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In contrast to the well-known phenomenon of frequency stabilization in a synchronized noisy nonlinear 
oscillator, little is known about its amplitude stability. In this paper, we investigate experimentally and 
theoretically the amplitude evolution and stability of a nonlinear nanomechanical self-sustained oscillator 
that is synchronized with an external harmonic drive. We show that the phase difference between the tones 
plays a critical role on the amplitude level, and we demonstrate that in the strongly nonlinear regime, its 
amplitude fluctuations are reduced considerably. These findings bring to light a new facet of the 
synchronization phenomenon, extending its range of applications beyond the field of clock-references and 
suggesting a new means to enhance oscillator amplitude stability. 

 

Synchronization describes the adjustment of 
rhythms between oscillating objects due to their weak 
interaction. The synchronization phenomenon has been 
studied for centuries in various fields of science, tackling 
issues in both fundamental and applied research. Reported 
for the first time by Huygens1 while describing the behavior 
of two mechanical clocks being progressively in anti-phase 
regardless of the initials conditions, synchronization has 
been observed in living systems2 and social behaviors3, and 
is nowadays implemented in modern technology, such as 
medical applications4. 

In one common occurrence, the synchronization 
phenomenon is unidirectional, where the frequency of a 
free-running oscillator is enslaved to that of an external 
weak perturbation signal. If the external perturbation has a 
low frequency noise, then this “slave-master” configuration 
enables one to reduce the frequency noise of the oscillator 
to that of the perturbation signal5, such as in pacemakers4. 
This frequency stabilization is an extremely attractive 
feature for vibrating micro- and nano-electromechanical 
systems (M/NEMS), which often exhibit relatively strong 
fluctuations6–8 due to their small size. 

For the past couple of decades, M/NEMS have 
proven to be key components used in modern technology9–

11, and also useful tools to study physics in both 
fundamental12–14 and applied15–17 domains. Operated as 
self-sustained oscillators, M/NEMS are also excellent 
candidates to investigate the synchronization phenomenon, 
as they have unprecedented control and resolution18, and 
are well described by comprehensive models predicting 
their complex behaviors, such as those arising from Duffing 
nonlinearities19. With these assets, M/NEMS were used to 
explore synchronization properties, such as mutual 
synchronization between several oscillators20, fractional 
synchronization between oscillators which frequencies 
share a common divisor21, and to probe how the Duffing 
nonlinearity can enhance the frequency locking and phase 
noise reduction22–24. 

While phase fluctuations of synchronized 
oscillators have been intensively investigated, the noisy 
behavior of the amplitude in such systems has been rarely 
discussed, focusing either theoretically on the linear 
regime25 or experimentally on the singular fractional 
mutual synchronization26. In this paper we report both 
theoretically and experimentally on the effects of 
synchronization on the amplitude stability of a generic 
nonlinear nanomechanical oscillator. We begin by 
presenting our NEMS device and the synchronization 

parameters involved in this system. Then, we develop 
theoretical predictions for the phase and amplitude, 
including the effects of noise, and compare experimentally 
their evolution within the synchronization range. Finally, 
we demonstrate that the amplitude fluctuations of the 
synchronized oscillator can be reduced by increasing the 
level of its Duffing nonlinearity, down to a level beneath 
that of the noise of the free-running oscillator.  
 
Results 
Setup and synchronization range. The considered NEMS 
is composed of a silicon-based piezoresistive doubly 
clamped nanobeam 10 µm long, 160 nm thick and 300 nm 
width. The resonator’s transduction consists of a side 
electrode from which the applied voltage results in an 
electrostatic force on the beam, and of a differential 
piezoresistive readout previously reported27. The overall 
electrical actuation and detection are performed with a lock-
in amplifier HF2LI Zurich Instrument. The first in-plane 
flexural mode of the nanobeam has a natural resonance 
frequency 𝑓! = 27.78 MHz, a bandwidth 𝛥𝑓 = 4.5 kHz, 
and a Duffing nonlinear coefficient 𝛼" = 237 kHz/mV2 
(see Supplementary Information for more details about the 
calibration, Figs. S1-S2-S3). By means of a phase-locked 
loop (PLL), the first flexural mode is actuated with a 
feedback force 𝐹#$% to operate as a self-sustained free-
running oscillator, which is perturbed both by an external 
tone 𝐹& , and an additive noise signal 𝜉(𝑡). The system is 
described by the model: 
 

