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ABSTRACT: In this paper, for the situation of HVDC inserted in meshed AC power grid, a Model-matching robust
H∞ static output error feedback controller (RSOFC) and model-matching dynamic decoupled output feedback
controller (DDOFC) are proposed to improve the damping of inter-area oscillation modes and maintain robustness
to face the effects of different operating points and unstable zeros. Sufficient conditions for robust stability are
derived in the sense of Lyapunov asymptotic stability and presented in the form of linear matrix inequalities
to obtain H∞ RSOFC and DDOFC gains based on the reference model. The efficiency and robustness of the
proposed controllers are tested and compared to Linear-Quadratic-Gaussian (LQG) control, mixed sensitivity
H∞, standard (IEEE) Power Oscillation Damping (POD) controllers on a realistic benchmark of 19 generators
connected by a meshed AC grid. The main contributions of this paper are: (i) Compensate the negative effect
of unstable zeros (non-minimum phase behavior) on the performances of the closed-loop; (ii) the robustness is
improved in order to provide good responses in case of network variations (load evolution, line, and generator
trips, etc.) and HVDC line parameters changes; (iii) improve the damping compared with standard controller
structures (LQG, mixed sensitivity H∞ and standard POD controller).

KEYWORDS:LMI, H∞, robustness, output feedback controller, HVDC, damping controller, inter-area modes.

1. Introduction

The traditional electricity transmission system based on three-
phase AC grids, in general, works well and with good levels of
reliability. However, there are challenges arising mainly from
environmental impact and the increase in the renewable genera-
tion, (according to [1] the next decade will be e devoted to the
large-scale exploitation of offshore wind energy, which means
the need to transport electrical energy over long distances to dis-
tances to establish a connection with the main power grid). This
will likely increase the level of variability and unpredictability
in the operation of power grids, leading to an increased need for
power reserves for balancing energy consumption and will require
more flexible power flow control. The solution that overcomes
these problems is the use of high voltage direct current (HVDC)
transmission systems, which are which are more feasible and also
more competitive than traditional transmission systems (HVAC),
especially with the development of power electronics components.
One of the most important advantages of technology over the
HVAC technology is that the former is suitable for long distances
with minimal losses. The second advantage is the right-of-way;
it is often easier to get permission for DC cables due to the re-
duced environmental impact [2]. The HVDC system is a power
electronics technology used in electrical power systems primarily
because of ability to transmit large amounts of energy over long
distances [3]. In the case of HVAC systems the power transfer
is limited because of the power transfer is limited because of the
phase angle which increases with distance, this distance is lim-
ited to 50km [4], to solve this problem the network operator can
use reactive power means of reactive power compensation along
the line, such as such as FACTS (Flexible Alternating Current
Transmission System) devices. However, these devices have a
very high However; these devices are very expensive and can-
not always be installed in the most appropriate place. Once the

development of high power switching devices and their devices
and their availability at low prices, Line-commutated converters
(LCCs) which used thyristors as the basic as a basic component
in HVDC were replaced by voltage source converters (VSCs)
[3]. Since VSC-HVDC has been gradually incorporated into the
grid, they can be utilized to suppress low-frequency oscillations.
The modes usually considered in the past were the most spread
inter-area ones which are at low frequencies (in Europe about
0.2 Hz). For HVDC inserted in a meshed AC network, such as
the recent interconnection reinforcements in Europe, inter-area
modes corresponding to a limited number of generators in the area
near the HVDC may be involved. They are at a higher frequency,
around 1 Hz. However, in this frequency range, inter-area modes
are close to other modes of a different nature (see [5, 6]) which
are disturbed by the HVDC power oscillation damping (POD)
controller. The use of classical Institute of Electrical and Elec-
tronics Engineers (IEEE) POD controller structures and tuning
methods (see e.g. [7]) are focused on only one mode, and tends
to inefficient damping and destabilize other modes.

It is well known that unstable zeros can degrade the perfor-
mance of the control system. However, there is rare research on
the origin of unstable zeros in HVDC links inserted into mesh
AC networks. Therefore, it is important in research and practice
to analyze network parameters with HVDC links to highlight
their influence on unstable zeros. In addition, modeling errors
and system uncertainties in plant models are inevitable in many
applications. To ensure accuracy, design techniques must take
these errors and uncertainties into account to be practical. There-
fore, a (robust) control approach must be used to deal with the
uncertainties arising from operating point changes in the power
system, as well as the modeling errors caused by modeling and
model reduction of realistic power systems.

