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Abstract

In this paper, we propose a computationally tractable and provably convergent algorithm for robust
optimization, with application to robust learning. First, the distributionally robust optimization is ap-
proached with a point-wise counterpart at controlled accuracy. Second, to avoid solving the generally
intractable inner maximization problem, we use entropic regularization and Monte Carlo integration.
The approximation errors induced by these steps are quantified and thus can be controlled by making the
regularization parameter decay and the number of integration samples increase at an appropriate rate.
This paves the way to minimizing our objective with stochastic (sub)gradient descent whose convergence
guarantees to critical points are established without any need of convexity/concavity assumptions. To sup-
port these theoretical findings, compelling numerical experiments on simulated and benchmark datasets
are carried out and confirm the practical benefits of our approach.

Keywords Robust optimization, Statistical learning, Smoothing, Robust learning, Neural networks, SGD.

1 Introduction

The need of robust models arises when we are considering modeling in the face of uncertainties. Building
a reliable decision-making system in the face of uncertain inputs is central to many critical applications:
not only the system has to prove it operates correctly on its operational design setting, but it also has to
remain stable under some perturbation. In the literature, stability over some kind of perturbation is referred
to as robustness and is one of the main challenges in many areas of science and engineering, for instance in
statistical learning. Since there are growing applications in computer vision applied to critical systems, it
is crucial to prove that a statistical model can operate under a given level of uncertainty. On some critical
cases the model has to remain stable given any possible point in the uncertain set, as if the perturbation
was tailored by an adversary to perturb our decision-making. In this context, Robust Optimization allows to
optimize under uncertainty without an explicit model of the uncertainties and thus aims at limiting the scope
of actions of any adversary perturbing the model.
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1.1 Problem statement

Let (Z, d) be a (data) metric space with Z = X × Y ⊂ Rm, where X (resp. Y) is the input (resp. output)
space. Let ρ0 be a probability measure on Z , Θ ⊂ Rp the parameter/action space, L : Θ× Z → R+ a loss
function such that L(·, θ) is ρ0-measurable and integrable for all θ ∈ Θ. Throughout, we assume that Θ is
closed. Consider the optimization problem:

min
θ∈Θ

Ez∼ρ0 [L(θ, z)] . (1)

Robust Optimization (RO) is one contemporary robustification approach to deal with the presence of data
perturbations, adversarial attacks, or uncertainties in (1) [1, 2]. The origin of the RO approach can be traced
back to the classical economic paradigm of a two-person zero-sum game formulated as a min-max problem
(see e.g., [3] the recent review paper on min-max problems and their applications from a signal processing
and machine learning perspective). In this framework, an agent, considered as a defender, is subject to
degradation of its performance by a secondary player, the attacker. The defending agent (here θ), whose goal
is to minimize an objective function under action constraints Θ, aims at guarding against the degradation
of the objective by optimizing its worst value under perturbation without changing the feasibility set of the
actions. Put formally, the robust counterpart of (1) reads

min
θ∈Θ

Ez∼ρ0

[
max

d(z,z′)≤ε
L(θ, z′)

]
, (2)

where ε > 0 is the size of uncertainty/perturbation/attack, and the perturbation acts pointwise on z in the
adversarial risk, which justifies the terminology Pointwise Robust Optimization (PRO) for problem (2). A
common choice is d(z, z′) = ∥z − z′∥q where ∥·∥q is the ℓq norm onRm with q ≥ 1with the usual adaptation
for q = ∞.
PRO is one way of quantifying the impact of an adversary or perturbation, and other notions of adversarial
risk have been proposed in the literature. In particular, in many areas, such as machine learning, the existence
and pervasiveness of adversarial examples point to the limitations of the usual independent and identically
distributed (i.i.d.) model of perturbations. This points to a more general perspective in which it is not the
points themselves that are perturbed, but rather their underlying distribution ρ0. This approach is known as
Distributionally Robust Optimization (DRO) which takes the form

min
θ∈Θ

max
D(ρ,ρ0)≤ε

Ez∼ρ [L(θ, z)] , (3)

where D is a discrepancy on the space of probability measures supported on Z . Compared to PRO, DRO
allows to consider a larger range of perturbations. The choice of D affects the richness of the uncertainty
set and the tractability of the resulting optimization problem. Typical choices are the Wasserstein distances
[4, 5, 6, 7, 8], the Maximum Mean Discrepancy (MMD) [9] or ϕ-divergences including the Kullback-Leibler
divergence [10, 11, 12]. There are also other ways to parametrize the perturbation set in terms of the distribu-
tion moments, support, etc., [13, 14]. The Wasserstein distance has become very successful in this context,
and unlike other distances/divergences, a Wasserstein distance enjoys the remarkable property that its ball
around ρ0 includes measures having a different support, which allows robustness to unseen data. In the rest
of this paper, we focus on Wasserstein balls.
A useful observation at this stage is that the objective in the inner problem of the saddle point problem (3) is
concave (actually linear) in ρ. Though this property is apparently appealing, this problem operates in infinite
dimension (space of probability measures on Z), and thus is very challenging to solve.
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The natural question that arises is whether one can have a surrogate of (3) which operates in finite-dimension
under minimal assumptions on the problem data (for instance L), and if this can come up with provable guar-
antees. For instance, is there a relationship between DRO (3) and PRO (2) (or alike) and hence can we solve
the latter as a surrogate for the former ? We will show later that this is indeed the case.
On the other hand, the rigorous treatment of (2), though in finite dimension, remains very challenging for
general losses L, especially in absence of the important properties of joint convexity-concavity in (θ, z) and
smoothness which are key to design efficient and provably convergent algorithms [1]. These assumptions are
however stringent and unrealistic in applications we have in mind, for instance in adversarial training with
neural networks [15, 16, 17, 18]. Iterative solvers used by many authors do not come up with any guaran-
tee. In fact, in such applications, the inner maximization problem is generally non-concave in z and is even
provably NP-hard with certain activations such as ReLU [7]. The goal pursued in this paper is thus to design
algorithms to solve (2), as a surrogate for (3) under minimal assumptions on the problem data (for instance,
without need of joint convexity-concavity) while enjoying convergence guarantees.

1.2 Contributions

Our main contributions in this work are:

1. The DRO problem (3), when D is the Wasserstein distance with Lipschitz continuous ground cost, is
approached with a PRO counterpart of the constrained form (2) with a controlled accuracy that depends
on the perturbation radius.

2. To avoid solving the generally intractable inner maximization problem in (2), we first smooth the
latter using entropic regularization and then use Monte Carlo integration to approximate integrals. We
conduct an error analysis to precisely quantify these approximation errors and provide error bounds
both on the objective values and its subgradients. Relying on the theory of Γ-convergence we show in
particular that the minimizers of the approximate problems converge to those of PRO.

3. Capitalizing on the above results, we propose provably convergent stochastic (sub)gradient descent
(SGD) algorithms to solve the PRO problem. The first algorithm supposes access to an oracle of the
inner maximization problem. To avoid the latter, which can be challenging, we also provide an inexact
SGD algorithm with asymptotically vanishing error/bias. The error/bias originates from the regulariza-
tion and integration sampling parameters, and making them decay at an appropriate rate, convergence
guarantees to critical points are established without any need of convexity-concavity assumptions on
the loss L.

1.3 Relation to prior work

There is a substantial body of work on robust optimization dedicated to robust learning. Here we only review
those closely related to ours. Many works have studied instances of (3) for which tractable algorithms can
be designed. For D chosen as a ϕ-divergence, and under some assumptions on L, [1, 11, 19] propose convex
optimization approaches. For the Wasserstein distance, and a limited class of convex losses L and ground
costs, some authors convert (3) into a regularized empirical risk minimization problem [20, 4, 5, 6]. For
a larger class of losses and ground costs c, (3) is converted in [7] to a Lagrangian form of (2). Stochastic
gradient descent is then applied to this penalized form and convergence guarantees are established under the
assumptions that the gradient of the loss L is bi-Lipschitz and the ground cost c is strongly convex. However,
their algorithm resorts to an oracle corresponding to solving the inner supremum problem. This is again a
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challenging problem and even NP-hard. When ρ0 is the empirical measure and L is Lipschitz continuous in
z uniformly in θ the authors in [?, 9] convert (3) into a finite dimensional saddle point problem different from
(2) (see detailed discussion in Section 3). Stochastic coordinate descent was advocated in [9] to solve the
latter problem but without any guarantee. In this work, we treat a much larger class of losses and costs and use
smoothing to translate the inner maximization problem into an integration problem that we approximate with
Monte Carlo integration. Overall, this allows us to apply stochastic gradient descent while being able to prove
convergence to critical points of (2). While we were finalizing this paper, we became aware of the work of
[21] who also used entropic smoothing to learn an optimally robust randomized mixture of classifiers. Their
setting and motivation is however different and their algorithm does not enjoy convergence guarantees.

1.4 Organization of the paper

Section 2 summarizes the key prerequisites and notations that are necessary to our exposition. Section 3
shows mild conditions under which DRO can be reasonably approximated using PRO. Section 4 is devoted
to our smoothing approach and its key theoretical properties. In Section 5, we turn to studying provably
convergent algorithms to solve the PRO problem. Finally, we illustrate these results on some use cases
(Section 6) that show the advantages of using smoothing over other heuristics.

2 Notations and preliminaries

Throughout, ∥·∥q, q ∈ [1,+∞] is the ℓq norm, Bq
r(x) is the ℓq ball of radius r ≥ 0 centred at x. The

subscript q will be omitted when q = 2. For N ∈ N, [N ] is the set of integers {1, . . . , N}. µL() is the
Lebesgue measure/volume of a set. dist(x, C) = infz∈C ∥x− z∥ is the distance function to the nonempty set
C. The set of nearest points of x in C are denoted by PC(x). C s is the class of s-continuously differentiable
functions and C is the space of continuous functions.

Probability measures For a subset C ⊂ Rm, let B be the Borel σ-algebra on C. M+(C) denotes the cone
of non-negative measures on (C,B) equipped with the finite total variation norm. We also define P(C) the
space of Borel probability measures supported on C

P(C) :=
{
φ ∈ M+(C) :

∫
C
dφ(x) = 1

}
.

δx is the Dirac measure at x.
For any (ν, µ) ∈ P(C), the Kullback-Leibler divergence between µ and ν is

KL(µ, ν) =


∫
C
log

(
µ(x)

ν(x)

)
dµ(x) if µ≪ ν and

∫
C

∣∣∣∣log(µ(x)ν(x)

)∣∣∣∣dµ(x) <∞

+∞ otherwise,

where ≪ stands for absolute continuity of measures.
In the rest of the paper, we assume that L and the ground cost function c satisfy the standing assumption:

(H.1) L is continuous.

(H.2) c : Z2 → R+ is continuous, symmetric (c(z, z′) = c(z′, z)) and c(z, z) = 0.
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For (ν, µ) ∈ P(C), denote Π(µ, ν) their couplings, i.e., joint probability measures π on Z2 whose
marginals are µ and ν. The Wasserstein distance between µ and ν with ground/transportation cost c is

Wc(µ, ν) = inf
π∈Π(µ,ν)

∫
Z2

c(z, z′)dπ(z, z′).

When c(z, z′) = ∥z − z′∥qq, q ≥ 1, thenW 1/q
c is indeed a distance, known as the q-Wasserstein distance. We

will denote it Wq.

