EV-GAN: Simulation of extreme events with ReLU neural networks

Michaël Allouche Stéphane Girard Emmanuel Gobet

EcoSta2022

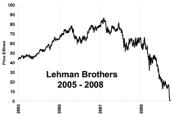
2022, June 4th

https://hal.archives-ouvertes.fr/hal-03250663

To be published in Journal of Machine Learning Research (JMLR)

Motivations

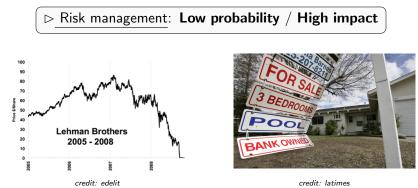
 \vartriangleright Risk management: Low probability / High impact



credit: edelit

credit: latimes

Motivations



▷ Existing methods (IS,MCMC,IPS) work well but **high complexity cost**

Motivations

▷ Existing methods (IS,MCMC,IPS) work well but **high complexity cost**

Focus on new paradigm of data-based generative models trained on

- Dataset (historical financial returns)
- Black-box model (meteorological model)

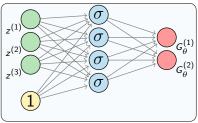
+ Fast simulation - Few extreme data

Generative model

If X denotes the r.v. taking values in some space $\mathcal{X} \subseteq \mathbb{R}^d$ from which we have observations $(X_1, \ldots, X_n, \ldots)$, the problem is to find a function $G : \mathbb{R}^{d'} \to \mathcal{X}$ and a **latent probability distribution** π on $\mathbb{R}^{d'}$ such that

 $X \stackrel{\mathrm{d}}{=} G(Z)$ and $Z \sim \pi$

Existence: see the Kuratowski's Theorem **Questions:** which π ? which d' ? how to approximate G ? **Learning** G: Generative Adversarial Networks (GANs) [Goodfellow et al., 2014]



$$G_{\theta}^{(m)}\left(z^{(1)},\ldots,z^{(d')}\right) = \sum_{j=1}^{J} a_{j}^{(m)}\sigma\left(\sum_{i=1}^{d'} w_{j}^{(i)}z^{(i)} + b_{j}\right), \quad (1)$$

for $m = \{1,\ldots,d\}$ and

 $\sigma(x) = \max(x, 0)$: ReLU function

Generator with d' = 3 and d = 2

Extreme-value theory

Let X be a r.v. with a continuous and strictly increasing c.d.f. F, and its associated quantile function $q(u) := \inf \{x : F(x) \ge u\}$

(H₁): The distribution is supposed **heavy-tailed**, *i.e.* the survival function $\bar{F} := 1 - F$ is **regularly varying** with index $-1/\gamma$, $\bar{F} \in \mathcal{RV}_{-1/\gamma}$:

$$\overline{F}(x) = x^{-\frac{1}{\gamma}}\ell(x), \quad x > 0,$$

where

- $\gamma > 0$ is called the **tail-index**; thus *F* is said to belong to the Fréchet Maximum domain of attraction, $F \in MDA(Fréchet)$
- ℓ is a slowly-varying function, $\ell \in \mathcal{RV}_0$:

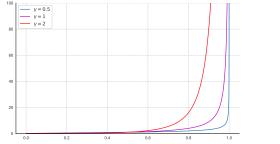
$$\frac{\ell(\lambda x)}{\ell(x)} \to 1, \text{ as } x \to \infty \text{ for all } \lambda > 0 \tag{2}$$

 \Rightarrow As a consequence [de Haan and Ferreira, 2006, Proposition B.1.9.9]

 $t\mapsto q(1-1/t)\in \mathcal{RV}_\gamma, \quad t>1$

Problem Statement

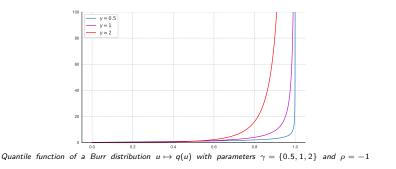
<u>**Goal:**</u> Approximate a quantile function $q(1 - 1/\cdot) \in \mathcal{RV}_{\gamma}, \gamma > 0$, for extreme level $u \in [0, 1)$ as $u \to 1$ with a generative one hidden layer neural network G



Quantile function of a Burr distribution $u \mapsto q(u)$ with parameters $\gamma = \{0.5, 1, 2\}$ and $\rho = -1$