Hence, the contributions of this paper, based on the afore-
mentioned works are to develop robust POD controllers which
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improve the damping of aforementioned high frequency inter-area
modes without deteriorating the damping of the others and to elim-
inate the impact of unstable zeros. To develop advanced control
one usually needs a state-space representation of the system [8],
[9]. In [10], it is studied in detail the stability at small perturba-
tions with power stabilizers (PSSs) in order to satisfy some recent
objectives and constraints imposed by the evolution of large-scale
interconnected power systems. H∞ or H2 approaches in the field
of robust control are studied in a huge number of publications
since the mid-1980s. In the context of robust control of linear sys-
tems, modern multivariate synthesis methods integrate a model of
the process with a family of systems. They use a deviation model,
which is defined either by different types of norms in the frequency
or time domain, or by uncertainty domains on the parameters, or
by sectors of the complex plane. For some types of error model-
ing, a synthesis technique is associated. A presentation of these
different techniques will be proposed, with particular attention to
those based on the use of H∞ and H2. The H∞ optimal control is
used to control a system subject to modeling errors and paramet-
ric uncertainties [11]. In [12], an H∞ controller is compared to
a controller obtained by a LQG/LTR (Loop Transfer Recovery)
method, allowing to recover some robustness properties of the LQ
(in the sense of modulus margin and not parametric robustness).
The H2 methodology was applied in [13], to find state feedback
controller offering a satisfactory the required performance. The
paper [14] proposes an iterative methodology in order to obtain a
static output controller by a mixed H2/H∞ synthesis. Many works
deal with the analysis of stability and the stabilization to design
robust dynamic output-feedback controllers [15], [16] based on
Linear matrix inequalities (LMI). LMI are used to solve several
problems of automation, (optimization problems in control theory,
system identification,...) which are generally difficult to solve ana-
lytically. The interest of methods based on LMIs comes from the
fact that they can be solved using convex programming [17]-[19].
With this approach, one is no longer limited to problems with an
analytical solution. By solving these inequalities, one obtains a
domain of feasible solutions, i.e. solutions satisfying these LMIs
solutions satisfying these LMIs, larger than the one generated by
the search for analytical solutions. Using the fact that an inequal-
ity has more solutions than an equation it is possible to use the
additional degrees of freedom to include other objectives than
those than those initially chosen. The notions of LMIs are found
in several works since many years. Thus Lyapunov conditioned
the stability of a system by LMI [20]. In the work presented here,
two model-matching based methods are proposed to solve above
mentioned problems. The contributions and novelty of this paper
are: i) Firstly, the reference model in this work is proposed as
having the desired characteristics, which means to horizontally
shift the poles to left in the complex plane until getting the desired
damping (over 10 %). Moreover, unstable zeros of the control
model is shifted to left plane which is closed to the vertical axis to
decrease the control difficulty. ii) Secondly, sufficient conditions
are derived based on LMIs for robust stabilization, in the sense of
Lyapunov method to obtain robust H∞ static output error feedback
controller (RSOFC) and dynamic decoupled output feedback con-
troller (DDOFC) gains based on the reference model. iii) Thirdly,
different controls from the literature (Linear-quadratic-Gaussian
(LQG), mixed sensitivity H∞ and standard (IEEE) Power Os-
cillation Damping (POD) controllers) are implemented for the
realistic benchmark of 19 generators connected by a meshed AC

grid to compare with the proposed H∞ RSOFC and DDOFC. The
rest of the paper is organized as follows. Section 2 presents the
problem statement and control model of the realistic benchmark
of 19 generators connected by a meshed AC grid. The stability
and the design of the proposed strategies are studied in Section
3. Section 4 introduces the proposed RSOFC and DDOFC. In
Section 5, a simulation study to evaluate the performances of the
proposed strategies is presented. In the Section 6 we present the
conclusions and future works.

2. Problem Formulation, Main Difficulties and Modeling

2.1. Test system

A test system with aforementioned particularities is proposed. It
contains an HVDC line inserted into an AC network consisting of
19 generators. All generators are controlled by AVR (Automatic
Voltage Regulator) and PSS (Power System Stabilizer). The order
of full nonlinear system is 724, which is linearized to obtain the
full linear model of the same order. The less damped and highest
residue modes found in Table 1 (see details in [21]).

2.2. Control model

In this paper the studied control model is developed in our pre-
vious work [21], [22]. By definition, a linear system is a system
governed by ordinary linear differential (or even algebraic) equa-
tions with non-constant coefficients. They describe the temporal
evolution of the constituent variables (state variables) of the phys-
ical system. This broad definition explains the complexity, the
diversity of linear systems as well as the variety of methods that
apply to them. A state representation of a linear system is given
by:

ẋ = Ax + Bu
y = Cx (1)

where x ∈ ℜn×1 is the state vector of the system, y ∈ ℜg×1 is
the measured output vector and u ∈ ℜm×1 is the input vector,
C ∈ ℜg×n, A ∈ ℜn×n and B ∈ ℜn×m, are matrices of linear
functions.

In our case, y = ∆θ and u is Q , where Q is the reactive power,
∆θ = θ1 − θ2 is the difference of angles of the terminal voltages
[23].

2.3. Classic POD

The detailed classic POD in this paper is proposed based on [7],
[21], [22]. It is defined by the transfer function given by (2). The
classical adjustment of the parameters of this system is given in
the [24]. For the desired damping of 10% set for mode 2 in Table
1, The classic POD tuning parameters K, T1, T2,Tw and n are
defined in [22].

