
HAL Id: hal-03689960
https://hal.science/hal-03689960v1

Submitted on 14 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cloud file sharing using PREaaS
Anass Sbai, C. Drocourt, Gilles Dequen

To cite this version:
Anass Sbai, C. Drocourt, Gilles Dequen. Cloud file sharing using PREaaS. EHEI Journal of Science
and Technology, 2021, 1 (2), pp.52-63. �hal-03689960�

https://hal.science/hal-03689960v1
https://hal.archives-ouvertes.fr

EHEI Journal of Science and Technology

Vol. 01 Issue 02 (2021) 52–63

ISSN : xxxx-xxxx © 2021 ; ; https://revues.imist.ma/index.php/ehei-jst/index. All rights reserved

Cloud file sharing using PREaaS

Anass Sbai 1, Cyril Drocourt and Gilles Dequen 2

1,2 MIS Laboratory, University of Picardie Jules Verne, Amiens, France

Received 27 October 2021, Revised 20 November 2021, Accepted 25 November 2021

Abstract:
This paper proposes a new method of features extraction for handwritten, printed and isolated numeral recognition.

It is essential today for a company to store its data in an encrypted way when it uses Cloud Computing. However,

the manipulation of this encrypted data remains complex, and it is very difficult in this case to be able to share the

encrypted data between different users. One of the solutions for sharing encrypted data is to use PRE (Proxy

Reencryption) which allows both the re-encryption of the data, but also the delegation of this operation by a third

party via the use of a specific key. In this article, we propose a solution for sharing encrypted files between users

that uses a classic storage system in the Cloud and PRE (re-encryption PRoxy). We present an improvement of an

existing PRE algorithm by applying it to elliptical curves in order to improve its performance. Finally, we

implement this architecture in the form of a cloud service called PREaaS (PRE as a Service) which allows this

mechanism to be used on demand with an API.

Index Terms: Cloud data privacy, Proxy re-encryption, Encrypted file sharing, SECaaS .

Adresse E-mail: sbaianass92@gmail.com

1. Introduction

The use of encryption in Cloud Computing is now a must and a reality. The different actors of the

field as well as the companies have understood the important stakes of data security. However, the

systems used are often limited to general technologies based on TLS flow encryption and authentication

system. Unfortunately, there are only a few solutions for storing encrypted data, and they are often tied

to a user license or a company. Moreover, these solutions do not offer simple mechanisms for sharing

encrypted data.

To this day, cloud storage remains restrictive in terms of confidentiality. In fact, the best-known

providers (e.g. GoogleDrive, Dropbox, OVH ...) do not ensure the total confidentiality of their customers’

data: either the data is encrypted by a key known by the Cloud Service Provider (CSP), or it is

stored in clear. These CSPs are supposed to be considered honest but curious entities. However, they

are considered entirely trustworthy entities. This is a real security issue, since there is a risk that the data

will be given or even sold to third parties. In order to ensure confidentiality with respect to the CSP, the

data must be stored encrypted and accessible only by authorized persons.

A naive solution to the problem of sharing encrypted data would be to use classical encryption techniques

(symmetric or asymmetric) and to share the decryption key with the entities designated by the data

owner.

mailto:E-mail:%20wafa19819@gmail.com
mailto:E-mail:%20wafa19819@gmail.com

A. Sbai et al., EHEI J. Sci. Technol. 01(01) (2021) 52-63 53

EHEI-JST

Concerning symmetric encryption, it cannot be used alone since the same key is used for encryption

and decryption. This implies that this same key is pre-shared between the data owner and the different

entities to which we want to give access rights.

For public key cryptography, there are several solutions:

• All the recipients know the private key related to the public key of encryption, the problem is

then identical to symmetrical encryption,

• Each data is encrypted with the public key of the re- cipient. The problem is that the users who

should have the right to access the encrypted information are not necessarily known in advance.