𝑥̈ + 𝛥𝜔	𝑥̇ + 𝜔!'	𝑥	 +	
8	𝜔!
3 𝛼	𝑥( = 

𝐹#$%
𝑚 	𝑐𝑜𝑠[𝛷#$%(𝑡)] +

𝐹&
𝑚 	𝑐𝑜𝑠[𝛷&(𝑡)] + 𝜉(𝑡),				(1) 

 
with 𝑥 the displacement of the resonator, 𝜔! = 2𝜋	𝑓! its 
angular eigenfrequency, 𝛥𝜔 = 2𝜋	𝛥𝑓 its angular 
bandwidth (arising from dissipation), 𝑚 its effective mass, 
and 𝛼 = 2𝜋	𝛼" its angular Duffing coefficient. 𝛷#$%,&(𝑡) =
𝜔#$%,&	𝑡 + 𝜑#$%,& describes the phases of the actuation and 
the external tone. For 𝐹& = 0 and 𝜉 = 0, Eq. (1) describes 
the evolution of a driven resonator with an amplitude 
dependent resonance frequency 𝜔* = 𝜔! + 𝛼	𝑋!', where 
𝑋! = 𝐹#$%/(𝑚	ω!	∆ω) is the operating amplitude28. To 
drive the NEMS as an oscillator at the resonance condition, 
we set the PLL such that the phase difference between the 
resonator and the drive is −𝜋/2 (Fig. 1a), matching the 
driving frequency with the resonance frequency. 



 
Figure 1: Experimental setup and synchronization regime. a 
The resonator (colored SEM picture of a representative NEMS in 
inset) is driven as an oscillator at 𝑓!"# using a feedback loop 
(arrow), and is subject to an external tone at 𝑓$. Using a lock-in 
amplifier, the output signal of the NEMS is demodulated at either 
𝑓!"# or 𝑓$ to obtain amplitude and phase difference. The noise 
source is turned off for the synchronization range characterization. 
b The oscillator gets synchronized and locked to the frequency 𝑓$ 
for a sufficiently small frequency mismatch 𝛿𝑓 = 𝑓% − 𝑓$. c The 
synchronization range increases quadratically with the drive 
amplitude in the nonlinear regime. The external tone level is set to 
10% of the drive. The experimental black data points are plotted on 
top of the blue theoretical predictions from the model. 
 
The presence of a weak external signal 𝐹& ≪ 	𝐹#$%, with a 
phase 𝛷&, perturbs the response of the oscillator. By moving 
to the rotating frame of this external signal in the absence 
of noise 𝜉(𝑡) = 0 (see supplementary note 1), we obtain the 
following expressions for the amplitude and phase of the 
steady-state response: 
 

𝑋 = 𝑋! I1 −
𝐹&
𝐹#$%

sin 𝛿𝜑N,																					(2a) 

𝛿𝜔 =
𝐹&
𝐹#$%

I
∆𝜔
2 cos 𝛿𝜑 + 2	𝛼	𝑋!' sin 𝛿𝜑N , (2b) 

 
where 𝑋 is the amplitude of the perturbed oscillator, 
𝛿𝜑 = 	𝜑+ −𝜑& is the phase delay between the oscillator 
and the perturbation and 𝛿𝜔 = 𝜔* −𝜔& is the angular 
frequency difference between the resonance and the 
perturbation tone. 

It follows from Eq. (2b) that the oscillator can be 
in a steady-state regime even if there is a frequency 
mismatch between the resonance and the perturbation 
(𝛿𝜔 ≠ 0), as long as the right-hand side of Eq. (2b) 
compensates for it. This is achieved through the phase delay 
𝛿𝜑, a free and inner parameter of the system, that balances 
this mismatch. In practice, as the frequency of the 
perturbation is detuned from that of the resonance, the 
phase of the oscillator evolves such that its delay with the 
perturbation satisfies Eq. (2b). Consequently, the oscillator 
response remains steady in the rotating frame of the 
perturbation, which implies that its oscillating frequency is 
locked on the perturbation tone (𝑓!"# = 𝑓$), the essential 
feature of the synchronization phenomenon (Fig. 1b). It also 
follows from Eq. (2b) that synchronization is possible only 
for certain values of frequency mismatch, which satisfies 

the inequality |𝛿𝜔| < ∆𝛺/2, where the synchronization 
range ΔΩ, is given by: 
 

∆Ω =
𝐹&
𝐹#$%

X∆𝜔' + (4	𝛼	𝑋!')'.													(3) 

 
Due to the perturbative nature of the 

synchronization phenomenon, 𝐹& should remain small 
compared to 𝐹#$%, and since the dissipation ∆𝜔 is usually an 
intrinsically fixed property of most M/NEMS, the 
synchronization range can be tuned through the Duffing 
nonlinearity 𝛼	𝑋!' (Fig. 1c). 