Γ- or epi-convergence We will invoke the notion of Γ-convergence, which plays a fundamental role in
convergence of optimization problems (values and extrema points). In finite dimension, Γ-convergence of a
sequence of functions corresponds to convergence of their epigraphs. The interested reader may refer to [22]
for a comprehensive treatment.

Tameness We will need the notion of tame functions (and sets). A rich family will be provided by semi-
algebraic functions, i.e., functions whose graph is defined by some Boolean combination of real polyno-
mial equations and inequalities [23]. Definable functions on an o-minimal structure over R correspond in
some sense to an axiomatization of some of the prominent geometrical properties of semialgebraic geometry
[24, 25]. O-minimality includes many important structures such as globally subanalytic sets or sets belong-
ing to the log-exp structure hence covering the vast majority of applications in learning, including neural
network learning with various activations and loss functions. A slightly more general notion is that of a tame
function, which is a function whose graph has a definable intersection with every bounded box. We then
use the terminology definable for both. Given the variety of optimization problems that can be formulated
within the framework of definable functions and sets, our convergence results will be stated for this class.
The reader unfamiliar with these notions can just replace definability by semialgebraicity.

We now summarize a few properties of the Clarke subdifferential that will be useful to us in this paper;
see [26].
Proposition 2.1. Let f, g : Rn → R be locally Lipschitz continuous functions. Then

(i) ∂C(λf)(x) = λ∂Cf(x), λ ∈ R.

(ii) ∂C(f + g)(x) ⊂ ∂Cf(x) + ∂Cg(x).

(iii) Consider the family of functions (ft)t∈T , where T is a compact space and t 7→ ft(x) is upper semi-
continuous. Suppose that for each t, ft : Rn → R is locally Lipschitz continuous. Let f(x) =
maxt∈T ft(x). Let S be a subset of full Lebesgue measure. Then

∂Cf(x) ⊂ conv

{
lim
k→∞

∇ftk(xk) : xk → x, xk ∈ S, tk ∈ T, ftk(x) → f(x)

}
. (4)

If moreover, the functions ft are of class C 1 such that ft(x) and ∇ft(x) depend continuously on
(t, x)1, then

∂Cf(x) =

{∫
T
∇ft(x)dµ(t) : µ ∈ P

(
Argmax

t∈T
ft(x)

)}
. (5)

Remark 2.2. We have made no effort to further weaken the assumptions in the calculus rules of Proposi-
tion 2.1 since they are sufficient for our purpose.

1Functions f such that these assumptions are verified are known as lower-C 1 functions; see [27].
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3 Robustness bounds

The goal here is to show how to go from the DRO problem (3) to the PRO one (2), provably, by bounding
the corresponding objectives. This paves the way to using PRO as a surrogate for DRO provided that ε is not
too large.

Proposition 3.1. Suppose that (H.1)-(H.2) hold.

(i) If

(H.3) for every θ ∈ Θ, ∀(z, z′) ∈ Z2, |L(θ, z) − L(θ, z′)| ≤ LZ(θ)c(z, z
′) with 0 ≤ LZ :=

supLZ(Θ) < +∞.

Then

0 ≤ sup
Wc(ρ,ρ0)≤ε

Eρ[(L(θ, z)]− Ez∼ρ0

[
sup

c(z,z′)≤ε
L(θ, z′)

]
≤ LZε.

(ii) If c(z, z′) = ∥∥∥z − z′∥∥∥q, q ≥ 1, where ∥∥∥ · ∥∥∥ is a norm on Rm (i.e., W 1/q
c is the q-Wasserstein distance

Wq), and L(θ, ·) is LZ -Lipschitz continuous with respect to ∥∥∥ · ∥∥∥ uniformly in θ, then

0 ≤ sup
Wq(ρ,ρ0)≤ε1/q

Eρ[(L(θ, z)]− Ez∼ρ0

[
sup

∥∥∥z−z′∥∥∥≤ε1/q
L(θ, z′)

]
≤ Cq,LZε

1/q,

where Cq,LZ is a non-negative constant that depends only on q and LZ .

See Appendix A.1 for the proof.

In [7] (see also [5]), using Lagrangian duality arguments, it was shown that

sup
Wc(ρ,ρ0)≤ε

Eρ[(L(θ, z)] = inf
γ≥0

(
γε+ Ez∼ρ0

[
sup
z′∈Z

(
L(θ; z′)− γc(z, z′)

)])
, (6)

For a fixed parameter γ > 0, this can be seen as a penalized form of the constrained form (2). Though
(6) is an identity rather than a bound, it faces a few algorithmic challenges to solve. For instance, the joint
presence of the expectation and the inner maximization problems makes minimization of the multiplier γ a
difficult task. One can of course think of a simple procedure such as bisection but this will necessitate extra-
smoothness assumptions and to solve for θ for each value of γ on the bisection. If L(θ, ·) has a Lipschitz
continuous gradient, and c is strongly convex in its second argument, then it can be easily shown that for γ
large enough, L(θ, ·)− c(z, ·) is strongly concave. This has been leveraged by [7] to use gradient descent to
minimize over θ, but only for a fixed (large enough) parameter γ. But still, choosing γ is not easy.

In [?, 9], taking c as the ℓp cost, and ρ0 the empirical measure on n points, the following bound was
established

0 ≤ sup
Wp(ρ,ρ0)≤ε

Eρ[(L(θ, z)]− sup
(z′i)i:

1
n

∑n
i=1 ∥z′i−zi∥p≤εp

1

n

n∑
i=1

L(θ, z′i) ≤ LZ/n. (7)

As in our case, this gives access to a uniform bound, but which depends now on n rather than ε (and thus
gets tighter as n increases). However, the price to pay is that, unlike problem (6), the inner maximization in
the surrogate problem (7) is coupled between all variables in the objective and constraints, necessitating to
optimize on a variable in Rmn rather than Rm.
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4 Entropic regularization

Despite formulating surrogates as devised in (6) and (7) and discussed above, solving the resulting minmax
problems remains a very challenging task unless stringent joint convexity/concavity assumptions are made.
This is the motivation behind our smoothing hereafter.

From now on, we will denote Cε
z := {z′ : c(z′, z) ≤ ε}. The PRO problem now reads

min
θ∈Θ

Ez∼ρ0

{
max
z′∈Cε

z

L(θ, z′)
}
. (8)

We will use the shorthand notation2

g(θ) := max
z′∈Cε

z

L(θ, z′).

Provided that Cε
z is bounded, hence compact since it is closed by assumption on c, and recalling the conti-

nuity assumption (H.1), the set of maximizers in g is a non-empty compact set. The function g can also be
equivalently rewritten as

g(θ) = max
µ∈P(Cε

z)

∫
Cε
z

L(θ, z′)dµ(z′), (9)

and the integral is a duality pairing between P(Cε
z) and C (Cε

z). We will show that (9) and its subgradients
can be provably approximated following a two-step strategy: first, an entropic regularization followed by
Monte-Carlo sampling to approximate the integrals.

4.1 Regularized objective

Problem (9) is concave inµ, but operates in infinite-dimension and is thus hard to solve. Approximating (9) by
an atomic measure supported on a finite set (i.e., replace P(Cε

z) by a finite-dimensional simplex by sampling
N points at random in Cε

z ), as done by some authors (see e.g., [28]), suffers an exponential dependence in
1/m. Indeed, an analysis using Lipschitzianity of L shows that this method achieves an approximation rate
of O(N−1/m), and essentially, this cannot be improved. Rather, we will consider the following regularized
version of (9), namely

gτ (θ) := max
µ∈P(Cε

z)

∫
Cε
z

L(θ, z′)dµ(z′)− τKL(µ, ν), (10)

where τ > 0 is the regularization parameter, and ν is a reference measure supported on Cε
z . Entropic reg-

ularization has been used in several fields including optimal transport [29] and semi-infinite programming
[30].

Observe that Cε
z is Lebesgue measurable by continuity of c. In the sequel we also suppose that Cε

z is of
full dimension, and set ν as the uniform measure µU on Cε

z , that is ν(z′) = µU (z
′) := µL(Cε

z)
−1 < +∞ for

all z′ ∈ Cε
z . The KL regularization term then prevents solutions to be atomic measures as such measures are

not absolutely continuous with respect to the uniform one.
Remarkably, (10) is well-posed under mild conditions and has a unique solution taking an explicit form.

2g depends on z but we drop this in the notation to lighten the latter.
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Proposition 4.1. Assume that (H.1)-(H.2) hold and that Cε
z is bounded and full dimensional. Then (10) has

a unique solution and

gτ (θ) = τ log

(
Ez′∼µU

[
exp

(
L(θ, z′)

τ

)])
= τ log

∫Cε
z
exp

(
L(θ,z′)

τ

)
dz′

µL(Cε
z)

 . (11)

The proof can be found in Appendix A.2. Note that this is a generalization of the standard log-sum-
exp formula for softmax smoothing of the maximum of a finite number of functions, where now the sum is
replaced by an expectation wrt to the base measure µU .

Remark 4.2. The boundedness assumption on Cε
z is very mild and verified in most applications we have in

mind, for instance in robust training in machine learning. For instance, when c(z, z′) = φ(∥z − z′∥) where
∥·∥ is any norm on Rm, and φ : R+ → R+ is a continuous increasing function.

4.2 Consistency of the regularization

We now turn to describing how gτ in (10) is a good surrogate for g in (8). We provide both a qualitative
result as the regularization parameter τ vanishes, and a quantitative convergence rate.

Theorem 4.3. Under the assumptions of Proposition 4.1, the following statements hold:

(i) gτ (θ) ↗ g(θ) as τ ↘ 0+. In turn, gτ Γ-converges to g as τ ↘ 0+.

(ii) If, moreover, Cε
z is convex and full dimensional, and (H.3) holds with c(z, z′) = ∥∥∥z − z′∥∥∥, where ∥∥∥ · ∥∥∥

is a norm on Rm. Then for any τ ∈]0, 1]

g(θ)− h(τ) ≤ gτ (θ) ≤ g(θ), (12)

where
h(τ) = mτ log(τ−1) + τ log

(
µL(Cε

z)

µL(BRCεz (0))

)
+ τLZ(RCε

z
+DCε

z
), (13)

and RCε
z

is the radius of the largest ball3 contained in Cε
z and DCε

z
is the diameter of Cε

z .

See Appendix A.3 for the proof.

Remark 4.4.

1. The convexity of Cε
z is again usual in robust training in machine learning. It holds if the robustness

cost c on Z is convex.

2. The bound (12) yields uniform convergence. The Γ-convergence claim in this case also follows from
[22, Proposition 5.2 and Remark 5.3].

3. The dependence of the convergence rate function h(τ) on τ is nearly linear (up to a logarithmic term).

3In the norm ∥∥∥ · ∥∥∥ of course.

8



4. For the dependence on the dimension of the convergence rate, the first term grows linearly. So does
also the second term since it can be upper-bounded by mτ log

(
R̄Cε

z
/RCε

z

)
where R̄Cε

z
is the radius

of the smallest ball containing Cε
z . For the last term, the Lipschitz constant Lz of the loss function

may also depend on the dimension. This emphasizes the role of the Lipschitz constant of the loss in
controlling the robustness of the model.

In view of Theorem 4.3, we obtain the following key result, which relates the minimizers of the smoothed
problem to those of the original PRO problem.

Theorem 4.5. Suppose that the assumptions of Proposition 4.1 hold. Assume also that Θ is compact. Let
θ⋆τ ∈ ArgminΘ(gτ ). Then the following holds:

(i) limτ→0+ minθ∈Θ gτ (θ) = minθ∈Θ g(θ).

