
HAL Id: hal-03689856
https://hal.science/hal-03689856

Submitted on 7 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial| 4.0 International
License

Secure PUF-based Authentication and Key Exchange
Protocol using Machine Learning

Amir Ali Pour, Fatemeh Afghah, David Hely, Vincent Beroulle, Giorgio Di
Natale

To cite this version:
Amir Ali Pour, Fatemeh Afghah, David Hely, Vincent Beroulle, Giorgio Di Natale. Secure PUF-based
Authentication and Key Exchange Protocol using Machine Learning. IEEE Computer Society Annual
Symposium on VLSI (ISVLSI 2022), Jul 2022, Pafos, Cyprus. �hal-03689856�

https://hal.science/hal-03689856
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Secure PUF-based Authentication and Key
Exchange Protocol using Machine Learning
Amir Ali-pour∗, Fatemeh Afghah †, David Hely‡, Vincent Beroulle§, and Giorgio Di Natale¶
(∗, †) Electrical and Comptuer Engineering Department, Clemson University, Clemson, SC 29634, USA

(∗, §) Univ. Grenoble Alpes, Grenoble INP, LCIS, 26000 Valence, France
(‡) Univ. Grenoble Alpes, CEA, LETI, F-38000 Grenoble, France

¶ Univ. Grenoble Alpes, CNRS, Grenoble INP, TIMA, 38000 Grenoble, France

(∗, †) Email: {aalipou, fafghah}@clemson.edu
(∗, ‡, §, ¶) Email: {firstname.lastname}@univ-grenoble-alpes.fr

Abstract—Error Correction Codes and Fuzzy Extractors (FE)
using publicly available helper data are used to increase the
reliability of the secret value generated from noisy sources such
as Physically Unclonable Functions (PUFs). Publicly available
helper data is, in turn, vulnerable against Helper Data ma-
nipulation attacks due to its correlation with the secret value.
Instead of using helper data for FE-based error correction,
we propose a locally recoverable repetition coding mechanism.
Our proposed mechanism is based on sharing only the user’s
generated challenge values, which is inherently secure against
machine learning and PUF cloning attacks. We evaluate the
reliability of our method using simulated challenge response pairs
(CRP)s captured from various XOR Arbiter PUF structures at
different levels of noise embedded in the PUF CRP characteristic.
We show for instance that in a scenario of using PUF with 10%
error-rate, our method can successfully recover the encryption
key with close to zero failure-rate with a repetition code length
of 10 or higher.

Index Terms—Physically Unclonable Function, Encryption
Key, Repetition Code, Error Correction Codes

I. INTRODUCTION

As concepts such as PUF-based cryptographic methods
are emerging, security in internet-based communication, espe-
cially in IoT and cyber-physical systems is facing new oppor-
tunities and challenges as well. PUF is considered nowadays
as security primitive for resource-constraint ecosystems [1],
[2]. PUF is characterized as a hardware-bound function which
utilizes the unit-specific micro-variations to generate digital
fingerprints. The functionality of PUF is based on mapping a
bit-vector challenge to a response and generating a so-called
Challenge-Response-Pair (CRP). Two variants of PUF exist,
the strong PUF, which generates large amount of CRPs [3],
and the weak PUF, which generates only few CRPs [4].

Recently, it has become an interesting research idea to
utilize Strong PUF for key generation using machine learning
(ML). It is proven that ML methods can create a soft model of
the PUF which is accessible on the server side and provides
access to the full CRP space of the PUF with negligible
error rate. Based on such potential, various methods have
been proposed to design protocols for authentication and key
generation [5], [6]. While the authentication methods can
tolerate error rate of the soft model of PUF, key generation
protocols on the other hand still use fuzzy extractor (FE)
mechanism to increase the reliability of the generated keys.

This material is based upon the work supported by the French National
Research Agency in the framework of the “Investissements d’avenir” program
(ANR-15-IDEX-02) and the US National Science Foundation under Grant No.
IIP-2204502.