HPOD(s) = K
(

Tws
1 + Tws

) (
1 + T1s
1 + T2s

)n

(2)

2.4. Main objectives and difficulties

1. Particular frequency range of inter-area modes: As men-
tioned in Introduction, in highly meshed AC grid, the inter-
area modes are at higher frequency. In this range of fre-
quency, other types of modes exist: local modes and electric



Table 1: The linearized model

No. Mode Damping
ξ (%)

Freq.
(Hz)

Mode shape (participation mag (%)) Residue
+ − ABS MAG Phase

1 -1.62+j8.19 19.5 1.30 GE 914 (100) GE 913 (32.4) 0.0157 35.0
2 -0.24+j5.53 4.5 0.88 GE 911 (100) GE 917 (68.8) 0.0181 83.4
3 -0.53+j5.29 10.1 0.84 GE 917 (100) GE 918 (55.1) 0.0129 -56.2
4 -0.40+j4.79 8.3 0.76 GE 918 (44.3) GE 912 (100) 0.0038 -33.3
5 -0.33+j3.29 10.1 0.52 GE 915 (100) GE 918 (17.7) 0.0121 104.5
6 -18.83+j7.21 93.3 1.14 GE 921, GE 922 (100) GE 923, GE 924 (74.1) 0.0034 14.5
7 -1.54+j6.55 22.9 1.04 GE 914 (100) GE 911 (68.3) 0.0125 151.5
8 -19.32+j6.47 94.8 1.03 GE 921 (100) GE 922 (37.6) 0.0117 118.9
9 -20.33+j4.86 97.2 0.77 GE 921, GE 922 (84.5) GE 927 (100) 0.0026 -168.1

10 -18.72+j3.35 98.4 0.53 GE 913 (33.4) GE 912 (100) 0.0072 136.1

coupling modes or general electric modes linked to other
electric phenomena. In the theory of systems, the mod-
els used for the design of control laws are often models
of reduced size. However, the increase in electrical inter-
connections has caused the increase in the size of models
representing these electrical systems. This makes their use
for the design of controllers almost impossible. Moreover,
the extension of the European synchronous area to the east
of Europe has not only made the volume of numerical calcu-
lations in the field of ”electrical” systems, but also changed
the frequencies of the inter-area modes. These modes are as-
sociated with oscillations involving a number of machines
distant from the electrical system and will be defined in in
detail in [5]. More precisely, these modes shift to lower fre-
quencies (by about a decade), which makes the gap between
the frequency of the inter-area modes and the local modes
(which concern only one generator) which remain in high
frequency ranges. This deviation considerably modifies the
global transient behavior of the electrical system and makes
it difficult to synthesize controllers for a mixed specification,
i.e., for both inter-area and local modes. In the previous
works, the regulator design approaches use a simplified
model consisting of a machine connected through a line
of reactance X to the rest of the electrical system modeled
by an infinite node. Although this simplified model, also
called ”infinite node machine”, is very small compared to
the full model of the electrical system, it cannot reproduce
the dynamic phenomena concerning the voltage regulation
specifications in the case of the very large systems men-
tioned above. Indeed, this model has only one inter-area
mode whose frequency depends on the parameter X, i.e.,
the length of the line connecting the machine to the infi-
nite node. It cannot therefore reproduce both local and
inter-area local modes and inter- area modes of much lower
frequency. Therefore, controllers designed with this model
are not very efficient to to meet the above-mentioned re-
quirements. In [25], the balanced realization of an electrical
system (representation of a complete electrical system by a
reduced system containing only the most controllable and
observable oscillatory modes) has been used for the con-
struction of a control model allowing an optimal choice of
the PSS locations to prevent blackouts in electrical systems.
Although the chosen locations of the controls and measures
improve the stability of the electrical system in the general
case, these models are not optimal from the point of view

of the most controllable and observable modes are not the
undamped modes of the system. To answer this problem,
we have proposed in this paper to use the control model
built from the complete model representing the electrical
system. This model allows, by preserving an important set
of variables and oscillatory modes of the complete model,
to reproduce a given oscillatory behavior of the complete
system which has both local and global components, i.e.,
that involves both local and global modes. Therefore, the
controllers designed with this model will have an effective
action once implemented in the complete system.

2. Unstable zeros: The existence of unstable zeros in the
HVDC embedded system depends on the topology of the
grids [26]. The effectiveness of POD can be decreased
because of these unstable zeros. Furthermore, control com-
munity has recognized that the existence of unstable zeros
[27].

3. Uncertainty of system: The modeling of a physical system
is a crucial phase in the synthesis of the controller. Due to
uncertainties, the mathematical model may not reflect the
physical reality of the system. Nevertheless, if we manage
to characterize these uncertainties, it is possible to complete
the nominal model with an additional uncertain part. The
sources of uncertainties are numerous but they are generally
classified in two categories

• Non-structural uncertainties also called non-
parametric. They represent external dynamics, for
example: measurement noise, external disturbances,
etc. disturbances, etc. In general, their dynamics are
unknown and we have no information on the way they
act on the system. On the other hand, we know that
they are bounded in norms.

• Structural uncertainties also called modeling or para-
metric uncertainties. They are generally due to ap-
proximation errors and/or simplifications necessary
to obtain an exploitable control model reflecting the
real dynamics of the physical system.

In this paper, we design the controller for control model (1)
(cf. Fig. 1) subject to the non-structural uncertainties.



Figure 1: Design process.

It should be noted that all these requirements cannot be fully
satisfied neither with the classic POD recalled in Section 2.3, nor
with the standard H2 and H∞ robust controllers. To overcome this,
a new design methodology summed-up in Fig. 1 was proposed.

