
HAL Id: hal-03689945
https://hal.science/hal-03689945

Submitted on 7 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Convergence rate of general entropic optimal transport
costs

Guillaume Carlier, Paul Pegon, Luca Tamanini

To cite this version:
Guillaume Carlier, Paul Pegon, Luca Tamanini. Convergence rate of general entropic optimal
transport costs. Calculus of Variations and Partial Differential Equations, 2023, 62 (4), pp.116.
�10.1007/s00526-023-02455-0�. �hal-03689945�

https://hal.science/hal-03689945
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Convergence rate of general entropic
optimal transport costs

Guillaume Carlier ∗ Paul Pegon † Luca Tamanini ‡

We investigate the convergence rate of the optimal entropic cost vε to the
optimal transport cost as the noise parameter ε ↓ 0. We show that for a large
class of cost functions c on Rd×Rd (for which optimal plans are not necessarily
unique or induced by a transport map) and compactly supported and L∞

marginals, one has vε− v0 = d
2ε log(1/ε) +O(ε). Upper bounds are obtained

by a block approximation strategy and an integral variant of Alexandrov’s
theorem. Under an infinitesimal twist condition on c, i.e. invertibility of
∇2
xyc(x, y), we get the lower bound by establishing a quadratic detachment

of the duality gap in d dimensions thanks to Minty’s trick.

Keywords. optimal transport, entropic regularization, Schrödinger problem, convex anal-
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Notations

x,x generic points of Rd and of Rd × Rd respectively;
|·| Euclidean norm on Rd;
‖·‖ norm on Rd × Rd defined by ‖x‖ = max{|x|, |y|} if x = (x, y);

Br(x), Br(x) open ball of radius r centered at x ∈ Rd or x ∈ (Rd)2 for the above
norms;

C 0,1(X) space of real-valued Lipschitz functions on X which is a subset of Rd
or (Rd)2;

[f ]C 0,1(X) Lipschitz constant of f : X → R where X is a subset of Rd or (Rd)2

for the above norms;
C 1,1

loc (Ω) space of differentiable real-valued functions on Ω, an open subset of
Rd or (Rd)2, with locally Lipschitz gradient;

P(Rd) space of probability measures on Rd;
Sµ support of the measure µ;

Md(R) space of real matrices of size d× d, endowed with the Frobenius
norm induced by the scalar product A ·B := Tr(ATB), for
A,B ∈Md(R);

Sd(R) subspace of real symmetric matrices of size d× d.

1 Introduction
We consider two probability measures µ± compactly supported in X± ⊆ Rd and a cost
function c : X− × X+ → R. The Entropic Optimal Transport problem (also called
entropy-regularized optimal transport problem, EOT for short) reads as:

vε := inf
{ˆ

X−×X+
c(x, y) dγ(x, y) + εEnt(γ |µ− ⊗ µ+)

}
(1.1)

where the infimum is taken among all couplings γ between µ− and µ+, i.e. probability
measures having µ− and µ+ as marginals. The classical optimal transport (OT) problem
corresponds to ε = 0. The penalization term Ent is the Boltzmann-Shannon relative
entropy (also called Kullback-Leibler divergence) and ε > 0 can be interpreted as a
temperature parameter. Heuristically, this consists in moving µ− onto µ+ in the cheapest
and (at the same time) most “diffuse” way, since the (unique) minimizer γε of (1.1) is
forced to be absolutely continuous with respect to µ−⊗µ+ because of the entropy term
and so its mass has to be “spread out”, in contrast with solutions to the unperturbed
transport problem.
In the last decade, this class of problems has witnessed a rapidly increasing inter-

est and is now an extremely active research topic, because it has found numerous ap-
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plications and proved to be an efficient way to approximate OT problems, especially
from a computational viewpoint. Indeed, when it comes to solving EOT by alternating
Kullback-Leibler projections on the two marginal constraints, by the algebraic proper-
ties of the entropy such iterative projections correspond to the celebrated Sinkhorn’s
algorithm [Sin64], applied in this framework in the pioneering works [Cut13; Ben+15].
The simplicity and the good convergence guarantees (see [FL89; MG20]) of this method
compared to the algorithms used for the Monge-Kantorovich problem, then determined
the success of EOT for applications in machine learning, statistics, image processing,
language processing and other areas (see the monograph [PC19] and references therein).

As it appears clearly from (1.1), EOT is a perturbed transport problem and, as such,
it is natural to investigate its behaviour as the parameter ε vanishes. In this direc-
tion, several aspects deserve to be studied, such as the convergence of optimal values,
potentials and optimal plans, possibly with quantitative rates. Leveraging on a large
deviations interpretation and on the notion of (c, ε)-cyclical monotonicity, the two last
questions have been addressed very recently in [BGN22; NW21].
As concerns the convergence of the optimal values (also called entropic costs) denoted

by vε, let us mention earlier contributions. In the pioneering works [Mik04; MT08; Léo12]
(which tackled the question from the Schrödinger problem’s viewpoint) and [Car+17],
the Γ-convergence of the EOT problem towards the unregularized OT problem was
proved in the quadratic case, i.e. for c(x, y) = |x − y|2. As a consequence, the optimal
value of the quadratic EOT problem converges to the optimal value of the quadratic OT
problem, namely the squared Wasserstein distance.
Since then, this convergence result was generalized in two directions: at the level of the

accuracy and at the level of the cost function. As for the former, in [Ada+11; EMR15;
Pal19] the first-order asymptotic expansion for the cost is established, both in a pointwise
and Γ-convergence sense. A further improvement has been obtained independently in
[CT21; Chi+20], where also the second-order term in the expansion is determined (under
a regularity assumption on the Wasserstein geodesic connecting the two marginals). A
second-order expansion in the same spirit has been obtained for semi-discrete OT in
[ANS22]. As regards the second direction (more general costs), the Γ-convergence result
actually holds true for a very large class of continuous cost functions, but the first-order
expansion is much more difficult to extend. In [Pal19], this is achieved for costs satisfying
strong regularity assumptions (roughly speaking, a uniform ellipticity condition on the
Hessian of the Kantorovich potential of the associated OT problem).
The aim of this paper is to continue in the second direction, namely to weaken even

further the assumptions on the cost function c. First of all, it is folklore that vε is a
C∞ function of ε > 0 (and even analytic as we shall see in Theorem 2.1). However,
the differentiability of vε at ε = 0+ is equivalent to the existence of a finite entropy
solution for v0, which is generally false, apart from the discrete case. Instead, one
expects vε − v0 to be of the order of ε log(1/ε). We shall prove that it is indeed the
case and that the remainder is O(ε) under quite general assumptions, one of which,
inspired by [MTW05; MPW12], is the infinitesimal twist condition which requires the
cross-derivative ∇2

xyc(x, y) to be invertible for every (x, y). It is worth stressing that for
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costs satisfying this condition, the solutions to the associated OT problem need not be
concentrated on a graph and may even fail to be unique, see [MPW12, Example 3.1].
Our main findings may be summarized as:

Theorem 1.1. Let Ω± ⊆ Rd be open convex sets and µ± be absolutely continuous
probability measures compactly supported on Ω± and with L∞ densities. Assume that
the cost c is C 2 on Ω− × Ω+ and infinitesimally twisted. Then

vε = v0 + d

2ε log(1/ε) +O(ε),

vε being the value of (1.1).

Hence vε approximates the transport cost v0 with accuracy d
2ε log(1/ε) and the next

term in the expansion is at most of order ε ; it cannot be better in general, as shown in
the cases handled in [Pal19]. As an application, if we debias the problem, namely if we
consider the Sinkhorn divergence (see [RTC17])

OTε(µ−, µ+) := vε(µ−, µ+)− 1
2
(
vε(µ−, µ−) + vε(µ+, µ+)

)
instead of the entropic cost vε, it immediately follows from our main theorem that the
term in ε log(1/ε) disappears and therefore

OTε(µ−, µ+) = v0(µ−, µ+) +O(ε).

