EV-GAN: Simulation of extreme events with ReLU neural networks

Michaël Allouche Stéphane Girard Emmanuel Gobet

EcoSta2022
2022, June 4th
https://hal.archives-ouvertes.fr/hal-03250663
To be published in Journal of Machine Learning Research (JMLR)

Motivations

\triangleright Risk management: Low probability / High impact

credit: latimes

Motivations

\triangleright Risk management: Low probability / High impact

credit: latimes
\triangleright Existing methods (IS,MCMC,IPS) work well but high complexity cost

Motivations

\triangleright Risk management: Low probability / High impact

credit: latimes
\triangleright Existing methods (IS,MCMC,IPS) work well but high complexity cost
Focus on new paradigm of data-based generative models trained on

- Dataset (historical financial returns)
- Black-box model (meteorological model)
+ Fast simulation
- Few extreme data

Generative model

If X denotes the r.v. taking values in some space $\mathcal{X} \subseteq \mathbb{R}^{d}$ from which we have observations $\left(X_{1}, \ldots, X_{n}, \ldots\right)$, the problem is to find a function $G: \mathbb{R}^{d^{\prime}} \rightarrow \mathcal{X}$ and a latent probability distribution π on $\mathbb{R}^{d^{\prime}}$ such that

$$
X \stackrel{\mathrm{~d}}{=} G(Z) \text { and } Z \sim \pi
$$

Existence: see the Kuratowski's Theorem
Questions: which π ? which d^{\prime} ? how to approximate G ?
Learning G: Generative Adversarial Networks (GANs) [Goodfellow et al., 2014]

$$
\begin{gather*}
G_{\theta}^{(m)}\left(z^{(1)}, \ldots, z^{\left(d^{\prime}\right)}\right)=\sum_{j=1}^{J} a_{j}^{(m)} \sigma\left(\sum_{i=1}^{d^{\prime}} w_{j}^{(i)} z^{(i)}+b_{j}\right), \tag{1}\\
\text { for } m=\{1, \ldots, d\} \text { and } \\
\sigma(x)=\max (x, 0): \text { ReLU function }
\end{gather*}
$$

$$
\text { Generator with } d^{\prime}=3 \text { and } d=2
$$

Extreme-value theory

Let X be a r.v. with a continuous and striclty increasing c.d.f. F, and its associated quantile function $q(u):=\inf \{x: F(x) \geq u\}$
$\left(\mathbf{H}_{\mathbf{1}}\right)$: The distribution is supposed heavy-tailed, i.e. the survival function $\bar{F}:=1-F$ is regularly varying with index $-1 / \gamma, \bar{F} \in \mathcal{R} \mathcal{V}_{-1 / \gamma}$:

$$
\bar{F}(x)=x^{-\frac{1}{\gamma}} \ell(x), \quad x>0
$$

where

- $\gamma>0$ is called the tail-index; thus F is said to belong to the Fréchet Maximum domain of attraction, $F \in \operatorname{MDA}$ (Fréchet)
- ℓ is a slowly-varying function, $\ell \in \mathcal{R} \mathcal{V}_{0}$:

$$
\begin{equation*}
\frac{\ell(\lambda x)}{\ell(x)} \rightarrow 1, \text { as } x \rightarrow \infty \text { for all } \lambda>0 \tag{2}
\end{equation*}
$$

\Rightarrow As a consequence [de Haan and Ferreira, 2006, Proposition B.1.9.9]

$$
\begin{equation*}
t \mapsto q(1-1 / t) \in \mathcal{R} \mathcal{V}_{\gamma}, \quad t>1 \tag{3}
\end{equation*}
$$

Problem Statement

Goal: Approximate a quantile function $q(1-1 / \cdot) \in \mathcal{R} \mathcal{V}_{\gamma}, \gamma>0$, for extreme level $u \in[0,1)$ as $u \rightarrow 1$ with a generative one hidden layer neural network G

Quantile function of a Burr distribution $u \mapsto q(u)$ with parameters $\gamma=\{0.5,1,2\}$ and $\rho=-1$

