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Abstract

Background and objective: Recently, spectral Dynamic Causal Modelling (DCM)

has been used increasingly to infer effective connectivity from epileptic intracranial

electroencephalographic (iEEG) signals. In this context, the Physiology-Based Model

(PBM), a neural mass model, is used as a generative model. However, previous studies

have highlighted out the inability of PBM to properly describe iEEG signals with

specific power spectral densities (PSDs). More precisely, PSDs that have multiple peaks

around β and γ rhythms (i.e. spectral characteristics at seizure onset) are concerned.

Methods: To cope with this limitation, an alternative neural mass model, called the

complete PBM (cPBM), is investigated. The spectral DCM and two recent variants

are used to evaluate the relevance of cPBM over PBM.

Results: The study is conducted on both simulated signals and real epileptic iEEG

recordings. Our results confirm that, compared to PBM, cPBM shows (i) more ability

to model the desired PSDs and (ii) lower numerical complexity whatever the method.

Conclusions: Thanks to its intrinsic and extrinsic connectivity parameters as well as

the input coming into the fast inhibitory subpopulation, the cPBM provides a more

expressive model of PSDs, leading to a better understanding of epileptic patterns and

DCM-based effective connectivity inference.
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Highlights 

 The complete Physiology-Based Model (cPBM) allows to generate 

multiple Power Spectral Densities (PSDs) peaks and highly contributes 

to a better understanding of epileptic patterns than PBM.  

 To the best of our knowledge, cPBM has never been introduced in the 

context of DCM. Bayesian model comparison was used to establish the 

identifiability of models of effective connectivity in the setting of DCM 

with cPBM. 

 cPBM offers lower computational complexity better estimation 

accuracy compared to PBM. 
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1. Introduction

Epilepsy is a neurological disease that affects approximately 1% of the world

population and is characterized by the repetition of seizures whose frequency

and duration are variable [1]. The treatment for epileptic patients generally

begins with medication. Recent studies have shown that up to 70% of children

and adults with epilepsy can be successfully treated with Anti-Epileptic Drugs

(AEDs) [2, 3]. However, there are still about 30% of epileptic patients who

cannot be adequately controlled with AEDs, which means that (i) seizures are

not (completely) suppressed and/or (ii) patients suffer from strong side-effects due

to AEDs [4]. These patients are often diagnosed as drug-resistant or refractory

epileptic patients [5, 6]. For these drug-resistant epilepsies, a surgical intervention

can be considered as an alternative solution to remove the Epileptogenic Zone

(EZ). This zone has been defined as the area of cortex primarily responsible

for the generation of clinical seizures [7]. The standard pre-surgery evaluation

includes clinical review, brain imaging with Magnetic Resonance Imaging (MRI),

ElectroEncephaloGraphy (EEG) or intracranial EEG (iEEG) signals recordings,

neuropsychological and psychiatric assessments [8]. Thanks to its high temporal

resolution, the iEEG technique permits to capture very fast neuronal dynamics

related to the epileptic seizure. This technique is considered as gold standard

for EZ identification and allows a more precise brain exploration in spite of its

invasiveness. In fact, seizure activity is not limited to the EZ but also may be

modulated – or be mediated by – distributed dynamics in other involved regions.

To better understand the organization of epileptic seizures in terms of onset and

propagation, one may resort to effective connectivity [9] (i.e. causal effects of

one neural system over another).

A variety of approaches have been proposed to infer effective connectivity.

These methods can be divided into two categories, model-free and model-based
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ones. In [10], authors stressed that effective connectivity analysis tends to be more

hypothesis-driven (model-based) than data-driven (model-free). In this paper,

we mainly focus on model-based approaches, which rely on two aspects: the

generative model (to describe the observed signals) and the model comparison (to

seek the best model structure among a set of predefined model structures based on

the model evidence). Recently, among model-based techniques, Dynamic Causal

Modelling (DCM) [11] is increasingly used in quantifying effective connectivity

in the scope of epilepsy. Epileptic seizures always show some particular spectral

characteristics, i.e. fast activities also referred as rapid discharges corresponding

to power spectral densities (PSDs) with several peaks around β and γ frequency

bands (15 ∼ 50 Hz) at the seizure onset [12]. Therefore, researchers have been

tempted to use spectral DCM [13, 14] to infer causality among brain regions in

the context of epilepsy [15, 16, 17, 18] to cite a few, under the assumption of

the generative model (i.e. neural mass model)—Canonical MicroCircuit (CMC)

model proposed in [19, 20] or Physiology-Based Model (PBM) proposed in

[12, 21, 22, 23].

Each population in the CMC model comprises four subpopulations: (i)

superficial pyramidal, (ii) spiny stellate, (iii) inhibitory interneuron and (iv)

deep pyramidal. More precisely, in [15, 24] authors used spectral DCM in the

CMC model to infer causal coupling between brain areas in order to evaluate

the relative contribution of changes in intrinsic (excitatory and inhibitory)

connectivity and endogenous input. This study was conducted using EEG

recordings acquired from two female patients with recurrent partial seizures.

Authors concluded that changes in excitatory/inhibitory connections were able to

explain the observed seizure activity and that these changes were reproduced over

seizures. Later, authors in [25] proposed a Bayesian belief updating scheme to

accelerate the convergence of the spectral DCM. The efficiency of the proposed

approach in terms of model inversion compared to the standard DCM was

reported based on EEG seizure recordings. In addition, authors in [16] used a

Bayesian model reduction-based scheme in [26] to identify the key synaptic (e.g.

synaptic time constant in deep pyramidal cells) and connectivity parameters
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(e.g. self-inhibitory connection in inhibitory subpopulation) that underlie seizure

onset in a rat model with induced epilepsy. These different studies [15, 24, 16],

stated that the inhibitory subpopulation plays an important role in explaining

the seizure activity under CMC model.

As emphasized in [21], the onset of seizures is often characterized by the

appearance of a fast activity in mesial structures, but this activity cannot be

modeled in Jansen’s model [27]. Authors in [21] proposed another extension

of Jansen’s model, known as PBM. This model takes into account: (i) the

respective role of (somatic) fast and (dendritic) slow inhibitory interneurons

and (ii) the possible inhibition-related functional reorganizations that take

place in the epileptic tissue. The PBM is particularly suitable for studying

neuronal dynamics (especially fast activity) during epileptic seizures. With such

classification, authors in [12, 23] argued that the PBM can be used to simulate

iEEG signals in the hippocampus during the transition from interictal to fast

ictal activity. As also stated in [28], the fast inhibitory interneurons acting on

pyramidal cells can be viewed as a prominent mechanism in seizure triggering.

PBM was considered to infer effective connectivity in the context of epilepsy

using spectral DCM [17] and, to deal with the local maximization issue of the

free energy, two strategies have been proposed in [18], the L-DCM where a local

adjustment strategy scheme was utilized and the D-DCM where a deterministic

annealing scheme was employed. However, PBM is difficult to fit PSDs with

multiple peaks around β and γ rhythms and presents a high computational

complexity due to the calculation of equilibrium point in Jacobian matrix [18]

related to the predicted PSD.

Later, Zavaglia et al. [29] as well as Ursino et al. [30] proposed a complete

Physiology-Based Model, abbreviated hereafter by cPBM, to simulate the

multiple/multimodal PSD in cortical regions for simple motor tasks by adding

a new negative self-loop as well as a new afferent input to the fast inhibitory

interneurons. Also, the cPBM comprises a new extrinsic connectivity parameter

modelling direct connections from pyramidal neurons in one population to fast

inhibitory interneurons in another population. As indicated in [29, 30, 31], the
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cPBM is much more suitable to produce two distinct resonance peaks and may

be more consistent with the physiological reality than the PBM. To the best

of our knowledge, cPBM has never been introduced in the context of epileptic

seizures and DCM-based framework. In addition, contrary to PBM, cPBM

sounds to be more attractive from a computational point of view as the system

identification is performed through a linearization of the generative model and

output equations around the null equilibrium point [30]. Therefore, thanks to

the abovementioned properties that cPBM enjoys, this model is considered in

the current study.

Following [18] and thanks to the ability of cPBM to simulate intracranial

EEG signals having PSDs with multiple peaks, the motivation of this study

is to investigate a potential relationship between the estimation of effective

connectivity and the underlying generative model. Therefore, the rest of this

paper is organized as follows. A detailed description of the cPBM model is

given in section 2. Section 3 presents a full explanation of the cPBM model

in the framework of spectral DCM, along with two recently proposed DCM

algorithms, L-DCM and D-DCM algorithms [18]. Section 4 is dedicated to

numerical experiments where a comparative study between DCM, L-DCM and

D-DCM algorithms in the cPBM framework was firstly conducted using simulated

iEEG data. Secondly, the three algorithms were compared in both PBM and

cPBM frameworks using real iEEG signals. Finally, section 5 presents discussion.