FE mechanism in turn demands publicizing helper data which
has correlation the the secret value that is the source for key
generation. This in turn makes the protocol susceptible to
helper data manipulation attacks [7].

There are several works that practice similar mechanisms for
their PUF based key generation/exchange and authentication.
For instance, Majzoobi et al. proposed Slender PUF authenti-
cation protocol in [5] where TTP server uses a compact model
of the PUF that enables the user to generate CRPs randomly
with no restriction in the number of CRPs. However the CRP
transmission is disclosed over the public communication chan-
nels during authentication process, which ultimately renders
the mechanism prone to model-building attacks. Idriss et al.
also proposed a lightweight highly secure PUF based device
authentication method in [8]. This method is based on only
exchanging challenge values and disclose no response value
during an authentication operation over the communication
channels which makes the method inherently secure against
model building attacks. However, they propose using a CRP
lookup table on the server side rather than a model of the
PUF, then the protocol will ultimately face a limit in terms
of the number of CRPs it can use. Quadir et al. present
a novel key generation mechanism based on strong PUF in
[6]. In their mechanism they use a predictive model of the
PUF on the server side and propose also to exchange only
challenge values. Thus the collective drawbacks of the first
two methods are mitigated here. However, they use FE-based
ECC mechanism to ensure the reliability of the key values
which require publicly exchanging helper data which is prone
ultimately to helper data manipulation attacks. In [9] Yan et al.
proposes a PUF-based authentication method which requires
no ECCs, instead they use a novel fault tolerant authentication
scheme which uses ring weight algorithm (RWA) to assure on
the reliability of the used response values for authentication.
This method also does not require a CRP dataset. Nonetheless,
as instated in the work, the method is based on the trade-off
between the efficiency in implementation and performance,
and the failure rate in authentication, which makes it best
suited for IC authentication rather for key generation.

In this work, we propose a new encoding and decoding
method that enables strong PUF for key generation and
exchange using machine learning. Our protocol is capable of
recovering an original key using no public helper data. Here
we propose to use a strong PUF with increased complexity,
such as XOR Arbiter PUF. In order to provide the capability
of generating a large number of encryption keys, we propose

using a machine learning-based equivalent model of the PUF
on a Trusted Third Party (TTP) verifying server. The ML
model of the PUF in turn gives access to its full CRP space
with some negligible misprediction probability. Here we show
how our method increases the probability of success in key
recovery even in the light of model misprediction and PUF
instability while exchanging encryption keys using challenge
packs that generate mutual response values, a mechanism
similar to repetition coding. In this mechanism only a series
of randomized challenge values are transmitted which in turn
makes the mechanism inherently secure against modeling and
replay attacks. Our contribution is listed as below:

• A repetition code-like error correction technique using
the PUF and an equivalent ML model of the PUF.

• A one-to-one and one-to-many authentication and key
exchange protocol with locally correctable codes.

• An evaluation of our proposed method using simulated
data of various XOR Arbiter PUF structures.

The rest of the paper is as follows. Our proposed method
is described in section II. In section III we elaborate on the
reliability evaluation of our proposed method. In section IV,
we discuss the security analysis of our method against different
attacks. The conclusion remarks are presented in section V.

II. PROPOSED METHOD

We define three phases that constitute our method, 1) The
enrollment phase, 2) The challenge-based synchronization
phase, and 3) The authentication and key generation and
exchange phase.

The process of enrolling a PUF-enabled device to a TTP
server is illustrated in Fig. 1. At this phase the TTP server
invokes the PUF-enabled device and transmits a challenge set
C comprising n randomly generated challenge vectors and
acquires a CRP set comprising n CRPs. The CRP set is
then used to train a predictive model M which mimics the
characteristic of PUF with prediction accuracy ϵ > t, where t
is the minimum acceptable prediction accuracy.