Therefore, the only possibility is that this data is encrypted under a public key controlled by the data

owner, which implies that the data owner must decrypt the data and then encrypt it with the user’s own

key. However, this decryption and encryption solution requires the data owner to be available and online to

re-encrypt the data if necessary, which prohibits asyn- chronous management of the process. It is therefore

extremely inefficient. The problem becomes increasingly complex when we consider multiple data and

various entities.

The best solution would be to allow multiple people to decrypt the data without having to go

through decryp- tion/encryption steps or without sharing one’s private or secret key. We consider it

important to give the definition and the state of the art of the PRE so that the reader can better under-

stand our choice. We also present in this paper, the architecture chosen for our solution as well as the

implementation of the PRE.

2. Related works

Several works aiming to protect privacy have emerged. We find for example CryptDB [1], ESPRESSO

[2]. These solu- tions provide encryption services to maintain confidentiality. Nevertheless, each solution

has its limitations. For example, CryptDB cannot be used for no SQL databases or file systems and the

complexity of key management increases with the number of users. ESPRESSO uses only symmetric

encryp- tion and requires trusting a third party or CSPs to provide encryption and key management.

Regarding data sharing, both solutions must go through decryption/encryption process.

This data sharing problem has been solved by various solutions in the literature, starting with broadcast

encryption designed by [3]. In this case, each user can access the data independently of the others. This

requires knowledge at the time of encryption of who will have the privilege to access the data. Another

similar approach, introduced by [4], is attribute- based encryption (ABE). Inspired by D Boneh’s work on

identity-based encryption (IBE) schemes, their idea was to create a new type of IBE system [5] to

combine encryption and access control. In this case, access privileges are not addressed to a set of users

but only to users with a specific number of attributes. Unfortunately, this does not allow selective

sharing.

As an alternative to these solutions, we choose to use the proxy re-encryption proxy (PRE). Thus, we

will be able to transfer decryption rights to specific entities. The proxy re- encryption (PRE) is a

crypto-system that allows to transform encrypted messages from an entity into messages that can be

decrypted by an entity B . We then find the three main actors:

The delegator (Alice) : noted ”a” is the entity owner of the data which delegates the rights of decryption to

another entity, namely the delegate, by creating a re-encryption key sent to the re-encryption proxy.
•

A. Sbai et al., EHEI J. Sci. Technol. 01(01) (2021) 52-63 54

EHEI-JST

The delegate (Bob): noted ”b” is the entity to which we granted the decryption rights of the encrypted

messages which are not intended for him at the origin. These encrypted messages must be re-

encrypted by the re- encryption key which is the object of an access autho- rization for the delegate.

The proxy: this entity manages the process of re- encrypting encrypted messages, originally intended for

the delegate, into messages that can be decrypted by the delegate. The re-encryption key used by

the delegate during the transformation process must not allow any disclosure of information to the

proxy.

The first PRE was designed by BBS (Blaze, Bleum and Strauss) [6] based on the ElGamal asymmetric

encryption system. The authors show that it is possible to incorporate a substitution key to re-encrypt

an already encrypted message without compromising it. The BBS proposal is a very elegant solution and

it allows to keep the same encryption and decryption algorithms as ElGamal. It also allows decrypting

encrypted or re-encrypted messages with the same decryption function. This is due to the re-encryption

process. Indeed, the latter transforms Alice’s encrypted messages with ElGamal while keeping the same

distribution for the re-encrypted mes- sages intended for Bob. Thus, we cannot distinguish between an

encrypted and a re-encrypted message. [7] formalize the design of re-encryption proxies by classifying

these systems into two types: unidirectional and bidirectional

[8] gives a more formal definition of PRE and concretely defines these properties such as:

• Unidirectional: Delegation of decryption rights from Al- ice to Bob does not allow Alice to decrypt

Bob’s cipher.

• Non-interactive: The re-encryption key can be generated by Alice without interacting with Bob, and

thus using only Bob’s public key.

• Transparent: Or invisible, meaning that the delegate can not distinguish between an encrypted

message and a re- encrypted message.