2. The neural mass model

2.1. Complete Physiology-Based Model

Similarly to the PBM [21, 18], each population in the cPBM consists of

four neural subpopulations: pyramidal neurons (Pp), excitatory interneurons

(Pe), slow inhibitory interneurons (Ps) and fast inhibitory interneurons (Pf ),

respectively. Each subpopulation represents a group of neurons of the same

type, which approximately share the same membrane potential and can be

lumped together. These subpopulations are interconnected with excitatory
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{Cepll , C
pe
ll , C

sp
ll , C

fp
ll } and inhibitory {Cpsll , C

fs
ll , C

pf
ll , C

ff
ll } intrinsic connections,

as shown in Fig. 1. The differential equations governing cPBM [30] describe the

dynamic of a set of hidden states (e.g. xl(t) = [x1,l(t), · · · , x14,l(t)]T) for a given

population popl, l 6= l′ (l′ is related to another population, popl′):

ẋ1,l(t) = x2,l(t)

ẋ2,l(t) = Ge,lωe,lS(x3,l(t))− 2ωe,lx2,l(t)− ω2
e,lx1,l(t)

ẋ3,l(t) = Cpell x5,l(t)− C
ps
ll x8,l(t)− C

pf
ll x11,l(t)

ẋ4,l(t) = x5,l(t)

ẋ5,l(t) = Ge,lωe,l(S(x6,l(t)) +Kpp
ll′ S(x3,l′(t− τ))/Cpell

+ upl (t)/C
pe
ll )− 2ωe,lx5,l(t)− ω2

e,lx4,l(t)

ẋ6,l(t) = Cepll x2,l(t)

ẋ7,l(t) = x8,l(t)

ẋ8,l(t) = Gs,lωs,lS(x9,l(t))− 2ωs,lx8,l(t)− ω2
s,lx7,l(t)

ẋ9,l(t) = Cspll x2,l(t)

ẋ10,l(t) = x11,l(t)

ẋ11,l(t) = Gf,lωf,lS(x14,l(t))− 2ωf,lx11,l(t)− ω2
f,lx10,l(t)

ẋ12,l(t) = x13,l(t)

ẋ13,l(t) = Ge,lωe,l(u
f
l (t) +Kfp

ll′ S(x3,l′(t− τ)))

− 2ωe,lx13,l(t)− ω2
e,lx12,l(t)

ẋ14,l(t) = Cfpll x2,l(t)− C
fs
ll x8,l(t)− C

ff
ll x11,l(t) + x13,l(t)

(1)

Comparing PBM with cPBM as shown in Fig. 1, we can note some important

differences as summarized in Table 1 [30, 22]. The values of the parameters

specifying Eq. (1) are given in Table 2. According to Fig. 1, the two extrinsic

random inputs, upl (t) = σpl w
p
l (t) and ufl (t) = σfl w

f
l (t) in population popl, are

independent and stand for white noises where wpl (t) and wfl (t) follow Gaussian

probability distributions N (0, αpl ) and N (0, αfl ) respectively. To accommodate

the amplitude of upl (t) and ufl (t), we set the diffusion parameters σpl and σfl to
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Figure 1. The population popl in cPBM [30] with (a) interactions between four
neuronal subpopulations (e.g. pyramidal neurons (Pp), excitatory interneurons
(Pe), slow inhibitory interneurons (Ps) and fast inhibitory interneurons (Pf ),
respectively). (b) block diagram for each hidden state as described in Eq. (1),

where excitatory and inhibitory intrinsic connections {Cepll , C
pe
ll , C

sp
ll , C

fp
ll } and

{Cpsll , C
fs
ll , C

pf
ll , C

ff
ll }, respectively. S (•) is the sigmoid function, upl (t) and ufl (t)

are the inputs, yl(t) is the output.

20
√

2 and 10 as shown in Table 2.

The output of cPBM for the l-th population is given by:

yl(t) = x3,l(t) (2)
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Table 1. Comparison of PBM and cPBM. Note that ufl (t) = σfl w
f
l (t) and

wfl (t) ∼ N
(

0, αfl

)
.

Case PBM cPBM

Sigmoid (S (x (t))) 2e0
1+exp(r0(V0−x(t)))

2e0
1+exp(r0(V0−x(t))) − e0

Self-loop in Pf (Cffll ) × √

Input in Pf (ufl (t)) × √
Extrinsic connection from

Pp to Pf (Kfp
ll′ )

× √

Delay (τ) × √

where yl(t) reflects the mean membrane potential in pyramidal cells which

induces the measured iEEG signal, recorded in an invasive way with high

temporal resolution.

Table 2 lists the parameters priors used in Eq. (1) and Eq. (2), such prior

distributions are introduced for model inversion (e.g. parameters estimation

described in section 3.1.2) based on a Bayesian approach. For simplicity,

these parameters can be divided into two categories depending whether the

variance σ2
θi

is equal to zero or not: (i) fixed parameters (for which the prior

variances are equal to 0), i.e. Φ1 = {Cepll , ..., C
ff
ll , σ

p
l , σ

f
l , e0, r, v0, τ}, and (ii)

free parameters i.e. Φ2 = {ωe,l, ωs,l, ωf,l, Ge,l, Gs,l, Gf,l, αpl , α
f
l ,K

pp
ll′ ,K

fp
ll′ },

which, instead of being estimated directly, are estimated through the vector

θl =

[
θωe,l , θωs,l , θωf,l , θGe,l , θGs,l , θGf,l , θαpl

, θ
α
f
l
, θKpp

ll′
, θ
K
fp

ll′

]T
. The i-th component,

θi, of vector θl is defined such that the parameter Pi = Viexp(θi) with Pi ∈ Φ2

(see Table 2). In fact, the free parameters Φ2 are expected to vary during a

transition from background brain activity to an epileptic seizure activity.
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Table 2. Model parameters for popl, l 6= l′, corresponding to cPBM, where the
values in red are extracted from [22], the values in blue from [30], and the values
in black correspond to our proposal. Prior distributions of Pi = Viexp(θi), where
Vi is a fixed default parameter value and θi ∼ p(θi) = N

(
µi, σ

2
θi

)
. If σ2

θi
= 0, Pi

is considered as constant.
Parameter (Pi) Description (Unit) Value (Vi) Prior (p (θi))

Synaptic time parameter (s)

ωe,l Excitatory 1/75 N (0, 1/32)
ωs,l Dendritic slow inhibitory 1/30 N (0, 1/32)
ωf,l Somatic fast inhibitory 1/100 N (0, 1/32)

Intrinsic connection within population

Cepll Pp → Pe 54 N (0, 0)
Cpell Pe → Pp 54 N (0, 0)
Cspll Pp → Ps 54 N (0, 0)
Cpsll Ps → Pp 67.5 N (0, 0)

Cfpll Pp → Pf 54 N (0, 0)

Cfsll Ps → Pf 27 N (0, 0)

Cpfll Pf → Pp 54 N (0, 0)

Cffll Pf → Pf 27 N (0, 0)

Extrinsic connection between populations

Kpp
ll′ Pp(popl′)→ Pp(popl) 54 N (0, 1/4)

Kfp
ll′ Pp(popl′)→ Pf (popl) 27 N (0, 1/4)

Input White Gaussian noise (s−1)

σpl Diffusion 20
√

2 N (0, 0)

σfl Diffusion 10 N (0, 0)
αpl Variance 1 N (0, 1/128)

αfl Variance 1 N (0, 1/128)

Sigmoid

e0 Sigmoid saturation (s−1) 2.5 N (0, 0)
v0 Activation threshold (mV) 0 N (0, 0)
r Sigmoid steepness (mV−1) 0.56 N (0, 0)

Time delay (ms)

τ 10 N (0, 0)

Gain (mV)

Ge,l Synaptic excitation 5 N (0, 1/16)
Gs,l Dendritic slow inhibition 3 N (0, 1/16)
Gf,l Somatic fast inhibition 20 N (0, 1/16)
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2.2. Model structure and family

Based on the vectors of extrinsic coupling parameters Kjk =
[
Kpp
jk ,K

fp
jk

]T

in popj and Kkj =
[
Kpp
kj ,K

fp
kj

]T
in popk for cPBM (see Fig. 2 (a)), a model

space with 16 model structures, Mm,m ∈ {1, 2, ..., 16}, (see Fig. 2 (b)), can

be defined. In fact, this model space describes all possible directional coupling

configurations between the two populations. θ = vec
(
[θj ,θk]

T
)

denotes the

vector of all parameters to be estimated under a given model structure Mm.

When a coupling parameter (e.g Kpp
ll′ or Kfp

ll′ , {l, l′} ∈ {j, k}2, l 6= l′) is zero, the

corresponding θKpp

ll′
or θKfp

ll′
is dropped from the vector of parameters θl. For

instance, in the case of M5, the parameter θKpp
jk

is omitted in the vector θj , and

the parameters θKpp
kj

and θKfp
kj

are omitted in the vector θk since Kpp
jk , Kpp

kj and

Kfp
kj are equal to zero. Furthermore, we can classify the 16 model structures into

four families, corresponding to 4 types of causal architectures (see Fig. 2 (c)).

Therefore, for a given pair of observed signals, identifying the best model

structure or family in the model space is the issue we have to deal with. Such

issue can be solved by the DCM-based methods (see section 3).