(ii) Each cluster point of θ⋆τ , as τ → 0+, lies in ArgminΘ(g).

(iii) In particular, if ArgminΘ(g) = {θ⋆}, then limτ→0+ θ
⋆
τ = θ⋆.

See Appendix A.4 for the proof.

4.3 Monte Carlo approximation of the integral

Computing the values gτ (θ) in (11) necessitates to compute a possibly high dimensional integral. Our goal
is to approximate the latter with Monte Carlo integration by uniformly drawing independent samples (z′k)

N
k=1

in the set Cε
z . This gives the approximation

gτ,N (θ) := τ log

 N∑
k=1

exp
(
L(θ,z′k)

τ

)
N

 . (14)

We now provide an error bound for such an approximation.

Theorem 4.6. Suppose that the assumptions of Theorem 4.3(ii) hold. Then, the following holds.

(i) For any t > 0 and every θ ∈ Θ,

|gτ,N (θ)− g(θ)| ≤ h(τ) + τe
L−L
τ

√
t logN

2N
, (15)

with probability at least 1−2N−t, where h is given in (13), L := inf L(Θ, Cε
z) andL := supL(Θ, Cε

z).

(ii) Suppose that τ is a function of N , say τN , with τN logN = o(1) and h(τN ) + τNe
L−L
τN

√
logN
N → 0

as N → +∞, then

(a) for every θ ∈ Θ
gτN ,N (θ) −→

N→+∞
g(θ) almost surely.

(b) If moreover,
(H.4) for every z ∈ Z , |L(θ, z) − L(θ′, z)| ≤ LΘ(z) ∥θ − θ′∥, ∀(θ, θ′) ∈ Θ2, with 0 ≤ LΘ :=

supLΘ(Z) < +∞.
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Then, almost surely,
gτN ,N (θ) −→

N→+∞
g(θ) for all θ ∈ Θ.

The proof can be found in Appendix A.5.

Remark 4.7. • Observe that sinceL is continuous by (H.1) and Cε
z is compact, L andL are well-defined

as minimal and maximal values as soon as Θ is compact.

• If L also verifies assumption (H.5), the bound (15) can be extended to hold uniformly over θ on any
convex compact subset C ⊂ Θ. Indeed, it can be shown, combining our proof in A.5 with a covering
argument, that

sup
θ∈C

|gτ,N (θ)− g(θ)| ≤ h(τ) + τe
L−L
τ

√
(p+ t) logN

2N
+ 8

LΘ,ZDC
N

,

with probability at least 1− 2N−t.

• It is important to realize that the claim of Theorem 4.6(ii)(b) is different (and stronger) than that of
Theorem 4.6(ii)(a); observe the order of quantifiers. In the latter, the set of events of probability one on
which Theorem 4.6(ii)(a) holds actually depends on θ, while it is does not for claim (b). On the other
hand getting this uniform claim requires some additional regularity. This discussion is very important
when it will come to showing the convergence result of our SGD algorithm.

For fixed τ , the convergence rate in (15) is nearly O(N−1/2). But one has to keep in mind that we
have not used any smoothness property of L(θ, ·) and used a very simple (uniform) Monte Carlo integration.
This could be possibly improved using the rich theory of Monte Carlo integration, see e.g., [31, 32], but
probably at the price of a higher computation cost. Such improvements may also potentially necessitate
more sophisticated deviation bounds in the proof instead of Hoeffding’s inequality that we use here.

Note that the variance of the samples appears implicitly in (15) through the exponential term. One can
alternatively use Bernstein’s inequality instead of Hoeffding to show that

|gτ,N (θ)− gτ (θ)| = O

(
τ
σ

S̄

√
t logN

N

)

where

S̄ =
1

µL(Cε
z)

∫
Cε
z

e
L(θ,z′)

τ dz′ and σ2 =
1

µL(Cε
z)

∫
Cε
z

e2
L(θ,z′)

τ dz′ − S̄2.

The error bound (15) reveals an exponential dependence in τ , and thus for the right-hand side to vanish as
τ → 0+ and N → +∞, there is a trade-off between N and τ to enforce the term e

L−L
τ

√
t logN
2N to converge

to 0. Taking τ = O
(

1
κ logN

)
, for any κ > 0 such that κ(L − L) < 1/2, the convergence rate in (15) is

dominated by the first term h(τ) which scales as O
(
(logN)−1

)
. This is obviously a slow convergence rate

but reflects the difficulty of approximating the function g in (8).

10



4.4 Consistency of subgradient estimates

Equipped with the above results, a natural strategy now is to solve the PRO problem (8) by using gτ,N in
(14) as a (provably controlled) approximation of g. Towards this goal, we would like to apply a first-order
scheme, typically (sub)gradient descent. Such a scheme will involve a first-order oracle on gτ,N , the gradient

∇gτ,N (θ) =

N∑
k=1

∇θL(θ, z′k)
exp

(
L(θ,z′k)

τ

)
∑N

j=1 exp
(L(θ,z′j)

τ

) . (16)

The natural question that arises is whether (16) behaves well as τ vanishes and is a consistent approximation
of a Clarke subgradient of g (the latter being accessible via the formula (5) in Proposition 2.1 under mild
assumptions). The result in Theorem 4.8 shows that this is indeed the case under appropriate assumptions
that are stronger than those required for consistency of the (zero-th order oracle) function values established
in Theorem 4.6.

To show some of our results, in particular Theorem 4.8(ii), we will need some regularity properties on
the set of maximizers M := ArgmaxL(θ, C) = Argmaxz∈C L(θ, z) (we drop the dependence of M on
θ to lighten notation). We say that a set S ⊂ Rm is C r-stratifiable, for some integer r ≥ 1, if there is a
finite partition of S into disjoint C r submanifolds (Mi)i∈I of Rm, called strata, with m ≥ dim(M1) >
dim(M2) > · · · > dim(M|I|) ≥ 0.

Theorem 4.8. Suppose that the assumptions of Proposition 4.1 hold and that

(H.5) L(·, z′) is differentiable with ∇θL(·, ·) continuous in its both arguments (θ, z′) and uniformly bounded
by LΘ,Z on Θ×Z .

Then L and gτ,N are continuously differentiable.

(i) If (H.3) also holds, then for every θ ∈ Θ and any t > 0, with probability at least 1− 2(p+ 1)N−t

dist
(
∇gτ,N (θ), ∂Cg(θ)

)
≤ max(1, 2LΘ,Z

√
p)e

L−L
τ

√
t logN

2N
+ oτ (1). (17)

where

∂Cg(θ) =

{∫
Cε
z

∇θL(θ, z′)dµ(z′) : µ ∈ P
(
ArgmaxL(θ, Cε

z)
)}

. (18)

(ii) Suppose in addition that

(H.6) L(θ, .) is C 3 on an open set containing Cε
z with Hölder continuous third-order derivative;

(H.7) for r ≥ 3

(a) M is C r-stratifiable with closed strata;
(b) for each i ∈ I , the Hessian ∇2

z′L(θ, z′) is negative semidefinite for any z′ ∈ Mi with
constant rank m− dim(Mi).

Then for every θ ∈ Θ and any t > 0, with probability at least 1− 2(p+ 1)N−t

dist
(
∇gτ,N (θ), ∂Cg(θ)

)
≤ ∥∇gτ,N (θ)− η(θ)∥ ≤ max(1, 2LΘ,Z

√
p)e

L−L
τ

√
t logN

2N
+ oτ (1),

(19)
where η(θ) :=

∫
M1

∇θL(θ, z′)dµ(z′) ⊂ ∂Cg(θ) and µ ∈ P(M1).

11



(iii) Under the assumptions of either statement (i) or (ii), if τ is a function of N , say τN , with τN → 0 and

e
L−L
τN

√
logN
N → 0 as N → +∞, then

(a) for every θ ∈ Θ

dist
(
∇gτN ,N (θ), ∂Cg(θ)

)
−→

N→+∞
0 almost surely.

(b) Let Ξ be any closed convex subset of Θ. If moreover ArgmaxL(θ, Cz
ε ) is a singleton for each

θ ∈ Ξ, then almost surely,

dist
(
∇gτN ,N (θ), ∂Cg(θ)

)
−→

N→+∞
0 for all θ ∈ Ξ.

The proof of this result follows from by a simple triangle inequality and using the following two lemmas
whose proofs are deferred to Appendix A.6.

Lemma 4.9. (i) Under the assumptions of Theorem 4.8(i), we have

dist
(
∇gτ (θ), ∂Cg(θ)

)
→ 0 as τ → 0+. (20)

(ii) Under the assumptions of Theorem 4.8(ii),

∇gτ (θ) −→
τ→0+

η(θ) :=

∫
M1

∇θL(θ, z)dµ(z) ⊂ ∂Cg(θ),

where µ ∈ P(M1).

Lemma 4.10. Suppose that the assumptions of Proposition 4.1 hold, and that L(·, z′) is differentiable with
∇θL(θ, z′) uniformly bounded by LΘ,Z on Θ×Z .

(i) For any t > 0

∥∇gτ (θ)−∇gτ,N (θ)∥ ≤ max(1, 2LΘ,Z
√
p)e

L−L
τ

√
t logN

2N
(21)

with probability at least 1− 2(p+ 1)N−t.

(ii) Suppose that τ is a function of N , say τN , with τNe
L−L
τN

√
logN
N → 0 as N → +∞, then

(a) for every θ ∈ Θ

∇gτN (θ)−∇gτN ,N (θ) −→
N→+∞

0 almost surely.

(b) Let Ξ be any closed convex subset of Θ. If moreover ArgmaxL(θ, Cz
ε ) is a singleton for each

θ ∈ Ξ, then almost surely,

∇gτN (θ)−∇gτN ,N (θ) −→
N→+∞

0 for all θ ∈ Ξ.

12



To show Lemma 4.9, one observes that under our assumptions,

∇gτ (θ) =
∫
Cε
z

∇θL(θ, z′)
exp

(
L(θ,z′)

τ

)
∫
Cε
z
exp

(
L(θ,v)

τ

)
dv

dz′, (22)

which is an expectation with respect to a Gibbs measure indexed by τ (and θ) and supported on Cε
z . In view

of the rule (5), the proof will then amount to showing that as τ → 0+, the familty of such Gibbs measures has
all its cluster points in the narrow topology (equivalent to the weak–∗ topology) in P

(
ArgmaxL(θ, Cε

z)
)

(first claim of Lemma 4.9), or that it even converges in the weak–∗ topology to a measure supported on
Argmaxz∈C L(θ, z) (second claim of Lemma 4.9)4.

Clearly, Theorem 4.8 tells us that, with high probability, ∇gτ,N (θ) is at most within a ball around the
Clarke subdifferential of g at θ. The result also quantifies its radius and how it vanishes with N and τ , and
shows the influence of p, the dimension of Θ. Arguing as above, this radius vanishes asN → +∞ by taking
τ = O

(
1

κ logN

)
, for any κ such that κ(L − L) ∈]0, 1/2 − α], α ∈]0, 1/2[. The convergence rate of the

first term in (17) or (19) is then nearly O (N−α) (up to logarithmic factors). As far as the oτ (1) term is
concerned, we do not have any quantitative estimate for the corresponding rate in the case of (17). For (19),
a close inspection of the proof Lemma 4.9(ii) reveals that the convergence rate in τ is at least

O

(
τ−

m−m1
2 e−

κ
τ +

∑
i>1

τ
m1−mi

2 + τ1/2

)
= O

(
τ1/2

)
.