• Key-optimal: The size of Bob’s secret storage must re- main unchanged, no matter how many

delegations he accepts.

• Original access: The sender can decrypt any re-encrypted message which he was originally the

owner.

• Collusion-safe: If the proxy and Bob collude, they shouldn’t get Alice’s secret key.

• Non-transitive: The proxy can not re-delegate re- encryption rights. (e.g from Rka→b and Rkb→c the

proxy can not calculate Rka→c)

• Non-transferable: The proxy and delegates can not re- define decryption rights. (e.g from Rka→b

and Pkc and Skb we can not calculate Rka→c)

• Temporary: Bob can decipher the messages received from

• Alice only at a certain point in time.

• The earliest studies [7] [8] focus more on creating an PRE that is unidirectional. These proposals

provide security against IND-CPA attacks and are not resistant to collusion.

• [9] then propose the first PRE scheme secure against IND- CCA attacks where they prove the

security of their scheme based on universal composability [10].

• Their construction is bidirectional, uses pairing, and is proven secure in the random oracle model.

The authors state that it is recommended to have a system which is proven secure in the standard

•

•

A. Sbai et al., EHEI J. Sci. Technol. 01(01) (2021) 52-63 55

EHEI-JST

model while avoiding pairing for efficiency reasons, whether for unidirectional or bidirectional

systems.

• The open problem presented by Canetti et al. has been addressed in [11]. The authors manage to solve a

part of this open problem which concerns the construction of a secure PRE against CCA attacks

without pairing. Their PRE is bidirectional and its is mainly based on ElGamal and Schnorr signature,

which implies the use of random oracles. Based on [11], [12] proposed the first unidirectional PRE

IND-CCA secure without pairings and thus relying only on El-Gamal and Schnorr signature. [13]

find a flaw in the security proof of Chow’s construction and propose to fix it. Their construction is also

unidirectional IND-CCA secure in the random oracle model and does not rely on pairings.

• Since the appearance of proxy re-encryption, few appli- cations make use of them. We can nevertheless

mention Skycryptor [14] and Nucypher [15]. Skycryptor is a security solution as a service for file

sharing. Basically, the proposed solution uses a unique symmetric key for each file to be encrypted

with AES and then encrypts the secret key with the user’s asymmetric public key generated through

the PRE algorithm. The solution is a dedicated machine software and is now marketed under the name

BeSafe. Each user’s machine has its own key pair and re-encryption is used to share files between

different devices or users. Most importantly, users must install the BeSafe software and use it to

encrypt data.

3. Our Contribution

A- File sharing :

The goal of our system is to develop a CSP (Content Service Provider) application, in SaaS (Software As

A Service) dedicated to storage. It should make it possible to replace proprietary solutions such as GDrive,

DropBox, ICloud, etc. However, the goal is not to implement a new file system but to use existing

standards that allow remote access.

Our application will have to use the classic organization of a file system, remain compatible with this

model, and add additional information to solve our goal, without disturbing normal operation.

 The objectives of the system are:

• to encrypt all of the stored information,

• to not expose the data by default to a person other than the owner of the data,

• to allow the sharing of encrypted data,

The additional constraints that we have defined:

• to have a quick solution in terms of use,

• to allow the sharing of a directory with another user, without copying it,

To solve the first constraint and the first objective, it is necessary to use a secret key algorithm. In

addition, it is necessary to:

• encrypt each file independently, and therefore to generate a unique secret key to encrypt each file,

• not store the encryption key in the file itself, in order to simplify the organization of the files and

access to them as well as to the encryption keys,

A. Sbai et al., EHEI J. Sci. Technol. 01(01) (2021) 52-63 56

EHEI-JST

Sharing a directory requires access to all of the secret keys associated with all the encrypted files in the

directory when the recipient user requests access. It is at this stage that asymmetric encryption is needed

to encrypt the secret keys.