3. Methods

3.1. Spectral DCM

3.1.1. The predicted PSD

The cPBM for two potentially coupled populations represented by Eq. (1)

and (2) can be described in a set of (2×ns) first-order delay differential equations

(ns = 14 is the number of state variables) and a two-component output vector

y(t) = [yj(t), yk(t)]T, as follows:




ẋ (t) = f (x(t,Ψ),θ) +Du(t)

y(t) = Qx(t)
(3)

where x(t) = vec([xj(t),xk(t)]T) ∈ R2ns×1, xl(t) = [x1,l(t), · · · , xns,l(t)]T ∈ Rns×1 is

the state vector associated to popl, l ∈ {j, k}. The nonlinear function f (x(t,Ψ),θ)

is given by f (x(t,Ψ),θ) = vec([fj (x(t,Ψ),θj) ,fk (x(t,Ψ),θk)]T) ∈ R2ns×1. The
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components of fl(x(t,Ψ),θl) ∈ Rns×1, l ∈ {j, k}, are the restrictions of the right

terms of Eq. (1) on the restricted domains induced respectively by upl (t) = 0

and ufl (t) = 0. Note that the first equation in Eq. (3) is a vector representation

of the following component-wise differential equation:

ẋi(t) = fi(x(t,Ψ(i, :)),θ) + (Du)i(t) (4)

where ∀i ∈ {1, · · · , 2ns}, xi(t), fi(x(t,Ψ(i, :)),θ) and (Du)i(t) denote the i-th

component of the vectors x(t), f(x(t,Ψ),θ) and Du(t), respectively. For

the sake of convenience, Ψ(i, :) denotes the i-th row of the delay matrix

Ψ ∈ R2ns×2ns and xn(t − Ψi,n) stands for the n-th component of the 2ns-

th dimensional vector x(t,Ψ(i, :)). According to Eq. (1) and Eq. (4), the

entries of Ψ are zeros excepted the four entries Ψ9,6,Ψ25,6,Ψ10,5 and Ψ26,5

which are equal to τ (e.g. Ψ9,6 = τ indicates that x6(t − Ψ9,6) is induced

by ẋ9(t) in Eq. (4)). As far as the input matrix D ∈ R2ns×4 is concerned,

all its entries are zeros excepted for D9,1, D10,2, D25,3 and D26,4 which are

equal to Ge,jwe,j/C
pe
jj , Ge,kwe,k/C

pe
kk, Ge,jwe,j and Ge,kwe,k, respectively. The

input vector u(t) is equal to
[
upj (t), u

p
k(t), ufj (t), ufk(t)

]T
. The output matrix

Q ∈ R2×2ns is an all-zero matrix excepted for two entries: Q1,5 = Q2,6 = 1.

As we need an analytical expression (at least approximate) of the output

PSD, a linearization of Eq. (3) around the equilibrium state, following [32, 13],

using first-order Taylor expansion is given as follows:



ẋ(t) = =̃ (θ)x(t) +D1w(t)

y(t) = Qx (t)
(5)

where =̃ (θ) ' (I + Ψ ◦= (θ))−1= (θ) [33] (◦ is Hadamard product) and w(t) =
[
wpj (t), wpk(t), wfj (t), wfk(t)

]T
. Note that, = (θ) = ∂f(x(t),θ)

∂x(t) |x(t)=0 ∈ R2ns×2ns is

the Jacobian matrix of f (·,θ), computed at x(t) = 0 (i.e. the equilibrium

point of Eq. (3) is equal to the null vector since the sigmoid function and

w(t) are centered and the mean of is equal to zero as indicated in [30]). D1 =

(I + Ψ ◦= (x0,θ))−1Ddiag(σ) with diag(σ) denoting a square diagonal matrix

12

                  



whose diagonal corresponds to the elements of the vector σ =
[
σpj , σ

p
k, σ

f
j , σ

f
k

]T
.

Then, the Fourier transform to both sides of Eq. (5) is applied:



i2πν x̌ (ν) = =̃ (θ) x̌ (ν) +D1w̌ (ν)

y̌ (ν) = Qx̌ (ν) = H(ν,θ)w̌ (ν)
(6)

where H(ν,θ) = Q
(
i2πνI − =̃ (θ)

)−1
D1, ν denotes the frequency variable and

H(ν,θ) ∈ R2×4 is the transfer function (I is the identity matrix). The analytical

expression of the PSD obtained from the parameters (named predicted PSD)

is denoted by G (ν,θ) =


 Gjj(ν,θ) Gjk(ν,θ)

Gkj(ν,θ) Gkk(ν,θ)


 ∈ R2×2 and computed from

Eq. (6), as follows [13]:

G (ν,θ) = H (ν,θ)Gw (ν,θ)HH (ν,θ) (7)

where

Gw (ν,θ) =




Gppw,jj (ν,θ) Gppw,jk (ν,θ) Gpfw,jj (ν,θ) Gpfw,jk (ν,θ)

Gppw,kj (ν,θ) Gppw,kk (ν,θ) Gpfw,kj (ν,θ) Gpfw,kk (ν,θ)

Gfpw,jj (ν,θ) Gfpw,jk (ν,θ) Gffw,jj (ν,θ) Gffw,jk (ν,θ)

Gfpw,kj (ν,θ) Gfpw,kk (ν,θ) Gffw,kj (ν,θ) Gffw,kk (ν,θ)




=




αpj 0 0 0

0 αpk 0 0

0 0 αfj 0

0 0 0 αfk




(8)
denotes the PSD matrix associated with the white Gaussian noise vector w(t).

Since the inputs wpj (t), wpk(t), wfj (t) as well as wfk (t) in popj and popk are assumed

to be independent in/between populations, Gw (ν,θ) is diagonal with diagonal

entries, Gξξw,ll (ν,θ) = αξl , ξ ∈ {p, f} and l ∈ {j, k}, denoting the auto PSD of

the input wξl (t).

3.1.2. Model inversion

Concerning the sample PSD matrix, obtained from the observed iEEG signals,

it is computed using the SPM spectral toolbox with a 12-pole AR process [13].

The sample PSD, denoted by G̃ (ν) =


 G̃jj(ν) G̃jk(ν)

G̃kj(ν) G̃kk(ν)


 ∈ R2×2 at each

frequency ν, can also be considered as a noisy version of G (ν,θ):

G̃ (ν) = G (ν,θ) +E (ν) (9)
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where E (ν) =


 Ejj(ν) Ejk(ν)

Ekj(ν) Ekk(ν)


 is the noise matrix. Let us consider N

frequency bins (νi, i = 1, 2, ..., N) of G̃ (ν) stacked in a column vector g̃, then

following Eq. (9), g̃ can be written:

g̃ = g (θ) + ε (10)

where

g̃ = [g̃jj , g̃jk, g̃kj , g̃kk]T ∈ R4N×1

g̃ll′ = [G̃ll′(ν1), ...., G̃ll′(νN )]T ∈ RN×1, {l, l′} ∈ {j, k}
g(θ) = [gjj(θ), gjk(θ), gkj(θ), gkk(θ)]T ∈ R4N×1

gll′(θ) = [Gll′(ν1,θ), ...., Gll′(νN ,θ)]T ∈ RN×1

ε = [εjj , εjk, εkj , εkk]T ∈ R4N×1

εll′ = [Ell′(ν1), ...., Ell′(νN )]T ∈ RN×1

ε is the vector of prediction error with ε ∼ N (0,Σλ), where the posterior

covariance Σλ is related to a hyper-parameter vector λ under Gaussian

assumptions [34]. According to Eq. (10), the vector of parameters θ for a

given model structure Mm can be obtained by a Bayesian model inversion step

using the model evidence p (g̃|Mm) [34, 35]. The logarithm of model evidence,

ln p (g̃|Mm), can be expressed as:

ln p (g̃|Mm) =Fm +KL (q (θ) , p (θ|g̃,Mm)) (11)

where KL is the Kullback-Leibler divergence, p (θ|g̃,Mm) is the posterior

distribution of the vector θ, q (θ) ∼ N
(
θ̂,Σθ̂

)
and Fm is the well-called free

energy (of the model structure Mm). Since KL is non negative, then ∀q (θ) :

ln p (g̃ |Mm ) ≥ Fm, the equality being verified if KL (q (θ) , p (θ |g̃,Mm )) = 0,

i.e. if q (θ) = p (θ |g̃,Mm ) (almost everywhere), a maximum value of Fm can

be always seen as a lower bound of ln p (g̃|Mm). The definition of free energy is

given as follows [34]:

Fm =

∫
q(θ)lnp(g̃,θ|Mm) dθ −

∫
q(θ)lnq(θ) dθ (12)
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Maximizing the free energy, Fm, is usually done in an iterative way using a

variational scheme [34], named as the variational EM algorithm1.

3.1.3. Model and family selection

Once the above model inversion step is achieved, a model selection step is

performed. This step consists in selecting, in the predefined model space, the

best model structure underlying the observed data. Recall that an optimal model

structure is the one defined in terms of the maximum free energy compared to

the free energies of the other considered model structures. Note that causality

identification (i.e. effective connectivity identification) in cPBM can also be

based on the family identification. Now, this causality identification depends

on the vectors of coupling parameters Kkj and Kjk. As an example, the family

F2 (i.e. Kjk =
[
Kpp
jk ,K

fp
jk

]T
= 0) includes three model structures, i.e. M2, M5,

and M6 (see Fig. 2 (c)), in cPBM with one or two element(s) of the vector

Kkj =
[
Kpp
kj ,K

fp
kj

]T
that are non-zero and positive. To decide the most plausible

family in cPBM, the family posterior probability of each family Ff , p (g̃|Ff)

is computed. This posterior probability is equal to the sum of model evidence

p (g̃|Mm) times the prior p (Mm|Ff) [36, 37]:

p (g̃|Ff) =
∑

Mm∈Ff
p (g̃|Mm) p (Mm|Ff) (13)

where the prior p (Mm|Ff) is given as follows (see Fig. 2 (c)):

p (M1|F1) = 1,M1 ∈ F1

p (Mm|F2) = 1
3
, ∀Mm ∈ F2 = {M2,M5,M6}

p (Mm|F3) = 1
3
, ∀Mm ∈ F3 = {M3,M9,M11}

p (Mm|F4) = 1
9
, ∀Mm ∈ F4 = {M4,M7,M8,M10,M12,M13,M14,M15,M16}

(14)

1Although we have referred to the variational scheme as a variational EM algorithm,
technically it is known as Variational Laplace. Variational Laplace is a generic form of
variational Bayes under the Laplace assumption (i.e. under the assumption that the prior and
posterior are Gaussian). This enables one to estimate the posterior expectation and covariance
of both the parameters θ and hyper-parameter vector λ. Please see [34] for details.
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Similar to the logarithm of model evidence, the family free energy, FF f index

which can be defined as lnp (g̃|Ff), is given by:

FFf = lnp (g̃|Ff) = ln
∑

Mm∈Ff
p (g̃|Mm) p (Mm|Ff)

' ln
∑

Mm∈Ff
exp(Fm) + lnp (Mm|Ff)

(15)

where p (g̃|Mm) ' exp(Fm) (see Eq. (11)). Likewise, the best family in cPBM

is identified as the one with the maximum family free energy. The pseudo-code

summarizing spectral DCM algorithm is given in Algorithm 1. Note that, the

variational EM algorithm stops when the convergence condition is met for eight

successive iterations. The convergence condition is fulfilled when the difference

in the estimation of Fm exhibits a value smaller than or equal to a predefined

threshold (2) or a maximum number of iterations (60) is reached.