3. Preliminary

In this section, we first recall the theory of stability in the sense
of a quadratic (LQ) and Gaussian quadratic (LQG) linear equa-
tion and mixed sensitivity H∞. For the LQ, we focus on the
problem of free-horizon control. In this context, the Lyapunov
theorem is an interesting alternative to demonstrate the results of
the LQG regulation and H∞ based on [21], [24]. We also present
the robustness properties and the asymptotic behaviors of the
LQG control. Finally, we are interested in the Root Square Locus
which is a graphical tool to guide the choice of weights on modal
considerations in the complex plane.

3.1. LQG controller

For the system (1), the feedback control that stabilizes the system
and minimizes the criterion LQG [8], [27]:

JLQG = E
{

lim
T→∞

1
T

∫ T

0
[xT Qx + uT Ru]dt

}
(3)

with the weighting matrices W and V , Q and R and the controller
gains Kr and L are given by:

Kr = R−1BT X (4)

L = YCT V−1, (5)

and X and Y positive (symmetric) solution of the two Riccati
equation:

XA + AT X − XBX−1BT X + Q = 0
YAT + AY − YCT R−1CY +W = 0. (6)

Fig. 2 shows the proposed LQG POD. The classic POD wash-
out filter is added in LQG POD controller to avoid steady-state
error. Q = I, R = 10−4; W = I, V = 10−2 in this case. The transfer
matrix of regulator is:

Qpod = −Kr x̂ = −Kr(sI − A + LC)−1
[
B L

] [ u
∆θw

]
(7)

Figure 2: The proposed LQG control implementation.

3.2. Mixed sensitivity H∞ based on LMI

The interest of this approach lies in the clarity of its formalism
and the physical interpretation of the synthesis criterion since it is
defined by a transfer function or even a block diagram showing
weights placed on the physical inputs and output signals of the
system and this independently of the norm that one wishes to
minimize (H2 or H∞). This formulation is conducive to the intro-
duction of frequency weights on some signals (e.g., the control)
to satisfy frequency specifications (e.g., the roll-off at high fre-
quencies) for which the optimal LQG-type approach is poor (note
however that the frequency LQG approach proposed a solution
since the beginning of the 70’s to take into account frequency
specifications. Particular standard forms (notably the mixed sen-
sitivity presented in Fig. 3) have been studied and are directly
adapted to the formulation of frequency robustness specifications
on sensitivity functions. We show here how to formalize the
mixed ”S/KS ” synthesis problem for our application. For that
we use frequency weights: W1 for S and W2 for KS . The H∞
problem consists of minimizing:

Figure 3: The proposed mixed sensitivity H∞ based on LMI implementation.

∣∣∣∣∣∣
∣∣∣∣∣∣
[

W1(s)S (s)
W2(s)KS (s)

]∣∣∣∣∣∣
∣∣∣∣∣∣
∞

< γ, (8)

where γ denotes a positive real number. We consider the
disturbance d as the only disturbance in the system (Fig. 3).
W1(s) and W2(s) are the stability and performance specifications
respectively and take the following forms [27]:

W1(s) = (
s/ k√Ms + ωb

s + ωb
k
√
ε

)k,W2(s) = (
s + ωbc/

k√Mn
k
√
ε1s + ωbc

)k (9)

where the bandwidth are ωb = 0.628 rad/sec, ωbc = 12.56
rad/sec. Ms,Mn are defined for the peak sensitivity and ε = 0.1,



ε1 = 0.1 for the steady state error. k is the order of the weight-
ing function. The target damping is set to ξdesired = 10% for all
the modes, as was the case for the design of classic POD. Thus,
β = 168◦ (β is the angle of conics in left complex plane directly
correlated with damping ratio ξ = cos β2 ).

The different matrices are combined into a single system,
called the augmented system. It is defined by the following state
equations: 

ẋp = Apxp + Bp1d + Bp2u

z = C1xp + Dp11d

y = C2xp + Dp21d
(10)

be a stable representation of the augmented plant H′(s) of Fig. 3.
The state space parameters of controller K(s) are Ak, Bk,Ck

and Dk which can be found via solving LMIs (11), (12), (13).[
Q I
I S

]
< 0 (11)

[
Π11 ΠT

21
Π21 Π22

]
< 0 (12)

[η ⊗ Ψ + ηT ⊗ ΨT ] < 0 (13)

Where

η =

[
sin β2 cos β2
− cos β2 sin β2

]
(14)

$⊗ is the Kronecker product, Q and S are obtained by solving the
following Π11, Π21, Π22 and Ψ.