We have three solutions for storing the secret encryption keys associated with each file:

• Build an index file that contains all the secret keys and encrypt it with the owner’s public key: this

solution requires decrypting the entire index file to access each secret key, which is not practical,

• Build an index file that contains all the secret keys, which will have been previously encrypted with

the owner’s public key: this always requires retrieving the entire file for each transaction,

• To create a specific file for each secret file containing the associated secret key, and encrypt this file

with the owner’s public key: It is this last solution that was chosen which allows finer granularity,

because it also allows to process only the individually requested encrypted files.

In order to allow the sharing of directories, it is necessary that:

• our CSP has a method to transform encrypted data on demand,

• sharing a directory does not allow the recipient to access other data,

• sharing a directory does not allow the CSP to access other data,

The last point is essential in terms of security. Indeed, even in the event of a successful attack on the CSP,

there should be no possibility of accessing data that the owner has not shared. Therefore, the only

possible solution is not to use the owner’s key pair directly, but for each directory to have a dedicated

public / private key pair. Thus, as shown in “Fig. 1”, for a file F1 located in a directory D1, a unique

secret key KF 1 will be generated to encrypt the file. This key will itself be encrypted with the public

key of the PkD1 directory.

Fig. 1. Encryped file and secret key.

Now we have to solve another problem, which is to allow sharing of a directory to make the files in it

accessible to the recipient. We must therefore make the secret keys available to the recipient, without

providing the private key of the directory. It is therefore necessary to transform information encrypted with

the public key of the directory, so that it can be decrypted with the private key of the recipient. This

transformation is possible using a Proxy Re-Encryption (PRE). In this way, when the recipient requests

access to a file that is shared, the CSP transforms the secret encryption key associated with the file

using a re-encryption key to make it accessible to the recipient using the PRE. We propose to use PRE as

a data sharing service in multi-cloud systems called PREaaS [16]. The PREaaS, has the advantage to only

handles encrypted data and, public keys and re-encryption keys. It does not affect confidentiality in any

A. Sbai et al., EHEI J. Sci. Technol. 01(01) (2021) 52-63 57

EHEI-JST

way, even if the CSPs or users are corrupted and collude with the PREaaS. This is guaranteed by

careful selection of the algorithms used by the service. The potential of cloud computing would take

care of the consumption of re-encryption time.

As we can see in “Fig. 2”, the application usage is as follows:

• Each user has his own key pair generated when creating the account on the CSP, for user A:

Pka/Ska,

• (1) User A creates a directory D1, a corresponding asymmetric key pair is generated on the client

side (PkD1/SkD1),

• (2) User A creates a file F 1, a secret encryption key KF 1 is generated, the file is encrypted with

this key,

• (3) The secret key is itself encrypted with the public key PkD1 of the directory and sent to the

server to be placed in an index file IF 1,

• (4) The owner wants to share a directory with user B, he generates on the client side a re-encryption

key RkD1→B allowing to transform the data encrypted for A into data encrypted for B, this key is

sent to the CSP,

• (5) User B requests access to the file F 1 shared by A,

• (6) The CSP sends him the requested file encrypted with the key KF 1,

Fig. 2. Interactions between Users and CSP.

• (7) The CSP re-encrypts the index file IF 1 containing the secret key KF 1 using the re-encryption

key RkD1→B,

• (8) The CSP sends the index file IF 1 containing the secret key KF 1 encrypted with the key Pkb to

user B,

A. Sbai et al., EHEI J. Sci. Technol. 01(01) (2021) 52-63 58

EHEI-JST

• User B who has the private key Skb can therefore decrypt the file IF 1 containing the secret key,

then decrypt the file F 1,

In order to securely store the information specific to each user (personal key pair and key pairs associated

with each directory), a secret key derived from the user’s password is generated on the client side which

allows this information to be encrypted before sending it to the CSP. In this way, the CSP does not

manipulate any personal user data, only encrypted data.