3.2. Sub-estimation problem

As shown in Fig. 3 (a), the variational EM algorithm in DCM is highly

sensitive to the initialization, so it may lead to a sub-estimation of the free

energy and consequently may lead to a mis-estimation of the optimal model

structure/family.

Algorithm 1 (Spectral) DCM algorithm

(a) Considering the current model structure Mm based on θ
(b) Initialization θ0 = vec

(
[θ0,j ,θ0,k]T

)
, λ0, Σθ0 , Σλ0

(c) Perform the following EM steps:
Repeat until convergence or a maximum number of iterations
E-step: (θ̂,Σθ̂)← argmax

fixed λ,Σλ

Fm(θ̂,λ,Σθ̂,Σλ)

M-step: (λ,Σλ)← argmax
fixed θ̂,Σ

θ̂

Fm(θ̂,λ,Σθ̂,Σλ)

End
Fm = Fm(θ̂,λ,Σθ̂,Σλ)

(d) Turn to next model structure Mm, repeat from step (a)
(e) Model/Family selection to identify the optimal model structure/family
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Figure 3. Scheme of three algorithms to maximize the free energy Fm, under
considering Mm with (a) DCM, (b) L-DCM and (c) D-DCM (β = 0.4, β = 0.6,
β = 0.8 and β = 1) respectively.

3.3. L-DCM

To deal with the sub-estimation problem in DCM, the L-DCM algorithm

employing a local adjustment strategy was proposed in [18], and the scheme of

L-DCM to maximize the free energy is shown in Fig. 3 (b). As indicated in [18],

the sub-estimation, when two populations are considered, relies on a threshold,

Thll =
νbl∑

ν=νal

γ2g̃ll(ν)
2

and a prediction error, Erll =
νbl∑

ν=νal

(
gll

(
ν, θ̂
)
− g̃ll (ν)

)2
,

l ∈ {j, k}, for each population, where g̃ll (ν) and gll

(
ν, θ̂
)

stand for the sample

PSD computed using the SPM spectral toolbox with a 12-pole AR process

[13] and the estimation of the predicted PSD obtained by substituting the

model parameters estimate θ̂ using the variational EM algorithm, respectively.

According to [18], we set γ = 0.1, νal = νml − 10 and νbl = νml + 10 with

νml standing for the frequency bin corresponding to the maximum value of

g̃ll (ν). A good estimation of the PSD gll

(
ν, θ̂
)

is obtained when Erll ≤ Thll,

l ∈ {j, k}. However, in case this inequality is not fulfilled, three possible situations
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can be figured out: situation 1○: Erjj ≤ Thjj , Erkk > Thkk; situation 2○:

Erjj > Thjj , Erkk ≤ Thkk; situation 3○: Erjj > Thjj , Erkk > Thkk. The

L-DCM algorithm proposed in [18] refined the variational EM estimation results

by performing few supplementary well-conditioned variational EM sweeps with

a local adjustment strategy for the initialization. The initial guess for the

(r + 1)-th EM sweep θ
(r+1)
0 = vec

([
θ
(r+1)
0,j ,θ

(r+1)
0,k

]T)
is then locally adjusted,

θ
(r+1)
0 = θ̂(r) + ∆θ, where θ̂(r) = vec

([
θ̂
(r)
j , θ̂

(r)
k

]T)
and ∆θ is a random vector

dropping from zero-mean normal distribution with a predefined variance. By

taking into account (i) the encountered situation (i.e. 1○ or 2○ or 3○) and (ii)

the model structure (i.e. Mm), ∆θ is given as follows:

∆θ =





vec
(
[0,∆θk]

T
)
,∀Mm ∈ {F1,F2} under 1○

vec
(
[∆θj ,0]

T
)
,∀Mm ∈ {F1,F3} under 2○

vec
(
[∆θj ,∆θk]

T
)
, otherwise

(16)

where ∆θj ∼ N
(
0, σ2I

)
and ∆θk ∼ N

(
0, σ2I

)
, I is the identity matrix and

σ2 is a parameter that was empirically set to 0.02. The pseudo-code of L-DCM

algorithm can be seen in Algorithm 2.

Algorithm 2 L-DCM algorithm

(a) Considering the current model structure Mm based on θ

(b) Initialization r = 1, θ
(r)
0 = vec

(
[θ0,j ,θ0,k]T

)
, λ0, Σθ0 , Σλ0

(c) Perform the following EM steps:
Repeat until convergence or a maximum number of iterations
E-step: (θ̂,Σθ̂)← argmax

fixed λ,Σλ

Fm(θ̂,λ,Σθ̂,Σλ)

M-step: (λ,Σλ)← argmax
fixed θ̂,Σ

θ̂

Fm(θ̂,λ,Σθ̂,Σλ)

End
F

(r)
m = Fm(θ̂,λ,Σθ̂,Σλ)

(d) If r <= 6 and situation 1○ or 2○ or 3○ occurs,

Repeat from step (c) by θ
(r+1)
0 = θ̂(r) + ∆θ as a new initial value and r = r + 1;

Otherwise stop
(e) Fm = max{F (r)

m }, r = 1, 2, ..., 6
(f) Turn to next model structure Mm, repeat from step (a)
(g) Model/Family selection to identify the optimal model structure/family
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3.4. D-DCM

Another way to deal with the sub-estimation issue in spectral DCM relies

essentially on a deterministic annealing scheme [38, 39], leading to a new

algorithm called D-DCM hereafter. More precisely, the deterministic annealing

scheme, inspired from the thermodynamic theory, is based on tracking the

optimum of the objective function under consideration from a high temperature

wherein the objective function is smoothed (i.e. it may have one global optimum,

see Fig. 3 (c) β = 0.4) to low temperature wherein the objective function returns

to its initial form (see Fig. 3 (c) β = 1). By introducing a temperature related

parameter, denoted by β (temperature T = 1
β ), the objective function (e.g. the

free energy) Fm in Eq. (12) can be rewritten as:

Fm =

∫
q(θ)lnp(g̃,θ|Mm) dθ − 1

β

∫
q(θ)lnq(θ) dθ (17)

The variational EM algorithm [34] is used to perform such maximization in

spectral DCM framework. In this way, one guarantees a good initialization

through decreasing temperature values (e.g. β varying from very small values

up to 1) as indicated in Fig. 3 (c). The pseudo-code of the D-DCM algorithm

is given in Algorithm 3.

Algorithm 3 D-DCM algorithm

(a) Considering the current model structure Mm based on θ
(b) Set β ← βint (0 < βint < 1)
(c) Initialization θ0 = vec

(
[θ0,j ,θ0,k]T

)
, λ0, Σθ0 , Σλ0

(d) Perform the following EM steps:
Repeat until convergence or a maximum number of iterations
E-step: (θ̂,Σθ̂)← argmax

fixed λ,Σλ

Fm(θ̂,λ,Σθ̂,Σλ, β)

M-step: (λ,Σλ)← argmax
fixed θ̂,Σ

θ̂

Fm(θ̂,λ,Σθ̂,Σλ, β)

End
Fm = Fm(θ̂,λ,Σθ̂,Σλ, β)

(e) βnew = β + const
(f) If βnew <= 1

Repeat from step (d) with θ0 = θ̂ from βnew as a new initial value;
Otherwise stop

(g) Turn to next model structure Mm, repeat from step (a)
(h) Model/Family selection to identify the optimal model structure/family
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4. Results

4.1. Simulations

In a previous study, we have performed a comparative evaluation between the

L-DCM, D-DCM and DCM algorithms in inferring effective connectivity among

epileptic neural populations at the seizure onset using PBM [18]. Hereafter,

the simulated iEEG data are generated using the cPBM. Two connectivity

configurations, the unidirectional and the bidirectional influence, between the

two neural populations are considered. Several model structures can fulfill

unidirectional and bidirectional coupling configurations between two populations

(see Fig. 2 (b)). Therefore, model structures sharing the same coupling pattern

(unidirectional/bidirectional) are considered to belong to the same family as

shown in Fig. 2 (c). Furthermore, two families are also considered: (i) the

family F2 composed of model structures M2, M5 and M6 reflecting unidirectional

coupling from popj to popk (see section 4.1.1) and (ii) the family F4 composed

of model structures M4, M7, M8, M10, M12, M13, M14, M15 and M16 reflecting

bidirectional coupling between the two populations. For simplicity, only M8 and

M16 were used to generate data. These models were taken to be representative

of F4 (see section 4.1.2).