Π11 =

[
ApQ + QAT

p + Bp2Ĉ + ĈT BT
p2 Bp1 + Bp2D̂Dp21

(Bp1 + Bp2D̂Dp21)T −γI

]
(15)

Π21 =

[
Â + (Ap + Bp2D̂Cp2)T S Bp1 + B̂Dp21

Cp1Q + Dp12Ĉ Dp11 + Dp12D̂Dp21

]
(16)

Π22 =

[
AT

p S + S Ap + B̂Cp2 +CT
p2B̂T (Cp1 + Dp12D̂Cp2)T

Cp1 + Dp12D̂Cp2 −γI

]
(17)

Ψ =

[
ApQ + Bp2Ĉ Ap + Bp2D̂Cp2

Â S Ap + B̂Cp2

]
(18)

A state-space representation of the controller K(s) is

Dk = D̂; (19)

Ck = (Ĉ − DkC2Q)(MT )−1; (20)

Bk = N−1(B̂ − S Bp2Dk); (21)

Ak =N−1[Â − S (A + Bp2DkCp2)Q](MT )−1

− BkCp2Q(MT )−1 − N−1S Bp2Ck.
(22)

by solving LMIs (19) to (22), Q, S and Â, B̂, Ĉ, D̂ are calculated,
and M and N are given by

MNT = I − RS . (23)

4. Proposed H∞ RSOFC based on model-matching

4.1. Selection of reference model

The nominal (or reference) model is a realization in the state space
and selected in order to give desired damping (over 10%) (cf. Fig.
4) and stable zeros (see details in [21]). It is possible to write the
state model in the following form.

Figure 4: The selection of reference model

ẋr = Ar xr + Brur

yr = Cr xr
(24)

The reference model and open-loop comparison validation
is shown in Fig. 5. The proposed H∞ RSOFC based on model-
matching is given in Fig. 6.

Figure 5: The reference model step response.

Figure 6: The proposed H∞ RSOFC.

Based on (1) and (24), the augmented system is defined by
the following state equations (cf. Fig. 6).



˙̃X = ÃX̃ + B̃uc + B̃rur

e = CeX̃
(25)

where the controlled output is given by e = y − yr and
X̃ =

[
x xr e

]T
.

Ã =

 A 0 0
0 Ar 0

CA −CrAr 0

 , B̃ =
 B

0
CB


B̃r =

 B
Br

CB −CrBr

 ,Ce =
[
0 0 I

] (26)

In this paper, the proposed H∞ RSOFC is defined by

uc = Ke, (27)

where K are the controller gains.
From (25), (26) and (27), the closed-loop system is given by ,

˙̃X = ˜̃AX̃ + B̃rur

e = CeX̃
(28)

where ˜̃A = Ã + B̃
[
0 0 K

]
.

4.2. Proposed H∞ RSOFC stability and robustness analysis

The conditions of global asymptotic stability to determine the
controller gains so that the system (28) is robust is studied in this
subsection. This leads to the conditions expressed in Theorem 1.

Theorem 1: The robust control system in the form (28) un-
der the control law (27) is asymptotically stable if and only if
X = XT > 0 and Y and below LMIs are verified

min γ (29)

subject to
ÃX + XÃT + B̃Y + YT B̃T B̃r (Ce ∗ X)T

B̃r
T

−γI 0
Ce ∗ X 0 −γI

 < 0

X > 0

(30)

Then, based on (30), the controller gains (27) are obtained.

K = XY−1 (31)

Proof. The proof of Theorem 1 is established by using the
disturbance ur to the output e Transfer Function (TF).

Ture(s) = Ce(sI − (Ã + B̃K)−1B̃r (32)

By minimizing the H∞ norm of (32) (||Ture||∞ ≤ γ), the re-
jection of external disturbances is obtained. Based on bounded
real lemma ([17, 28]), the robust control system in the form of a
(28) is stable, if and only if the matrix P = PT > 0 is symmetric
positive definite and the following LMIs are verified

˜̃AT P + P ˜̃A PB̃r CT
e

B̃r
T P −γI 0

Ce 0 −γI

 < 0. (33)

From, (28) and (33),


ϕ PB̃r CT

e

B̃r
T P −γI 0

Ce 0 −γI

 < 0, (34)

where ϕ = [Ã + B̃
[
0 0 K

]
]T P + P[Ã + B̃

[
0 0 K

]
]. Define

T =

P
−1 0 0
0 I 0
0 0 I

 (35)

where I is the identity matrix. Multiplying left and right sides
of the (34) by T and T T , respectively, with X = KY , X = P−1,
the stability conditions (29) and (30) in Theorem 1 are obtained.

5. Proposed H∞ DDOFC based on model-matching

To avoid to run the reference model in real-time in order to pro-
duce the e signal in the controller, a an output-feedback is pro-
posed. The structure of the resulting model-matching robust H∞
DDOFC is given in Fig. 7.

Figure 7: The robust H∞ DDOFC strategy.

The proposed H∞ DDOFC dynamic equations are given by
the following form

ẋc = Acxc + Bcuc

yc = Ccxc
(36)

From Fig. 7, it follows,

u = ur − uc = ur − yc = ur −Ccxc

uc = y = Cx (37)

From (1), (24) and (36), the virtual system state-space equa-
tion is

Ẋ = ĀX + B̄ur

Y = C̄X , (38)

where X(t) =

 x
xr

xc


T

, and

Ā =

 A 0 −BCc

0 Ar 0
BcC 0 Ac

 , B̄ =
 B
Br

0

 , C̄ =
−C
Cr

0


T

.