For the proof of Theorem 1.1 we will show separately that for ε� 1,

vε ≤ v0 + d

2ε log(1/ε) +Mε and vε ≥ v0 + d

2ε log(1/ε)−mε, (1.2)

for some constants m,M .
For the upper bound, the proof relies on the block approximation introduced in

[Car+17] and on an integral variant of Alexandrov’s theorem tailored to our purpose
(see Lemma 3.6). Let us emphasize that this upper bound only requires C 1,1 regularity
and no twist condition. We also treat more general situations where the cost function is
only Lipschitz, in which case the constant d/2 has to be replaced by the upper entropy
dimension (without the 1/2 factor) of the marginals (see Proposition 3.1), and this is
shown to be sharp in Example 3.3.
For the lower bound, from the dual formulation of (1.1) it follows:

vε ≥ v0 − ε log
ˆ
Rd×Rd

e−
E(x,y)
ε dµ−(x) dµ+(y),

where E(x, y) := c(x, y) − φ(x) − ψ(y) is the duality gap and (φ, ψ) are Kantorovich
potentials for the OT problem. By using the so-called Minty’s trick as presented in
[MPW12] (here the infinitesimal twist condition on c is required), we are able to prove
that E detaches quadratically from the set {E = 0} and this allows us to estimate the
previous integral in the desired way. We also explain in the quadratic case how to derive
a quantitative stability result for optimal plans from the same trick.
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Related literature
The discrete case with finitely supported marginals falls within the class of finite-
dimensional linear programming problems. In this framework, the choice of the entropy
as regularizing function has a long tradition and a detailed investigation of convergence
rates for regularized primal/dual formulations and expansion of the cost was already
addressed in the early work [CM94].
In the continuous setting, entropic regularization is a more recent technique [Car+17]

and has been initially employed in the quadratic case c(x, y) = |x − y|2, where EOT
appears as a perturbation of the (squared) Wasserstein distance. For this choice of cost
function, EOT is intimately linked (and actually equivalent in the Euclidean setting)
to a much older problem, known as Schrödinger problem (SP for short, see the survey
[Léo14]). The latter can be better described as a control problem for Brownian particles,
hence a dynamical problem, unlike EOT which is static in nature. This dynamical
aspect turns out to be very useful to overcome regularity problems affecting Wasserstein
geodesics, as already shown in [GT21; Gen+20]. The fact that, for c(x, y) = |x−y|2, EOT
and SP coincide (see [GT20]) explains why the quadratic EOT problem has attracted a
lot of attention coming from different research areas: not only the ones mentioned before,
where EOT has proved to be a valuable tool, but also (stochastic) control, statistical
mechanics and many others.
In the very last years, several generalizations of both EOT and SP have appeared. As

concerns the latter, extensions to mean-field and interacting particle systems [Bac+20;
CCT21], and to an abstract framework [MTV20] are worth mentioning. As regards EOT,
regularizing functions other than the entropy (and their impact on algorithms) have been
considered for instance in [DG20; LM22]. Moreover, adding entropy penalizations in the
spirit of EOT has also been used in the study of multi-marginal OT [Car22; BCN19;
MG20], incompressible fluids [Arn+20; BM20] and unbalanced OT [BL21], where the
entropy term gives rise to a branching unbalanced OT problem.
For an account of latest developments let us finally mention a series of recent works

[GNB21; EN21; NW22], where stability with respect to marginals of plans and potentials
for EOT is addressed.

Structure of the paper
In Section 2, we recall some main features of the OT and EOT problems and prove
the analyticity of vε (Theorem 2.1). The upper and lower bounds on vε are established
respectively in Section 3 (Proposition 3.1 and Proposition 3.4) and Section 4 (Proposi-
tion 4.4).

2 Regularity of the EOT cost
Let us first collect all notations, definitions and relevant results concerning the optimal
transport problem and its entropy-regularized counterpart. As already anticipated in
the introduction, given a parameter ε > 0, two measures µ± ∈ P(Rd) with compact
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support X± := Sµ± and a continuous cost function c ∈ C (X−×X+), the EOT problem
is given by

vε := inf
γ∈Π(µ−, µ+)

{ˆ
X−×X+

c(x, y) dγ(x, y) + εEnt(γ |µ− ⊗ µ+)
}
, (EOTε)

where Π(µ−, µ+) denotes the set of couplings between µ− and µ+ and Ent(· |µ−⊗µ+) the
Boltzmann-Shannon relative entropy (or Kullback-Leibler divergence) w.r.t. the product
measure µ− ⊗ µ+, defined for general probability measures p, q as

Ent(p | q) =


ˆ
Rd
ρ log(ρ) dq if p = ρq,

+∞ otherwise.

The fact that q is a probability measure ensures that Ent(p | q) ≥ 0. The value of (EOTε),
denoted by vε, is called entropic cost.

The dual problem of (EOTε) in the sense of convex analysis reads as

sup
φ∈C (X−)
ψ∈C (X+)

{ˆ
X−

φ dµ− +
ˆ
X+

ψ dµ+ − ε
ˆ
X−×X+

e
φ(x)+ψ(y)−c(x,y)

ε dµ−(x) dµ+(y) + ε

}
,

which is invariant by (φ, ψ) 7→ (φ + λ, ψ − λ) where λ ∈ R. Another way to write the
dual problem, which is also invariant by φ 7→ φ+ λ and ψ 7→ ψ + λ, reads as

sup
φ∈C (X−)
ψ∈C (X+)

{ˆ
X−

φ dµ− +
ˆ
X+

ψ dµ+ − ε log
ˆ
X−×X+

e
φ(x)+ψ(y)−c(x,y)

ε dµ−(x) dµ+(y)
}
,

(Dε)
see [Léo01] or [Nut22] for a more recent presentation. From (EOTε) and (Dε) we recover,
as ε→ 0, the (unregularized) optimal transport problem associated with c and its dual,
that we recall for the reader’s sake:

v0 := inf
γ∈Π(µ−, µ+)

ˆ
X−×X+

c(x, y) dγ(x, y) (OT)

and

sup
φ∈C (X−)
ψ∈C (X+)

{ˆ
X−

φ dµ− +
ˆ
X+

ψ dµ+ : φ⊕ ψ ≤ c
}
, (D)

respectively, where φ ⊕ ψ(x, y) := φ(x) + ψ(y). The set of optimal couplings between
µ− and µ+ will be denoted by Opt(µ−, µ+). The value of (OT), denoted by v0, is
called transport cost. As for (D), it is well known that optimizers, called Kantorovich
potentials, exist whenever X± are compact and they can be chosen c-conjugate (see
[San15, Chapter 1]):

φ = inf
y∈X+

c(·, y)− ψ(y), ψ = inf
x∈X−

c(x, ·)− φ(x).
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The link between EOT and OT is very strong, as already discussed in the introduction.
For later use, recall that a consequence of the Γ-convergence of (EOTε) towards (OT)
is that

lim
ε↓0

vε = v0. (2.1)

A proof tailored to our setting can be found in [Car+17, Section 2.3] (although formu-
lated for the quadratic cost, it actually works for any continuous cost as long as µ± have
compact supports).
The fact that (EOTε) admits a unique solution γε, called optimal entropic plan, is a

consequence of the direct method in the calculus of variations and strict convexity of
the entropy. The structure of γε is then very rigid: indeed, there exist two real-valued
Borel functions φε, ψε such that

γε = exp
(
φε ⊕ ψε − c

ε

)
µ− ⊗ µ+, (2.2)

which implies in particular that

vε =
ˆ
X−

φε dµ− +
ˆ
X+

ψε dµ+ (2.3)

and these functions, which have continuous representatives, are a.s. uniquely determined
up to additive constants, in the sense that if (2.2) holds for (φ, ψ) and (φ′, ψ′), then
φ = φ′ + λ µ−-a.e. and ψ = ψ′ − λ µ+-a.e. for some λ ∈ R. Moreover, γε is the unique
coupling γ ∈ Π(µ−, µ+) whose density w.r.t. µ− ⊗ µ+ can be written as in (2.2). A
self-contained proof of all these facts in the case of compactly supported measures µ±
can be found in [GT21, Proposition 2.1]. The reader is refered to the analysis of [MG20],
to the notes of Nutz [Nut22] for a more general framework, and to [BL92; BLN94; Csi75;
FG97; RT98] for earlier references.
The functions φε, ψε in (2.2) are called Schrödinger potentials, the terminology being

motivated by the fact that they solve the dual problem (Dε). Furthermore, φε, ψε are
the (unique) solutions to the so-called Schrödinger system

φ(x) = −ε log
ˆ
X+

e
ψ(y)−c(x,y)

ε dµ+(y) for µ−-a.e. x,

ψ(y) = −ε log
ˆ
X−

e
φ(x)−c(x,y)

ε dµ−(x) for µ+-a.e. y,
(2.4)

named after E. Schrödinger who introduced it in the seminal papers [Sch31; Sch32]
(see also [CMS21] for a recent English translation of the former). Note that (2.4) is a
softmin version of the classical c-conjugacy relation for Kantorovich potentials. From
(2.4) and the continuity of c, we easily deduce that φ, ψ share a common modulus of
continuity with c (see [MG20] for details). From an OT viewpoint, (2.4) simply means
that e(φ⊕ψ−c)/εµ− ⊗ µ+ ∈ Π(µ−, µ+).