4.1.1. Unidirectional influence

As mentioned previously, the family F2 = {M2,M5,M6} is considered

here. Figs. 4 (a-i), (b-i) and (c-i) show the three different model structures

(corresponding to M2, M5 and M6 respectively) and their related vector θ. Note

that, for each of model structure in F2, we simulated 100 trials of 10-second

length signals by integrating delay differential equations [33] and using Runge-

Kutta 4-th order method to solve Eq. (3) at a sampling frequency of 256 Hz

and the values of the parameters in θ are chosen in such a way that the model

output, y(t), is equivalent to an epileptic iEEG signal with a peak around 25

Hz in its PSD observed at the seizure onset [12, 18]. Fig. 4 (a-c) depicts the

temporal signature of the simulated iEEG and the sample auto/cross PSDs for

M2, M5 and M6, respectively.
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Figure 4. (a-i), (b-i), (c-i): Three ground truths M2, M5 and M6 for unidirectional
influence, the black arrows correspond to excitatory connections, whereas the red arrows
correspond to extrinsic connections that target inhibitory populations, the corresponding
vector θ = vec

(
[θj ,θk]T

)
, where θj =

[
θωe,j , θωs,j , θωf,j , θGe,j , θGs,j , θGf,j , θαpj

, θ
α
f
j

]T
and

θk =
[
θωe,k , θωs,k , θωf,k , θGe,k , θGs,k , θGf,k , θαpk

, θ
α
f
k

, θKpp
kj
, θ
K
fp
kj

]T
. Simulated time signals

displaying epileptic activities (i.e. (a-ii), (b-ii), (c-ii)), corresponding auto PSD amplitudes
(i.e. (a-iii, a-iv),(b-iii, b-iv),(c-iii, c-iv)) and cross PSD amplitudes (i.e. (a-v),(b-v),(c-
v)) for the three ground truths M2, M5 and M6, respectively. The sample PSD, denoted by
g̃n (ν), n ∈ {jj, kk, kj}, is computed from the simulated EEG signals based on the non-linear
model Eq. (1) and the SPM spectral toolbox [13], gn(ν,θ) is the predicted PSD with the

correct θ based on the linearized model Eq. (5), gn
(
ν, θ̂

)
L−DCM

, gn
(
ν, θ̂

)
D−DCM

and

gn
(
ν, θ̂

)
DCM

represent the estimated PSDs with θ̂ (under the optimized model structure)

using L-DCM, D-DCM and DCM respectively. The coefficients of determination R2
L−DCM ,

R2
D−DCM and R2

DCM stand for the measures of the goodness of fit between sample

and estimated PSDs averaged over 100 trials, where R2
κ = 1 −

∑
ν (g̃n(ν)−gn(ν,θ̂)

κ
)
2

var(g̃n(ν))
,

κ ∈ {L−DCM,D −DCM,DCM}.
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Table 3. The four most plausible model structures and model identification using
simulated iEEG signals in the context of unidirectional influence in cPBM, the
values in bold indicate the best performance under the true model structure.

Ground truth Method
The four most plausible model structures

(Model identification count over 100 trials)

M2

L-DCM
M2

(38/100)
M6

(35/100)
M16

(13/100)
M10

(13/100)

D-DCM
M2

(48/100)
M6

(35/100)
M10

(7/100)
M16

(7/100)

DCM
M16

(59/100)
M2

(4/100)
M6

(14/100)
M10

(22/100)

M5

L-DCM
M5

(57/100)
M6

(14/100)
M7

(19/100)
M8

(8/100)

D-DCM
M5

(71/100)
M6

(9/100)
M7

(17/100)
M8

(0/100)

DCM
M5

(76/100)
M6

(6/100)
M7

(14/100)
M8

(4/100)

M6

L-DCM
M6

(87/100)
M2

(0/100)
M8

(12/100)
M10

(0/100)

D-DCM
M6

(99/100)
M2

(0/100)
M10

(0/100)
M12

(0/100)

DCM
M6

(97/100)
M2

(0/100)
M10

(0/100)
M16

(0/100)

Model selection

Table 3 shows the identification rates2 computed over 100 trials for the three

methods in identifying model structures M2, M5 and M6 when these models were

successively considered as a ground truth. For each algorithm and each simulated

model structure, the identification rates of only the four most plausible model

structures among the sixteen structures depicted in Fig. 2 (b) are reported in

this table. Regarding the ground truth M2, both D-DCM and L-DCM algorithms

are able to identify the true model structure (e.g. M2) with identification rates of

48% and 38% respectively. This fact does not hold true for the DCM algorithm

2The identification rate of Mm refers to the degrees of preference of Mm computed over 100
trials. The identifiability of different models was assessed using the Bayesian model comparison
at the group level where the fixed effects analysis was conducted [36]. More precisely, for each
model in a set of plausible sixteen model structures, the median (less prone to outliers than
the mean) of the maximized free energy was computed over 100 trials and then used to define
the confusion matrices (more details are given in Appendix: A).
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where the M16 model structure with an identification rate of 59% is rather

retained than the M2 model structure. As far as ground truth M5 is concerned,

all algorithms are able to identify the true model structure (e.g. M5). However,

the DCM algorithm shows a slight superiority (76%) especially compared to the

D-DCM algorithm (71%). When the true model structure is M6, D-DCM, DCM

and L-DCM algorithms succeed in identifying M6 with identification rates of

99%, 97% and 85%, respectively.

To sum up, false detection in the context of model identification is generally

highly related to a spurious estimation of one or more coupling links between

neural populations under study (more details are presented in section Support

materials S1). For instance, when M2 is the ground truth, estimating M6

instead of M2 for DCM, L-DCM and D-DCM approaches is mainly due to the

fact that estimation errors during the optimization process could lead to some

small non-null value of the coupling parameter Kfp
jk (the red line in Fig. 2 (a)).

To deal with such problem, spurious connections can be removed through a

thresholding step (more details are presented in Appendix: B). On the other

hand, in the case of false detection, one can interestingly note that, even if a

wrong model structure is identified (e.g. M6 instead of M2 in our example),

this structure generally belongs to the same family as the right model structure.

This shows that the algorithms are still able to quantify the direction of coupling

between populations under study (e.g. M6 and M2 belong to the same family

F2, see Fig. 2 (c)) which is the main goal of effective connectivity. Therefore,

resorting to family identification analysis would provide a new insight regarding

the estimation of effective connectivity between the neural populations.

The performance of the three algorithms is also evaluated using the coefficients

of determination R2
L−DCM , R2

D−DCM and R2
DCM , which stand for the measures

of the goodness of fit, computed between the sample and estimated PSDs, as

depicted in Figure 4 (a-c). This figure shows comparable behaviors of the three

algorithms with slight superiority of the L-DCM one, since the L-DCM algorithm

applies a local adjustment strategy based on the estimation errors [18].
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Family selection

As just mentioned, an analysis of family identification could be preferable to

circumvent the false detection encountered in the model identification due to

spurious estimation of coupling parameters. This idea comes from the observation

that some wrong identified model structures belong to the same family as the

target model structure. Since the main goal of effective connectivity is to point

out the influence of one neural population on another one, it could be interesting

to quantify, in addition to model identification, the ability of the algorithms to

identify the correct family. Table 4 shows both the family identification rate and

the execution time (in minutes) over the 100 trials for L-DCM, D-DCM and DCM

methods for the previous ground truths M2, M5 and M6, respectively. According

to this table, the D-DCM algorithm shows higher performance in identifying the

true family (e.g. F2) than the DCM and L-DCM algorithms for M2 and M6.

Table 4. Family selection over 100 trials using simulated iEEG signals in the
context of unidirectional influence in cPBM, the values in bold indicate the best
performance.

Ground truth Method
Family identification count over 100 trials
(Averaged run time over 100 trials (mn))
F1 F2 F3 F4

M2

L-DCM
0/100
(0.4)

73/100
(1.9)

0/100
(1.0)

27/100
(3.4)

D-DCM
0/100
(0.2)

83/100
(1.0)

0/100
(0.9)

17/100
(2.9)

DCM
0/100
(0.1)

18/100
(0.6)

0/100
(0.6)

82/100
(2.0)

M5

L-DCM
0/100
(0.1)

71/100
(0.9)

0/100
(0.4)

29/100
(2.1)

D-DCM
0/100
(0.1)

80/100
(0.5)

0/100
(0.6)

20/100
(2.2)

DCM
0/100
(0.1)

82/100
(0.3)

0/100
(0.3)

18/100
(1.7)

M6

L-DCM
0/100
(0.2)

87/100
(0.8)

0/100
(0.7)

13/100
(2.3)

D-DCM
0/100
(0.1)

99/100
(0.5)

0/100
(0.8)

1/100
(2.5)

DCM
0/100
(0.1)

97/100
(0.4)

0/100
(0.5)

3/100
(1.8)
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Figure 5. Boxplots of the family free energy (FFf , f = 1, 2, 3, 4) values over 100 trials
using L-DCM, D-DCM and DCM for the four families (unidirectional influence) in
cPBM. (a-c): the three ground truths (see Figure 4 (a-i), (b-i), (c-i)) corresponding
to M2, M5 and M6, respectively.

Indeed, for M2, the D-DCM algorithm provides an identification rate of 83%

compared to 73% and 18% for the L-DCM and DCM approaches respectively.

Furthermore, the D-DCM algorithm provides, for M6, an identification rate of

99% compared to 97% and 87% for the DCM and L-DCM approaches respectively.

Regarding ground truth M5, all algorithms succeed in identifying the true family

(e.g. F2 family) with a slight preference for DCM. As far as the computation

time is concerned, both L-DCM and D-DCM algorithms show, as expected,

higher computation time compared to DCM in Table 4. In fact, this higher

computation time is essentially due to the additional EM sweeps in the L-DCM

(see Fig. 3 (b)) and to the adopted deterministic annealing scheme in D-DCM

(see Fig. 3 (c)).