Remark 4.11. It is worth noting that the statement of Lemma 4.9(i), hence Theorem 4.8(i), requires less
stringent assumptions than claim (i). However, it only ensures subsequential convergence of the gradient
whose cluster points are Clarke subgradients of g. On the other hand, Lemma 4.9(ii) not only shows global
convergence of the gradient but also gives the precise form of the limit Clarke subgradient, and characterizes
the corresponding measure. This in turn necessitates the extra regularity assumptions above.

Remark 4.12. Similarly to the discussion in Remark 4.7, we again need a little bit more to ensure almost
sure convergence simultaneously for all θ. This observation is very important when it will come to using
almost sure unbiasedness of the (sub)gradient estimate in our SGD algorithm, which in turn will be crucial
to prove our convergence result in Theorem 5.2.

Remark 4.13. The assumption that the partition ofM is disjoint can be removed by assuming in addition that
each intersecting pair of submanifolds (Mi,Mj), i ̸= j, do so transversely [35, Theorem 6.30]. Therefore,
Mi ∩ Mj is also a submanifold whose dimension strictly smaller than that of Mi and Mj . The main
change in our proof will lie in subtracting the contribution of these intersections in (35), and then use that
their dimensions are strictly smaller than that of the largest submanifold.

4This is reminiscent of works on simulated annealing where τ is the temperature parameter; see e.g. [33, 34]. Our context is
however different and in particular, Cε

z is not the whole space nor it is a finite set nor a compact submanifold.
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5 Robust optimization algorithm via SGD

We are now ready to describe our algorithmic framework to solve the PRO problem (8) based on stochastic
(sub)gradient descent. To make the presentation easier, we assume that Θ = Rp though our algorithmic
framework can be extended to the case where Θ is a convex closed set by including a projection step onto Θ
(see e.g., [36, 37] in different settings). Moreover, as considered in most applications, we take in this section

c(z, z′) = φ(z − z′),

where φ : Rm → R+ is a continuous coercive function. It is also even-symmetric and φ(0) = 0 by
assumption (H.2). We now consider the standard setting where ρ0 in (8) is the empirical measure on Z ,
hence leading to the finite sum minimization problem

min
θ∈Θ

{
G(θ) :=

1

M

M∑
i=1

gi(θ)

}
where gi(θ) := max

u∈Cε
L(θ, zi + u), (23)

where Cε := {u ∈ Rm : φ(u) ≤ ε} is obviously a nonempty compact and full dimensional set by the
assumptions on φ. It is worth observing that convexity of φ is not needed in this section.

5.1 Without smoothing

As revealed by Proposition 2.1, the Clarke subdifferential has only inclusion rules under finite sum and
pointwise maximization. Thus, if in addition to (H.1), is L(·, zi+u) is assumed locally Lipschitz continuous
for each (zi, u), (4) gives us the inclusion

∂CG(θ) = ∂C

(
1

M

M∑
i=1

gi(θ)

)
⊂ 1

M

M∑
i=1

∂Cgi(θ) ⊂
1

M

M∑
i=1

Di(θ), (24)

where

Di(θ) = conv

{
lim
k→∞

∇θL(θk, zi + uk) : θk → θ, θk ∈ S, uk ∈ Cε,L(θ, zi + uk) → gi(θ)

}
.

Remark 5.1. The inclusion above, for instance the one of the sum rule, is strict in many situations of interest
in applications. For the sum rule, one may consider other generalized derivatives or even other (but closely
related) fields than the Clarke subdifferential, e.g. the conservative fields proposed in [38, 39]. These fields
enjoy nice sum and chain rules and coincide with the Clarke subdifferential almost everywhere. After a
first version of this work was posted, we became aware of the recent work of [40] who established that
conservative fields deriving from definable potentials also have a calculus rule under pointwise maximization
involving again an inner maximization oracle. Thus in the rest of this subsection, we could just use the
formula of that conservative field instead of Di and our convergence result will remain true. The advantage
of using conservative fields is their rich calculus, including the sum and chain rules. Nevertheless, we will
not elaborate more on this to keep the presentation simpler and since anyway, this would necessitate to have
the inner maximization oracle.

We are now naturally led to consider the set of critical points:

crit–G :=

(
1

M

M∑
i=1

Di

)−1

(0). (25)
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Clearly, this set is larger than the set of critical points (∂CG)−1(0).
Let (Bk)k∈N be a sequence of nonempty mini-batches sampled independently, uniformly at random in

[M ]. We can then devise the following iteration

θk+1 = θk − γkdk, where dk ∈ 1

|Bk|
∑
i∈Bk

Di(θk), (26)

and (γk)k∈N is a positive step sequence decaying at an appropriate rate. A natural question now is whether
the sequence (θk)k∈N in (26) enjoys some convergence guarantees to the set of critical points in crit–G. For
this, we will rely on the stochastic approximation method for differential inclusions with compact and convex-
valued operators developed in [41], and used recently in [38, 42]. The idea is to view (θk)k∈N as a discrete-
time stochastic process which asymptotically behaves as the (absolutely continuous) solution trajectories of
the differential inclusion0 ∈ θ̇(t) + 1

M

∑M
i=1Di(θ(t)) for almost every t ∈ R,

θ(0) = θ0,
(27)

whose stationary solutions are the critical points in (25). A key argument to invoke the results of [41], is to
build an appropriate Lyapunov function and show that the function G is path differentiable, that is, it obeys
the chain rule

d

dt
G(θ(t)) = ⟨θ̇(t), v⟩, ∀v ∈ 1

M

M∑
i=1

Di(θ(t)). (28)

While path differentiability can be shown (see later) for the finite sum under tameness/definability for the
Clarke subdifferential, it seems very difficult to deal with the pointwise maximization and to prove path
differentiability of gi with the field Di.

The situation however changes if we work under (a part of) assumption (H.5), in which case (18) applies
and (24) becomes

∂CG(θ) = ∂C

(
1

M

M∑
i=1

gi(θ)

)
⊂ 1

M

M∑
i=1

∂Cgi(θ), (29)

where
∂Cgi(θ) =

{∫
Cε

∇θL(θ, zi + u)dµ(u) : µ ∈ P
(
ArgmaxL(θ, zi + Cε)

)}
. (30)

This gives the scheme in Algorithm 1.
Algorithm 1: SGD for PRO without smoothing.

Input: Step-sizes (γk)k∈N;
Input: Initialization θ0;
for k = 0, . . . do

Draw independently uniformly at random a mini-batch Bk ⊂ [M ] ;
for i ∈ Bk do

Solve ūi ∈ Argmaxu∈Cε L(θk, zi + u).
dk = 1

|Bk|
∑

i∈Bk
∇θL(θk, zi + ūi) ;

θk+1 = θk − γkdk.

This algorithm enjoys the following guarantees.
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Theorem 5.2. Assume that (H.1) holds, that L(·, zi + u) is locally Lipschitz continuous for each (zi, u) ∈
Z × Cε, and that L(·, z) is differentiable with ∇θL(θ, z) continuous in (θ, z). Suppose moreover that
φ and L are definable, and that the step-sizes satisfy

∑
k∈N γk = +∞ and γk = o

(
1

log k

)
. Consider

the sequence (θk)k∈N generated by Algorithm 1 and suppose that there exists a constant C > 0 such
that supk∈N ∥θk∥ ≤ C almost surely. Then, almost surely, the set of cluster points of (θk)k∈N belong to

crit–G =
(

1
M

∑M
i=1 ∂

Cgi

)−1
(0). Moreover (G(θk))k∈N converges and G is constant on crit–G.

See Appendix A.7 for the proof.

A caveat of Algorithm 1 is that one has to solve the inner maximization problems to compute the subgra-
dient approximation dk as dictated by (30). We recall that this can be computationally challenging in general
and iterative schemes do not come with any guarantees unless stringent assumptions are imposed on L. To
avoid this, one can appeal to the smoothing strategy as we develop now.

5.2 With smoothing

In this section, we work under the assumptions of Theorem 4.8 and capitalize on the results there. This gives
the scheme summarized in Algorithm 2.

Algorithm 2: SGD for PRO with smoothing.
Input: Step-sizes (γk)k∈N; number of integration points (Nk)k∈N; smoothing parameters (τk)k∈N;
Input: Initialization θ0;
for k = 0, . . . do

Draw independently uniformly at random a mini-batch Bk ⊂ [M ] ;
Draw Nk samples (uj)j∈[Nk] independently uniformly at random in Cε ;

dk = 1
|Bk|

∑
i∈Bk

∇giτk,Nk
(θk), with ∇giτk,Nk

(θk) :=
∑Nk

j=1∇θL(θ, zi + uj)
e

L(θ,zi+uj)

τk∑Nk
l=1 e

L(θ,zi+ul)
τk

;

θk+1 = θk − γkdk.

The direction dk in Algorithm 2 can also be written as

dk = vk + ek + ζk,

where

• vk = 1
M

∑M
i=1 P∂Cgi(θk)

(∇giτk,Nk
(θk));

• ek = 1
|Bk|

∑
i∈Bk

(
∇giτk,Nk

(θk)− P∂Cgi(θk)
(∇giτk,Nk

(θk))
)

;

• ζk = 1
|Bk|

∑
i∈Bk

P∂Cgi(θk)
(∇giτk,Nk

(θk))− 1
M

∑M
l=1 P∂Cgl(θk)

(∇glτk,Nk
(θk)) ;

where all projectors above are well-defined since the Clarke subdifferential is closed (in fact compact) and
convex-valued. We then have the following convergence result.

Theorem 5.3. Assume that the assumptions of Theorem 4.8(ii)(b) hold. Suppose moreover that φ and L are
definable, that the step-sizes satisfy

∑
k∈N γk = +∞ and γk = o

(
1

log k

)
, and that (τk, Nk)k∈N are such

that τk → 0 and e
L−L
τk

√
logNk
Nk

→ 0 as k → +∞, and
∑

k∈NN
−t
k < +∞ for some t > 0. Consider
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the sequence (θk)k∈N generated by Algorithm 2 and suppose that there exists a constant C > 0 such that
supk∈N ∥θk∥ ≤ C almost surely. Then, almost surely, the set of cluster points of (θk)k∈N belong to crit–G =(

1
M

∑M
i=1 ∂

Cgi

)−1
(0). Moreover (G(θk))k∈N converges and G is constant on crit–G.

See Appendix A.8 for the proof.

From the discussion after Lemma 4.9, the vanishing assumption on the bias holds provided one chooses
Nk an increasing function of k, and τk decreasing as O

(
1

κ logNk

)
for κ > 0 small enough. The algorithm

remains simple and effective at making the learning robust, the initial value of the parameters N and T do
not matter as long as we increase and decrease them respectively. However in practice it is better to select
their initial values considering the dimension of the problem. We suggest reading the following sources for
considerations on Monte Carlo integration or Quasi Monte Carlo [31] [32]. Other algorithms can be used
instead of SGD provided they are proven to converge with appropriate generalized subgradients (see [43] for
instance).