5.1. Proposed H∞ DDOFC stability and robustness analysis

Theorem 2: The virtual system (VS ) in the form (38) subject to
the proposed H∞ DDOFC dynamic law (36) is asymptotically sta-
ble if and only if the matrcies Q,Z ∈ ℜ(n+nr)×(n+nr) are symmetric
positive definite , Â, B̂, Ĉ ∈ ℜ(n+nr)×(n+nr), are non singular and
scalar γ, and below LMIs are verified,

min γ (39)

ϕ1 + ϕ
T
1 ÂT +

[
A 0
0 Ar

] [
B
Br

]
Q

[
−CT

CT
r

]
∗ ϕ2 + ϕ

T
2 Z

[
0
Br

]
+ B̂

[
−CT

CT
r

]
∗ ∗ −γI 0
∗ ∗ 0 −γI


≤ 0

(40)

[
Q I
I Z

]
≥ 0 , (41)

where

ϕ1 =

[
A 0
0 Ar

]
Q +

[
−BĈ

0

]
, ϕ2 = Z

[
A 0
0 Ar

]
+

[
BB̂C

0

]T

,

Therefore, by solving LMIs (40)-(41), the H∞ DDOFC pa-
rameters can be written as follows:

Ac = N−1ĀM−T , Bc = N−1B̂,Cc = ĈM−T , (42)

where

Ā = Â − Z
[
A 0
0 Ar

]
Q − N

[
BcC

0

]T

Q − Z
[
BCc

0

]
MT (43)

and
NM = I − ZQ. (44)

Proof. By minimizing the H∞ norm of (32) (||Ture||∞ ≤ γ), the
rejection of external disturbances is obtained. Based on bounded
real lemma ([17], [28]), the robust control system in the form of
a (36) is stable, if and only if the matrix W ∈ ℜ2(n+nr)×2(n+nr) is
symmetric positive definite and LMIs are satisfied,Ā

T W +WĀ WB̄ C̄T

B̄T W −γI 0
C̄ 0 −γI

 ≤ 0 (45)

W ≥ 0 . (46)

Based on Schur complement method [29]- [32] using W and
W−1 , we have;

W =
[

Z N
NT ⋆

]
,W−1 =

[
Q M

MT ⋆

]
(47)

where ⋆ is unknown matrix. Let

∏
1 =

[
Q I

MT 0

]
,
∏

2 =

[
I Z
0 NT

]
(48)

From WW−1 = I , it can be inferred∏
2 = W

∏
1 (49)

In this case,

∏T
2 WĀ =

∏T
2 Ā

∏
1 (50)

So that,

∏T
2 Ā

∏
1 =

[
I 0
Z N

]  A 0 −BCc

C Ar 0
BcC 0 Ac


[

Q I
MT 0

]

=


[
A 0
0 Ar

]
Q +

[
−BBc

0

]
MT

[
A 0
0 Ar

]
Q1 Q2


(51)

and,

∏T
1 WB̄ =

∏T
2 B̄

∏
1 =

[
I 0
Z N

]  B
Br

0

 =


B
Br

Z
[

B
Br

]
 . (52)

Then,

∏T
1 C̄ =

[[
−C Cr C

] [ Q I
MT 0

]]T


Q

[
−CT

CT
r

]
−CT

r
CT

r

 (53)

where,

Q1 = Z
[
A 0
0 Ar

]
Q + N

[
Bc C 0

]
Q + Z

[
−BCc

0

]
MT+

NAcMT ,

Q2 = Z
[
A 0
0 Ar

]
+ N

[
Bc C 0

]
(54)

Thus,

Â = Z
[
A 0
0 Ar

]
Q + N

[
Bc C 0

]
Q + Z

[
−BCc

0

]
MT

+NAcMT ,

B̂ = NBc, Ĉ = CcMT

. (55)

Therefore, (45) and (46) are equivalent to (40) and (41).

6. Validation Tests

In this section, RSOFC and DDOFC controllers depicted in Sec-
tions 4 and 5 are validated in linearized full model and nonlinear
model and compared with the other controllers presented in Sec-
tions 2 and 3.

6.1. Linearized model validation

The model tested in this section is the linearized model from EU-
ROSTAG and tested in Matlab with a step disturbance on angle
difference ∆θ. They are shown in Fig. 8. The modes can be
identified by measuring their frequency from two peaks. The
description of these results are shown below:

1. at t = 8s, mode 2: compared to the classic POD and
RSOFC, DDOFC POD and LQG POD give better damping.

2. from t = 2s to 4s, mode 5: The performance of DDOFC
POD, LQG POD, and mixed sensitivity H∞ POD give less
undershoot and sufficient damping.

3. from t = 1s to 3s, mode 1 (in zoomed figure of open-loop
curve): Only observed in the curve with LQG.



Table 2: Comparison of damping

No.
damping (ξ)

without
POD (%)

damping (ξ)
with

classic
POD
(%)

damping (ξ)
with
LQG
POD
(%)

damping (ξ)
with

Mixed
sensitivity

H∞
POD(%)

damping (ξ)
with

RSOFC
POD
(%)

damping (ξ)
with

DDOFC
POD(%)

1 19.5 30.5 21.7 20.29 18.6 23.3
2 4.5 6.1 10.9 11.67 4.2 12.6
3 10.1 12.0 14.9 12.33 9.6 10.8
4 8.3 8.1 11.4 12.41 7.9 10.6
5 10.1 12.4 13.6 14.97 14.2 14.1

Figure 8: Comparison of linearized model.