We are now ready to state and prove the first main result. Recall that vε denotes the
value of (EOTε) and v0 the one of (OT); the dependence on µ+, µ− ∈P(Rd) is omitted,
as they will always be fixed.
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Theorem 2.1. Let µ± ∈P(Rd) have compact support X± ⊆ Rd and c ∈ C (X−×X+).
Then the function ε 7→ vε is continuous, non-decreasing and concave on [0,+∞) ; it is
analytic on (0,+∞).

Proof. The convergence of vε to v0 as ε ↓ 0 is precisely (2.1). The fact that v is non-
decreasing follows from the non-negativity of the entropy; concavity is also obvious since
vε is an infimum of affine functions of ε.
Analyticity of v on (0,+∞) can be deduced from the analytic version of the implicit

function theorem, adapting the arguments of [CL20] as follows. Let ε > 0 and, recalling
that Schrödinger potentials are unique up to the trivial transformation (φ, ψ) 7→ (φ −
λ, ψ + λ) with λ ∈ R, impose the following normalization condition

ˆ
X−

φ dµ− = 0. (2.5)

Denote then by (φε, ψε) the unique functions satisfying (2.4) and (2.5) and note that by
(2.3) and (2.5) the entropic cost writes as

vε =
ˆ
X+

ψε dµ+. (2.6)

As already noticed, φε and ψε are continuous in X− and X+ respectively, whence the
validity of both equations in (2.4) in a pointwise sense. This means that, if we define

F (ε, φ, ψ)(x) := e
φ(x)
ε

ˆ
X+

e
−c(x,y)+ψ(y)

ε dµ+(y), x ∈ X−

G(ε, φ, ψ)(y) := e
ψ(y)
ε

ˆ
X−

e
−c(x,y)+φ(x)

ε dµ−(x), y ∈ X+

the Schrödinger system (2.4) is equivalent to

F (ε, φε, ψε)(x) = 1 (∀x ∈ X−), and G(ε, φε, ψε)(y) = 1 (∀y ∈ X+).

Finally, define the spaces

A := {(φ, ψ) ∈ C (X−)× C (X+) : (2.5) holds}

and

B :=
{

(f, g) ∈ C (X−)× C (X+) :
ˆ
X−

f dµ− =
ˆ
X+

g dµ+
}
,

which are Banach spaces when equipped with the uniform norm, and the map S :
(0,+∞)× C (X−)× C (X+)→ C (X−)× C (X+)

S(ε, φ, ψ) := (F (ε, φ, ψ), G(ε, φ, ψ)).

Let us observe that S is analytic, takes values inB and the pair of normalized Schrödinger
potentials (φε, ψε) is implicitly defined by

(φε, ψε) ∈ A and S(ε, φε, ψε) = (1, 1).
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We claim that for every ε > 0 and (φ, ψ) ∈ A, the derivative of S w.r.t. (φ, ψ) at (ε, ψ, φ)
is an isomorphism between A and B, analyticity of ε 7→ (φε, ψε) will then follow from
the implicit function theorem in the analytic case. To ease notations assume ε = 1 and
let (φ, ψ) ∈ A be fixed. Defining

S = S(1, ·, ·) = (F (1, ·, ·), G(1, ·, ·)), S̃ := (log(F ), log(G)),

and
L := S′(φ, ψ) = (L1, L2), L̃ := S̃′(φ, ψ) = (L̃1, L̃2),

for (h, k) ∈ C (X−)× C (X+) we then have

L̃1(h, k)(x) = h(x) +

ˆ
X+

e−c(x,y)+ψ(y)k(y) dµ+(y)
ˆ
X+

e−c(x,y)+ψ(y) dµ+(y)
, L1(h, k) = F (φ, ψ)L̃1(h, k),

and

L̃2(h, k)(y) = k(y) +

ˆ
X−

e−c(x,y)+φ(x)h(x) dµ−(x)
ˆ
X−

e−c(x,y)+φ(x) dµ−(x)
, L2(h, k) = G(φ, ψ)L̃2(h, k).

We can write in a more synthetic way L̃ as

L̃1(h, k)(x) = h(x) +
ˆ
X+

k(y) dQx(y), L̃2(h, k)(y) = k(y) +
ˆ
X−

h(x) dQy(x), (2.7)

where Qx and Qy are the disintegration measures of the probability measure

dQ(x, y) := eφ(x)+ψ(y)−c(x,y) dµ−(x) dµ+(y)ˆ
X−×X+

eφ(x′)+ψ(y′)−c(x′,y′) dµ−(x′) dµ+(y′)

with respect to its first marginal α and second marginal β, that is:

Q = α⊗Qx = Qy ⊗ β (2.8)

(in other words given (X,Y ) with law Q, Qx is the conditional law of Y given X = x and
Qy is the conditional law of X given Y = y). Assume now that (h, k) ∈ C (X−)×C (X+)
belongs to ker(L) = ker(L̃), i.e.

h(x) +
ˆ
X+

k(y) dQx(y) = 0, ∀x ∈ X− = Sα (2.9)

and
k(y) +

ˆ
X−

h(x) dQy(x) = 0, ∀y ∈ X+ = Sβ (2.10)
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where X− = Sα and X+ = Sβ follow from the equivalence of Q with µ− ⊗ µ+ (in the
sense that they have the same negligible sets). Multiplying (2.9) by h(x) and integrating
w.r.t. α, multiplying (2.10) by k(y) and integrating w.r.t. β, and summing the two, by
(2.8) we get ˆ

X−×X+
(h(x) + k(y))2 dQ(x, y) = 0

from which we deduce that h(x) + k(y) = 0 for µ− ⊗ µ+-a.e. (x, y), that is h and k are
two constants that sum to 0. We thus have ker(L̃) = ker(L) = {(λ,−λ) : λ ∈ R} and in
particular ker(L)∩A = {0}, so that L is injective on A. Since c is uniformly continuous
on X− × X+, all functions in the image of L̃ are equi-continuous and equi-bounded,
and it follows from Ascoli’s Theorem that L̃ is a compact perturbation of the identity
map on C (X−)× C (X+). This enables us to invoke the Fredholm alternative theorem
to deduce from the fact that ker(L̃) is a line that L̃(C (X−) × C (X+)) = L̃(A) is a
hyperplane of C (X−)×C (X+). Since L̃(A) is isomorphic to L(A), and L(A) is included
in the hyperplane B (because the original non-linear map S takes values in B), we have
L(A) = B.
Hence L is an isomorphism between A and B and, as anticipated, the implicit func-

tion theorem for analytic maps (see chapter 4 of [BT16]) therefore implies that (φε, ψε)
depends analytically on ε > 0. In particular (0,+∞) 3 ε 7→ ψε ∈ C (X−) is analytic too,
whence the analyticity of v on (0,+∞) thanks to (2.6).

Remark 2.2. The entropic cost ε 7→ vε being analytic on (0,+∞), it can be extended in
an analytic fashion to some complex values of ε. Note that the proof above shows that
the entropic cost is also an analytic function of the transport cost c.
Remark 2.3. Even if Theorem 2.1 is stated in the Euclidean setting, it is worth stressing
that it is in fact true in a much more general framework. Indeed, it is not difficult to
see that the previous proof works verbatim over compact metric spaces and an even
higher level of generality is possible. More precisely, not even a topological structure is
needed. It is indeed sufficient that c ∈ L∞(µ− ⊗ µ+) with µ−, µ+ probability measures
on arbitrary measurable spaces, as it is the case in [CL20]. However, with no topological
structure the proof of the analyticity of ε 7→ vε would be more involved.
Knowing that all order derivatives of ε 7→ vε exist on (0,+∞), it is natural to look

for an explicit expression for them. The case of the first derivative is particularly easy
to handle, as shown below.