6 Numerical results

6.1 Dataset, model and metrics

The following experiments were all performed on the Avila dataset, introduced in [44]. This dataset is repre-
sentative of a classification task – writer identification in medieval manuscripts through page layout features
– with 8 input features and 12 classes. We centred and normalized the input features in a preprocessing
step. The label distribution is uneven for the twelves classes (A:41%, B:0.048%, C:0.99%, D:3.4%, E:10%,
F:19%, G:4.3%, H:5.0%, I:8.0%, W:0.43%, X:5.0%, Y:2.6%), with a class A that is far more present than
the other labels. This dataset was selected for its moderate input dimension to keep Monte Carlo sampling
needed for computing (14) reasonable, and because it has unevenly distributed labels which will help high-
lighting the compromise between generalization and robust learning. In these experiments, we build a 3 layer
MLP network f : Θ× R8 → R12 with two hidden layers of 200 neurons each and an output layer, resulting
in p = 44000 parameter vector θ; i.e., Θ ⊂ R44000. To comply with our regularity assumptions, we used the
ELU activation function [45]. The loss used for training the model is the cross-entropy loss after a softmax
step on the network output, i.e., for a training example z = (x, y), where x ∈ R8 is a feature vector and
y ∈ [12] is the (true) label, the loss is given by

L(θ, z) = −f(θ, x)y + log

 12∑
j=1

ef(θ,x)j

 ,

where the subscript here stands for the corresponding entry of a vector. Note that this loss also verifies our
assumptions. All experiments were carried out with the same number of epochs, batch size and therefore
the same number of updates (see Table 1 for details).

For comparison purposes, we trained the MLP network in 3 different ways: with a vanilla (non-robust)
training, an adversarial training using PGD as a heuristic to solve the inner maximization problem [16], and
robust training using Algorithm 2. Our aim is to show that we can provably train a robust model using our
algorithm, while being competitive with current state of the art procedures for robustifying neural networks
such as adversarial training, for different values of the perturbation radius ε. Throughout this section, we
take Cε = Bq

ε(0) with typically q = +∞ (see Table 1).
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For a pair (x, y) ∈ R8 × [12], let Fθ(x) = Argmaxj∈[12](f(θ, x))j be the predicted label. We denote
S : R2 → {0, 1} the mapping that returns 1 if its arguments are equal and 0 otherwise. In the numerical
results, we will report three different performance metrics.

• Test Accuracy: We define it as the accuracy on a test dataset {(xi, yi) : i ∈ [Ntest]}:

Test Accuracy =
1

Ntest

Ntest∑
i=1

S(Fθ(xi), yi).

• Adversarial Accuracy: This metric is meant to represent the accuracy on an adversarial set given by
applying a white-box PGD attack [16]. The attack depends on the loss function L, a ball Bq

ε(0) in
which the attack is constrained, and a tuple (xi, yi) of data points to be attacked. It reads

Adversarial Accuracy =
1

Ntest

Ntest∑
i=1

S(Fθ(x̂i), yi) where x̂i = PGD(L,Bq
ε(0), xi, yi).

• Worst-case Robustness Accuracy: This is defined as the worst-case accuracy when the data points
undergo perturbations within a ball Bq

ε(0) (the same ball as for the PGD attack). More precisely, recall
that µU is the uniform measure on Bq

ε(0). For N perturbation samples, this metric is defined as

Robust Accuracy =
1

Ntest

Ntest∑
i=1

min
(uj)Nj=1, uj∼i.i.d.µU

S(Fθ(xi + uj), yi).

For large enough number of samples N , this metric is intended to show robustness as promoted when
solving the PRO problem during the training.

We added to these metrics estimates of an upper-bound of the Lipschitz constant of the network. To this
end, we chose the LipSDP method [46] which is efficient, accurate and adequate for the size and structure of
the networks used.

These metrics are to be evaluated on the three kinds of training, for different values of ε. We made 100
runs for each configuration with different initializations to account for statistical variability. The training and
test sets have been sampled once for all runs to ensure that the variance of the results would come only from
differences in the initialization of the model and dynamics of the optimization. The plots we will display
show the median value and the quantiles at 0.1, 0.25, 0.75 and 0.9.

Remark 6.1. Ultimately, the ideal metric for quantifying robustness is the population intractable robust 0-1
gain. It is closely linked to the adversarial frequency [47]

E(x,y)∼ρ0

[
min

u∈Bq
ε(x)

S(Fθ(u), y)

]
.

The robust accuracy attempts to estimate this quantity by drawing random samples in both the min and
expectation. This however may suffer the curse of dimensionality when estimating the min value. The adver-
sarial accuracy uses a heuristic in the form of an adversarial attack obtained by PGD, but the latter does
not enjoy any convergence guarantee to the minimal value. The robust accuracy metric appears as a better
representative metric of the robust behavior of a model with the proviso that N is large.
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6.2 Dependence of smoothing factor and number of samples for robust optimization

Following Theorem 4.8, we advocated thatN , the number of samples used by Monte Carlo integration must
increase during the execution of Algorithm 2 and that τ = O( 1

κ logN ), the regularization parameter, goes to
zero. However in practice, making the sampling infinite is impossible due to hardware memory limitations.
Some workarounds can be found to extend the batch size, however they drastically increase the computation
time. Therefore we need to check experimentally how the algorithm behaves with different values of τ and
N .

The sampling for the robust training is performed in B∞
0.05(0) for various values of τ and N . The inner

maximization problem is assessed and averaged on the test base resorting to a fixed sampling of the pertur-
bation set. This sampling is chosen larger (106) than the biggest value explored in the set so as to maximize
the chance that the metric is evaluated accurately when testing.

Figure 1: Influence of τ (x axis) and N (y axis) on the robust loss on test set (color scale). The darker the
better.

Figure 1 shows the value of the loss for different values of τ and N , after a given number of iterations.
The observed behavior is indeed the expected one with respect to the sampling: the more we shrink the
temperature and increase the sampling the smaller the error on the robust problem we have.

6.3 Robustness to noise

In this section, we present a few experiments illustrating the robustness to noise a model trained with our
method, and provide comparisons with alternative methods.

For these experiments, the adversarial training was performed in B∞
ε (0) and so was the sampling for the

robust training: we kept the same fixed sampling of N = 5.105 points and a fixed temperature of τ = 10−4.
Fixing the sampling to the highest possible value ensures the smallest error possible on the estimation of the
robust loss. We give in Section B more information about the parameters for these experiments.

We plot the evolution of the test accuracy (Figure 2), adversarial accuracy (Figure 3) and worst case
accuracy (Figure 4) against the radius of robustness with median and quantiles. On top of this we also
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present the evolution of the Lipschitz constant of the learned network (Figure 5) estimated using LipSDP
[46].

Figure 2: Test accuracy of the three train-
ings on Avila dataset: vanilla (blue), ad-
versarial (green), robust (red) with me-
dian (plain line) and 10% and 90% quan-
tiles for 50 trials.

Figure 3: Adversarial accuracy of three
trainings on Avila dataset: vanilla (blue),
adversarial (green), robust (red) with me-
dian (plain line) and 10% and 90% quan-
tiles for 50 trials.

For the sake of completeness, and due to the fact that the loss values do not account for the complexity
of the distribution of the predictions, we also provide three confusion matrices (i.e., percentage of predicted
labels per each class in the test set). We normalized the confusion matrices column-wise as it allows to assess
which percentage of the real label was split to which predicted label. The confusion matrices were computed
for the vanilla training, for the robust training with ε = 0.3 and the adversarial training with the same value
of ε. The results are displayed in Figure 6.

On all the figures above, the behaviour of our robust training is competitive compared to the popular
PGD-based adversarial training, and differences are in general small. We note that robust training is better
on the test accuracy for moderate perturbations (Figure 2), while adversarial training appears to be slightly
better in termes of adversarial accuracy (Figure 3). We note, as expected, a decrease in accuracy on the test
dataset as the perturbation radius ε increases, but a better tolerance to perturbations/attacks since increasing
the perturbation radius ε, we make the learned model stable to larger adversarial attacks. This is symptomatic
of the trade-off between robustness and generalization, see e.g., [48, 49, 50, 51]. Note also that the variability
across runs is small (and highest for the vanilla training), confirming that the performance of all the trainings
is reproducible from run to run and for different initializations.

The decrease in accuracy of the robust and adversarial training on the test dataset can be further under-
stood when considering the confusion matrices in Figure 6. Indeed, we see that these two robust learning
methods aggregated the labels that were close to label A, namely labels C, D, E, F, G and H: this is due to
class A being overly represented as it leans toward aggregating samples that are close. The labelling per-
formed by the robustly trained networks on a test point assigns the label that has the greatest mass in the ε
perturbation ball around the test point. This clearly means that some feature vectors originally in classes C,
D, E, F, G and H are in fact within a ball Bq

ε(0) around those of label A. Class B has a very limited number
of samples (5, only 0.048% of the dataset), however, it appears to be far enough from the other classes not
to be confused with them.
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Figure 4: Worst-case robustness accu-
racy of three trainings on Avila dataset:
vanilla (blue), adversarial (green), robust
(red) with median (plain line) and 10%
and 90% quantiles for 50 trials.

Figure 5: Lipschitz constant upper bound
of the learned network by three training
methods on Avila dataset: vanilla (blue),
adversarial (green), robust (red) with me-
dian (plain line) and 10%, 25%, 75% and
90% quantiles for 50 trials.

Figure 6: Confusion matrix for the vanilla training (left), for the robust training (ε = 0.3) (middle) and for
the adversarial training (ε = 0.3) (right). All matrices are normalized column-wise to display the percentage
of predicted labels per each class in the test set.
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As far as Figure 5 is concerned, one can clearly (and unsurprisingly) see that the adversarial and robust
training methods tend to monotonically reduce the Lipschitz constant of the learned networks as ε increases.
The fact that, on an adversarial set, the vanilla model performs poorly compared to the adversarial one is
expected (Figure 3), but the performance of the robust model is similar to the adversarial one on this dataset.
Of course, adversarial attacks favor those models that have already been trained in an adversarial setting.
Our experiments confirm that our approach via smoothing and Monte Carlo sampling on the perturbation
set provably converges to a critical point of the PRO problem. This is in contrast to PGD-based adversar-
ial training for which convergence guarantees are not available in such general setting. The main drawback
of the robust training remains its computational cost compared to adversarial training. For instance, under
the hyperparameters in Appendix B with ε = 0.3, both training methods were performed on the same GPU
A100 with the same number of epochs and updates. Adversarial training took 47 min whereas robust training
took 11 hours. Adversarial training remains a very effective method for solving empirically the PRO prob-
lem. Let us stress that, despite this increased cost, robust training can be more effectively parallelized as it
only requires one expensive forward pass and one expensive backward pass whereas the adversarial training
requires multiple iterations of both.

7 Conclusions

Solving numerically the DRO problem beyond stringent assumptions on the loss remains a challenging open
problem. Here, we have shown that the DRO problem with sufficiently small error can be approached with
a PRO problem. In order to solve the latter, we designed SGD-type algorithms hinging on smoothing of
the inner maximization problem and Monte Carlo sampling. Our approach is one of the few that enjoys
provable convergence guarantees at the expense of an overall higher computational cost. Our robust training
has given performances similar to those of adversarial training on practical examples. This showcases the
soundness of using robust training with an adequate sampling. However, in machine leaning applications
with overparametrized models involving a very large number of parameters and high dimensional input space,
scalability of our robust training framework is still a challenge due in particular to our simple Monte Carlo
sampling step. More sophisticated sampling strategies, for instance those based on Langevin diffusion, is
one direction that is worth investigating in a future work.

Data Availability

The Avila dataset [44] used in this study is available publicly on the UCI repository [52] at the link https:

//archive.ics.uci.edu/ml/datasets/Avila. It consists of page features from an XII century giant
Latin copy of the Bible and the identity of the copyist that produced the page.
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A Proofs

A.1 Proof of Proposition 3.1

(i) For any z ∈ Z and ε ≥ 0, we have

sup
z′∈Z

(
L(θ, z′)− γc(z, z′)

)
≥ sup

c(z,z′)≤ε

(
L(θ, z′)− γc(z, z′)

)
≥ sup

c(z,z′)≤ε
L(θ, z′)− γε.