Based on Table 2 analysis, It can be observed that, the pro-
posed DDOFC POD gives the desired target damping of modes
1 and 2 without disturbing the others and a better damping in
a wide range frequency band. The damping for each mode is
over 10% for DDOFC POD, LQG POD, and H∞ POD while the
classic POD enhance the damping of mode 2, but encumber mode
4. Mode 3 damping is reached highest value for LQG POD but
it’s acceptable for mixed sensitivity POD during mode 4 and 5.
On the other hand, damping for each mode is decreased except
mode 5 for RSOFC.

6.2. Nonlinear system validation

The study and robustness analysis is more difficult due to the sys-
tem nonlinearities. In addition, each response curve is the result of
several modes mixed with a nonlinear dynamic. It is therefore dif-
ficult to highlight each mode individually. Disturbance scenarios
must be well chosen. Moreover, the observability of the modes de-
pends on the selected output signal. To validate the performance
and robustness of the proposed controllers, two situations are
considered: for the first one, called nominal operation case, the
simulations are carried with the same grid situation considered
for the synthesis of the controllers. For the second one, called
robust operation case, the grid is disturbed (with load variations,
line/generators tripping) for simulation without recomputing the
controllers.

6.2.1. Nominal operation case

Fig. 9 shows the response of the proposed strategies in the nomi-
nal operation case.

According to the zoom of Fig. 9, one can see that for mode 2
(we recognize it by measuring the frequency between the peaks of

the curves from the oscillation 8th), the DDOFC, the mixed sensi-
tivity H∞ POD and LQG POD give more damping compared to
RSOFC and classic POD. In addition, at t = 3s, the contributions
of several mixed modes with nonlinear dynamics are observable.
Moreover, between the 4th and 8th oscillations (the period during
which mode 1 can be observed), (cf. table 2).

6.2.2. Robust operation cases

Different disturbed grid situations are considered to validate the
proposed strategies in uncertainties case. These cases correspond
to the robustness issue: variation of some of its parameters - called
parametric robustness (see details in [22]).

Responses obtained with the same controllers considered
above are now shown in Fig. 10, 11, 12, 13.

• Reverse power flow case (in Fig. 10)

1. at t = 12s (mode 2): RSOFC POD and mixed sensi-
tivity H∞ POD give more damping.

2. From oscillation 3rd (mode 4): Although the RSOFC
POD give more damping compared to the other con-
trollers, but it gives insufficient damping nominal op-
eration case.

3. from t = 3s to t = 5s: With the mixed sensitivity H∞
the POD gives small oscillation at t = 3.5s (cf. Fig.
10).

• Increased load case (in Fig. 11)

1. at t = 12s (mode 2): H∞, LQG and DDOFC POD
give the same acceptable damping.



Figure 9: Nominal operation case.

Figure 10: Reverse power flow case.

Figure 11: Increase load case.

2. From the oscillation 3rd to 5th: the damping provided
by the H∞ POD is not sufficient for mode 4. In addi-
tion, the overshoot with LQG POD in the first oscilla-
tion is undesirable. le.

• Tripping generator case (in Fig. 12)

1. During the first two oscillations: the POD LQG as
well as the classic POD even increase the oscillations

during the first two swings.

2. From t = 12s (mode 2): The DDOFC, the mixed sen-
sitivity H∞ and the LQG POD, have more damping
compared to the other controllers.

3. DDOFC POD gives more damping than the other
controllers during the 3th to the 6th swing (mode 1).

• Tripping lines case ( In Fig. 13)



Figure 12: Tripping generator case.

Figure 13: Tripping lines case.

1. 4th to 8th oscillation (mode 1): Classic, LQG, and
DDOFC POD give more damping during the 4th to
the 8th swing (mode 1).

2. In the zoomed figure (mode 2), the damping is greater
with the DDOFC than with the mixed sensitivity H∞
and the RSOFC POD.

3. The overshooths is greater with LQG POD than with
open-loop during the first two swings.

In summary, the proposed DDOFC POD is more robustness
and better damping for all the cases.

7. Conclusion

In this paper two robust model-matching based POD are studied.
Sufficient conditions are derived for robust stabilization, in the
sense of Lyapunov method series stability based on a reference
model and have been formulated using an LMI format to obtain
the controllers’ gains. The robustness of the proposed controller
is finally tested and compared to LQG, mixed sensitivity H∞ and
standard (IEEE) POD controllers on a realistic benchmark of 19
generators connected by a meshed AC grid. Paper contributions
are: (i) improves damping and robustness subject to the unstable
zeros compared with standard controller structures (LQG, mixed
sensitivity H∞ and standard POD controllers); (ii) The proposed
controller is validated using Eurostag, which is more realistic ;

(iii) It can be easily implemented in real case and it consists in
a simple output-feedback. The control methodology is applied
here for Q modulation but can be extended to coordinate P and Q
modulation of the HVDC link.

It is planned in the near future to implement the overall
proposed control strategy on the France-Spain and France-Italy
HVDC interconnection in real grid situations.