Problem Statement

<u>Goal</u>: Approximate a quantile function $q(1 - 1/\cdot) \in \mathcal{RV}_{\gamma}, \gamma > 0$, for extreme level $u \in [0, 1)$ as $u \to 1$ with a generative one hidden layer neural network G



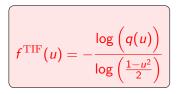
Problem:

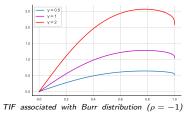
 \rhd The Universal Approximation Theorem [Cybenko, 1989] holds for continuous functions in a **compact set**

 \triangleright If Z is either bounded or a Gaussian vector: by no means $G_{\theta}(Z) \stackrel{d}{=} X$

Solution

1. Find a Tail-index function **(TIF)** f^{TIF} **continuous** and **bounded** on [0, 1] for all **heavy-tailed** distributions s.t. $f^{\text{TIF}}(u) \rightarrow \gamma$ as $u \rightarrow 1$





Solution

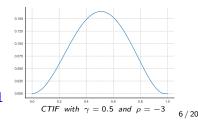
1. Find a Tail-index function (**TIF**) f^{TIF} continuous and bounded on [0, 1] for all heavy-tailed distributions s.t. $f^{\text{TIF}}(u) \rightarrow \gamma$ as $u \rightarrow 1$

TIF associated with Burr distribution (ho=-1)

2. For better approximation, find a Correction TIF (CTIF)

$$f^{\mathrm{CTIF}}(u) = f^{\mathrm{TIF}}(u) - \sum_{k=1}^{6} \kappa_k e_k(u)$$

which enjoys higher regularity around u = 1



Tail-index function (TIF)

 \triangleright Consider d' = d = 1. Since $q(1 - 1/\cdot) \in \mathcal{RV}_{\gamma}$, then

$$q(u)=(1-u)^{-\gamma}L\left(rac{1}{1-u}
ight),\quad u\in(0,1),\ L\in\mathcal{RV}_0.$$

 \triangleright Taking the log yields

$$\log q(u) = -\gamma \log(1-u)(1+o(1)), \quad \text{as } u \to 1,$$

since $\log L(v)/\log v \to 0$ as $v \to \infty$ [Bingham et al., 1987, Proposition 1.3.6].

 \triangleright Noting that $\log((1-u^2)/2) = \log(1-u)(1+o(1))$ as $u \to 1$, define

$$f^{ ext{TIF}}(u) := -rac{\logig(q(u)ig)}{\logig(rac{1-u^2}{2}ig)}$$

Second-order condition

Karamata representation([de Haan and Ferreira, 2006, Definition B 1.6]). The function $L \in \mathcal{RV}_0$ if and only if L can be written as

$$L(x) = c(x) \exp\left(\int_{1}^{x} \frac{\varepsilon(t)}{t} dt\right),$$

where $c(x) \to c_{\infty}$ and $\varepsilon(x) \to 0$ as $x \to \infty$.

Second-order condition

Karamata representation([de Haan and Ferreira, 2006, Definition B 1.6]). The function $L \in \mathcal{RV}_0$ if and only if L can be written as

$$L(x) = c(x) \exp\left(\int_{1}^{x} \frac{\varepsilon(t)}{t} dt\right),$$

where $c(x) \to c_{\infty}$ and $\varepsilon(x) \to 0$ as $x \to \infty$.

(H₂): $c(x) = c_{\infty}$ for all $x \ge 1$ and $\varepsilon(x) = x^{\rho}\ell(x)$ with $\ell \in \mathcal{RV}_0$ and $\rho < 0$ is referred to the second-order parameter

Second-order condition

Karamata representation([de Haan and Ferreira, 2006, Definition B 1.6]). The function $L \in \mathcal{RV}_0$ if and only if L can be written as

$$L(x) = c(x) \exp\left(\int_{1}^{x} \frac{\varepsilon(t)}{t} dt\right),$$

where $c(x) \to c_{\infty}$ and $\varepsilon(x) \to 0$ as $x \to \infty$.