The challenge-based synchronization phase is shown in Fig.
2. This is the initial phase for generating a new encryption
key. Thus at first, the device queries the TTP server by
exchanging its Device ID. Once received by the TTP server,
the corresponding predictive model of the device’s PUF is
loaded. Then the server generates a random l-bit binary vector
w. The generated random value w and the predictive model
M are given to a CRP matchmaking algorithm.

The CRP matchmaking algorithm as shown in Algorithm
1 is responsible for generating a set of randomized challenge

RNG

PUF

Trainer

Invoke Device_ID

model

ready

Enrollment Successful

PUF
burn e-fuses

DoneStorage
{ ,Device_ID}

PUF-enabled DeviceTTP Server

Fig. 1: The PUF enrollment procedure.

RNG
PUF

Device_ID

Storage

PUF-enabled DeviceTTP Server

Device_ID

CRP match-
making algorithm

Majority Logic
vote decoder

Fig. 2: The challenge-based synchronization procedure.

Algorithm 1 CRP matchmaking algorithm

Require: w{by|y = {0, 1, ..., l}, by ∈ {0, 1}}
Require: M{Θ, ϵ > t}
L← l ▷ size of w
M ← m ▷ repetition length
while i < L do

while j < M do
ch← randomly generate challenge vector
rp←M(ch)
if rp = w[i] then

if ch /∈ C pack then
j ← j + 1

C pack[i]
+← ch ▷ Append ch to C pack1

i← i+ 1
return C pack

vectors we refer to as C pack, which includes l number of Ci

subsets comprising m number of challenges that produce the
same response. The CRP matchmaking in turn acts similarly
as a repetition code. While the output is not directly the
codeword, it is instead the challenge vectors that will lead to
the binary response values which then constitute the codeword.
This will then allow to securely enable regeneration of the
secret value on the device side.

The generated C pack set is then sent to the device. On
the device side, C pack is passed to the PUF to produce
the R pack set, which comprises l subsets, and each subset
comprises m binary response values. Once the R pack is
extracted, each of the subsets is given to a majority voter to
vote for the most dominant binary value. The output of the
voter for the entire R pack is w′ which comprises l binary
values. Here it is expected that w′ is equal to w, which is the
base condition to issue a successful authentication.

We assume that a request for synchronization initiates
a new session. Once completed, the communicating parties
can initiate device authentication and key exchange. Fig. 3
shows the process of device authentication and key exchange
between the TTP server and the PUF-enabled device. For
authentication, both the TTP server and the device create hash
values h1, and h1′, using the Device ID and the generated
w, and w′, respectively. The PUF-enabled device then sends
h1′ to TTP server. On TTP server, if h1 and h1′ are equal, it is

PUF-enabled DeviceTTP Server

Challenge based synchronization session 1

Request Authentication

HASH 1
h1'

Device_ID

HASH1
h1

Device_ID

h1'

==

h1
h1'

T

F
HASH2

Key

Authentication
successful

Challenge based synchronization session 2

. .
 .

HASH2

Key

Fig. 3: The authentication and key generation procedure.

assumed the communicating device is authentic and the TTP
server sends the authentication successful acknowledgement
to the device, meaning that it is known to both parties that
their generation w and w′ are equal. Both parties then move
to creating the encryption key which is a hash value of only
the w and w′.

III. EVALUATION OF RELIABILITY

To evaluate the reliability of our method, we considered
using XOR Arbiter PUF which is family of strong PUFs with
increased and expandable complexity. The structure of XOR
Arbiter PUF is based on multiple Arbiter PUFs whose input
(challenge) are of the same size, and triggered by a global
input. The output of the XOR Arbiter PUF is also the XOR
of the output of each Arbiter PUF. Fig. 4 shows the structure
of an n-stage k-XOR XOR Arbiter PUF.

