and Y2(t) = e

(
2s−N+ 2s

p−1
−ε
)
t
.

The function Xε satisfies

−X ′′ε − %3X
′
ε − %4Xε ≤ c34e

(p−1)εt on (−∞, 0].

Since it tends to 0 when t→ −∞, Xε is bounded from above by the solution X̃ε of

−X̃ ′′ε − %3X̃
′
ε − %4X̃ε = c34e

(p−1)εt on (−∞, 0]

X̃ε(0) = Xε(0),

lim
t→−∞

X̃ε(t) = 0.

The solution of this last differential equation is easily computable as we can always assume that
(p− 1)ε 6= 2s

p−1 − ε (the equality is called the resonance phenomenon) and we have

X̃ε(t) = Xε(0)e

(
2s
p−1
−ε
)
t
+ c35e

(p−1)εt
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for some explicit constant c35 depending on the coefficients. This implies∫
SN+
w(t, ·)dµs ≤ Xε(0)e

2s
p−1

t
+ c33e

pεt.

Applying Harnack inequality [37, Proposition 3.1] we obtain that

w(t, ·) ≤ c36e
2s
p−1

t
+ c37e

pεt for all t ≤ T0.

Because ε can be taken arbitrarily close to ε∗, we have that min{pε, 2s
p−1} > ε∗, which contradicts

the definition of ε∗. Hence ε∗ ∈ Q, which ends the proof of 2-a.

2-b. If 1 < p < N
N−2s , there exists k ≥ 0 such that (4.7) holds, and

kGs,Ω(x, 0) ≤ v(x) ≤ c38|x|2s−N ,

where c38 > 0. �

Proofs of Theorem E–F. Theorem E is Theorem 5.1, Theorem F follows Theorem 5.2 part
2 and Theorem E does Theorem 5.3 part 1-a, 2-a. �

5.4 Classification of fractional Emden-Fowler equation

Proof of Theorem G. Let v be a nontrivial nonnegative solution of (1.9). It suffices to prove
that

1. for p ∈
(
0, 1 + 2s

N

]
,

v = vk in B1 \ {0} for some k ≥ 0;

2. for p ∈
(
1 + 2s

N ,
N

N−2s

)
, either

v = vk in B1 \ {0} for some k ≥ 0

or
v = v∞ in B1 \ {0}.

3. for p ≥ N
N−2s , v ≡ 0.

Part 1. For p ∈
(
1, N

N−2s

)
, if
∫

Ω v
pdx < +∞, it follows by Lemma 4.2 that v = vk for some

k ≥ 0. Moreover, if k = 0, v = v0 ≡ 0 in Ω \ {0}.
If
∫

Ω v
pdx = +∞, from Proposition 4.16, we have that

v ≥ v∞ in RN \ {0}.

If p ∈
(
0, 1 + 2s

N

]
, then v∞ = +∞ in Ω, which implies that v can be taken in this case.

Part 2. If p ∈
(
1 + 2s

N ,
N

N−2s

)
, v∞ is a solution of (1.7) satisfying

lim
x→0

v∞(x)|x|
2s
p−1 = cp
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by Corollary 4.19. Moreover, by the strong maximum principle, we have that

v ≡ v∞ or v > v∞ in Ω \ {0}.

If v > v∞, we let

V =
vp − vp∞
v − v∞

and then
vp−1
∞ ≤ V ≤ vp−1 in Ω \ {0}.

Let v̄ = v − v∞ in RN \ {0}, then v̄ satisfies that

lim
x→0

v̄(x)|x|
2s
p−1 = 0

and
(−∆)sv̄ + V v̄ = 0 in Ω \ {0}, v̄ = 0 in Ωc. (5.11)

Note that εv∞ is a super solution of (5.11) for any ε > 0 and by the comparison principle, we
have that

v̄ ≤ εv∞ in Ω.

By the arbitrary of ε > 0, we have that v̄ ≤ 0. This is impossible from our setting that v > v∞.
Therefore, v ≡ v∞.

Part 3. From Proposition 4.18 we have that

v(x) ≤ c28|x|−
2s
p−1 in Ω \ {0}.

When p > N
N−2s , we have that − 2s

p−1 > 2s − N and ε| · |2s−N is a super solution of (5.11)

for any ε > 0, then comparison principle implies that v ≤ ε| · |2s−N , which by the arbitrary of
ε > 0, implies that v = 0.