 
Phase and amplitude behavior in the synchronization 
regime. While essential for the synchronization 
mechanism, the variation of 	𝛿𝜑 also affects the amplitude 
of oscillation [Eq. (2a)], such that the amplitude of a 
synchronized oscillator also varies with 𝛿𝜔 (see 
supplementary note 1). In the linear regime (𝛼	𝑋!' ≪ ∆𝜔), 
a perfect frequency matching between the free-running 
oscillator and the external tone (𝛿𝜔 = 0) induces a phase 
delay of –𝜋/2, readily deduced from Eq. (2b) and observed 
experimentally (Fig. 2). This phase delay of –𝜋/2  is 
identical to the phase delay of the PLL at the resonance 
amplitude, such that the driving and the perturbation signals 
linearly add (Fig. 3). However, a deviation from the center 
of the synchronization range induces a parabolic variation 
in the amplitude of the oscillator, directly arising from the 
sinusoid in Eq. (2a) for 𝛿𝜑 ≈–𝜋/2. As the oscillator enters 
the nonlinear regime, the evolution of both the phase and 
amplitude as functions of the frequency detuning become 
more complex and asymmetric. This behavior is a direct 
consequence of the amplitude-to-frequency conversion 
arising from the backbone curve of the Duffing oscillator, 
which leads to the extra sin 𝛿𝜑 term in Eq. (2b). 

Deep in the nonlinear regime (𝛼	𝑋!' ≫ ∆𝜔), this 
Duffing term becomes predominant, such that a perfect 
frequency matching between the free-running oscillator and 
the external tone (𝛿𝜔 = 0) corresponds to a zero-phase 
delay 𝛿𝜑 = 0, as can be seen both from the experimental 
measurements (Fig. 2b), and from Eq. (2b). Consequently, 
the amplitude of the oscillator is not affected by the strength 
of the perturbation (Eq. (2a)) and remains equal to the 
amplitude of the free-running oscillator regardless of the 
amplitude of the external tone 𝐹& (Fig. 3b). As the frequency 
of the external tone is detuned from that of the free-running 
oscillator, the former parabolic behavior of the amplitude 
evolves to a linear dependency (Fig. 3c). Since the Duffing 
nonlinearity a is positive for the present device, the 
amplitude of the synchronized oscillator becomes the 
largest (smallest, resp.) at the negative (positive, resp.) 
boundaries of the synchronization range (Fig. 3a). 

The frequency and phase fluctuations in such 
systems have been intensively studied both theoretically 
and experimentally20,24. In light of Eq. (2a), it should be 
noted that since the amplitude of a synchronized oscillator 
depends on 𝛿𝜑 and hence 𝛿𝜔, these phase fluctuations have 
a direct impact on the oscillator’s amplitude stability, which 
may reduce the range of applications of the synchronization 
phenomenon29. However, as the nonlinearity of the 
oscillator increases, this frequency-to-amplitude 
conversion decreases (Fig. 3c) thereby reducing the impact 
of frequency fluctuations on the amplitude stability of the 
synchronized oscillator. 
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Figure 2: Phase variation within the synchronization range as a function of the drive 𝑭𝒐𝒔𝒄, keeping the ratio between the 
perturbation and the drive 𝑭𝒆/𝑭𝒐𝒔𝒄 at a constant level of 10%. a As the tone of the perturbation is detuned from the frequency of the 
free running oscillator, their phase difference 𝜹𝝋 adjusts to maintain synchronization (top panel: experimental results, bottom panel: model). 
b Cross-section of panel (a) along 𝜹𝒇 = 𝟎, where the phase delay between the oscillator and the perturbation shrinks as the system enters 
the nonlinear regime (line: theory, dots: experiment). c Cross-sections of panel (a) along different drive levels near zero detuning, where 
the phase delay varies less with the increasing Duffing nonlinearity. 
 

 
Figure 3: Amplitude variation within the synchronization range as a function of the drive 𝑭𝒐𝒔𝒄, keeping the ratio between the 
perturbation and the drive 𝑭𝒆/𝑭𝒐𝒔𝒄 at a constant level of 10%. The amplitude is normalized to that of the free-running oscillator for the 
same drive (𝑿/𝑿𝟎). a The phase delay induced by the frequency detuning leads to an amplitude variation (top panel: experimental results, 
bottom panel: model). b Cross-section of panel (a) along 𝜹𝒇 = 𝟎, where the amplitude drops towards the free-running oscillator amplitude 
as the nonlinearity increases (line: theory, dots: experiment). c Cross-sections of panel (a) along different drive levels near zero detuning, 
where the amplitude variation changes from parabolic to linear with a decreasing slope. 