We used a Python-based XOR Arbiter PUF simulator to
generate 10 instances of each 4,5,6, and 7 XOR arbiter PUF
variations with a 64-bit challenge size. The simulator code
is developed by Ruhrmair et al. and presented initially in
[10], and is available online in [11]. To represent a realistic
characteristic, we added artificial bit flipping characteristic to
the captured CRP datasets from the simulated PUF instances.
Overall, we considered different noise levels, including 0%
2%, 5% and 10% of CRP population for each dataset to be
affected by bit flipping. We assessed the modeling of the

. . .

. . .

Arb

stage1 stage2 stage nstage n-1

. . .

. . .

Arb

cn-1
. . . cnc2c1

. .
 . r

APUF_1

APUF_k

. .
 .

Fig. 4: The structure of an n-stage k-XOR Arbiter PUF.

1 3 5 7 9 11 13 15

Repetition length l
0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

ke
y

ge
ne

ra
tio

n
su

cc
es

s r
at

e

Noise level 0.00
Noise level 0.02
Noise level 0.05
Noise level 0.10

Fig. 5: Key generation Success with respect to code length l.

PUF instances, and the performance of our proposed method
separately for each noise level.

Using Pytorch, we created the corresponding predictive
models of the PUF instances using a novel Multi-Layer
Perceptron (MLP) proposed by Mursi et al. in [12]. We
implemented the training procedure as proposed in [13] and we
used the initial hyper parameters and a novel transfer learning
technique as proposed in [14] to reduce the number of CRPs
required for training an accurate model.

We measured the accuracy of the models we trained for
each PUF instance. Ideally we consider a model accurate if it
has prediction accuracy above 80%. For all XOR sizes, and
for each noise level 0%, 2%, 5%, and 10%, we could achieve
99%, 97%, 94%, and 89% prediction accuracy, respectively.

For our measurement purposes, we implemented the enroll-
ment phase, the challenge-based synchronization phase and the
key generation and exchange phase on python, by developing
the class of a TTP server and a PUF-enabled device, and the
exchange mechanism interface between the two classes. We
measured the success-rate of key generation for each noise
level, with respect to increasing repetition length l, testing
the key generation also for 1000 iterations for each case. Fig.
5 shows the success-rate progress with respect to increasing
repetition length for various XOR sizes. As expected, we
can see that for all XOR sizes, as the noise levels increase,
the success rate degrades relatively. Given however, that with
increasing l, the success-rate increases as well to compensate
for both the noisy PUF source as well as the mis-prediction
error-rate in the equivalent MLP model. We can see that
for the worst case of having 10% of noisiness in the PUF
characteristic, as well 10% mis-prediction error-rate, with
repetition length above 10, we can achieve a success-rate in
key exchange reaching and stabilizing at 1.0.

IV. SECURITY ANALYSIS

Below we also evaluate the security of our method for
various known attacks against PUF-based security protocols.

A. Machine Learning Modeling Attacks
Modeling attacks on strong PUF require eavesdropping on

the communicating channel to capture PUF CRPs which is a
necessity to build a model of a strong PUF [10], [15]–[17]. It
is proven that with enough number of CRPs, it is possible to
model any PUF using machine learning methods. If an attacker
successfully models a PUF, he will be able to impersonate the

target device and query the server for important information
and be able to decrypt them using the model of the PUF. In
our key exchange mechanism however, this way of attacking
PUF is not possible since only randomly generated challenge
values are exchanged, and without the response value for each
challenge, modeling the PUF is not possible.

B. Helper Data manipulation attacks
The vulnerability against helper data manipulation (HDM)

attacks exists mainly due to the publicity of the helper data.
However, in our proposed method we can recreate the code-
words using the PUF itself and only publicize challenge values
which are randomized and have no correlation to the secret
value without any knowledge of (e.g, the predictive model of
the PUF) or physical access to the PUF. This inherently makes
the method secure against HDM attacks.