8. Appendix

8.1. LQG controller:

Based on LQG 3.1, the gains are given by:
L=[-164.18 47.48 80.33 57.635 96.34 -19.51 2.81 48.01
35.078 8.58 -7.82 -0.33 -9.20]T ;
Kr= [ 13.7682 -3.3704 -4.0354 6.5771
7.0691 4.3546 2.4524 -1.5362 1.1628 0.7133 -
0.4256 -0.6244 -0.5161].
u to Qpod Transfer Function(TF) is H1, and TF fomr ∆θ to u is
H2:

H1 =

n−1∑
i=0

n∑
j=0

N1i(s)
D1 j(s)

=
N1n−1sn + ... + N11s + N10

D1nsn + ... + D11s + D10
(56)

H2 =
N2n−1sn−1 + ... + N21s + N20

D2nsn + ... + D21s + D20
(57)



n = 13 (including the wash-out filter (dimension 1))(cf. Table
3).

Table 3: TF of LQG POD paramaters

i,j= N1 D1 N2 D2
13 / 1 / 1
12 -3.681 43.19 1781 43.19
11 -189.3 785.2 1.814e04 785.2
10 -3051 1.092e04 3.614e05 1.092e04
9 -3.894e04 1.087e05 2.343e06 1.087e05
8 -3.575e05 8.942e05 2.358e07 8.942e05
7 -2.571e06 5.837e06 9.686e07 5.837e06
6 -1.513e07 3.203e07 6.336e08 3.203e07
5 -7.04e07 1.431e08 1.381e09 1.431e08
4 -2.672e08 5.266e08 6.488e09 5.266e08
3 -8.032e08 1.557e09 -3.658e08 1.557e09
2 -1.735e09 3.469e09 5.733e09 3.469e09
1 -2.923e09 5.716e09 -9.87e10 5.716e09
0 -1.42e09 4.454e09 -1.387e11 4.454e09

8.2. Mixed sensitivity H∞ controller:

The H∞ controller TF in 3.2 is:

K(s) =
Nn−1sn−1 + ... + N1s + N0

Dnsn + ... + D1s + D0
(58)

In (58), n = 15 (including the wash-out filter (dimension 1)
and frequency weights (dimension 2)). H∞ controller parameters
are given in Table 4

Table 4: TF of H∞ POD paramaters

i= N D
15 / 1
14 9.4e05 4.6e05
13 9.4e7 7.8e06
12 1.1e9 1.5e08
11 1.9e10 1.5e09
10 1.38e11 1.5e10
9 1.3e12 9.8e10
8 5.95e12 6.3e11
7 3.51e13 2.91e12
6 1.1e14 1.3e13
5 4.3e14 3.9e13
4 7.4e14 1.17e14
3 1.8e15 2.15e14
2 1.1e15 3.9e14
1 -3.3e13 2.6e14
0 3.3e14 1.1e13

8.3. Reference model:

The reference model TF used in proposed two controller:

fr(s) =
Nrn−1sn−1 + ... + Nr1s + Nr0

Drnsn + ... + Dr1s + Dr0
(59)

n = 12 (cf. Table 5).

Table 5: Reference model TF

i= Nr Dr
12 / 1
11 0.02143 19.54
10 0.1264 355.5
9 0.9629 3773
8 - 1.255 3.6e4
7 - 126.5 2.5e5
6 - 1088 1.6e6
5 - 9771 7.2e6
4 - 5.1e4 3.1e7
3 - 2.3e5 9.2e7
2 - 8.7e5 2.7e8
1 - 1.8e6 4.1e8
0 - 4.7e6 7.3e8

8.4. ROSCF controller:

The gains calculated in (31):
Y=1.150696148547366e-12;
X=2.009746646814367e-13.
Then, the gain of the controller is: K = 5.725578148724988.
Notice that the dimension of the ROSCF controller is 13 (equal
to the dimension of the reference model (12) + the one of the
wash-out filter (1)).

8.5. DDOFC controller:

The transfer function of controller DDOFC K(s):

K(s) =
Ndn−1sn−1 + ... + Nd1s + Nd0

Ddnsn + ... + Dd1s + Dd0
(60)

Since the order of the controller depends on the control model
plus reference model, n = 26 (dimension of the plant (12) + di-
mension of the reference model (12) + wash-out filters for the
plant and reference model (2)). Parameters are shown in Table 6



Table 6: Transfer function of DDOFC POD paramaters

i= Nd Dd
26 / 1
25 5.267e05 4.057e04
24 1.713e07 1.465e06
23 4.532e08 4.032e07
22 8.033e09 7.692e08
21 1.225e11 1.234e10
20 1.496e12 1.621e11
19 1.616e13 1.865e12
18 1.481e14 1.856e13
17 1.217e15 1.65e14
16 8.672e15 1.3e15
15 5.573e16 9.242e15
14 3.119e17 5.888e16
13 1.568e18 3.402e17
12 6.764e18 1.768e18
11 2.567e19 8.326e18
10 7.833e19 3.519e19
9 1.879e20 1.341e20
8 1.951e20 4.546e20
7 - 7.141e20 1.372e21
6 - 6.079e21 3.617e21
5 - 2.359e22 8.277e21
4 - 6.919e22 1.593e22
3 -1.507e23 2.516e22
2 - 2.483e23 3.057e22
1 - 2.907e23 2.551e22
0 - 1.568e23 1.08e22
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