This result is assessed also in terms of the family free energy as depicted

in Fig. 5. According to Fig. 5 (a) for ground truth M2, both L-DCM and

D-DCM approaches show higher family free energies compared to the DCM

algorithm. More particularly, for the true family (e.g. F2), the D-DCM and

L-DCM algorithms provide a higher family evidence than the DCM one. This

figure together with Table 4 highlight the fact that the DCM algorithm suffers

from higher false family identification rate. Regarding the correct model M5 and

M6 in Figs. 5 (b-c), all methods are able to identify the true family F2 with

comparable family identification rates.
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4.1.2. Bidirectional influence

Family F4 comprises all model structures reflecting bidirectional coupling

between popj and popk, as shown in Fig. 2 (c). The performance of L-DCM,

D-DCM and DCM in identifying F4 is evaluated in three different ground truths

presented in Fig. 6 (a-i), (b-i) and (c-i), where the model structure M8 and

two variants of the model structure M16 were used. More precisely, symmetric

extrinsic couplings (e.g. Kpp
jk = Kpp

kj , Kfp
jk = Kfp

kj , see Fig. 6 (b-i) for the values

of the parameters) between the two populations were used giving rise to M16s

and asymmetric extrinsic couplings (e.g.Kpp
jk 6= Kpp

kj , Kfp
jk 6= Kfp

kj , see Fig. 6

(c-i) for the values of the parameters) were used giving rise to M16as. For each

ground truth, 100 trials of 10-second length signals at a sampling frequency of

256 Hz were simulated. The vector of parameters θ in model structure M8 and

M16s is tuned such that the model output, y(t), is a fast sinusoidal activity with

only one peak around 25 Hz (Fig. 6 (a-b)) similar to the epileptic fast activity

[12, 18]. Regarding the symmetric nature of M16s, the vectors of parameters θj

and θk associated to popj and popk, respectively, are effectively equal. However,

these two vectors are not identical in the case of ground truth M16as. In Fig. 6

(c) we represent, under M16as configuration, the epileptic-like activity y(t), the

auto (cross) PSDs of the two populations displaying two peaks (around 20 Hz

and 28 Hz), similar to possible epileptic activity at the seizure onset.

Model selection

Table 5 gives the four most plausible model structures and the model

identification rate over 100 Monte Carlo trials for the bidirectional influence

under the three ground truths M8, M16s and M16as, respectively. According

to this table, all techniques globally succeed in identifying the correct model

structure. Furthermore, L-DCM outperforms D-DCM and DCM in the ground

truth M8 (85% identification rate vs 80% and 79% respectively) whereas the

D-DCM approach outperforms DCM and L-DCM in the ground truth M16s

(96% identification rate vs 94% and 80% respectively). Finally, all methods can

identify M16 with a 100% identification rate in the ground truth M16as. More
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Figure 6. (a-i), (b-i), (c-i): Three ground truths M8, M16s and M16as for bidirectional
influence, the black arrows correspond to excitatory connections, whereas the red arrows
correspond to extrinsic connections that target inhibitory populations, the corresponding vector
θ = vec

(
[θj ,θk]T

)
, where θj =

[
θωe,j , θωs,j , θωf,j , θGe,j , θGs,j , θGf,j , θαpj

, θ
α
f
j
, θKpp

jk
, θ
K
fp
jk

]T

and θk =
[
θωe,k , θωs,k , θωf,k , θGe,k , θGs,k , θGf,k , θαpk

, θ
α
f
k

, θKpp
kj
, θ
K
fp
kj

]T
. Simulated time

signals displaying epileptic activities (i.e. (a-ii), (b-ii), (c-ii)), corresponding auto PSD
amplitudes (i.e. (a-iii, a-iv),(b-iii, b-iv),(c-iii, c-iv)) and cross PSD amplitudes (i.e. (a-
v),(b-v),(c-v)) for the three ground truths M8, M16s and M16as, respectively. The sample
PSD, denoted by g̃n (ν), n ∈ {jj, kk, kj}, is computed from the simulated EEG signals based on
the non-linear model Eq. (1) and the SPM spectral toolbox [13], gn(ν,θ) is the predicted PSD

with the correct θ based on the linearized model Eq. (5), gn
(
ν, θ̂

)
L−DCM

, gn
(
ν, θ̂

)
D−DCM

and gn
(
ν, θ̂

)
DCM

represent the estimated PSDs with θ̂ (under the optimized model structure)

using L-DCM, D-DCM and DCM respectively. The coefficients of determination R2
L−DCM ,

R2
D−DCM and R2

DCM stand for the measures of the goodness of fit between sample

and estimated PSDs averaged over 100 trials, where R2
κ = 1 −

∑
ν (g̃n(ν)−gn(ν,θ̂)κ)

2

var(g̃n(ν))
,

κ ∈ {L−DCM,D −DCM,DCM}.
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Table 5. The four most plausible model structures and model identification
using simulated iEEG signals in the context of bidirectional influence in cPBM.
M16s: symmetrical structure. M16as: asymmetrical structure, the values in bold
indicate the best performance under the true model structure.

Ground truth Method
The four most plausible model structures

(Model identification count over 100 trials)

M8

L-DCM
M8

(85/100)
M16

(14/100)
M12

(1/100)
M2

(0/100)

D-DCM
M8

(80/100)
M16

(19/100)
M12

(1/100)
M6

(0/100)

DCM
M8

(79/100)
M16

(21/100)
M12

(0/100)
M6

(0/100)

M16s

L-DCM
M16

(80/100)
M8

(11/100)
M12

(9/100)
M6

(0/100)

D-DCM
M16

(96/100)
M8

(2/100)
M12

(2/100)
M6

(0/100)

DCM
M16

(94/100)
M12

(1/100)
M8

(5/100)
M6

(0/100)

M16as

L-DCM
M16

(100/100)
M10

(0/100)
M14

(0/100)
M15

(0/100)

D-DCM
M16

(100/100)
M10

(0/100)
M4

(0/100)
M14

(0/100)

DCM
M16

(100/100)
M10

(0/100)
M14

(0/100)
M15

(0/100)

details are presented in section Support materials S2. Moreover, in terms

of PSD estimation, all methods show again good estimation accuracy which is

clearly assessed by the obtained coefficients of determination depicted in Fig. 6

(a-c).

Family selection

Regarding the family selection and the averaged execution time for each

family over 100 trials, they are displayed in Table 6. All techniques perfectly

identify the correct family. Furthermore, Fig. 7 depicts the boxplots of family

free energy over the 100 trials using the three methods. Clearly, the maximal

median of the family free energy is globally obtained for F4 whatever the method

and the ground truth. Furthermore, D-DCM show relatively higher boxplots of

family free energy than L-DCM and DCM for all ground truths and families. Let
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Table 6. Family selection over 100 trials using simulated iEEG signals in the
context of bidirectional influence in cPBM, the values in bold indicate the best
performance.

Ground truth Method
Family identification count over 100 trials
(Averaged run time over 100 trials (mn))
F1 F2 F3 F4

M8

L-DCM
0/100
(0.2)

0/100
(0.7)

0/100
(0.8)

100/100
(2.4)

D-DCM
0/100
(0.2)

0/100
(0.7)

0/100
(0.8)

100/100
(2.6)

DCM
0/100
(0.1)

0/100
(0.4)

0/100
(0.5)

100/100
(1.8)

M16s

L-DCM
0/100
(0.3)

0/100
(0.8)

0/100
(0.8)

100/100
(2.8)

D-DCM
0/100
(0.2)

0/100
(0.7)

0/100
(0.7)

100/100
(2.4)

DCM
0/100
(0.1)

0/100
(0.5)

0/100
(0.5)

100/100
(1.7)

M16as

L-DCM
0/100
(0.1)

0/100
(0.7)

0/100
(0.8)

100/100
(2.4)

D-DCM
0/100
(0.1)

0/100
(0.6)

0/100
(0.6)

100/100
(2.2)

DCM
0/100
(0.1)

0/100
(0.4)

0/100
(0.5)

100/100
(1.6)
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Figure 7. Boxplots of the family free energy (FFf , f = 1, 2, 3, 4) values over 100
trials using L-DCM, D-DCM and DCM for the four families (bidirectional influence) in
cPBM. (a-c): the three ground truths (see Figure 6 (a-i), (b-i), (c-i)) corresponding
to M8, M16s and M16as, respectively.

us note that the boxplots of FF2 and FF3 are almost the same due to symmetric

model structure (i.e. θj = θk for M16s) for all methods as shown in Fig. 7 (b).
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4.2. Real iEEG signals

Our purpose is to detect brain regions responsible for the seizure onset and

effective connectivity consists in inferring the directional flow between brain

regions. In this study, iEEG signals were recorded in an epileptic patient in

the Centre Hospitalier Universitaire in Rennes. Two particular channels were

selected by the clinician: the Pp4 channel, whose activity was confirmed to be

part of the seizure onset zone and the Dp1 channel, corresponding to a less

epileptogenic region triggered in the seizure. It is worth mentioning that the

bipolar signal derived from channel Pp4 (obtained as the difference between Pp4

and Pp5) was associated with the output yj(t) of population popj whereas the

bipolar signal derived from channel Dp1 (obtained as the difference between

Dp1 and Dp2) was assigned with the output yk(t) of population popk. Effective

connectivity based on PBM, where the simulations were already investigated

in [18], and cPBM between these two bipolar signals was evaluated for the first

part of the ictal phase (22 ∼ 46s) where channel Pp4 showed a fast onset activity

(see Fig. 8 (a)). The segment for each scenario was partitioned using 2s length

sliding windows without any overlap. Each windowed signal segment of 2s length

was normalized and used to calculate the sample PSD, G̃(ν). A unidirectional

connectivity from Pp4 to Dp1 in the ictal phase could be considered as ground

truth according to the clinician. Therefore, the model structure M2 in PBM or

family F2 (i.e. M2, M5, M6) in cPBM stands for the ground truth based on

clinical expertise, as indicated in Fig. 8 (b).