C. Side Channel Attacks
PUFs are prone to side channel attacks as well [18], leading

to leaking CRP values that enables the attacker to build a
model of the PUF. In our proposed method, we suggest one
can implement a mechanism that adds correlative noise to
the leaking power traces. Here, the designer can employ two
PUFs, where one PUF PUFa is the source of key generation
and the other one, PUFb, is the source of a dummy key
generation. We then propose that the TTP server transfers two
challenge sets, C packa and C packb, where R packa as the
offspring of C packa is logically the opposite of R packb as
the offspring of C packb. In other words, we expect:

ri ̸= r′i, ri ∈ R packa, r
′
i ∈ R packb, i = {1, 2, ..., (l ×m)}

(1)
Once C packa and C packb sets are received on the device
side, they are fed to PUFa and PUFb, respectively. Once
the responses are generated and passed through the majority
logic decoder, only the recovered code from PUFa is used for
key generation. This mechanism in turn confuses the captured
power traces which are recorded during the decoding process,
since for each SET operation performed in generating the
secret value w, there is a RESET operation performed as well.

D. Replay Attacks
Replay attacks can practically compromise our authentica-

tion and key exchange mechanism if there is no watchdog
method that assures no challenge value is being used twice
[19]. However, we propose using predictive models that are
trained on the server side based on the already generated and
transferred challenge values. By keeping a record of already
used challenge vectors, we can recognize if a generated chal-
lenge value is fresh or not. Such solution can be compact and
sit aside to the main PUF enrollment solution we proposed.

V. CONCLUSION

In this paper, we proposed a secure strong PUF-based
lightweight authentication and encryption key generation and
exchange mechanism where the secret values generated from
the PUF source are recovered using a local decoding mecha-
nism.We showed that our repetition code-like mechanism does
not require any helper data, and can be decoded locally using
the PUF itself. We later evaluated the performance of our
method for various XOR Arbiter PUFs with different levels
of noisiness, and showed that for repetition code length of 10
or above, our decoding mechanism can recover the full key
value with 100% probability.

REFERENCES

[1] C. Herder, M.-D. Yu, F. Koushanfar, and S. Devadas, “Physical
unclonable functions and applications: A tutorial,” Proceedings of the
IEEE, vol. 102, no. 8, pp. 1126–1141, 2014. [Online]. Available:
http://ieeexplore.ieee.org/document/6823677/

[2] A. Alipour, V. Beroulle, B. Cambou, J. Danger, G. D. Natale, D. Hely,
S. Guilley, and N. Karimi, “Puf enrollment and life cycle management:
Solutions and perspectives for the test community,” in 2020 IEEE
European Test Symposium (ETS), 2020, pp. 1–10, ISSN: 1558-1780.

[3] M. S. Alkatheiri, Y. Zhuang, M. Korobkov, and A. R. Sangi,
“An experimental study of the state-of-the-art pufs implemented
on fpgas,” in 2017 IEEE Conference on Dependable and
Secure Computing. IEEE, 2017, pp. 174–180. [Online]. Available:
http://ieeexplore.ieee.org/document/8073844/

[4] A. Shamsoshoara, A. Korenda, F. Afghah, and S. Zeadally, “A survey on
physical unclonable function (puf)-based security solutions for internet
of things,” Computer Networks, vol. 183, p. 107593, 2020.

[5] M. Majzoobi, M. Rostami, F. Koushanfar, D. S. Wallach, and S. Devadas,
“Slender puf protocol: A lightweight, robust, and secure authentication
by substring matching,” in 2012 IEEE Symposium on Security and
Privacy Workshops, 2012, pp. 33–44.

[6] M. S. E. Quadir and J. A. Chandy, “Embedded systems authentication
and encryption using strong puf modeling,” in 2020 IEEE International
Conference on Consumer Electronics (ICCE), 2020, pp. 1–6.