Problem Statement

Goal: Approximate a quantile function $q(1-1 / \cdot) \in \mathcal{R} \mathcal{V}_{\gamma}, \gamma>0$, for extreme level $u \in[0,1)$ as $u \rightarrow 1$ with a generative one hidden layer neural network G

Quantile function of a Burr distribution $u \mapsto q(u)$ with parameters $\gamma=\{0.5,1,2\}$ and $\rho=-1$

Problem:

\triangleright The Universal Approximation Theorem [Cybenko, 1989] holds for continuous functions in a compact set
\triangleright If Z is either bounded or a Gaussian vector: by no means $G_{\theta}(Z) \stackrel{\mathrm{d}}{=} X$

Solution

1. Find a Tail-index function (TIF) $f^{\text {TIF }}$ continuous and bounded on
$[0,1]$ for all heavy-tailed distributions s.t. $f^{\mathrm{TIF}}(u) \rightarrow \gamma$ as $u \rightarrow 1$

$$
f^{\mathrm{TIF}}(u)=-\frac{\log (q(u))}{\log \left(\frac{1-u^{2}}{2}\right)}
$$

Solution

1. Find a Tail-index function (TIF) f^{TIF} continuous and bounded on $[0,1]$ for all heavy-tailed distributions s.t. $f^{\mathrm{TIF}}(u) \rightarrow \gamma$ as $u \rightarrow 1$

$$
f^{\mathrm{TIF}}(u)=-\frac{\log (q(u))}{\log \left(\frac{1-u^{2}}{2}\right)}
$$

2. For better approximation, find a Correction TIF (CTIF)

which enjoys higher regularity around $u=1$

Tail-index function (TIF)

\triangleright Consider $d^{\prime}=d=1$. Since $q(1-1 / \cdot) \in \mathcal{R} \mathcal{V}_{\gamma}$, then

$$
q(u)=(1-u)^{-\gamma} L\left(\frac{1}{1-u}\right), \quad u \in(0,1), L \in \mathcal{R} \mathcal{V}_{0}
$$

\triangleright Taking the log yields

$$
\log q(u)=-\gamma \log (1-u)(1+o(1)), \quad \text { as } u \rightarrow 1
$$

since $\log L(v) / \log v \rightarrow 0$ as $v \rightarrow \infty$ [Bingham et al., 1987, Proposition 1.3.6].
\triangleright Noting that $\log \left(\left(1-u^{2}\right) / 2\right)=\log (1-u)(1+o(1))$ as $u \rightarrow 1$, define

$$
f^{\mathrm{TIF}}(u):=-\frac{\log (q(u))}{\log \left(\frac{1-u^{2}}{2}\right)}
$$

Second-order condition

Karamata representation([de Haan and Ferreira, 2006, Definition B 1.6]). The function $L \in \mathcal{R} \mathcal{V}_{0}$ if and only if L can be written as

$$
L(x)=c(x) \exp \left(\int_{1}^{x} \frac{\varepsilon(t)}{t} \mathrm{~d} t\right)
$$

where $c(x) \rightarrow c_{\infty}$ and $\varepsilon(x) \rightarrow 0$ as $x \rightarrow \infty$.

Second-order condition

Karamata representation([de Haan and Ferreira, 2006, Definition B 1.6]). The function $L \in \mathcal{R} \mathcal{V}_{0}$ if and only if L can be written as

$$
L(x)=c(x) \exp \left(\int_{1}^{x} \frac{\varepsilon(t)}{t} \mathrm{~d} t\right)
$$

where $c(x) \rightarrow c_{\infty}$ and $\varepsilon(x) \rightarrow 0$ as $x \rightarrow \infty$.
$\left(\mathbf{H}_{\mathbf{2}}\right): c(x)=c_{\infty}$ for all $x \geq 1$ and $\varepsilon(x)=x^{\rho} \ell(x)$ with $\ell \in \mathcal{R} \mathcal{V}_{0}$ and $\rho<0$ is referred to the second-order parameter