As we will see in the part concerning the implementation, our CSP is therefore composed of two remote

services, the PREaaS and the file server. In addition, the main component of the application is located on

the client side, and it is executed directly in the internet browser.

B- Proxy Re-Encryption :

Usually, a PRE scheme can be defined as a tuple ζ : {Setup, KeyGen, ReKeyGen, ξasym, ReEnc,

Dec}. Where:

• Setup(1k) = params : takes as input a security pa- rameter k and generates the system parameters

which generally define the recommended length of messages and keys.

• KeyGen(params) = (Pk, Sk): is the function that generates the public/private key pair Pk and Sk

respectively.

• RekeyGen(Ska, Pkb) = Rka→b : in the case of the one- way ERP (defined in 2.2.3), it is necessary to

enter the private key of a and the public key of b to generate the re-encryption key.

• ξPka (M) = Ca : is the encryption function. It takes as input a plaintext message M and a public key

Pk

• ReEnc(Ca, Rka→b) = Cb : is the re-encryption function. It takes as input an encrypted message and

a re-encryption key.

• Dec(C, Sk) = M : is the decryption function. It takes as input an encrypted or re-encrypted message

and returns the corresponding plaintext message.

In some cases, we can find two other functions used for encryption and decryption, so that the encrypted

message cre- ated by this encryption function (also called non-transformable encryption) cannot be re-

encrypted and only the owner of the private key can decrypt it.

This part presents the PRE algorithm that we use for file sharing. Thanks to this survey [17], we can

see the computational comparison of PRE schemes. By keeping only the schemes that are CCA secure we

can conclude that Chow’s algorithm is the more efficient among them. In [13] the authors find a flaw in the

security proof of Chow’s construction and propose to fix it.

Thus, we chose [13] because it reaches IND-CCA security and also because of its efficiency which is due

to the fact that it does not require pairing. Most importantly, the scheme is unidirectional and collusion

resistant.

Two instances have been implemented, the first one uses a generic group of prime order, and the second

one uses a group of point on elliptic curve. We first implemented the algorithm by simply using a generic

group of prime order. We quickly realized that this solution was unthinkable. Indeed, the time necessary

for the use of the cryptographic primitives make the system unusable in real time.

We then studied the other possibilities as well as the other existing PRE algorithms but without success.

We then had the idea to change the method, and adapt the algorithm of [13] to use it with elliptic curves.

The main difference between the two instantiations is that the elliptic curve point group is an additive

group. Thus, all exponentiations are transformed into scalar multiplications.

A. Sbai et al., EHEI J. Sci. Technol. 01(01) (2021) 52-63 59

EHEI-JST

−

−

p

×

⊕
 |
|

∗

×

asym

Also, the hash functions had to be adapted in order to generate elliptic curve points. This algorithm could

be instanciated using any group where the computational Diffie-Hellman problem is known to be hard.

For efficiency reason we use elliptic curves. We will see later in our implementation that the lenght of

keys and ciphers will be much reduced as well as the time consumption. We give a formal version of the

Selvi’s algorithm with ECC below :

• Setup(1k) : for 128-bit, choose a prime p of 256-bit length and an elliptic curve EFp such that a = p

3. G = (xG, yG), a point on the curve, known as the base point with order n. The elliptic curve

equation is then : y2 = x3 3x + b mod (p). (You can find the exact values of NIST p-256 curve

parameters in [18]). Choose five hash functions: H1 : {0, 1}l0 × {0, 1}l1 → Z∗p, H2 : EFp → {0,

1}l0 +l1 , H3 : {0, 1}∗ → Z∗p, H4 :

EFp → Z∗p, H5 : EF
4 × {0, 1}l0 +l1 → EF p. The message space M is {0, 1}l0 , where l0 = l1 =

k. params = (p, EFp, G, H1, H2, H3, H4, l0, l1).