Taking the expectation on both sides, we get

Ez∼ρ0

[
sup

c(z′,z)≤ε
L(θ, z′)

]
≤ γε+ Ez∼ρ0

[
sup
z′∈Z

(
L(θ, z′)− γc(z′, z)

)]
.

In turn, since γ ≥ 0 was arbitrary, we take the infimum on the right-hand side and use the identity (6),
which holds under assumptions (H.1) and (H.2), to get the lower bound.
Let us turn to the upper-bound. We embark from (6) and consider the case where γ = LZ :

sup
Wc(ρ,ρ0)≤ε

Ez∼ρ[L(θ, z)] ≤ LZε+ Ez∼ρ0

[
sup
z′∈Z

(
L(θ, z′)− LZc(z

′, z)
)]

≤ LZε+ Ez∼ρ0 [L(θ, z)]

≤ LZε+ Ez∼ρ0

[
sup

c(z,z′)≤ε
L(θ, z′)

]
where we used the uniform Lipschitz continuity assumption (H.3) in the second inequality: L(θ, z′)−
L(θ, z) ≤ |L(θ, z′) − L(θ, z)| ≤ LZc(z

′, z) and that z is a feasible solution in the last constrained
supremum since c(z, z′) = 0 when z = z′.

(ii) The proof of the lower-bound part is the same as in the first claim above. Let us turn to the upper-bound.
We use again (6) and Lipschitz continuity of L(θ, ·) to get that for any γ ≥ 0,

sup
Wq(ρ,ρ0)≤ε1/q

Ez∼ρ[L(θ, z)] ≤ γε+ Ez∼ρ0

[
sup
z′∈Z

(
L(θ, z′)− γ∥∥∥z′ − z∥∥∥q

)]
≤ γε+ Ez∼ρ0

[
sup
z′∈Z

(
LZ∥∥∥z′ − z∥∥∥ − γ∥∥∥z′ − z∥∥∥q

)]
+ Ez∼ρ0 [L(θ, z)]

= γε+ Ez∼ρ0

[
sup
t≥0

sup
∥∥∥z′−z∥∥∥=t

(
LZ∥∥∥z′ − z∥∥∥ − γ∥∥∥z′ − z∥∥∥q

)]
+ Ez∼ρ0 [L(θ, z)]

= γε+ sup
t≥0

(LZt− γtq) + Ez∼ρ0 [L(θ, z)]

≤ γε+ sup
t≥0

(LZt− γtq) + Ez∼ρ0

[
sup

∥∥∥z−z′∥∥∥≤ε1/q
L(θ, z′)

]
.

Optimizing for t and after basic algebra, we get

sup
Wq(ρ,ρ0)≤ε1/q

Ez∼ρ[L(θ, z)] ≤ γε+ (q − 1)

(
LZ
q

) q
q−1

γ
− 1

q−1 + Ez∼ρ0

[
sup

∥∥∥z−z′∥∥∥≤ε1/q
L(θ, z′)

]
.
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This upper-bound is minimal for γ = cq,LZε
− q−1

q , for an explicit constant cq,LZ . Plugging this value
of γ in the upper-bound, we get the claim.

A.2 Proof of Proposition 4.1

We provide a concise self-contained proof as the arguments are standard. We equip P(Cε
z) with the weak–∗

topology. Continuity of c implies closedness of Cε
z . This together with its boundedness assumption imply

compactness of Cε
z as it is finite dimensional. Thus P(Cε

z) is weak–∗ compact by [53, Theorem 15.11]. It is
also convex. In addition, recall that the weak–∗ topology is the weakest topology which makes the integration
against continuous bounded functions a continuous linear form. In then follows from continuity of L(θ, ·)
and compactness of Cε

z that µ 7→
∫
Cε
z
L(θ, z′)dµ(z′) is weak–∗ continuous. It is known that KL(·, µU ) is

convex and lower semicontinuous in the weak–∗ topology on P(Cε
z). Thus, since τ > 0, the objective in (10)

is convex and upper semicontinuous. This together with convex and weak–∗ compactness ofP(Cε
z) entail that

(10) has a non-empty convex and weak–∗ compact set of solutions. Uniqueness of the minimizer then follows
from strong convexity of KL(·, µU ) on P(Cε

z) thanks to the celebrated Pinsker’s inequality. The closed form
solution follows from standard calculus of variations and Lagrangian duality; see e.g., [30, Lemma 6.6].

A.3 Proof of Theorem 4.3

(i) Define ψτ (θ) :=
∫
Cε
z
L(θ, z′)dµ(z′) − τKL(µ, µU ). The function τ 7→ ψτ (θ) obviously increases

as τ decreases and so is gτ . Continuity of L, compactness of Cε
z and Proposition 4.1 entail that gτ is

continuous and converges pointwise to g. The Γ-convergence claim in this case then follows from [22,
Proposition 5.4 and Remark 5.5].

(ii) The upper bound in (12) is immediate by definition of gτ . Let us turn to the lower bound. Let us
denote z⋆ ∈ Argmaxz′∈Cε

z
L(θ, z′), where the latter is a non-empty compact set thanks to continuity

of L(θ, ·) and compactness of Cε
z . We then have

τ log

(∫
Cε
z

e
L(θ,z′)

τ dz′

)
= max

ẑ∈Cε
z

L(θ, ẑ) + τ log

∫
Cε
z

e
L(θ,z′)−L(θ,z⋆)

τ dz′

= g(θ) + τ log

∫
Cε
z

e
L(θ,z′)−L(θ,z⋆)

τ dz′

≥ g(θ) + τ log

∫
Cε
z

e
−LZ∥∥∥z′−z⋆∥∥∥

τ dz′.

By definition of RCε
z
, there exists z̄ such that BRCεz (z̄) ⊂ Cε

z . Convexity of Cε
z entails that:

τ(BRCεz
(z̄)− z⋆) + z⋆ = (1− τ)z⋆ + τBRCεz (z̄) ⊂ Cε

z ,
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and thus:

τ log

(∫
Cε
z

e
L(θ,z′)

τ dz′

)
≥ g(θ) + τ log

∫
τ(BRCεz

(z̄)−z⋆)+z⋆
e

−LZ∥∥∥z′−z⋆∥∥∥
τ dz′

= g(θ) + τ log

τm ∫
BRCεz

(z̄)
e−LZ∥∥∥z′−z⋆∥∥∥dz′


≥ g(θ) + τ log

τm ∫
BRCεz

(z̄)
e−LZ(∥∥∥z′−z̄∥∥∥+∥∥∥z⋆−z̄∥∥∥)dz′


≥ g(θ) + τ log

τm ∫
BRCεz

(0)
e−LZ(RCεz+DCεz )dz′


= g(θ)−mτ log(τ−1) + τ log(µL(BRCεz

(0)))− τLZ(RCε
z
+DCε

z
).

(31)

Inserting this into the expression of gτ (see (11)), we get the upper-bound.

A.4 Proof of Theorem 4.5

Compactness of Θ entails that gτ and g are equi-coercive (see [22, Definition 7.6 and Proposition 7.7]. The
first claim on convergence of the minimal values follows by combining the first claim in Theorem 4.3 and
[22, Theorem 7.8]. The second claim is a consequence of Γ-convergence of gτ (Theorem 4.3), compactness
of Θ and [22, Corollary 7.20]. The last claim is immediate from the second as the cluster point is unique.

A.5 Proof of Theorem 4.6

We have

|gτ,N (θ)− g(θ)| ≤ |gτ (θ)− g(θ)|+ |gτ,N (θ)− gτ (θ)| ≤ h(τ) + |gτ,N (θ)− gτ (θ)|

where we used (12). It remains to bound the last term. This is the subject of the following lemma.

Lemma A.1. Under the assumptions of Theorem 4.3, the following holds.

(i) For any t > 0 and fixed θ ∈ Θ,

|gτ,N (θ)− gτ (θ)| ≤ τe
L−L
τ

√
t logN

2N
,

with probability at least 1− 2N−t.

(ii) Suppose that τ is a function of N , say τN , with τNe
L−L
τN

√
logN
N → 0 as N → +∞, then

(a) for every θ ∈ Θ
gτN ,N (θ)− gτN (θ) −→

N→+∞
0 almost surely.

(b) If moreover (H.4) holds then, almost surely,

gτN ,N (θ)− gτN (θ) −→
N→+∞

0 for all θ ∈ Θ.
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Proof. To lighten the notation, denote

SN :=
1

N

N∑
k=1

e
L(θ,z′k)

τ .

(i) Since the z′k’s are independent samples from the uniform distribution supported on Cε
z , we have

E[SN ] =
1

µL(Cε
z)

∫
Cε
z

e
L(θ,z′)

τ dz′.

We then have
gτ,N (θ)− gτ (θ) = τ log

(
SN

E[SN ]

)
.

Using the standard inequality log(1 + t) ≤ t for t ≥ 0, we can write, for any ϵ ≥ 0

Pr (|gτ,N (θ)− gτ (θ)| ≥ ϵ) = Pr

(∣∣∣∣log( SN
E[SN ]

)∣∣∣∣ ≥ ϵ/τ

)
= Pr

(
log

(
SN

E[SN ]

)
> ϵ/τ

)
1 (SN ≥ E[SN ]) + Pr

(
log

(
E[SN ]

SN

)
> ϵ/τ

)
1 (SN ≤ E[SN ])

≤ Pr

(
SN − E[SN ]

E[SN ]
> ϵ/τ

)
1 (SN ≥ E[SN ]) + Pr

(
E[SN ]− SN

SN
> ϵ/τ

)
1 (SN ≤ E[SN ])

≤ Pr
(
SN − E[SN ] > eL/τ ϵ/τ

)
1 (SN ≥ E[SN ]) + Pr

(
SN − E[SN ] < −eL/τ ϵ/τ

)
1 (SN ≤ E[SN ])

= Pr
(
|SN − E[SN ]| > eL/τ ϵ/τ

)
1 (SN ≥ E[SN ]) + Pr

(
|SN − E[SN ]| > eL/τ ϵ/τ

)
1 (SN ≤ E[SN ])

= Pr
(
|SN − E[SN ]| > eL/τ ϵ/τ

)
.

Since the random variables e
L(θ,z′i)

τ are independent and bounded (they live in the interval [eL/τ , eL/τ ]),
we are in position to invoke Hoeffding’s inequality to obtain

Pr (|gτ,N (θ)− gτ (θ)| ≥ ϵ) ≤ 2 exp

− 2N2e2L/τ ϵ2

N
(
eL/τ − eL/τ

)2
τ2


≤ 2 exp

(
−2Ne−2(L−L)/τ ϵ2

τ2

)
. (32)

Taking

ϵ = τe(L−L)/τ
√
t logN

2N
,

we get

Pr (|gτ,N (θ)− gτ (θ)| > ϵ) ≤ 2e−t logN = 2N−t

(ii) Let ϵN := τNe
(L−L)/τN

√
logN
N .
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(a) We have from the first claim above that

Pr (|gτN ,N (θ)− gτN (θ)| > ϵN ) ≤ 2N−2.