Second-order condition

Karamata representation([de Haan and Ferreira, 2006, Definition B 1.6]). The function $L \in \mathcal{R} \mathcal{V}_{0}$ if and only if L can be written as

$$
L(x)=c(x) \exp \left(\int_{1}^{x} \frac{\varepsilon(t)}{t} \mathrm{~d} t\right)
$$

where $c(x) \rightarrow c_{\infty}$ and $\varepsilon(x) \rightarrow 0$ as $x \rightarrow \infty$.
$\left(\mathbf{H}_{2}\right): c(x)=c_{\infty}$ for all $x \geq 1$ and $\varepsilon(x)=x^{\rho} \ell(x)$ with $\ell \in \mathcal{R} \mathcal{V}_{0}$ and $\rho<0$ is referred to the second-order parameter

As a consequence:

- F satisfies the second-order condition
- L is normalized and it ensures its differentiability

TIF - First derivative

Proposition

Assume $\left(\mathbf{H}_{1}\right)$ and $\left(\mathbf{H}_{2}\right)$ hold. Then, $f^{\text {TIF }}$ is continuously differentiable on $(0,1)$ and
$\partial_{u} f^{\mathrm{TIF}}(0)=c^{\prime}$,
$\partial_{u} f^{\mathrm{TIF}}(u)=\sum_{j=0}^{3} c_{j} \varphi_{j}(u)-\frac{\varepsilon\left(\frac{1}{(1-u)}\right)}{(1-u) \log (1-u)}(1+o(1))+\mathcal{O}\left(\frac{(1-u)}{\log (1-u)}\right)$
as $u \rightarrow 1$, where $c^{\prime}, c_{1}, \ldots, c_{3}$ are constants and

$$
\varphi_{0}(u)=\frac{1}{(1-u)(\log (1-u))^{2}} \text { and } \varphi_{j}(u)=\frac{1}{(\log (1-u))^{j}}, j=1,2,3
$$

Correction TIF (CTIF)

$$
f^{\mathrm{CTIF}}(u):=f^{\mathrm{TIF}}(u)-g(u) \sum_{j=0}^{3} c_{j} \Phi_{j}(u)-\gamma g(u)-\partial_{u} f^{\mathrm{TIF}}(0) h(u)
$$

with, for all $u \in(0,1)$,

$$
\begin{aligned}
g(u) & =-4 u^{5}+5 u^{4}, \\
h(u) & =u^{3}-2 u^{2}+u, \\
\Phi_{0}(u) & =\varphi_{1}(u), \\
\Phi_{1}(u) & =-\operatorname{li}(1-u), \\
\Phi_{2}(u) & =\Phi_{1}(u)+(1-u) \varphi_{1}(u), \\
\Phi_{3}(u) & =\left(\Phi_{1}(u)+(1-u)\left(\varphi_{1}(u)+\varphi_{2}(u)\right)\right) / 2,
\end{aligned}
$$

with the logarithmic integral function $\operatorname{li}(x):=\int_{0}^{x} \frac{1}{\log (t)} \mathrm{d} t$.

CTIF - Second derivative

$\left(\mathbf{H}_{3}\right): \ell$ is normalized.

CTIF - Second derivative

$\left(\mathbf{H}_{3}\right): \ell$ is normalized.
As a consequence:

- ℓ is differentiable on $(0,1)$
- L and q are twice differentiable on $(0,1)$

CTIF - Second derivative

$\left(\mathbf{H}_{3}\right): \ell$ is normalized.
As a consequence:

- ℓ is differentiable on $(0,1)$
- L and q are twice differentiable on $(0,1)$

Proposition (part 1)

(i) If $\left(\mathbf{H}_{\mathbf{1}}\right)$ holds, then

$$
\lim _{u \rightarrow 0} f^{\mathrm{CTIF}}(u)=\lim _{u \rightarrow 1} f^{\mathrm{CTIF}}(u)=0
$$