Corollary 2.4. Under the same assumptions of Theorem 2.1, it holds

v′ε = Ent(γε |µ− ⊗ µ+), ∀ε > 0. (2.11)

Besides, if there exists γ0 ∈ Opt(µ− ⊗ µ+) with Ent(γ0 |µ− ⊗ µ+) < +∞, then ε 7→ vε
belongs to C 1([0,+∞)) with right derivative at ε = 0 given by

v′ε|ε=0 = inf
γ∈Opt(µ−,µ+)

Ent(γ |µ− ⊗ µ+), (2.12)
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in other words:
vε − v0 = ε inf

γ∈Opt(µ−,µ+)
Ent(γ |µ− ⊗ µ+) + o(ε). (2.13)

Moreover, in that case, γε converges narrowly to the unique coupling γ∗ of minimal
entropy in Opt(µ−, µ+), namely

γ∗ = arg min
γ∈Opt(µ−,µ+)

Ent(γ |µ− ⊗ µ+).

Proof. Knowing that ε 7→ vε is analytic (C 1 would be enough), (2.11) is a consequence
of the envelope theorem and of the uniqueness of the minimizer of (EOTε).
As concerns the second part of the statement, define

Cε(γ) :=
ˆ
X−×X+

c dγ + εEnt(γ |µ− ⊗ µ+)

and observe that vε− v0 = Cε(γε)−C0(γ) ≤ Cε(γ)−C0(γ) = εEnt(γ |µ−⊗ µ+) for any
γ ∈ Opt(µ−, µ+), hence

lim sup
ε↓0

vε − v0
ε

≤ inf
γ∈Opt(µ−,µ+)

Ent(γ |µ− ⊗ µ+), (2.14)

the right-hand side being finite thanks to the existence of γ0 as in the statement. For
the liminf inequality, recall that (EOTε) Γ-converges to (OT) as ε → 0, so that up to
subsequences γε converges narrowly to γ∗ ∈ Opt(µ−, µ+). Combining this information
with vε− v0 ≥ Cε(γε)−C0(γε) = εEnt(γε |µ−⊗µ+) and the lower semicontinuity of the
entropy (see [San15, §7.1.2]) yields

lim inf
ε↓0

vε − v0
ε

≥ Ent(γ∗ |µ− ⊗ µ+) ≥ inf
γ∈Opt(µ−,µ+)

Ent(γ |µ− ⊗ µ+),

and this inequality1 together with (2.14) implies the right differentiability of vε at ε = 0
as well as (2.12).
Note that the argument above also proves the existence of a γ∗ ∈ Opt(µ−, µ+) of

minimal entropy towards which γε converges narrowly (up to subsequences) as well as
the lower semicontinuity of v′ε at ε = 0. The uniqueness of such γ∗ comes from the
convexity of Opt(µ−, µ+) and the strict convexity of the entropy, hence the convergence
of the whole sequence. The upper semicontinuity of v′ε at ε = 0 is instead a consequence
of concavity, so that in conclusion v′ε is continuous up to ε = 0, namely vε ∈ C 1([0,+∞)).

Let us stress that while (2.11) is an immediate consequence of Theorem 2.1, the proof
of (2.12) (inspired by [CT21; MTV20]) requires the existence of an optimal coupling
with finite entropy w.r.t. µ− ⊗ µ+ and the reader may wonder whether this condition
is reasonable or not. If µ− and µ+ are finitely-supported measures, the condition is

1By the way, this also shows that the differentiability of vε at ε = 0 is in fact equivalent to the existence
of an optimal plan with finite entropy.
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trivially satisfied; hence identities (2.12) and (2.13) may be of some interest in this case
(in this direction, recall the pioneering work [CM94]).
However, as soon as µ− and µ+ have densities, the aforementioned condition is not

satisfied in general. In particular, it cannot hold whenever optimal plans are concentrated
on d-rectifiable sets. To obtain a non-trivial asymptotic expansion of the entropic cost
around ε = 0 in more general situations, a more accurate study of vε−v0 is thus required,
and this will be carried out in Sections 3 and 4.

3 Upper bound
Our goal in this section is to establish upper bounds on vε − v0 up to order O(ε) as
ε → 0. We start with a general upper bound holding for C 0,1 (i.e. Lipschitz) costs,
then we prove a finer upper bound for C 1,1 costs. The leading order terms, which are
proportional to ε log(1/ε), will be shown to be sharp in this section and in Section 4.

3.1 Upper bound for C 0,1 costs
The upper bound we are going to establish will depend on the dimension of µ− and µ+.
The natural notion of dimension which arises in our context is the entropy dimension,
also called information dimension or Rényi dimension, since it was originally introduced
by Rényi in [Rén59]. The definition that we use corresponds to the one given in [You82]:
if µ is a probability measure over Rd, we set for every δ > 0,

Hδ(µ) = inf

∑
n∈N

µ(An) log(1/µ(An)) : ∀n,diam(An) ≤ δ, and Rd =
⋃
n∈N

An

 ,
where the infimum is taken over countable coverings (An)n∈N of Rd by Borel subsets,
and we define the lower and upper entropy dimension of µ respectively by:

dimE(µ) := lim inf
δ→0+

Hδ(µ)
log(1/δ) , dimE(µ) := lim sup

δ→0+

Hδ(µ)
log(1/δ) .

When µ has compact support, notice that its upper entropy dimension is always
smaller than the upper box dimension of the support of µ, that is:

dimE(µ) ≤ dimB(Sµ) := lim sup
δ→0+

log(Nδ(Sµ))
log(1/δ) ,

where for every A ⊆ Rd, Nδ(A) denotes the box-counting number of A at scale δ, i.e. the
minimal number of sets of diameter δ > 0 which cover A. Indeed if (A1, . . . , ANδ(Sµ)) is
such a covering, by concavity of t 7→ t log(1/t), we have∑

1≤n≤Nδ(Sµ)
µ(An) log(1/µ(An)) ≤ logNδ(Sµ). (3.1)

The reader interested in the different notions of dimension of sets and measures may
consult [Fal97].
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Proposition 3.1. If µ± ∈P(Rd) and c ∈ C 0,1(Sµ− × Sµ+), then for every ε > 0,

vε ≤ v0 + ε(Hε(µ−) ∧Hε(µ+)) + [c]C 0,1(Sµ−×Sµ+ )ε. (3.2)

In particular, setting d± = dimE(µ±),

vε ≤ v0 + (d+ ∧ d−)ε log(1/ε) + o(ε log(1/ε)) as ε→ 0, (3.3)

and if µ± are concentrated on compact submanifolds of dimension d±,

vε ≤ v0 + (d+ ∧ d−)ε log(1/ε) +O(ε). (3.4)

The proof is based on a generalization of the block approximation defined in [Car+17,
Definition 2.9].

Proof. Let γ0 ∈ Opt(µ−, µ+). First of all, let us extend the cost to a function c ∈
C 0,1(Rd × Rd) with same Lipschitz constant L := [c]C 0,1(Rd×Rd) = [c]C 0,1(Sµ−×Sµ+ ). We
consider a covering Rd =

⋃
n∈NAn of Borel sets such that diam(An) ≤ δ for every n ∈ N.

We set for every n ∈ N,

µ±n :=


µ± An
µ±(An) if µ±(An) > 0,

0 otherwise,

then for every pair i, j ∈ N,

(γ0)i,j := γ0(Ai ×Aj)µ−i ⊗ µ
+
j ,

and finally,
γδ :=

∑
i,j∈N

(γ0)i,j .

By definition, γδ � µ− ⊗ µ+ and we may check that its marginals are µ±, for instance:

(π1)#γ
δ =

∑
i,j∈N

(π1)#(γ0(Ai×Aj)µ−i ⊗µ
+
j ) =

∑
i,j∈N

γ0(Ai×Aj)µ−i =
∑
i∈N

µ−(Ai)µ−i = µ−.

Besides, for µ− ⊗ µ+-almost every (x, y) ∈ Ai ×Aj ,

dγδ

dµ− ⊗ µ+ (x, y) = γ0(Ai ×Aj)
µ−(Ai)µ+(Aj)

if µ−(Ai)µ+(Aj) > 0,

and it is 0 otherwise. Let us compute its entropy, summing only over indices i, j such
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that µ−(Ai) > 0 and µ+(Aj) > 0.

Ent(γδ |µ− ⊗ µ+) =
∑
i,j∈N

ˆ
Ai×Aj

log
(

γ0(Ai ×Aj)
µ−(Ai)µ+(Aj)

)
dγδ

=
∑
i,j∈N

γ0(Ai ×Aj) log
(

γ0(Ai ×Aj)
µ−(Ai)µ+(Aj)

)

=
∑
i,j∈N

γ0(Ai ×Aj) log
(
γ0(Ai ×Aj)
µ−(Ai)

)
+
∑
j∈N

µ+(Aj) log(1/µ+(Aj))

≤
∑
j∈N

µ+(Aj) log(1/µ+(Aj)),

the last inequality coming from the inequality γ0(Ai × Aj) ≤ µ−(Ai). Taking arbitrary
coverings (An)n∈N of diameter smaller than δ, we get by definition of Hδ,

Ent(γδ |µ− ⊗ µ+) ≤ Hδ(µ+).