Amplitude stabilization in the nonlinear regime. As 
opposed to the frequency fluctuations, the influence of the 
amplitude fluctuations of the free-running oscillator on 
those of the synchronized oscillator has been so far 
overlooked. To quantitatively investigate these fluctuations 
in the synchronization regime, we inject to the oscillator an 
additive noise signal generated by a Siglent SDG1032X 
voltage source (Fig. 1), introduced as 𝜉(𝑡) in Eq. (1). This 
noise is assumed small, with a zero mean, and a correlation 
time 𝜏, = 〈𝜉'〉-. ∫ 〈𝜉(𝑡)𝜉(𝑡 + 𝜏)〉𝑑𝜏/

!  that is significantly 
smaller than the relaxation time of the oscillator 𝜏* =
1/Δ𝜔. Thus, we apply the method of stochastic averaging 

and linearize the resulting stochastic equations of the 
amplitude and the phase delay with respect to deterministic 
operating point (𝑋, 𝛿𝜑). This procedure (supplementary 
note 1) leads to a pair of linear coupled Langevin equations 
from which we calculate the power spectral density 
𝑆0!(𝜔$) = 𝛿𝑋(𝜔$)', with 𝛿𝑋 the amplitude fluctuations of 
the synchronized oscillator and 𝜔$ is the offset frequency 
from the carrier frequency 𝜔&. Focusing on a perfect 
frequency match (𝛿𝜔 = 0), these amplitude fluctuations 
fall back to the standard Lorentzian spectral density of the 
free-running oscillator in the linear regime	𝛿𝑋!. However,  
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Figure 4: Amplitude fluctuations in the synchronization regime at the resonance frequency for a fixed added noise of 0.5 Vstd. The 
amplitude fluctuations are normalized to that of the free-running oscillator for the same drive levels (see Fig. S4 and supplementary note 
2). a Spectral density of the amplitude fluctuations as the nonlinearity of the oscillator increases (top panel: experimental results, bottom 
panel: model). The red line shows the theoretical position of the peak at	𝒇𝒔𝐩𝐞𝐚𝐤. b Cross-section of panel (a) near the carrier frequency, 
highlighting the reduction in amplitude fluctuations as the oscillator enters the nonlinear regime (black line: theory, blue dots: experimental 
results). The spectral frequency was purposely shifted by ~100 Hz from the carrier frequency to avoid 1/f noise. c Cross-section of panel 
(a) along 0.1 V (black, linear regime) and 0.5 V (blue, Duffing regime), presenting the evolution of the spectral density from a regime 
similar to that of a free-running oscillator to the nonlinear regime where the fluctuations are shifted away from the carrier frequency (dashed 
line: theory, continuous line: experiment). 

deep in the nonlinear regime (𝛼	𝑋!' ≫ ∆𝜔), the power 
spectral density of the amplitude fluctuations reduces to: 

 

𝑆0!
121341(𝜔$) =

56 "#
"$%&

7
'
89':;<%

'=>((<#)

<#
'5<%

'89':;6 "#
"$%&

8<A+)'-<%
'7
'
=
	, (4) 

where	𝑆,(𝜔&) is the noise intensity of the source at the 
carrier frequency. Two main features arise from this 
nonlinear regime. First, the spectral density is peaked at an 
offset frequency 𝜔$BCDE = c𝐹&Δ𝜔𝛼𝑋!'/𝐹#$% from the 
carrier frequency 𝜔&. Second, near the carrier frequency 
(𝜔$ = 0), the amplitude fluctuations reduce as the 
nonlinearity increases, dropping below that of the free-
running oscillator, following F+

F+)
= 8<

;A+)'
 (supplementary 

note 1). To explore these behaviors experimentally, we 
probed the oscillator’s response at the resonance frequency 
in both free-running and synchronized regimes with a fixed 
input noise amplitude as the system enters the nonlinear 
regime. We find a quantitative agreement with the 
theoretical predictions (Fig. 4), resulting in a decrease of 
the amplitude noise by a factor four near the carrier 
frequency (Fig. 4b). This substantial noise-reduction was 
performed with a relatively small Duffing nonlinearity, less 
than three bandwidths (Fig. S1), easily accessible to most 
micro/nanomechanical resonators. 