[7] G. T. Becker, “Robust fuzzy extractors and helper data manipulation
attacks revisited: Theory versus practice,” IEEE Transactions on De-
pendable and Secure Computing, vol. 16, no. 5, pp. 783–795, 2017.

[8] T. Idriss and M. Bayoumi, “Lightweight highly secure puf protocol
for mutual authentication and secret message exchange,” in 2017 IEEE
International Conference on RFID Technology Application (RFID-TA),
2017, pp. 214–219.

[9] W. Yan, F. Tehranipoor, and J. A. Chandy, “Puf-based fuzzy authentica-
tion without error correcting codes,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 36, no. 9, pp.
1445–1457, 2016.

[10] U. Ruhrmair, F. Sehnke, J. S olter, G. Dror, S. Devadas, and J. u.
Schmidhuber, “Modeling attacks on physical unclonable functions,”
in Proceedings of the 17th ACM conference on Computer and
communications security - CCS ’10. ACM Press, 2010, p. 237. [Online].
Available: http://portal.acm.org/citation.cfm?doid=1866307.1866335

[11] http://www.pcp.in.tum.de/code/lr.zip.
[12] K. T. Mursi, B. Thapaliya, Y. Zhuang, A. O. Aseeri, and M. S.

Alkatheiri, “A fast deep learning method for security vulnerability study
of XOR PUFs,” Multidisciplinary Digital Publishing Institute (MDPI)
Electronics, vol. 9, no. 10, p. 1715, 2020, number: 10 Publisher:
Multidisciplinary Digital Publishing Institute. [Online]. Available:
https://www.mdpi.com/2079-9292/9/10/1715

[13] A. Ali-Pour, D. Hely, V. Beroulle, and G. Di Natale, “Strong puf
enrollment with machine learning: A methodical approach,” Electronics,
vol. 11, no. 4, 2022. [Online]. Available: https://www.mdpi.com/2079-
9292/11/4/653

[14] A. Ali Pour, D. Hely, V. Beroulle, and G. Di Natale, “An Efficient
Approach to Model Strong PUF with Multi-Layer Perceptron using
Transfer Learning,” in International Symposium on Quality Electronic
Design (ISQED 2022), IEEE, Ed. Virtual event, United States: IEEE,
Apr. 2022. [Online]. Available: https://hal.archives-ouvertes.fr/hal-
03599336

[15] J.-Q. Huang, M. Zhu, B. Liu, and W. Ge, “Deep learning modeling
attack analysis for multiple fpga-based apuf protection structures,” in
2018 14th IEEE International Conference on Solid-State and Integrated
Circuit Technology (ICSICT). IEEE, 2018, pp. 1–3. [Online]. Available:
https://ieeexplore.ieee.org/document/8565728/

[16] M. Khalafalla and C. Gebotys, “PUFs deep attacks: Enhanced modeling
attacks using deep learning techniques to break the security of
double arbiter PUFs,” in 2019 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 2019, pp. 204–209. [Online].
Available: https://ieeexplore.ieee.org/document/8714862/

[17] K. T. Mursi, Y. Zhuang, M. S. Alkatheiri, and A. O. Aseeri,
“Extensive examination of XOR arbiter PUFs as security primitives
for resource-constrained IoT devices,” in 2019 17th International
Conference on Privacy, Security and Trust (PST). IEEE, 2019, pp.
1–9. [Online]. Available: https://ieeexplore.ieee.org/document/8949070/

[18] X. Xi, A. Aysu, and M. Orshansky, “Fresh re-keying with strong pufs:
A new approach to side-channel security,” in 2018 IEEE International
Symposium on Hardware Oriented Security and Trust (HOST), 2018,
pp. 118–125.

[19] C. Gu, C.-H. Chang, W. Liu, S. Yu, Y. Wang, and M. O’Neill, “A mod-
eling attack resistant deception technique for securing lightweight-puf-
based authentication,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 40, no. 6, pp. 1183–1196, 2021.