Notice that W∞(γδ, γ0) ≤ δ, where Wp denotes the p-Wasserstein distance2 between
compactly supported probability measures for p ∈ [1,∞]. As a consequence, taking γδ
as competitor in (EOTε), since W1 ≤W∞ we obtain

vε ≤
ˆ
Rd×Rd

cdγδ + εHδ(µ+) = v0 +
ˆ
Rd×Rd

cd(γδ − γ0) + εHδ(µ+)

≤ v0 + LW1(γδ, γ0) + εHδ(µ+)
≤ v0 + Lδ + εHδ(µ+).

(3.5)

Taking δ = ε and interchanging the roles of µ− and µ+ yields (3.2), and (3.3) follows
from the definition of the upper entropy dimension. Finally, if µ± are concentrated
on compact d±-dimensional manifolds M±, knowing that their box counting number
Nε(M±) is bounded from above by C/εd± for some constant C > 0 and every ε ∈ (0, 1),
applying (3.1) to µ± yields Hε(µ±) ≤ d± log(1/ε) + logC, thus

vε ≤ v0 + (d− ∧ d+)ε log(1/ε) + (L+ logC)ε

and (3.4) is proved.

Remark 3.2. If the cost c is only assumed to be uniformly continuous on Sµ−×Sµ+ , with
modulus of continuity ωc : δ 7→ sup‖x−x′‖≤δ|c(x) − c(x′)|, a straightforward adaptation
of the above proof shows that

vε ≤ v0 + (d+ ∧ d− + o(1))ε log(1/ω−1
c (ε)),

and if µ± are concentrated on d±-dimensional submanifolds,

vε ≤ v0 + (d+ ∧ d−)ε log(1/ω−1
c (ε)) +O(ε),

where ω−1
c is the generalized inverse defined by ω−1

c (t) := inf{s ≥ 0 : ωc(s) ≥ t}.
2For measures on Rd × Rd, we consider the Wasserstein distance with respect to the norm that we
introduced, namely ‖(x, y)‖ = max{|x|, |y|} for every (x, y) ∈ Rd × Rd.
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The following easy example shows that the leading order term is in general sharp in
the class of C 0,1 cost functions.
Example 3.3. Consider µ− = µ+ = L [0, 1] and c(x, y) := |x− y| for x, y ∈ [0, 1]. Then

vε ≥ v0 + ε log(1/ε).

Indeed, the unique optimizer to (OT) is γ0 = (Id, Id)#µ
− with cost v0 = 0, and the pair

(φ0, ψ0) = (0, 0) is a solution to the dual problem (D). We use (φ0, ψ0) as a competitor
in (Dε) to get

vε ≥ −ε log
(ˆ

[0,1]2
e−
|y−x|
ε dx dy

)
.

We have
ˆ

[0,1]2
e−
|y−x|
ε dx dy = 2

ˆ 1

0

ˆ y

0
e−

t
ε dtdy = 2

ˆ 1

0
ε(1− e−

y
ε ) dy = 2ε(1− ε(1− e−

1
ε )) ≤ 2ε,

thus for every ε > 0,

vε ≥ −ε log 2ε = v0 + ε log(1/ε) +O(ε),

and together with (3.4), since d± = 1, we get vε − v0 = ε log(1/ε) +O(ε).

3.2 Upper bound for C 1,1 costs and L∞ marginals
Building upon the same block approximation used to establish Proposition 3.1, we pro-
vide a finer upper bound when the cost is of class C 1,1 and µ± have L∞ densities.

Proposition 3.4. Let c ∈ C 1,1
loc (Ω− × Ω+) where Ω± ⊆ Rd are open convex sets and

µ± ∈ L∞(Ω±) be two probability measures compactly supported in Ω±. Then there exists
a constant M ≥ 0 such that for every ε ∈ (0, 1),

vε ≤ v0 + d

2ε log(1/ε) +Mε. (3.6)

Remark 3.5. Notice that Proposition 3.1 would only show that vε ≤ v0 + dε log(1/ε) +
O(ε). The term dε log(1/ε) term is generally sharp as shown in Example 3.3, when c
is only Lipschitz, but Proposition 3.4 shows that d may actually be replaced by d/2
when c is C 1,1. This is in turn sharp in the class of C 1,1 costs, as already exhibited in
the quadratic case in [Ada+11] or in the setting of [Pal19], but it is also a consequence
of our lower bound stated in Proposition 4.4 in the case of infinitesimally twisted cost
functions.
To prove Proposition 3.4, we will need a quadratic bound on the average error between

a λ-convex function f and its first-order Taylor expansion. We recall that a function

f : Ω → R defined on a convex set Ω ⊆ Rd is λ-convex, for λ ∈ R, if x 7→ f(x) − λ |x|
2

2
is convex, and f is λ-concave if −f is (−λ)-convex. If Ω is open and f is λ-convex,
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then it is differentiable almost everywhere on Ω by Rademacher’s Theorem, and its
distributional Hessian D2f is a Sd(R)-valued Radon measure over Ω, which may be
written (see [AFP00, §1.3]) as D2f = σf |D2f | where |D2f | is a positive Radon measure,
and σf : Ω→ Sd(R) is a Borel unit matrix field for the Frobenius norm.

Lemma 3.6. Let f : Ω → R be a λ-convex function on a convex open set for some
λ ≤ 0. There exists a constant C ≥ 0 depending only on d such that:
ˆ

Ω
sup

y∈Br(x)∩Ω
|f(y)−(f(x)+∇f(x)·(y−x))|dx ≤ Cr2H d−1(∂Ω)([f ]C 0,1(Ω)+|λ|diam(Ω)).

(3.7)

The proof is based on that of Alexandrov’s Theorem, asserting the existence of a
second-order Taylor expansion at almost every point, which is given in [EG15, §6.4].

Proof. Step 1. Let g be a function which is convex on Br(x) and assume that x is a
differentiability point of g and a Lebesgue point of both g and ∇g. Let us show that

sup
y∈Br/2(x)

|g(y)− (g(x) +∇g(x) · (y − x))| ≤ Cr2 |D2g|(Br(x))
L d(Br(x))) (3.8)

for a constant C = C(d). For ε ∈ (0, r), we set rε = r − ε and we define gε := g ? ηε on
Brε(x), where ηε is a standard mollifier supported on Bε. Since gε ∈ C 2(Brε(x)), by the
classical Taylor integral formula, for every h ∈ Brε ,

gε(x+ h) = gε(x) +∇gε(x) · h+
ˆ 1

0
(1− t)D2gε(x+ th) · h⊗ h dt,

and integrating w.r.t. h over Brε , we get the bound:
ˆ
Brε

|gε(x+ h)− (gε(x) +∇gε(x) · h)|dh ≤ r2
ε

ˆ 1

0
(1− t)|D2gε|(Brεt(x)) dt

≤ r2
ε

ˆ 1

0
(1− t)|D2g|(Brεt+ε(x)) dt

≤ r2

2 |D
2g|(Br(x)).