Since the right-hand side above is summable in N , we conclude by the (first) Borel-Cantelli
lemma that with probability one

lim sup
N→+∞

|gτN ,N (θ)− gτN (θ)| = 0,

whence almost sure convergence is immediate.
(b) Since Rp is separable, there exists a countable set T whose closure is Θ. According to claim

(a), for every θ ∈ Θ there exists a set of events Ωθ of probability one and, for every ω ∈ Ωθ,
gτN ,N (θ, ω) − gτN (θ, ω) → 0 as N → +∞. Set Ω̃ =

⋂
θ∈TΩθ. Since T is countable, a union

bound immediately shows that Ω̃ is also of probability one. For fixed θ ∈ Θ, there exists a
sequence (θk)k∈N in T such that θk → θ. Let ω ∈ Ω̃. We have

|gτN ,N (θ, ω)− gτN (θ)| ≤ |gτN ,N (θk, ω)− gτN ,N (θ, ω)|+ |gτN ,N (θk, ω)− gτN (θk)|
+ |gτN (θk)− gτN (θ)|.

Since θk ∈ T, Ω̃ ⊂ Ωθk , and as just seen here-above, the second term in the last inequality
vanishes as N → +∞. Let us turn to the first term. Let

Iθmax(ω) =

{
i ∈ [N ] : L(θ, zi(ω)) = max

j∈[N ]
L(θ, zj(ω))

}
.

We have

gτN ,N (θ, ω) = max
i∈[N ]

L(θ, zi(ω))+τN log

 |Iθmax(ω)|
N

+
1

N

∑
i ̸∈Iθmax(ω)

e
L(θ,zi(ω))−maxi∈[N ] L(θ,zi(ω))

τN

 .

Lipschitz continuity of a family of functions implies that of their maximum. It then follows that

|gτN ,N (θk, ω)− gτN ,N (θ, ω)| ≤ |max
i∈[N ]

L(θk, zi(ω))−max
i∈[N ]

L(θ, zi(ω))|

+ τN

∣∣∣∣∣ log
|Iθmax(ω)|+

∑
i ̸∈Iθmax(ω)

e
L(θ,zi(ω))−maxi∈[N ] L(θ,zi(ω))

τN


− log

|Iθkmax(ω)|+
∑

i ̸∈Iθkmax(ω)

e
L(θk,zi(ω))−maxi∈[N ] L(θk,zi(ω))

τN

∣∣∣∣∣
≤ LΘ ∥θk − θ∥+ 2τN logN.

Passing to the limit as N → +∞ we get

lim sup
N→+∞

|gτN ,N (θk, ω)− gτN ,N (θ, ω)| ≤ LΘ ∥θk − θ∥ .
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We now invoke (12) to infer that

|gτN (θk)− gτN (θ)| ≤ |g(θk)− g(θ)|+ h(τN ) ≤ LΘ ∥θk − θ∥+ h(τN ),

and thus
lim sup
N→+∞

|gτN (θk)− gτN (θ)| ≤ LΘ ∥θk − θ∥ .

Collecting the above estimates we get

lim sup
N→+∞

|gτN ,N (θ, ω)− gτN (θ)| ≤ 2LΘ ∥θk − θ∥ .

Taking the limit as k → +∞, we obtain gτN ,N (θ, ω)− gτN (θ) → 0. This completes the proof.

A.6 Proof of Theorem 4.8

A.6.1 Proof of Lemma 4.9

To lighten notation in the proof, we drop the super- and subscript in Cε
z . Let the (Gibbs) probability measure5

dµτ (z
′) :=

e
L(θ,z′)

τ∫
C e

L(θ,v)
τ dv

dz′.

Compactness of C and continuity of L(θ, ·) imply that M is a non-empty compact set. Without loss of gener-
ality, we assume that maxL(θ, C) = L(θ,M) = 0 (otherwise, one can use a simple translation argument).

(i) The proof of this claim is inspired by standard arguments in the literature of simulated annealing and
Markov chains (see e.g. [54, Proposition 1.2] or [33, Corollary 2.1 and Proposition 2.3])6. We provide
a self-contained proof adapted to our setting.
Given ϵ > 0, we define

U ϵ = {u ∈ Rm : L(θ, u) ≥ −ϵ} .

By assumption (H.3), L(θ, ·) is LZ -Lipschitz continuous, and thus U ϵ is contained in the open tubular
neighborhood of radius ϵ/LZ around ArgmaxL(θ, C). This implies that µL(U ϵ) > 0. We then have

µτ (C \ U ϵ) =

∫
C\Uϵ e

L(θ,z′)
τ dz′∫

C e
L(θ,v)

τ dv

≤ e
−ϵ
τ µL(C \ U ϵ)∫
Uϵ/2 e

L(θ,v)
τ dv

≤ e
−ϵ
τ µL(C \ U ϵ)

e
−ϵ
2τ µL(U ϵ)

≤ e
−ϵ
2τ
µL(C)
µL(U ϵ)

.

5Strictly speaking, we should also index it with θ. In this proof, we will drop this to lighten notation.
6We thank the reviewer for raising similar arguments.
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Passing to the limit as τ → 0+ we get

µτ (C \ U ϵ) → 0.

Compactness of C implies that P(C) is weak–∗ compact by [53, Theorem 15.11]. The family (µτ )τ≥0

is then sequentially precompact by Prokhorov’s theorem. Let (µτk)k∈N be a subsequence with weak–∗
cluster point µ̄. We then have µ̄(C \ U ϵ) = 0, and since ϵ is arbitrary, we get that µ̄ is supported on
U0 = ArgmaxL(θ, C). We thus infer, in view of continuity of ∇θL(θ, ·) (by (H.5)) that

∇gτk(θ) =
∫
C
∇θL(θ, z′)dµτk(z

′) −−−−→
k→+∞

∫
C
∇θL(θ, z′)dµ̄(z′) ∈ ∂Cg(θ),

where we used (5) in the last inclusion. This is being true for any subsequence (µτk)k∈N, we conclude
that all cluster points of (∇gτk(θ))k∈N belong to ∂Cg(θ) which is equivalent to (20).

(ii) For any Borel set C ⊂ Rm and k ∈ N, Hk(C) is the k-dimensional Hausdorff measure. It is normalized
to coincide with the Lebesgue measure on Rk. For a k-dimensional smooth submanifold of Rm, its
k-dimensional Hausdorff measure coincides with the Riemannian volume measure.
By (H.7)(a), for any r ≥ 3, M is C r-stratifiable and thus the strata (Mi)i∈I are C r-smooth compact
submanifolds.

Given ϵ > 0, for each Mi, we define its open neighborhood

Ui = {u ∈ Rm : dist(u,Mi) < ϵ} .

Let U :=
⋃

i∈I Ui. We then have for f ∈ C∫
C
f(z′)e

L(θ,z′)
τ dz′ =

∫
C∩U

f(z′)e
L(θ,z′)

τ dz′ +

∫
C\(C∩U)

f(z)e
L(θ,z′)

τ dz′. (33)

Since f(C) is compact by compactness of C and continuity of f , and ∃κ > 0 such that ∀z′ ∈ C\(C∩U),
L(θ, z′) ≤ −κ < maxL(θ, C) = 0, the second integral in (33) verifies, for any s ≥ 0,

τ−s

∣∣∣∣∣
∫
C\(C∩U)

f(z)e
L(θ,z′)

τ dz′

∣∣∣∣∣ ≤ (µL(C) sup |f(C)|) τ−se−κ/τ → 0 uniformly as τ → 0+. (34)

Let us now turn to the first integral. We have, for ϵ sufficiently small∫
C∩U

f(z′)e
L(θ,z′)

τ dz′ =
∑
i∈I

∫
C∩Ui

f(z)e
L(θ,z′)

τ dz′. (35)

Since, for any i ∈ I , Mi is a compact Cr-smooth submanifold with r ≥ 2, it is a set with positive
reach thanks to [55, Theorem 4.12] (see [55, Definition 4.1] for definition of sets of positive reach).
Thus, it follows from [55, Theorem 4.8] that PMi is single-valued and Lipschitz continuous on Ui,
hence C ∩ Ui, for some ϵ > 0 small enough. This together with rectifiability and measurability of the
sets C ∩ Ui and Mi allows to apply the coarea change of variable formula [56, Theorem 3.2.22(3)] to
get∫

C∩Ui

f(z′)e
L(θ,z′)

τ dz′ =

∫
Mi

(∫
P−1
Mi

(v)
f(u)e

L(θ,u)
τ (Jmi(PMi)(u))

−1dHm−mi(u)

)
dHmi(v),
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where mi = dim(Mi), Jmi(PMi) is the mi-dimensional Jacobian of PMi , i.e.,

Jmi(PMi)(u) =
√
det (D(PMi)(u)D(PMi)(u)

⊤)

and D is the derivative operator. In addition, since Mi is C r-smooth, we have from [57, Proposi-
tion 5.1] that PMi is C r−1-smooth with Lipschitz derivative on Ui (taking ϵ smaller if necessary).
This entails that the key estimates of [34, Lemma 6.1] hold in our case. The rest of our argument
follows then similar lines to those of [34, Theorem 3.1, starting from (9.3)]. This allows us to show
that

lim
τ→0+

τ−
m−mi

2

∫
C∩Ui

f(z)e
L(θ,z)

τ dz′

= 2
m−mi

2 (m−mi)α(m−mi)β(m−mi)

∫
Mi

f(v)

m−mi∏
j=1

λj(v)
− 1

2

 dHmi(v), (36)

where (−λj(v))j are the m − mi eigenvalues of the Hessian ∇2
z′L(θ, v) for v ∈ Mi, which are

negative by (H.7)(b), αk is the k-dimensional Lebesgue measure of the unit ball in Rk, and

βk :=

2−
k
2 (k − 2)(k − 4) · (2) for k even

2−
k
2 (k − 2)(k − 4) · (3)

√
π for k odd,

Since the strata are ordered by strictly decreasing dimension, we have from (36) that for any i > j,

lim
τ→0+

τ−
m−mj

2

∫
C∩Ui

f(z)e
L(θ,z)

τ dz′ = lim
τ→0+

τ
mj−mi

2

(
τ−

m−mi
2

∫
C∩Ui

f(z)e
L(θ,z)

τ dz′
)

= 0. (37)

Combining (37) (for j = 1) and (36) (for i = 1) with (33), (34) and (35), we get

lim
τ→0+

τ−
m−m1

2

∫
C
f(z′)e

L(θ,z′)
τ dz′ = lim

τ→0+
τ−

m−m1
2

∫
C∩U1

f(z)e
L(θ,z)

τ dz′

= 2
m−m1

2 (m−m1)α(m−m1)β(m−m1)

∫
M1

f(v)

m−m1∏
j=1

λ1(v)
− 1

2

 dHm1(v).

Applying this with f ≡ 1 and arbitrary f ∈ C , we get that µτ converges in the narrow topology to the
probability measure supported on M1 ⊂ ArgmaxL(θ, C)

dµ(v) =
1∫

M1

(∏m−m1
j=1 λ1(u)

− 1
2

)
dHm1(u)

m−m1∏
j=1

λ1(v)
− 1

2

 dHm1(v).

By the continuity assumption (H.5) on ∇θL(θ, z′), we deduce that

lim
τ→0+

∇gτ (θ) = lim
τ→0+

∫
C
∇θL(θ, z′)dµτ (z′) =

∫
M1

∇θL(θ, v)dµ(v) ⊂ ∂Cg(θ),

where we used (5) in the inclusion. This concludes the proof.
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A.6.2 Proof of Lemma 4.10

To lighten notation in the proof, we drop the super- and subscript in Cε
z . Denote the probability measures

dµθτ (z
′) :=

1

µL(C)
e

L(θ,z′)
τ

Sθ
τ

dz′ and dµθτ,N (z′) :=
1

N

N∑
k=1

e
L(θ,z′k)

τ

Sθ
τ,N

δz′k

where

Sθ
τ :=

1

µL(C)

∫
C
e

L(θ,z′)
τ dz′ and Sθ

τ,N :=
1

N

N∑
k=1

e
L(θ,z′k)

τ .