• KeyGen(params) : – Pick xa,1, xa,2 $ ←− Z ∗ p. – Compute P ka,1 = xa,1.G , P ka,2 = xa,2.G –

Return Ska =(xa,1, xa,2) & P ka =(P ka,1, P ka,2).KeyGen(params) : – Pick xa,1, xa,2 $ ←− Z ∗ p. –

Compute P ka,1 = xa,1.G , P ka,2 = xa,2.G – Return Ska =(xa,1, xa,2) & P ka =(P ka,1, P ka,2).

• RekeyGen(Ska, P ka, P kb): – Pick h $←− {0, 1} l0 , π $←− {0, 1} l1 . – Compute v = H1(h, π), V

= v.P kb,2 and W = H2(v.G) ⊕ (h||π). – Define rk = h xa,1H4(P ka,2) + xa,2 – Return Rka→b = (rk,

V, W).

• ξPka (m) :

– Pick u $ Z∗ , w $ 0, 1 l1 .

– Compute D = u.[(H4(Pkb,2).Pka,1) Pka,2] , r =

H1(m, w) & E = r.[(H4(Pkb,2).Pka,1) Pka,2].

– Compute F = H2(r.G) (m w).

– Compute D = u.H5(Pka,1, Pka,2, D, E, F) & E

 = r.H5(Pka,1, Pka,2, D, E, F).

– Compute s = u + r H3(D, E, F) mod(p).

– Return Ca = (D, E, F, s).

• ReEnc(Ca, Pka, Pkb, Rka→b):

– Compute D and D :

 D = s.[(H4(Pkb,2).Pka,1)*Pka,2]*(H3(E, E, F).E)−1

 D = (s.H5(Pka,1, Pka,2, D, E, F))*(H3(E, E, F).E)−1

 = u.[H5(Pka,1, Pka,2, D, E, F)]

– Check if : s.[(H4(Pkb,2).Pka,1)*Pka,2]=D*(H3(E, E, F).E) (1) s.[H5(Pka,1,

Pka,2, D, E, F)]=D*(H3(E, E, F).E) (2)

– If the above check fail return +. Else, compute E′ =

Erk = (r h).G

– Return Cb
′ = (E′, F, V, W).

– Dec(Ca, Pka, Ska) : (Original CipherText)

A. Sbai et al., EHEI J. Sci. Technol. 01(01) (2021) 52-63 60

EHEI-JST

1 xa,1 H4(P ka,2 + xa,2)
1

– Compute D and D. Then check if (1) & (2) holds.

– If the condition hold, compute (m||w) = F ⊕

H2 (. E)

– If: E = H1(m, w).[(H4(Pkb,2).Pka,1)*Pka,2] and

E = H1(m, w).[H5(Pka,1, Pka,2, D, E, F)] return m, else return +.

(Transformed CipherText)

– Compute (h||π) = W ⊕ H2(1 Ska,2 .V).

– Extract (m||w) = F ⊕ H2(1 h .E0).

 – If : V =H1(h, π).P ka,2 and E0=(h × H1(m,w)).G

 return m , else return +

As far as hash functions are concerned, the only particularity is to map to a curve point for the H5

function. A simple hash function may not be the best idea for this problem. Let’s assume that we can use

SHA-3 and that the fingerprint generated through this function will be the x coordinate value.

Through this value, we can use the equation of the curve to calculate the value of the y coordinate which

will be a square root. We will then have two possible values for y. We have to pick one of the two values

at each new call to this function. Then, when it comes time to verify, we need to call the function twice

and check which of the two results matches our curve point. This is also problematic, because if we

choose to take only the positive value, it means that we ignore half of the points on our curve. A possible,

but not very efficient, solution is to use SHA-3 to generate the y ordinate. We know that it corresponds to

a single point of the curve and that a value is possible for the abscissa x. However, we will have to solve

the equation of the curve and end up calculating the cube root, which is more expensive in terms of

calculation. There are some more optimal and safer solutions allowing to do both the hash and the

mapping to a curve point such as [19] and [20]. However, this problem has not been addressed in our

work.