The second inequality is a simple consequence of the identity |µ|(O) = sup{
´
φ ·dµ : φ ∈

Cc(O,Sd(R)), ‖φ‖ ≤ 1} when µ is a Sd(R)-valued measure and O is open. Besides, since
x is assumed to be a differentiability point of g, and a Lebesgue point of g and ∇g, we
may pass to the inferior limit on the left-hand side and use Fatou’s lemma to get:

ˆ
Br

|g(x+ h)− (g(x) +∇g(x) · h)| dh ≤ r2

2 |D
2g|(Br(x)). (3.9)
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We set Txu(y) = u(x) +∇u(x) · (y − x) whenever a function u is differentiable at x. By
convexity of g on Br(x), [EG15, Theorem 6.7 (ii)] yields3

sup
Br/2(x)

|g − Txg| ≤ C
 
Br(x)

|g − Txg|, (3.10)

for a constant C = C(d), which together with (3.9) gives (3.8).
Step 2. Given a convex function g over Ω, let us show that:

ˆ
Ω

sup
Br/2(x)

|g − Txg|dx ≤ CH d−1(∂Ω)r2[g]C 0,1(Ω), (3.11)

for some constant C = C(d). Without loss of generality, we may assume that Ω is
bounded and [g]C 0,1(Ω) < ∞, otherwise the right-hand side is trivial. Since g is convex,
Lebesgue-almost every point x ∈ Ω is a differentiability point of g by Rademacher’s
Theorem, and a Lebesgue point of g and ∇g by Lebesgue’s Theorem, thus integrating
(3.8) over Ωr := {x : dist(x,Rd \ Ω) > r} and using Fubini-Tonelli’s Theorem,

ˆ
Ωr

sup
Br/2(x)

|g − Txg| dx ≤ Cr2
ˆ

Ω

ˆ
Br(y)∩Ωr

1
ωdrd

dx d|D2g|(y)

≤ Cr2|D2g|(Ω).
(3.12)

Again, we consider the regularization gε = g ? ηε over Ωε for small ε > 0. By convexity
of gε, we know that |D2gε| ≤ C∆gε on Ωε for some constant C = C(d). By Stokes’
Theorem,

ˆ
Ωε

∆gε = −
ˆ
∂Ωε
∇gε · ν ≤H d−1(∂Ωε)[gε]C 0,1(Ωε) ≤H d−1(∂Ω)[g]C 0,1(Ω),

where we have used the inequality H d−1(∂Ωε) ≤H d−1(∂Ω), which holds because ∂Ωε =
p(∂Ω) where p is the projection onto the convex set Ωε. Taking the limit ε → 0 yields,
by weak convergence D2gε Ωε ⇀ D2g in Cc(Ω, Sd(R))′,

|D2g|(Ω) ≤ lim inf
ε→0

ˆ
Ωε
|D2gε| ≤ lim inf

ε→0
C

ˆ
Ωε

∆gε ≤ CH d−1(∂Ω)[g]C 0,1(Ω).

Then by monotone convergence, if we take the limit ε→ 0 and report this in (3.12), we
obtain: ˆ

Ωr
sup

Br/2(x)
|g − Txg|dx ≤ CH d−1(∂Ω)r2[g]C 0,1(Ω),

for some constant C = C(d).
Now we need to take care of the integral over Ω \ Ωr. But if g is Lipschitz on Ω with

constant L = [g]C 0,1(Ω) < ∞, then for almost every x ∈ Ω \ Ωr and every y ∈ Br/2(x),
we have

|g(y)− (g(x) +∇g(x) · (y − x))| ≤ 2L|y − x| ≤ Lr.
3Notice that the proof works as soon as g is defined on Br(x), not necessarily on the whole space Rd.
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Finally, notice that since Ω is an open convex set, by the co-area formula (see [EG15,
§ 3.4]), for every r > 0,

L d(Ω \ Ωr) =
ˆ r

0
H d−1({dist(·,Rd \ Ω) = t}) dt =

ˆ r

0
H d−1(∂Ωt) dt ≤ rH d−1(∂Ω),

and as a consequence,
ˆ

Ω
sup

Br/2(x)
|g − Txg| =

ˆ
Ω\Ωr
|g − Txg|+

ˆ
Ωr
|g − Txg|

≤ (Lr)(rH d−1(∂Ω)) + CH d−1(∂Ω)r2[g]C 0,1(Ω)

= CH d−1(∂Ω)[g]C 0,1(Ω)r
2,

for some constant C = C(d) and (3.11) is proved.
Step 3. Let us conclude by establishing (3.7). Since f is λ-convex for some λ ≤ 0,

we apply (3.11) to the convex function g : x 7→ f(x)− λ|x|2/2 to get
ˆ

Ω
sup

Br/2(x)∩Ω
|f − Txf | ≤

ˆ
Ω

sup
Br/2(x)∩Ω

|g − Txg| dx

+ |λ|2

ˆ
Ω

sup
y∈Br/2(x)∩Ω

||y|2 − (|x|2 + 2x · (y − x))| dx

≤ Cr2H d−1(∂Ω)[g]C 0,1(Ω) + |λ|8 r2L d(Ω)

≤ Cr2H d−1(∂Ω)([f ]C 0,1(Ω) + |λ|diam(Ω)) + |λ|8 r2L d(Ω).

Knowing that L d(Ω) ≤ diam(Ω)H d−1(∂Ω) since Ω is convex, we obtain (3.8) by re-
placing r by 2r, for some (different) constant C = C(d).

We are now ready to establish Proposition 3.4.

Proof of Proposition 3.4. The measures µ± are supported in some open and bounded
convex sets Ω±0 such that their closure X± := cl(Ω±0 ) are included in Ω±. Take γ0 ∈
Opt(µ−, µ+) and a pair of c-conjugate Kantorovich potentials (φ, ψ) ∈ C (X−)×C (X+).
Such potentials exist because c is continuous on the compact set X− × X+ (see for
example [San15, Proposition 1.11]). We set λ := supx 6=x′∈X−×X+

|∇c(x′)−∇c(x)|
|x′−x| < ∞,

so that c is λ-concave on X− ×X+, which implies that φ, ψ are λ-concave on X−, X+

respectively. As such, they are differentiable Lebesgue-a.e. on Ω−0 ,Ω
+
0 , thus µ−-a.e. and

µ+-a.e. respectively, which in turn implies that

E := c− φ⊕ ψ

is differentiable γ0-a.e. on Ω−0 × Ω+
0 because γ0 ∈ Π(µ−, µ+) and c ∈ C 1(Ω−0 × Ω+

0 ).
Moreover, by optimality of γ0 and (φ, ψ) we have E ≥ 0 everywhere on X− × X+
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with equality on Sγ0 . As a consequence, for γ0-a.e. x0 ∈ Ω−0 × Ω+
0 , E(x0) = 0, E is

differentiable at x0 and ∇E(x0) = 0.
Take δ > 0 and consider the block approximation γδ of γ0 built in the proof of

Proposition 3.1. Since by construction W∞(γ0, γ
δ) ≤ δ, there exists κ ∈ Π(γ0, γ

δ) such
that ‖x0 − x‖ ≤ δ for κ-a.e. (x0,x), and we know in particular that E is differentiable
at x0, and Tx0E(x) = 0 for κ-a.e. (x0,x). Thus we have:ˆ

Ω−0 ×Ω+
0

(c− φ⊕ ψ) dγδ =
ˆ

(Ω−0 ×Ω+
0 )2

(E(x)− Tx0E(x)) dκ(x0,x)

=
ˆ

(Ω−0 ×Ω+
0 )2

(c(x)− Tx0c(x)) dκ(x0,x)

−
ˆ

Ω−0 ×Ω−0
(φ(x)− Tx0φ(x)) dκ−(x0, x)

−
ˆ

Ω+
0 ×Ω+

0

(ψ(y)− Ty0ψ(y)) dκ+(y0, y),

where κ− = (π1, π3)#κ, κ
+ = (π2, π4)#κ and πi denotes the projection on the i-th

component. Since c is λ-concave on Ω−0 × Ω+
0 ,

c(x)− Tx0c(x) ≤ λ

2 |x− x0|2,

and since φ, ψ are λ-concave on Ω−0 ,Ω
+
0 respectively, using Lemma 3.6 and recalling that

(π1)#κ
± = µ±,ˆ

Ω+
0 ×Ω+

0

(c− φ⊕ ψ) dγδ ≤ λ

2 |x− x0|2 +
ˆ

Ω−0
sup

x∈Bδ(x0)∩Ω−0

|φ(x)− Tx0φ(x)|dµ−(x0)

+
ˆ

Ω+
0

sup
y∈Bδ(y0)∩Ω+

0

|ψ(y)− Ty0ψ(y)| dµ+(y0)

≤ λδ2+Cδ2‖µ−‖L∞(Ω−0 )H
d−1(∂Ω−0 )([φ]C 0,1(Ω−0 ) + λdiam(Ω−0 ))

+Cδ2‖µ+‖L∞(Ω+
0 )H

d−1(∂Ω+
0 )([ψ]C 0,1(Ω+

0 ) + λ diam(Ω+
0 ))

≤ C ′δ2,

for some constant C ′ > 0 which does not depend on δ.
Now, we apply (3.1) to assert that Hδ(µ+) ≤ log(Nδ(X+)) ≤ d log(1/δ) + logC for

some constant C > 0 depending only on X+, and we use γδ as a competitor in (EOTε)
to obtain:

vε ≤
ˆ

Ω−×Ω+
cdγδ + εHδ(µ+) = v0 +

ˆ
Ω−×Ω+

(c− φ⊕ ψ) dγδ + εHδ(µ+)

≤ v0 + C ′δ2 + εHδ(µ+)
= v0 + C ′δ2 + dε log(1/δ) + ε logC.