We have made here the dependence on θ, τ and N explicit as it will make our reasoning clearer especially
for proving the last claim of the lemma.

(i) It follows from (16) and (22) that

∇gτ (θ)−∇gτ,N (θ) =

∫
C
∇θL(θ, z′)dµθτ (z′)−

∫
C
∇θL(θ, z′)dµθτ,N (z′)

and thus, by assumption (H.5), we get

∥∇gτ (θ)−∇gτ,N (θ)∥ ≤ LΘ,Z

∣∣∣∣∣1− Sθ
τ

Sθ
τ,N

∣∣∣∣∣+
∥∥∥∥∥
∫
C
∇θL(θ, z′)

(
dµθτ (z

′)
Sθ
τ

Sθ
τ,N

− dµθτ,N (z′)

)∥∥∥∥∥ .
(38)

For the first term, since Sθ
τ = E[Sθ

τ,N ], we get from the proof of Lemma A.1 that for any t > 0,∣∣∣∣∣1− Sθ
τ

Sθ
τ,N

∣∣∣∣∣ ≤ e
L−L
τ

√
t logN

2N

with probability at least 1− 2N−t.
Let us now turn to the second term in (38). Denote

Gθ
τ :=

1

µL(C)

∫
C
∇θL(θ, z′)e

L(θ,z′)
τ dz′ and Gθ

τ,N :=
1

N

N∑
k=1

∇θL(θ, z′k)e
L(θ,z′k)

τ .

We then have∥∥∥∥∥
∫
C
∇θL(θ, z′)

(
dµθτ (z

′)
Sθ
τ

Sθ
τ,N

− dµθτ,N (z′)

)∥∥∥∥∥ =

∥∥∥Gθ
τ,N −Gθ

τ

∥∥∥
Sθ
τ,N

≤ e
−L
τ

∥∥∥Gθ
τ,N −Gθ

τ

∥∥∥ .
Since E[Gθ

τ,N ] = Gθ
τ and the random vectors ∇L(θ, z′k)e

L(θ,z′k)

τ are independent and bounded, we
apply Hoeffding’s inequality and the union bound to obtain

Pr
(∥∥∥Gθ

τ,N −Gθ
τ

∥∥∥ > ϵ
)
≤ Pr

(
max

j
|(Gθ

τ,N )j − (Gθ
τ )j | > ϵ/

√
p

)
≤ pmax

j
Pr
(
|(Gθ

τ,N )j − (Gθ
τ )j | > ϵ/

√
p
)
.
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Taking ϵ = LΘ,Ze
L/τ
√

2tp logN
N , we infer that∥∥∥∥∥

∫
C
∇θL(θ, z′)

(
dµθτ (z

′)
Sθ
τ

Sθ
τ,N

− dµθτ,N (z′)

)∥∥∥∥∥ ≤ LΘ,Ze
L−L
τ

√
2tp logN

N

with probability larger than 1 − 2pN−t. Combining the above bounds with the union bound, we get
the claim.

(ii) Let ϵN := max(1, 2LΘ,Z
√
p)e

L−L
τN

√
logN
N .

(a) We argue as in the proof of Lemma A.1(ii)(a). We have from claim (i) that

Pr (∥∇gτN (θ)−∇gτN ,N (θ)∥ > ϵN ) ≤ 2(p+ 1)N−2.

Since the right-hand side above is summable in N , we conclude by the (first) Borel-Cantelli
lemma that with probability one

lim sup
N→+∞

∥∇gτN (θ)−∇gτ,N (θ)∥ = 0.

(b) We will follow a reasoning similar to the proof of Lemma A.1(ii)(b) using separability of Rp and
a density argument. There exists a countable set T whose closure is Ξ. According to claim (a),
for every θ ∈ Ξ ⊂ Θ, there exists a set of events Ωθ of probability one and, for every ω ∈ Ωθ,
∇gτN ,N (θ, ω) − ∇gτN (θ, ω) → 0 as N → +∞. Set Ω̃ =

⋂
θ∈TΩθ. Countability of T and a

union bound show that Ω̃ is also of probability one. Moreover, for fixed θ ∈ Ξ, there exists a
sequence (θk)k∈N in T such that θk → θ. Let ω ∈ Ω̃. We have

∥∇gτN ,N (θ, ω)−∇gτN (θ)∥ ≤ ∥∇gτN (θk)−∇gτN (θ)∥+ ∥∇gτN ,N (θk, ω)−∇gτN (θk)∥
+ ∥∇gτN ,N (θk, ω)−∇gτN ,N (θ, ω)∥ . (39)

Since θk ∈ T, Ω̃ ⊂ Ωθk , claim (a) gives us that the second term in the right hand side of (39)
vanishes as N → +∞.
Let us turn to the first term. We have

∇gτN (θk)−∇gτN (θ) =
∫
C
∇L(θ, z′)dµθkτN (z

′)−
∫
C
∇L(θ, z′)dµθτN (z

′).

By Lemma 4.9(i), each weak–∗ cluster point of (µθkτN )N∈N belongs to ArgminL(θk,Z). Since
the latter reduces to a single element ẑθk by uniqueness of the maximizer, we get by Prokhorov’s
theorem that (µθkτN )N∈N converges in the weak–∗ topology to the Dirac measure supported on
ẑθk . Similarly, (µθτN )N∈N converges in the weak–∗ topology to the Dirac measure supported on
the unique maximizer ẑθ of ArgminL(θ,Z). Consequently,

∇gτN (θk)−∇gτN (θ) −−−−−→
N→+∞

∇θL(θk, ẑθk)−∇θL(θ, ẑθ). (40)

Now, observe that by (H.5) and convexity of Ξ, the mean value theorem yields

sup
z′∈C

|L(θk, z′)− L(θ, z′)| ≤ sup
z′∈C,ξ∈Ξ

∥∥∇θL(ξ, z′)
∥∥ ∥θk − θ∥ ≤ LΘ,Z ∥θk − θ∥ ,
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and taking the limit as k → +∞, we see that L(θk, ·) converges uniformly to L(θ, ·), and thus
by [22, Proposition 5.2 and Remark 5.3] L(θk, ·) Γ-converges to L(θ, ·). Compactness of C also
entails equi-coercivity of −L(θk, ·) on C. This together with Γ-convergence of L(θk, ·) seen just
above allows to apply [22, Corollary 7.20] to infer that ẑθk → ẑθ as k → +∞. In view of this,
taking the limit as k → +∞ in (40), using continuity of ∇θL in both arguments (see (H.5)), we
get that

lim
k→+∞

lim
N→+∞

∥∇gτN (θk)−∇gτN (θ)∥ = 0.

A similar reasoning can be applied to arrive at the same conclusion for the third term in (39).
Passing to the limit in N and then in k in (39), we have proved that for every ω ∈ Ω̃

lim
N→+∞

∥∇gτN ,N (θ, ω)−∇gτN (θ)∥ = 0, for all θ ∈ Θ.

This completes the proof.

A.7 Proof of Theorem 5.2

We first show that G is definable on an o-minimal structure. Indeed, o-minimal structures enjoy powerful
stability results under many operations: for instance sublevel sets of definable functions are definable, finite
sums of definable functions are definable, and functions of the type supv∈S F (u, v) (resp. infv∈S F (u, v))
whereF and S are definable, are definable. Thus sinceφ is definable, so is Cε. This together with definability
of L implies that gi is definable for each i. In turn, we get definability of G as a finite sum of definable
functions.

Consider an absolutely continuous curve θ : R+ → Rp. The function G being locally Lipschitz contin-
uous, t 7→ G(θ(t)) is also absolutely continuous and thus

d

dt
G(θ(t)) =

1

M

M∑
i=1

d

dt
gi(θ(t)) = ⟨ 1

M

M∑
i=1

vi, θ̇(t)⟩, for all vi ∈ ∂Cgi(θ(t)) and for a.e. t ≥ 0,

where we used that the functions gi are path differentiable for the Clarke subdifferential by [36, Theorem 5.8].
Therefore,G is a Lyapunov function for the set crit–G. Moreover, by [38, Theorem 6],G(crit–G) has empty
interior.

By the almost sure boundedness assumption, maxi
∥∥∂Cgi(θk)∥∥ is also uniformly bounded almost surely.

Moreover, the direction dk is such that
dk = vk + ζk,

with vk ∈ 1
M

∑M
i=1 ∂

Cgi(θk) and the random process ζk is a zero-mean uniformly bounded martingale dif-
ference noise. These uniform boundedness properties and the choice of the sequence γk allows to apply
[41, Remark 1.5(ii) and Proposition 1.4] to get by [41, Proposition 1.3] that the continuous-time affine inter-
polant of (θk)k∈N is almost surely an asymptotic pseudotrajectory of the flow (27). Combining this with [41,
Theorem 3.6 and Proposition 3.27] gives the claimed results.

A.8 Proof of Theorem 5.3

We obviously have vk ∈ 1
M

∑M
i=1 ∂

Cgi(θk). Moreover, the bias term ek obeys

∥ek∥ ≤ 1

|Bk|
∑
i∈Bk

dist
(
∇giτk,Nk

(θk), ∂
Cgi(θk)

)
≤ max

θ∈BC(0)
dist

(
∇giτk,Nk

(θ), ∂Cgi(θ)
)
. (41)
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In view of Theorem 4.8(ii)(b), if the sequence (τk, Nk)k∈N is as devised, then almost surely, limk→+∞ ∥ek∥ =
0 for all (θk)k∈N ⊂ BC(0). By independent and uniform sampling of the mini-batches, ζk is a zero-mean
martingale difference noise. We are then in position to invoke [58, Remark 4.5] to get that the conclusions of
[41, Remark 1.5(ii) and Proposition 1.4] still hold provided that γk decays as devised. The rest of the proof
is then same as that of Theorem 5.2.

B Additional information on the experiments

Following the recommendations of the paper that introduced the dataset [44] we removed the columns with
the modular ratios and the data was centered and normalized. The model trained is a Multi layer Perceptron
with 2 layers of 200 neurons each and an output layer of 12 neurons for the 12 classes with ELU activation
function.

Parameter Value Description

General parameters for all trainings

Epochs 1500 Number of epochs
Optimizer SGD-type SGD for vanilla training, Algorithm 2

for robust training
Learning rate 0.01 Initial learning rate

Learning rate decay 0.1 every 300 epochs Multiplicative decay for learning rate
Batch size 100 Batch size input data

Train set size 10430
Test set size 10437

Robustness radius range between 0. and 0.3 Only relevant for adversarial and
robust training

Loss function Cross Entropy Loss
Weight initialization Xavier Glorot’s [59] Default initialization for Pytorch

modules

Parameters for adversarial training

Adversarial Loss Cross Entropy
Iteration number

40
Iterations for adversarial attack

Attack norm ℓ∞ Norm of the attack, taken accordingly
to the Sampling ball

Parameters for robust training

Monte-Carlo sampling
150 000

Number of samples for computing
LSE

Sampling ball B∞
r Ball for uniform MC sampling, taken

accordingly to the attack norm
Temperature 0.0001 Fixed temperature for LSE

computation

Table 1: Parameters for the trainings on Avila dataset
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