(H₂): $c(x) = c_{\infty}$ for all $x \ge 1$ and $\varepsilon(x) = x^{\rho}\ell(x)$ with $\ell \in \mathcal{RV}_0$ and $\rho < 0$ is referred to the **second-order parameter**

As a consequence:

- F satisfies the second-order condition
- L is normalized and it ensures its differentiability

TIF - First derivative

Proposition

Assume (H₁) and (H₂) hold. Then, $f^{\rm TIF}$ is continuously differentiable on (0,1) and

$$\partial_{u} f^{\mathrm{TIF}}(0) = c',$$

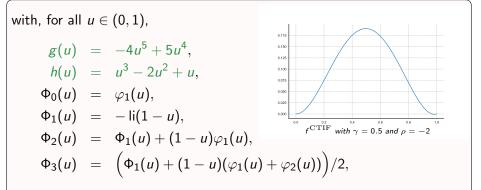
$$\partial_{u} f^{\mathrm{TIF}}(u) = \sum_{j=0}^{3} c_{j} \varphi_{j}(u) - \frac{\varepsilon \left(\frac{1}{(1-u)}\right)}{(1-u) \log(1-u)} (1+o(1)) + \mathcal{O}\left(\frac{(1-u)}{\log(1-u)}\right)$$

as $u \to 1$, where c', c_{1}, \dots, c_{3} are constants and

$$\varphi_{0}(u) = \frac{1}{(1-u) (\log(1-u))^{2}} \text{ and } \varphi_{j}(u) = \frac{1}{(\log(1-u))^{j}}, j = 1, 2, 3$$

Correction TIF (CTIF)

$$f^{\mathrm{CTIF}}(u) := f^{\mathrm{TIF}}(u) - g(u) \sum_{j=0}^{3} c_j \Phi_j(u) - \gamma g(u) - \partial_u f^{\mathrm{TIF}}(0) h(u),$$



with the logarithmic integral function $li(x) := \int_0^x \frac{1}{\log(t)} dt$.

CTIF - Second derivative

 (\mathbf{H}_3) : ℓ is normalized.

CTIF - Second derivative

 (H_3) : ℓ is normalized.

As a consequence:

• ℓ is differentiable on (0, 1)

• L and q are twice differentiable on (0,1)

CTIF - Second derivative

 (H_3) : ℓ is normalized.

As a consequence:

- ℓ is differentiable on (0, 1)
- L and q are twice differentiable on (0,1)

Proposition (part 1)

(i) If (\textbf{H}_1) holds, then

$$\lim_{u\to 0} f^{\mathrm{CTIF}}(u) = \lim_{u\to 1} f^{\mathrm{CTIF}}(u) = 0.$$

(ii) If, moreover, (H_2) holds with $\rho < -1$, then $f^{CTIF} \in \mathcal{C}^1([0,1])$ and

$$\lim_{u\to 0} \partial_u f^{\text{CTIF}}(u) = \lim_{u\to 1} \partial_u f^{\text{CTIF}}(u) = 0.$$

Proposition (part 2)

(iii) If, moreover, (H_3) holds, then $f^{\rm CTIF} \in \mathcal{C}^2\left([0,1)\right)$ and

$$\partial^2_{uu} f^{\mathrm{CTIF}}(u) = ar{c}_1 - rac{(1+
ho)arepsilon\left(rac{1}{(1-u)}
ight)}{(1-u)^2\log(1-u)}\left(1+o(1)
ight) + \mathcal{O}\left(rac{1}{\log(1-u)}
ight),$$

as $u \rightarrow 1$ and

$$\lim_{u\to 0}\partial_{uu}^2 f^{\rm CTIF}(u) = \bar{c}_2$$

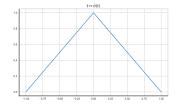
(iv) If, moreover, $\rho < -2$, then $f^{\text{CTIF}} \in C^2([0,1])$ and $\mu = 2^2 f^{\text{CTIF}}(\rho) = -2^2 f^{\text{CTIF}}(\rho)$

$$\lim_{u\to 1}\partial^2_{uu}f^{\rm CTIF}(u)=\bar{c}_1$$

Approximation error

Triangular function. Built with 3 translated ReLU $\sigma(x) := \max(0, x)$

$$\hat{\sigma}(t) := \sigma(t+1) - 2\sigma(t) + \sigma(t-1)$$



Piecewise linear approximation. For all $M \in \mathbb{N}_0$, let $\delta = 1/M$, $t_j = j/M$ for j = 0, ..., M. If $f \in C^2([0, 1])$, then

$$\sup_{t\in[0,1]} \left| f(t) - \sum_{j=0}^{M} f(t_j) \hat{\sigma}\left(\frac{t-t_j}{\delta}\right) \right| \leq c M^{-2}$$