Finally, taking δ =
√
ε yields:

vε ≤ v0 + d

2ε log(1/ε) + ε(C ′ + logC).
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4 Lower bound for infinitesimally twisted costs
In this section, we establish a lower bound that is analogous to the fine upper bound given
in Section 3.2, for a class of C 2 costs satisfying an infinitesimal twist condition, which
includes situations where optimal plans are not necessarily given by a map. Our proof
is based on the so-called Minty’s trick asserting that the graph of a monotone operator
is a 1-Lipschitz graph in a rotated chart (see [Min62]). It has been used in particular
by Alberti and Ambrosio [AA99] to study the fine properties of monotone functions on
Rd, and more recently in optimal transport by McCann, Pass and Warren [MPW12] to
show the rectifiability of optimal transport plans. We will exploit this trick a little bit
further to show a quadratic detachment of the duality gap, leading to the lower bound
that we seek. As a side remark, we deduce from the same trick a quantitative stability
result in the quadratic case c(x, y) = |x− y|2.

4.1 Proof of the lower bound
We start with the definition of the infinitesimal twist condition, corresponding to con-
dition (A2) in [MTW05], and the non-degeneracy condition in [MPW12].

Definition 4.1. Given c ∈ C 2(Ω− × Ω+) where Ω± ⊆ Rd are open sets, we say that c
is infinitesimally twisted if ∇2

xyc(x, y) := (∂2
xiyjc(x, y))i,j ∈ Md(R) is invertible for every

(x, y) ∈ Ω− × Ω+.

McCann, Pass and Warren have proved that for such a cost, the support of any optimal
transport plan is locally Lipschitz (see [MPW12, Theorem 1.2]).
We closely follow the computations of [MPW12] leading to the proof of their main

theorem, but we consider points which do not necessarily belong to the support of an
optimal plan.

Lemma 4.2. Let c ∈ C 2(Ω− × Ω+) be an infinitesimally twisted cost, and (φ, ψ) ∈
C (X−) × C (X+) be a pair of c-conjugate functions on compact convex sets X± ⊆ Ω±.
We set E := c− φ⊕ ψ on X− ×X+, Σ := {E = 0}, and for every r > 0,

κ(r) := sup
(x,x′)∈X−×X+

‖x′−x‖≤r

‖∇2
xyc(x′)−1∇2

xyc(x)− Id‖ ∈ [0,∞).

If x̄ ∈ X− ×X+ and x,x′ ∈ Br(x̄) ∩ (X− ×X+), then

E(x′) + E(x) ≥ |∆u|2 − |∆v|2 − κ(r)(|∆u|2 + |∆v|2), (4.1)

where we have set ∆u := u(x′)− u(x), ∆v := v(x′)− v(x), and

u(x) := 1
2(x+∇2

xyc(x̄)y), v(x) := 1
2(x−∇2

xyc(x̄)y), for every x = (x, y).
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Proof. Take x̄ ∈ X−×X+, x = (x, y) and x′ = (x′, y′) in Br(x̄)∩ (X−×X+). Knowing
that (φ, ψ) is a pair of c-conjugate functions, and using Taylor’s integral formula,

E(x′) = c(x′, y′)− φ(x′)− ψ(y′)
≥ c(x′, y′)− (c(x′, y)− ψ(y))− (c(x, y′)− φ(x))
= c(x′, y′)− c(x′, y)− c(x, y′) + c(x, y)− E(x)

= −E(x) + (x′ − x) ·
[ˆ 1

0

ˆ 1

0
∇2
xyc(x+ (1− s)x′, y + (1− t)y′) ds dt

]
(y′ − y).

With the notations introduced in the statement of the lemma, x = u(x) + v(x) and
y = ∇2

xyc(x̄)−1(u(x)− v(x)), and similarly for x′, so that:

E(x′) + E(x)
≥ (∆u+ ∆v) ·[ˆ 1

0

ˆ 1

0
∇2
xyc(x+ (1− s)x′, y + (1− t)y′)∇2

xyc(x̄)−1 ds dt
]

(∆u−∆v)

≥ |∆u|2 − |∆v|2 − κ(r)|∆u+ ∆v||∆u−∆v|
≥ |∆u|2 − |∆v|2 − κ(r)(|∆u|2 + |∆v|2),

the last inequality resulting from the fact that |a+b||a−b| ≤ |a|2+|b|2 for every a, b ∈ Rd,
as can be seen by expanding and comparing the squares of the two sides.

Remark 4.3. The rectifiability theorem of McCann, Pass and Warren [MPW12, The-
orem 1.2] is an immediate consequence of Lemma 4.2 (to no surprise, since we have
essentially followed their computations). Indeed, for any optimal plan γ ∈ Π(µ−, µ+)
with µ± supported on compact convex sets X± ⊆ Ω±, by taking x̄,x,x′ ∈ Sγ ⊆ Σ ,
(4.1) yields

|∆u| ≤
√

1 + κ(r)
1− κ(r) |∆v|,

and since κ(r) r→0−−−→ 0, v is a Lipschitz function of u, so that Br(x̄)∩ Sγ is included in a
Lipschitz d-dimensional graph.
Notice however that (4.1) gives extra information: if we take for example x = x̄, and

we fix v′ = v = v̄ but we let the u component free, we get

E(x′) ≥ (1− κ(r))|u′ − u|2.

Thus we have a quadratic growth of E away from x in the direction given by the u
coordinate. This is what we shall use to get the lower bound.

Proposition 4.4. Let Ω± be open convex subsets of Rd, c ∈ C 2(Ω− × Ω+) be an in-
finitesimally twisted cost, and µ± ∈ P(Ω±) ∩ L∞(Ω±) with compact support in Ω±.
There exists a constant m ∈ [0,∞) such that for every ε > 0,

vε ≥ v0 + d

2ε log(1/ε)−mε. (4.2)
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Proof. The measures µ± being concentrated on some compact convex subsets X± ⊆ Ω±,
consider a pair (φ, ψ) ∈ C (X−)×C (X+) of c-conjugate Kantorovich potentials. Taking
(φ, ψ) as competitor in (Dε), we get the lower bound:

vε ≥
ˆ
X−

φ dµ− +
ˆ
X+

ψ dµ+ − ε log
(ˆ

X−×X+
e−

E
ε dµ− ⊗ µ+

)

= v0 − ε log
(ˆ

X−×X+
e−

E
ε dµ− ⊗ µ+

)
,

where E := c − φ ⊕ ψ on X− × X+ as in Lemma 4.2. We are going to show that for
some constant C > 0 and for every ε > 0,

ˆ
X−×X+

e−E/ε dµ− ⊗ µ+ ≤ Cεd/2,

which yields (4.2) with m = log(C).
We follow the notation introduced in the statement of Lemma 4.2, and consider in

particular the functions u, v defined for a fixed x̄ ∈ X−×X+. We define the affine map
Φx̄ : x 7→ (u(x), v(x)) − (u(x̄), v(x̄)) whose Jacobian determinant is easily computed:
JΦx̄ = (−1/2)d det(∇2

xyc(x̄)). Thus Φx̄ is an affine isomorphism and |J(Φx̄)−1| ≤ C1 :=
2d supx∈X−×X+ |det∇2

xyc(x)|−1 < ∞ because c is infinitesimally twisted. We set Ex̄ :=
E ◦ Φ−1

x̄ over Dx̄ := Φx̄(X− × X+) and define the open neighborhood of x̄, Px̄ :=
Φ−1

x̄ (Br × Br) ⊆ BLr(x̄), where L := 2(1 ∧ supx∈X−×X+‖(∇2
xyc(x))−1‖) and r > 0 is

chosen such that κ(Lr) ≤ 1/2. By the change of variable formula we get:
ˆ
Px̄∩X−×X+

e−E/ε dµ− ⊗ µ+

=
ˆ

(Br×Br)∩Dx̄

e−E(Φ−1
x̄ (u,v))/ε(µ− ⊗ µ+)(Φ−1

x̄ (u, v))|J(Φx̄)−1(u, v)| dudv

≤ C1‖µ−‖L∞(Ω−)‖µ+‖L∞(Ω+)

ˆ
π2((Br×Br)∩Dx̄)

ˆ
{u∈Br:(u,v)∈Dx̄}

e−Ex̄(u,v)/ε dudv.