C- Implementation :

We chose to use JavaScript as a core technology. And thus to be executed in the client side

directly by navigator or even mobile devices without any software and also in the server side,

thanks to Nodejs. For the tests we used a 2,5 GHz intel core i7, with 16 GB RAM.

Fig. 3. Tasks distribution between different environments.

A. Sbai et al., EHEI J. Sci. Technol. 01(01) (2021) 52-63 61

EHEI-JST

The purpose of the application is to use an existing network file system and it must be able to function as

an additional layer of encryption. In this way, all storage systems could be used. As a first step, we

decided to test our application using file sharing based on the WebDAV protocol. Indeed, this protocol is

widely supported by a large number of client software, it is light, easy to use, and allows us to perform the

operations we need:

• Create directories,

• Send files,

• Download files,

• Delete remote elements,

Since part of the application runs in JavaScript on the client, the majority of operations are performed by

the client. It is also the client who downloads directly from the file server without going through the

PREaaS. It just re-encrypts and transmits the URLs. We can see in “Fig. 3” the principle of interaction

between the PREaaS and the WebDAV file server. For the implementation of the Selvi’s algorithm, two

instance were tested. First we use a generic group with prime order length 3072-bit, and the second one

using NIST Standard ECC p-256 [18] thanks to SJCL (Standford Javascript Crypto Library) [21]. Both

correspond to the same security level that is 128-bit.

Table IComputational efficiency of selvi’s algorithm in (ms)

Function Fp(ms) Fp(bits) ECC(ms) ECC(bits)

KeyGen 515 512 & 6144 68 512 & 512

ReKeyGen 502 3584 48 768

Encrypt 1000 6656 95 1024

ReEncrypt 967 6656 89 1024

Decrypt 979 – 78 –

Table 1. shows the time resources consumed by the different functions of Chow’s algorithm for both

implementations. Regarding the size corresponding to each function, it refers to the following elements:

• KeyGen : refers to the size of private keys 2|Zq| & public keys 2|G|

• ReKeyGen : refers to the size of re-encryption keys |G|+ |Zq| + l1 + l2

• Encrypt : refers to the size of original ciphertexts 2|G| + |Zq + l1 + l2

• ReEncrypt : refers to the size of re-encrypted ciphertexts

2|G| + 2l1 + 2l2

We can see that no operation is constraining in terms of time consumption if we use ECC. Indeed, we

notice that the size has considerably decreased as well as the execution time have been reduced by a ratio

of approximately 10 when using an elliptic curve. We can see also that encryption and re-encryption

functions consume the most compared to key generation and decryption. In practice, the encryption and

key generation functions are not often called. Re-encryption key generation depends on the number of

delegations needed, but it is not yet time consuming. Instead, the re-encryption function is called for each

new delegation and changed key. Having an independent service such as the PREaaS that does the re-

encryption work is relieving

A. Sbai et al., EHEI J. Sci. Technol. 01(01) (2021) 52-63 62

EHEI-JST

Conclusion

In this article we present an original approach to solve the problem of sharing encrypted files.

Our CSP SaaS application uses standard protocols to store files (WebDAV) and to communicate

(HTTP) . In order not to expose any data, they are encrypted by the browser using JavaScript

language before sending it to the server. Each file is encrypted with an independent secret key,

which is itself encrypted with a public key specific to each directory. The encryption algorithm

used is based on PREs, which allows decryption rights to be delegated to another user, by

generating a re-encryption key that is transmitted to the server. In order to obtain optimal

performance, we modified the Selvi algorithm to apply it to elliptical curves. Our re-encryption

application works as a service we call PREaaS.

References:
[1] R. A. Popa, N. Zeldovich, and H. Balakrishnan, “Cryptdb: A practical encrypted relational dbms,”

2011.

[2] S. Kang, B. Veeravalli, and K. M. M. Aung, “Espresso: An encryption as a service for cloud storage

systems,” in IFIP International Conference on Autonomous Infrastructure, Management and

Security. Springer, 2014, pp. 15–28.