Qualitatively, we can explain the source of the 
amplitude noise-reduction from a deterministic analysis by 
considering the additive noise as an amplitude perturbation 
in the rotating frame approximation. Such an amplitude 
variation generates a frequency shift due to the amplitude-
to-frequency conversion of the Duffing nonlinearity. 
However, this frequency shift is compensated by a phase 
delay adjustment due to the synchronization regime (Fig. 
2), which acts back on the amplitude of the oscillator (Fig. 

3). In an initially perfect frequency matching (𝛿𝜔 = 0) 
deep in the nonlinear regime (𝛼	𝑋!' ≫ ∆𝜔), this retroaction 
tends toward an exact compensation of the initially added 
amplitude perturbation. Going a step further in this 
deterministic approach, the dynamics around the stable 
synchronized solution reveals that the Duffing nonlinearity 
acts as an effective restoring force that bounds the motion 
of the amplitude fluctuations, thereby reducing their impact 
on the oscillator’s amplitude (supplementary note 1).  

 
Discussion 

The frequency locking property of the 
synchronization phenomenon is ideal when it comes to 
reducing the frequency fluctuations of an oscillator, but it 
inherently requires the master signal to be cleaner than the 
synchronized oscillator. On the other hand, the reduction of 
amplitude fluctuations is not a locking mechanism, it is 
directly related to the oscillator’s nonlinear properties and 
does not involve strong requirements on the amplitude 
fluctuations of the master signal. In both cases, this noise 
reduction prevents the use of synchronization for sensing 
applications, as the sensing mechanism is thereby reduced. 
However, the amplitude stabilization property could have a 
substantial impact for resonant micro/nano-actuators. For 
ultrasound transducers, the interaction with the 
environment (gas or liquids) drastically damps the acoustic 
pressure level30. Achieving large amplitudes is therefore 
essential, which is usually performed with arrays of 
transducers, and improving their resolution through 
synchronization could open new perspectives for airborne 
communication schemes. In the case of mechanical 
vibratory rate gyroscopes31, the amplitude of the actuation 
mode is traditionally stabilized with a proportional 
integrator (PI) loop controller to enhance the angular rate 
sensitivity with an improved signal-to-noise ratio. 
However, as the amplitude of the actuation mode increases, 

a b

c

>



the resonator enters the Duffing regime, such that a direct 
control on the amplitude might induce frequency 
fluctuations, thereby reducing the sensor’s performance, 
which would be avoided with this nonlinear 
synchronization regime. Finally, micro/nano-mechanical 
resonators have also demonstrated logic gate and memory 
applications for digital implementation16,32. In this context, 
amplitude stabilization would enhance the resolution for 
amplitude-based digital encoding such as quadrature 
amplitude modulation (QAM). 

In conclusion, we demonstrated both 
experimentally and theoretically that the phase delay 
between the oscillator and the external tone plays a crucial 
role in the amplitude level of the synchronized oscillator. 
Near frequency matching, the impact of the external signal 
on the amplitude fades as the Duffing nonlinearity of the 
oscillator increases. This behavior is followed by a 
reduction of the amplitude fluctuations of the system to a 
level below that of the free-running oscillator. Our study 
explores the largely ignored amplitude stabilization 
property of the synchronization phenomenon so far ignored 
and paves the way to implement synchronization in 
drastically different applications, exploiting the amplitude 
stabilization rather than the frequency locking mechanism. 

 
Methods 
Synchronization regime. The synchronization range of the 
oscillator extends far from the resonance frequency of the 
free-running oscillator. However, it is necessary to first 
match the external tone to the frequency of the oscillator to 
enter in the synchronization regime. Starting from that 
working point, it is then possible to explore the 
synchronization phenomenon as a function of the frequency 
detuning. 
 
Amplitude and phase measurements. Oscillators suffer 
from frequency noise, which directly impacts the estimated 
frequency detuning from the resonance frequency. When 
characterizing the amplitude and phase within the 
synchronization regime, it is essential to average over 
several independent measurements, each of them 
comprising: 
 1 - measuring the resonance frequency 

2 - turning on the external tone 
3 - entering the synchronization regime 
4 - applying the desired frequency detuning 
5 - measuring the synchronization state 
6 - turning off the external tone 

Depending on the frequency fluctuations of each oscillator, 
steps 4 and 5 may be looped before reinitiating the 
procedure. The experimental results in Fig. 2 and Fig. 3 are 
the result of an average over 17 measurements. 
 
Amplitude fluctuations measurements. The experimental 
results presented in Fig.4 are the result of an average over 
40 spectra for each driving amplitude, to obtain good 
resolution of the amplitude fluctuations. 
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