Now, for every v ∈ π2((Br × Br) ∩ Dx̄), consider uv a minimizer of Ex̄(·, v) over {u ∈
B̄r : (u, v) ∈ Dx̄}. By (4.1) of Lemma 4.2, for every u ∈ Br such that (u, v) ∈ Dx̄,

Ex̄(u, v) ≥ 1
2(Ex̄(uv, v) + Ex̄(u, v))) ≥ 1

2(1− κ(Lr))|u− uv|2 ≥
1
4 |u− uv|

2.

As a consequence we obtain:
ˆ
π2((Br×Br)∩Dx̄)

ˆ
{u∈Br:(u,v)∈Dx̄}

e−Ex̄(u,v)/ε dudv ≤
ˆ
π2(Br×Br)∩Dx̄

ˆ
Br

e−|u−uv |
2/2ε dudv

≤ ωdrdεd/2
ˆ
Rd
e−|u|

2/2 du

≤ C2r
dεd/2,
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for some constant C2 > 0. The sets {Px̄}x̄∈Σ form an open covering of the compact set
Σ ⊆ X−×X+, hence we may extract a finite covering Px̄1 , . . . , Px̄N

, so that Σ ⊆
⋃N
i=1 Px̄i

and:ˆ⋃N

i=1 Px̄i
∩X−×X+

e−E/εµ− ⊗ µ+ ≤ NC1C2‖µ−‖L∞(Ω−)‖µ+‖L∞(Ω+)r
dεd/2 ≤ C3ε

d/2,

for some constant C3 > 0. Finally, since E is continuous and does not vanish on the
compact set K = (X−×X+)\

⋃N
i=1 Px̄i

, it is bounded from below on K by some constant
C4 > 0. Therefore, for every ε > 0,ˆ

X−×X+
e−E/ε dµ− ⊗ µ+ ≤ C3ε

d/2 + e−C4/ε ≤ Cεd/2,

for some constant C > 0. This concludes the proof.

4.2 Quantitative stability of optimal plans for the quadratic cost
This final paragraph is devoted to the quadratic-cost case for which combining Minty’s
trick and the upper bound on the entropic cost, one can obtain a quantitative estimate
between the optimal entropic plan and optimal transport plans. Given two probability
measures µ± ∈P(Rd) with compact support, taking as cost function c(x, y) := 1

2 |x−y|
2,

the transport cost is merely the square 2-Wasserstein distance:

v0 = 1
2W

2
2 (µ−, µ+) := 1

2 inf
γ∈Π(µ−, µ+)

ˆ
Rd×Rd

|x− y|2 dγ(x, y).

It is well known (see Brenier [Bre91], McCann [McC95]) that there exists a convex lsc
function f on Rd such that γ ∈ Π(µ−, µ+) is optimal in the above quadratic OT problem
if and only if

Sγ ⊆ Γf := {(x, y) ∈ Rd ×Rd : f(x) + f∗(y) = x · y} = {(x, y) ∈ Rd ×Rd : y ∈ ∂f(x)}

where f∗ is the Legendre transform of f . Kantorovich potentials are then given by

φ(x) := 1
2 |x|

2 − f(x), ψ(y) := 1
2 |y|

2 − f∗(y), (∀x, y ∈ Rd).

If µ− is absolutely continuous with respect to the Lebesgue measure, f is differentiable
µ−-a.e. and there is a unique optimal plan γ := (Id, T )#µ

− where T := ∇f is Brenier’s
optimal transport map from µ− to µ+. For ε > 0, the entropic cost reads

vε = inf
γ∈Π(µ−, µ+)

{
1
2

ˆ
Rd×Rd

|x− y|2 dγ(x, y) + εEnt(γ |µ− ⊗ µ+)
}
,

and we denote as before by γε the optimal entropic plan. Our goal is to give an estimate
on how γε fails to be concentrated on Γf for small ε > 0 in a sense to be made precise.
First we observe that by nonnegativity of the entropic term, we have

vε − v0 ≥
1
2

ˆ
Rd×Rd

|x− y|2 dγε(x, y)− 1
2W

2
2 (µ−, µ+).
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Defining the duality gap as in the previous section by:

E(x, y) := 1
2 |x− y|

2 − φ(x)− ψ(y) = f(x) + f∗(y)− x · y (∀x, y ∈ Rd),

one has E ≥ 0 and E(x, y) = 0 if and only if (x, y) ∈ Γf , i.e. y ∈ ∂f(x). Denoting by γ0
an optimal transport plan, since E = 0 on Sγ0 and γε and γ share the same marginals,
we have

vε − v0 ≥
1
2

ˆ
Rd×Rd

|x− y|2 dγε(x, y)− 1
2W

2
2 (µ−, µ+) =

ˆ
Rd×Rd

E(x, y) dγε(x, y). (4.3)

In the event where ∇f is M -Lipschitz, which, by Caffarelli’s regularity theory [Caf92;
Caf96] holds true if µ± have Hölder densities bounded away from zero on their supports
and the latter are smooth and uniformly convex, arguing as Berman in [Ber21] and as
Li and Nochetto in [LN21], who build upon an earlier argument of Gigli [Gig11], one
can use the inequality

E(x, y) = f∗(y)− f∗(∇f(x))− x · (y −∇f(x)) ≥ 1
2M |y −∇f(x)|2 (4.4)

(using the fact that x ∈ ∂f∗(∇f(x)) and f∗ − 1
2M |·|

2 is convex as soon as ∇f is L-
Lipschitz) to arrive at:

Proposition 4.5. If Brenier’s optimal transport map T = ∇f between the compactly
supported probability measures µ− and µ+ is M -Lipschitz, denoting by γε the optimal
entropic plan between µ− and µ+, one has

ˆ
Rd×Rd

|y − T (x)|2 dγε(x, y) ≤M(dε log(1/ε) +O(ε)). (4.5)

In particular, if Tε denotes the barycentric projection of γε (i.e. Tε(x) is the conditional
expectation of Y given X = x with (X,Y ) distributed according to γε), there holds

‖Tε − T‖2L2(µ−) ≤M(dε log(1/ε) +O(ε)). (4.6)

Proof. Inequality (4.5) follows directly from (4.3), (4.4) and the upper bound vε − v0 ≤
dε log(1/ε)+O(ε) from Proposition 3.1 (note also that if µ± have bounded densities, one
can improve the factor d by d

2 thanks to Proposition 3.4). Finally (4.6) directly follows
from (4.5) and Jensen’s inequality:

ˆ
Rd×Rd

|y − T (x)|2 dγε(x, y) =
ˆ
Rd

ˆ
Rd
|y − T (x)|2 dγxε (y) dµ−(x)

≥
ˆ
Rd

∣∣∣∣ˆ
Rd

(y − T (x)) dγxε (y)
∣∣∣∣2 dµ−(x)

=
ˆ
Rd
|Tε(x)− T (x)|2 dµ−(x),

where γxε is the disintegration of γε with respect to its first marginal.
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Of course the requirement that the convex potential f is smooth is quite demanding
and cannot be taken for granted in general. Yet, if f is an arbitrary lsc convex function,
one can take advantage of Minty’s trick to have a quadratic detachment lower bound on
E as we did in Lemma 4.2.

Proposition 4.6. If µ± ∈P(Rd) are compactly supported probability measures, and if
we denote by γε the optimal entropic plan from µ− to µ+, the following stability bound
holds: ˆ

Rd×Rd
|x− (Id +∂f)−1(x+ y)|2 dγε(x, y) ≤ (dε log(1/ε) +O(ε)),

where (Id +∂f)−1 is the (single-valued) resolvent associated with f .

Proof. Let us first observe that when c is the quadratic cost (4.1) takes the form

E(x, y) ≥ −E(x′, y′)− (x′ − x) · (y′ − y) (∀x, y, x′, y′ ∈ Rd).

Now we observe that the resolvent (Id +∂f)−1 is a single-valued 1-Lipschitz map and
that E(x′, y′) vanishes if and only if y′ + x′ ∈ x′ + ∂f(x′), hence if and only if x′ =
(Id +∂f)−1(x′ + y′). As a consequence if we choose in the inequality above x′ =
(Id +∂f)−1(x + y) and y′ = x + y − x′, we have E(x′, y′) = 0 and we get the quadratic
detachment bound:

E(x, y) ≥ |x− (Id +∂f)−1(x+ y)|2, (∀x, y ∈ Rd). (4.7)

Hence, from (4.7), (4.3) and Proposition 3.1, we obtain the desired inequality (and
again one can improve the factor d by d

2 thanks to Proposition 3.4 if µ± have bounded
densities).
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