 \Rightarrow Similarly with J = 3(M + 1) ReLU σ

 $\gamma = 0.5, \rho = -3$ 13/20

Theorem

Assume (H₁), (H₂) and (H₃) hold. For all $m = \{1, ..., d\}$, if $\rho^{(m)} < -2$ then there exists a space \mathcal{G}_J of one hidden layer generators

$$G_{\psi}^{(m)}(z) = \sum_{j=1}^{\mathsf{J}} a_j^{(m)} \sigma\left(\sum_{i=1}^{d'} w_j^{(i)} z^{(i)} + b_j\right) + \sum_{k=1}^{6} \kappa_k^{(m)} e_k\left(z^{(m)}\right)$$

with $J \ge 6$ neurons such that

$$\inf_{G \in \mathcal{G}_J} \sup_{m=1,...,d} \sup_{z \in [0,1]^{d'}} \left| f^{\text{TIF},(m)}(z^{(m)}) - G_{\psi}^{(m)}(z) \right| = \mathcal{O}\left(J^{-2}\right)$$

Experiments

Evaluation.

- Marginals:
 - ▷ criteria: Mean squared logarithmic error (MSLE) at prob. level (ξ) ▷ graph: $-\log(1-u) \mapsto \log q(u)$
- Dependence:
 - ▷ criteria: Absolute Kendall error (AKE) using the Kendall's function

 $K(t) = \mathbb{P}(F(x) \leq t),$

which can be estimated [Genest and Rivest, 1993] by $\hat{K}_n(t) = \frac{1}{n} \sum_{i=1}^n \mathbb{1} \{Y_i \leq t\}$ with

$$Y_i = rac{1}{n-1} \sum_{j
eq i}^n \mathbbm{1} \left\{ X_j^{(1)} < X_i^{(1)}, \dots, X_j^{(d)} < X_i^{(d)}
ight\},$$

for all data $i \in \{1, ..., n\}$ \triangleright graph: $t \mapsto t - \hat{K}_n(t)$

Settings.

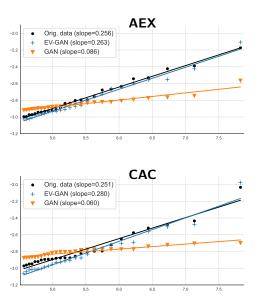
- Log-returns on selected heavy-tailed financial stock market indexes
- Processing of missing data: compute and synchronize log-returns

ticker	NKX		Europe		Asia		World	
dimension d	1		2		3		6	
sample size <i>n</i>	3173		2504		1378		548	
MSLE(0.90)	0.473	0.133	3.860	0.132	2.353	0.677	3.306	0.874
MSLE(0.95)	0.742	0.103	4.925	0.178	1.481	0.579	4.467	1.219
MSLE(0.99)	1.381	0.200	2.792	0.320	1.023	0.538	5.000	1.960
AKE	_	_	16.807	4.697	9.760	4.872	24.781	3.533

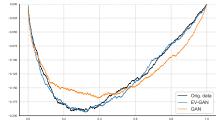
Performance comparison between the best GAN (left) and EV-GAN (right)

Experiments - European stock indexes

Marginals fitting at $\xi = 0.99$



Dependence fitting



- <u>EV-GAN</u>: new parametrization of a **multivariate generative model** dedicated to **extreme events** with an **approximation rate** related to the **second-order parameter**
- <u>Further work</u>: investigate mathematically how **dependence** structure is preserved, leveraging **multivariate extreme-value theory**

References I

Bingham, N. H., Goldie, C. M., and Teugels, J. L. (1987). Regular variation, volume 27 of Encyclopedia of Mathematics and its Applications.

Cambridge University Press, Cambridge.

Cybenko, G. (1989).

Approximation by superpositions of a sigmoidal function. *Mathematics of Control, Signals, and Systems*, 2(4):303–314.

de Haan, L. and Ferreira, A. (2006).

Extreme value theory.

Springer Series in Operations Research and Financial Engineering. Springer, New York.

Genest, C. and Rivest, L.-P. (1993). Statistical inference procedures for bivariate Archimedean copulas. Journal of the American Statistical Association, 88(423):1034–1043.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. (2014). Generative adversarial nets.

In Advances in neural information processing systems, pages 2672–2680.