Regarding the model/family selection, under the cPBM model, L-DCM, D-

DCM and DCM methods identify M5 as the optimal model structure underlying

the observed iEEG signals as shown in Support materials S3. In terms of the

maximized free energy and the family free energy depicted in Fig. 9 (a-b), all

methods point to a causal effect from popj to popk (M2 for Fig. 9 (a) and F2

for Fig. 9 (b)) whatever the NMM (e.g. PBM or cPBM).

Regarding the coefficients of determination between the sample and estimated

PSDs and considering the estimated PSD of popj as given in Fig. 8 (c-i) (d-i),

under the cPBM framework, a higher estimation quality is obtained for the
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Figure 8. (a): Two iEEG signals with a seizure onset up to 24s in channels
yj(t) and yk(t) from 22s to 46s in the ictal phase. Each channel corresponds to
a bipolar iEEG signal. (b): Prior information provided by the clinical expertise.
Results corresponding to PBM (c-i, c-ii, c-iii) and cPBM (d-i, d-ii, d-iii) in
terms of the sample and estimated auto/cross PSD amplitudes together with
their coefficients of determination R2.
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Figure 9. (a): Boxplots of the maximized free energy for the four model
structures in PBM. (b): Boxplots of the family free energy for the four families
in cPBM.
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three algorithms (R2
D−DCM =0.7401, R2

L−DCM =0.7152 and R2
DCM =0.5769)

compared to the case of PBM framework (R2
D−DCM = -1.8809, R2

L−DCM =-

1.7175 and R2
DCM =-1.8525). This is due to the fact that, under PBM framework,

no method is able to reproduce a PSD with two peaks (around 22 Hz and 44 Hz)

corresponding to the sample PSD computed from the observed iEEG signals.

On the contrary, the cPBM allows to recover two peaks in the PSD whatever

the method, this PSD being close to the sample one. We can also observe

that, in the case of cPBM, the D-DCM method provides the best performance

in the population popj , as shown in Fig. 8 (d-i). Regarding the estimated

PSD of popk, we also note from Fig. 8 (c-ii)(d-ii) that all methods show good

estimation accuracy under cPBM (R2
L−DCM = 0.9977, R2

D−DCM =0.9975 and

R2
DCM =0.9967), compared to PBM (R2

L−DCM = 0.9623, R2
D−DCM =0.9565

and R2
D−DCM =0.9368).

Regarding the execution time shown in Table 7, all methods show, as expected,

an execution time that is considerably smaller under the cPBM compared to

the PBM. Around 65%, 61% and 41% of averaged execution time is saved for

L-DCM, D-DCM and DCM, under the assumption of cPBM compared to the

case of PBM. This is due to the fact that, contrary to PBM, the equilibrium

point for =(θ) in Eq. (5) in cPBM to derive the estimated PSD during the

optimization process does not need to be computed. This is since both the

sigmoid function and the population inputs are centered in cPBM. Consequently,

cPBM provides a faster model inversion than PBM even if the number of model

parameters and model structures are higher in cPBM compared to PBM.

Table 7. Averaged execution time for all model structures over all windows (mn)
for PBM and cPBM, NMM: neural mass model.

NMM
Method

L-DCM D-DCM DCM

PBM 10.49 12.25 5.73
cPBM 3.70 4.75 3.36
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5. Discussion

5.1. Conclusions

We attempted to contribute to the analysis of brain effective connectivity in

the context of drug-resistant epilepsy in the framework of neural mass models.

This work focused on the model structures used to simulate intracranial epileptic

activities similar to the ones observed at the seizure onset, and more particularly

on the fast activity around 25Hz (sinusoidal dynamics) [12].

Regarding the simulated iEEG signals using cPBM, the D-DCM algorithm

showed some superiority in terms of identification when an extrinsic coupling

from the pyramidal cells to the slow inhibitory interneurons exists (case of

unidirectional influence) between two populations. In the case of bidirectional

coupling, the three techniques we presented, performed well. The D-DCM and

L-DCM algorithms outperformed DCM in terms of maximizing the free energy

in cPBM, with a slight superiority in favour of D-DCM over L-DCM.

Regarding the real epileptic signals, the analysis was conducted on a couple of

iEEG channels. Results showed that the potential causal influence was properly

identified using either PBM or cPBM. Compared to PBM, cPBM offered a lower

computational complexity since computing the equilibrium point was not any

more required. This leaded to a faster model inversion even if the number of

model parameters and model structures was relatively high. Moreover, the cPBM

provided a more expressive model of PSDs and a better estimation accuracy

compared to PBM as already stated in our obtained results on real epileptic

iEEG signals.

5.2. Limitations

Clearly, there are still some issues that we have not addressed in this

paper. Firstly, the D-DCM approach can be improved by incorporating a

local adjustment initialization strategy as the one in L-DCM. Secondly, our

study only concerned the causal coupling between two neural populations and

it would be interesting to extend the L-DCM and D-DCM methods to the

33

                  



case of several coupled neural populations or larger network implementations

since potentially more than two distant populations can be involved in the

seizure initiation. Let us note that the scalability of the cPBM model for

larger network implementations may be probably solved by the Baysian model

reduction [40]. In addition to the direct coupling between several coupled neural

populations, identifying indirect causal coupling could also improve effective

connectivity inference. Finally, since epileptic seizures are patient-dependent,

the performance of the L-DCM and D-DCM algorithms should be assessed by

an extensive study using a larger dataset. A comparison to other methods, such

as Granger Causality [41], transfer entropy [42] and DCM approaches could also

be investigated. However, these different types of approaches do not address the

same causality concept and are still disputed.
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Appendix A: confusion matrices

Bayesian model comparison at the group level [37] can be also performed

using the confusion matrix where the evidence of the sixteen model structures

that has been used to invert the different datasets generated using the six model

structures (e.g. M2, M5, M6, M8, M16s and M16as) is reported. To this end,

three confusion matrices, one per method, were generated and illustrated in

Fig. 10. Each entry of these matrices is the median of the maximized free

energy computed over 100 trials. From this figure, we observed that the three

methods can select the correct model structure except that the DCM method

which selected M16 whereas the ground truth was M2.

 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 

M2 -465 7121 48 -637 -470 6982 51 -615 -467 6404 32 -780 -162 83 -616 6513 

M5 -416 464 -453 -504 8281 8152 7833 7334 125 99 128 117 498 -718 -718 572 

M6 -313 7972 84 -563 409 9041 377 7893 -336 6984 117 637 -11 -654 63 646 

M8 -28 8864 747 -241 -33 881 670 11461 -33 859 745 9513 147 171 467 10812 

M16s -116 821 815 -37 58 8254 775 10502 -114 781 818 10473 118 497 505 11031 

M16as -281 -171 -199 -20 -49 -105 -5 -126 -73 8462 -80 -228 -372 553 154 11281 

(a) 

 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 

M2 -458 7361 112 -614 -463 7062 120 -580 -460 6193 111 -555 135 140 -226 6154 

M5 -408 455 -408 -304 8521 8452 7813 6874 172 163 173 161 -382 -676 -676 498 

M6 -306 7642 178 -380 483 9271 442 610 -308 7313 163 6614 241 -602 261 625 

M8 -22 900 768 -208 -23 9074 752 11491 -28 903 763 10143 501 -13 545 11312 

M16s -110 826 823 34 30 8364 794 10412 -107 795 830 10333 483 567 563 11421 

M16as -266 -139 -179 1933 -46 -92 5 -80 -63 5382 -66 -74 -257 1284 88 11321 

(b) 

 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 

M2 -505 3712 2 -944 -591 3653 -56 -817 -590 3584 7 -842 -259 -479 -629 4361 

M5 -419 340 -480 -543 8231 7962 7593 7324 125 99 128 116 -429 -718 -718 405 

M6 -316 7512 70 -570 409 8961 377 535 -386 6613 -184 592 -22 -654 45 6284 

M8 -48 783 672 -360 -101 7874 658 11061 -116 758 658 9343 144 170 288 10802 

M16s -138 728 720 -37 -10 7264 713 9963 -196 715 724 10032 117 230 224 10971 

M16as -281 -179 -202 -34 -74 -126 -159 -302 -106 5842 -103 -228 -377 553 134 11061 

(c) 

 

Figure 10. The confusion matrices for (a) L-DCM (b) D-DCM and (c) DCM,
respectively. Each value in these matrices corresponds to the median of the
maximized free energy over 100 trials. Entries in green and bold refer to the
identified model structure for methods L-DCM, D-DCM and DCM, respectively.
The superscript number indicates the four most plausible model structures for
each method and each ground truth as given in Tables 3 and 5.
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Appendix B: thresholding for removing spurious connections

To deal with potential false detections induced by the small non-null value(s)

of the coupling parameter(s), a thresholding based post-processing step is adopted.