[3] A. Fiat and M. Naor, “Broadcast encryption,” in Annual International Cryptology Conference.

Springer, 1993, pp. 480–491.

[4] A. Sahai and B. Waters, “Fuzzy identity-based encryption,” in Annual International Conference on

the Theory and Applications of Crypto- graphic Techniques. Springer, 2005, pp. 457–473.

[5] D. Boneh and M. Franklin, “Identity-based encryption from the weil pairing,” in Annual

international cryptology conference. Springer, 2001, pp. 213–229.

[6] M. Blaze, G. Bleumer, and M. Strauss, “Divertible protocols and atomic proxy cryptography,” in

International Conference on the Theory and Applications of Cryptographic Techniques. Springer,

1998, pp. 127– 144.

[7] A.-A. Ivan and Y. Dodis, “Proxy cryptography revisited.” in NDSS, 2003.

[8] G. Ateniese, K. Fu, M. Green, and S. Hohenberger, “Improved proxy re-encryption schemes with

applications to secure distributed storage,” ACM Transactions on Information and System Security

(TISSEC), vol. 9, no. 1, pp. 1–30, 2006.

[9] R. Canetti and S. Hohenberger, “Chosen-ciphertext secure proxy re- encryption,” in Proceedings of

the 14th ACM conference on Computer and communications security. ACM, 2007, pp. 185–194.

[10] R. Canetti, “Universally composable security: A new paradigm for cryptographic protocols,” in

Proceedings 42nd IEEE Symposium on Foundations of Computer Science. IEEE, 2001, pp. 136–

145.

[11] R. H. Deng, J. Weng, S. Liu, and K. Chen, “Chosen-ciphertext secure proxy re-encryption without

pairings,” in International Conference on Cryptology and Network Security. Springer, 2008, pp. 1–

17.

[12] S. S. Chow, J. Weng, Y. Yang, and R. H. Deng, “Efficient unidirectional proxy re-encryption,” in

International Conference on Cryptology in Africa. Springer, 2010, pp. 316–332.

[13] S. S. D. Selvi, A. Paul, and C. Pandurangan, “A provably-secure unidirectional proxy re-encryption

scheme without pairing in the random oracle model,” in International Conference on Cryptology

and Network Security. Springer, 2017, pp. 459–469.

[14] A. Jivanyan, R. Yeghiazaryan, A. Darbinyan, and A. Manukyan, “Secure collaboration in public

cloud storages,” in CYTED-RITOS International Workshop on Groupware. Springer, 2015, pp.

190–197.

A. Sbai et al., EHEI J. Sci. Technol. 01(01) (2021) 52-63 63

EHEI-JST

[15] M. Egorov, D. Nun˜ez, and M. Wilkison, “Nucypher: A proxy re- encryption network to

empower privacy in decentralized systems,” 2018.

[16] A. Sbai, C. Drocourt, and G. Dequen, “Pre as a service within smart grid cities,” in 16th

International Conference on Security and Cryptography, 2019.

[17] Z. Qin, H. Xiong, S. Wu, and J. Batamuliza, “A survey of proxy re- encryption for secure data

sharing in cloud computing,” IEEE Transac- tions on Services Computing, 2016.

[18] S. Gueron and V. Krasnov, “Fast prime field elliptic-curve cryptography with 256-bit primes,”

Journal of Cryptographic Engineering, vol. 5, no. 2, pp. 141–151, 2015.

[19] T. Icart, “How to hash into elliptic curves,” in Annual International Cryptology Conference.

Springer, 2009, pp. 303–316.

[20] M. Tibouchi and T. Kim, “Improved elliptic curve hashing and point representation,” Designs,

Codes and Cryptography, vol. 82, no. 1-2, pp. 161–177, 2017.

[21] E. Stark, M. Hamburg, and D. Boneh, “Stanford javascript crypto library,” 2013.

(2021) ; https://revues.imist.ma/index.php/ehei-jst/index