When p = N
N−2s , there holds − 2s

p−1 = 2s − N . For m ∈ R let νm be a smooth, radially
symmetric function such that

νm(x) = (− ln |x|)m for 0 < |x| < 1

e2
and vm(x) = 0 for |x| > 1. (5.12)

Moreover, νm is non-increasing in |x| if m > 0. Denote

wm(x) = |x|2s−Nνm(x) for x ∈ RN \ {0}. (5.13)

From [13, Proposition 2.1] for m 6= 0, we denote

Im = C′s(0)m, Jm = C′′s (0)
m(m− 1)

2
, (5.14)

where C′s(0) < 0 and C′′s (0) < 0. Then Im > 0 for m < 0, and there exist r0 ∈ (0, 1
e2

] and c5 > 0
such that for 0 < |x| < r0∣∣∣(−∆)swm(x)− Im|x|−N (− ln |x|)m−1 − Jm|x|−N (− ln |x|)m−2

∣∣∣ ≤ c5|x|−N (− ln |x|)m−3.
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Now we take m0 = −N−2s
2s < 0 and for some r1 > 0 there holds

(−∆)swm0(x) ≥ 0 in Br1(0) \ {0}.

Now we assume that Ω ⊂ Br1 , then εwm0 is a super solution of (5.11) for any ε > 0 in Br1 , then
comparison principle implies that v ≤ εwm0 , which by the arbitrary of ε > 0, implies that v = 0.

When Ω is general domain, if v is a nontrivial singular solution of (5.11) in Ω, then by the
super and sub solution method, (5.11) in Br1 has a solution ṽ such that

lim
x→0

ṽ

v
= 1.

Then a contradiction could be obtained. �

Open problems

Problem 1. Non-radial elements of E1 can be formally constructed in the following way: set

SN+,1 = SN ∩ {(x1, ..., xN , z) : x1 > 0, z > 0}.

Construct by minimization a positive function ω satisfying

As[ω] + Λs,p,Nω = 0 in SN+,1
∂ω

∂νs
+ ωp = 0 in SN−1 ∩ {x1 > 0}

ω = 0 in SN+ ∩ {x1 = 0}.

(5.15)

Then the function w̃ defined in SN+ by

ω̃ =

{
ω(σ) in SN+,1
−ω(σ̃) in SN+ ∩ {x1 < 0},

where σ̃ is the symmetric of σ with respect to the plane x1 = 0, is a signed solution of (2.2) with
ε = 1. It vanishes on the plane {(x, z) : x1 = 0}. It could be interesting to see if the condition
for existence of such a solution coincides with the condition p < p∗.

Problem 2. It could be interesting to investigate the type of operators in RN+ which could
lead by a trace process somehow similar to the one of [8] to perturbations of (−∆)s such as
(−∆ +mI)s or to Hardy type operators (−∆)s + µ|x|−2s. This could be usefull for studying a
wider class of nonlinear semilinear equations involving fractional type-Laplacians.

Problem 3. The description of the singular behaviour in the case p = N
N−2s is more complicated

due to the fact that Λs,p,N = 0 and the linear blow-up rate 2s−N coincides with the nonlinear
blow-up rate 2s

p−1 . This phenomenon has been described by Aviles [2] in the case s = 1. In a
very recent article [36] Wei and Wu proved that the function v either is smooth at 0 or satisfies

c1|x|2s−N (− ln |x|)
2s−N

2s ≤ v(x) ≤ c2|x|2s−N (− ln |x|)
2s−N

2s for all x ∈ B1 \ {0}.
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for some constants c1, c2 > 0. We conjecture that the following result holds: either the function
v can be extended as a smooth solution at 0, or

lim
x→0
|x|N−2s(− ln |x|)

N−2s
2s v(x) = C(N, s)

for some positive explicit constant C(N, s).

Problem 4. In an impotant article, Simon [33] studied the unique limit problem for bounded
solutions of analytic functional. His results were used in [3] to obtained the precise asymptotics
of solutions of

−∆u = λeu in B1 \ {0} ⊂ R3

with λ > 0 satisfying |x|2eu(x) ∈ L∞(B 1
2
), or positive solutions of

−∆u = up +
`

|x|2
u in B1 \ {0} ⊂ RN

with p > 1 satisfying |x|
2
p−1 ∈ L∞(B 1

2
). The technique was to reduce the problem to a semilinear

ellictic equations in an infinite cylinder and to prove that the limit set of the renormalized
corresponding solutions was reduced to a single element whatever is the structure of the set of
possible limits (or self-similar solutions). It is natural to investigate similar questions concerning

uzz +
1− 2s

z
uz + ∆xu+

`

|x|2 + z2
u = 0 in RN+1

+

− lim
z→0

z1−2suz(x, z)− up(x, 0) = 0 in B1 \ {0} ⊂ RN .

Assuming that a solution u satisfies (|x|2 + z2)
s
p−1 ∈ L∞(B 1

2
) and using the variable (5.1) the

new function w(t, σ) = r
2s
p−1u(r, σ), t = ln r, satisfies

wtt + Θs,p,Nwt + (Λs,p,N + `)w +As[w] = 0 in R× SN+
∂w

∂νs
+ wp = 0 in R× SN−1,

(5.16)

where Θs,p,N and Λs,p,N are unchanged.
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