This means that, if one/some of the estimated parameter(s) exp(θ̂Kpp
kj

), exp(θ̂Kpp
kj

),

exp(θ̂Kpp
kj

) and exp(θ̂Kpp
kj

) is/are less than a pre-defined threshold parameter φ,

it/they is/are set to 0. This can potentially lead to define another model structure

and consequently modify its identification rate as shown in Tables 8 and 9, where

several threshold values (e.g. φ ∈ {0, 0.05, 0.1, 0.15}) are considered. From the

above two tables, we can observe that: (1) in the case of unidirectional flow, the

model identification rate of the correct model structure is increased when the

value of the threshold φ is increased as well regardless the considered method.

It results in a decreased false detection rate. Regarding the case of bidirectional

flow, no significant improvement in the model identification rate can be observed

Table 8. The identification rates of the identified model structure (according to
Fig. 10) using simulated iEEG signals under six ground truths over 100 trials.
The values in bold indicate the best performance.

Ground
truth

Method Mm
Model identification count over 100 trials
φ = 0 φ = 0.05 φ = 0.1 φ = 0.15

M2
L-DCM M2 38/100 51/100 62/100 75/100
D-DCM M2 48/100 60/100 67/100 81/100
DCM M16 59/100 59/100 58/100 44/100

M5
L-DCM M5 57/100 66/100 79/100 91/100
D-DCM M5 71/100 73/100 83/100 91/100
DCM M5 76/100 76/100 81/100 92/100

M6
L-DCM M6 87/100 91/100 95/100 99/100
D-DCM M6 99/100 99/100 100/100 100/100
DCM M6 97/100 97/100 98/100 100/100

M8
L-DCM M8 85/100 85/100 85/100 86/100
D-DCM M8 80/100 80/100 81/100 81/100
DCM M8 79/100 79/100 79/100 82/100

M16s

L-DCM M16 80/100 80/100 80/100 80/100
D-DCM M16 96/100 96/100 96/100 96/100
DCM M16 94/100 94/100 94/100 94/100

M16as

L-DCM M16 100/100 100/100 100/100 100/100
D-DCM M16 100/100 100/100 100/100 100/100
DCM M16 100/100 100/100 100/100 100/100
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Table 9. The identification rates of the second plausible model structure
(according to Fig. 10) using simulated iEEG signals under six ground truths
over 100 trials. The values in bold indicate the best performance.

Ground
truth

Method Mm
Model identification count over 100 trials
φ = 0 φ = 0.05 φ = 0.1 φ = 0.15

M2
L-DCM M6 35/100 33/100 24/100 11/100
D-DCM M6 35/100 30/100 23/100 10/100
DCM M2 4/100 17/100 31/100 37/100

M5
L-DCM M6 14/100 11/100 6/100 5/100
D-DCM M6 9/100 8/100 7/100 4/100
DCM M6 6/100 6/100 6/100 5/100

M6
L-DCM M2 0/100 0/100 0/100 0/100
D-DCM M2 0/100 0/100 0/100 0/100
DCM M2 0/100 0/100 0/100 0/100

M8
L-DCM M16 14/100 14/100 14/100 13/100
D-DCM M16 19/100 19/100 18/100 17/100
DCM M16 21/100 21/100 21/100 19/100

M16s

L-DCM M8 11/100 11/100 11/100 11/100
D-DCM M8 2/100 2/100 2/100 2/100
DCM M12 1/100 1/100 1/100 1/100

M16as

L-DCM M10 0/100 0/100 0/100 0/100
D-DCM M10 0/100 0/100 0/100 0/100
DCM M10 0/100 0/100 0/100 0/100

whatever the threshold value. (2) The D-DCM algorithm shows a higher model

identification rate compared to the DCM and the L-DCM ones in the cases

where M2, M6 and M16s are considered as ground truths and also whatever the

threshold value. Besides, regarding the case where M8 is the ground truth, the

superiority of L-DCM over DCM and D-DCM are also to be noticed whatever

the value of φ.
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Support materials

S1: Bayesian model comparison for unidirectional influence

These results for Table 3 can be interpreted in terms of the median (less prone

to outliers than the mean) of the maximized free energy depicted in Figs. 11, 12

and 13. For instance, regarding the L-DCM and D-DCM algorithms, a relatively

higher false model identification rate occurred when the ground truth is M2, as

expected. This is mainly due to the fact that the difference between the median

of the maximized free energy of M6, M10 or M16 models and the one of the M2

one is significantly small (see Fig. 11). Now, the DCM shows higher false model

identification rate compared to the L-DCM and D-DCM methods. This can be

interpreted by the highest median of the maximized free energy obtained for the

M16 model. Regarding the correct model M5, as the medians of the maximized

free energy of models M5, M6, M7 and M8 are to some extent comparable (see

Fig. 12), with slight superiority for M5, some false model identification can occur

for the three algorithms. As far as the ground truth M6 is concerned, Table 3

clearly shows very high performance in terms of detection rate, especially for

D-DCM (99%) and DCM (97%). These results can also be interpreted in terms

of the median of the maximized free energy depicted in Fig. 13. According to

this figure, the median of the maximized free energy obtained for identifying

the correct model, M6, for D-DCM and DCM algorithms, is significantly higher

than the ones related to the other model structures. Consequently, a very low

false detection rate for these algorithms is expected.

As relatively high false detection rate is to some extent problematic,

investigating the model evidence, p(g̃|Mm), would help to complete the whole

scene regarding the ability of each algorithm in identifying the model structure.

This model evidence is nothing else than the model posterior probability under

flat prior and Mm [40]. This quantity is computed via the softmax function

of the median of the maximized free energy computed over the 100 conducted

trials, that means: p(g̃|Mm) = exp(F̃m)∑16
i=1 exp(F̃i)

where F̃i denotes the median of

the maximized free energy associated to the model structure Mi. It is clear
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from Figs. 11, 12 and 13 that the model evidence measure allows for a global

quantification of the ability of the different algorithms in identifying the correct

model structure except in ground truth M2 where M16 is identified using DCM.
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Figure 11. Bayesian model comparison in terms of the median of maximized
free energy over 100 trials and the model posterior probability using (a-b) L-
DCM, (c-d) D-DCM and (e-f) DCM for the ground truth M2 in the context of
unidirectional influence.
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Figure 12. Bayesian model comparison in terms of the median of maximized free
energy over 100 trials and the model posterior probability using (a-b) L-DCM, (c-d)
D-DCM and (e-f) DCM for the ground truth M5 in the context of unidirectional
influence.
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Figure 13. Bayesian model comparison in terms of the median of maximized free
energy over 100 trials and the model posterior probability using (a-b) L-DCM, (c-d)
D-DCM and (e-f) DCM for the ground truth M6 in the context of unidirectional
influence.
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S2: Bayesian model comparison for bidirectional influence

The results for Table 5 can be furthermore interpretable in Figs. 14, 15

and 16, which show the results of model selection based on the median of the

maximized free energy over 100 Monte Carlo trials corresponding to ground

truths M8, M16s and M16as respectively. Clearly, the correct model structure

can be identified with almost 100% model posterior probability by all techniques

as shown in these figures. As shown in Fig. 14, on the one hand, the gap on

the median of the maximized free energy between the optimal model structure

M8 and the model structure M16 (the model structure giving the second more

important free energy among the 16 model structures) is small (< 30 for D-DCM

and DCM) leading to the false detection of model structure (M16). On the

other hand, this gap is slightly higher for L-DCM than for D-DCM and DCM,

leading to a reduced false detection rate of M16 for L-DCM (14% vs 19% and

21% respectively), as shown in Table 5. A quite comparable behaviour of the

three algorithms can be observed in the ground truth M16s (see Fig. 15), such

that the gap on the median of the maximized free energy between the optimal

model structure M16 and the model structure M8 (resp. M12) (the two model

structures giving the second and third more important free energies among the

16 model structures) is small, this gap between M16 and M8 (resp. M12) is

slightly higher for D-DCM than for DCM and L-DCM, leading to a reduced

false detection rate of M8 (resp. M12) for D-DCM, DCM and L-DCM i.e. 2%

vs 5% and 11% respectively (resp. 2% vs 1% and 9% respectively) as displayed

in Table 5. Furthermore, as depicted in Fig. 16 where model structure M16as

stands for the ground truth, the gap on the median of the maximized free energy

between the optimal model structure M16 and the model structure M10 (the

model structure giving the second more important free energy among the 16

model structures in this situation) is significant (higher than 270) whatever the

method. The optimal model structure (M16) has a greater model posterior

probability than any other model structure, so that 100% model identification

rate is obtained by all techniques in this case (see Table 5).
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Figure 14. Bayesian model comparison in terms of the median of maximized free energy
over 100 trials and the model posterior probability using (a-b) L-DCM, (c-d) D-DCM
and (e-f) DCM for the ground truth M8 in the context of bidirectional influence.
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Figure 15. Bayesian model comparison in terms of the median of maximized free
energy over 100 trials and the model posterior probability using (a-b) L-DCM, (c-d)
D-DCM and (e-f) DCM for the ground truth M16s in the context of bidirectional
influence.
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Figure 16. Bayesian model comparison in terms of the median of maximized free
energy over 100 trials and the model posterior probability using (a-b) L-DCM, (c-d)
D-DCM and (e-f) DCM for the ground truth M16s is the ground truth) in the context
of bidirectional influence.
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S3: Bayesian model comparison for real signals

Model selection in terms of the median of the maximized free energy over 12

trials in ictal phase is given in Fig 17 for cPBM. All methods provide almost

100% model evidence to identify M5 as depicted in Fig. 17 based on the median

of maximized free energy.
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Figure 17. Bayesian model comparison in terms of the median of maximized free
energy over 12 trials and the model posterior probability using (a-b) L-DCM, (c-d)
D-DCM and (e-f) DCM for the Ictal phase in the context of real signals.
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