(ii) If, moreover, $\left(\mathbf{H}_{2}\right)$ holds with $\rho<-1$, then $f^{\text {CTIF }} \in \mathcal{C}^{1}([0,1])$ and

$$
\lim _{u \rightarrow 0} \partial_{u} f^{\mathrm{CTIF}}(u)=\lim _{u \rightarrow 1} \partial_{u} f^{\mathrm{CTIF}}(u)=0
$$

CTIF - second derivative

Proposition (part 2)

(iii) If, moreover, $\left(\mathbf{H}_{3}\right)$ holds, then $f^{\text {CTIF }} \in \mathcal{C}^{2}([0,1))$ and

$$
\partial_{u u}^{2} f^{\mathrm{CTIF}}(u)=\bar{c}_{1}-\frac{(1+\rho) \varepsilon\left(\frac{1}{(1-u)}\right)}{(1-u)^{2} \log (1-u)}(1+o(1))+\mathcal{O}\left(\frac{1}{\log (1-u)}\right),
$$

as $u \rightarrow 1$ and

$$
\lim _{u \rightarrow 0} \partial_{u u}^{2} f^{\mathrm{CTIF}}(u)=\bar{c}_{2}
$$

(iv) If, moreover, $\rho<-2$, then $f^{\text {CTIF }} \in \mathcal{C}^{2}([0,1])$ and

$$
\lim _{u \rightarrow 1} \partial_{u u}^{2} \mathrm{CTIF}^{\mathrm{CIF}}(u)=\bar{c}_{1}
$$

Approximation error

Triangular function. Built with 3 translated ReLU $\sigma(x):=\max (0, x)$

$$
\hat{\sigma}(t):=\sigma(t+1)-2 \sigma(t)+\sigma(t-1)
$$

Piecewise linear approximation. For all $M \in \mathbb{N}_{0}$, let $\delta=1 / M$, $t_{j}=j / M$ for $j=0, \ldots, M$. If $f \in \mathcal{C}^{2}([0,1])$, then $\sup _{t \in[0,1]}\left|f(t)-\sum_{j=0}^{M} f\left(t_{j}\right) \hat{\sigma}\left(\frac{t-t_{j}}{\delta}\right)\right| \leq c M^{-2}$
\Rightarrow Similarly with $J=3(M+1) \operatorname{ReLU} \sigma$

$\gamma=0.5, \rho=-3$
$13 / 20$

Main result

Theorem

Assume $\left(\mathbf{H}_{\mathbf{1}}\right),\left(\mathbf{H}_{\mathbf{2}}\right)$ and $\left(\mathbf{H}_{\mathbf{3}}\right)$ hold. For all $m=\{1, \ldots, d\}$, if $\rho^{(m)}<-2$ then there exists a space \mathcal{G}_{J} of one hidden layer generators

$$
G_{\psi}^{(m)}(z)=\sum_{j=1}^{\mathrm{J}} a_{j}^{(m)} \sigma\left(\sum_{i=1}^{d^{\prime}} w_{j}^{(i)} z^{(i)}+b_{j}\right)+\sum_{k=1}^{6} \kappa_{k}^{(m)} e_{k}\left(z^{(m)}\right)
$$

with $J \geq 6$ neurons such that

$$
\inf _{G \in \mathcal{G}_{J}} \sup _{m=1, \ldots, d} \sup _{z \in[0,1]^{d^{\prime}}}\left|f^{\mathrm{TIF},(m)}\left(z^{(m)}\right)-G_{\psi}^{(m)}(z)\right|=\mathcal{O}\left(J^{-2}\right)
$$

Experiments

Evaluation.

- Marginals:
\triangleright criteria: Mean squared logarithmic error (MSLE) at prob. level (ξ)
\triangleright graph: $-\log (1-u) \mapsto \log q(u)$
- Dependence:
\triangleright criteria: Absolute Kendall error (AKE) using the Kendall's function

$$
K(t)=\mathbb{P}(F(x) \leq t),
$$

which can be estimated [Genest and Rivest, 1993] by $\hat{K}_{n}(t)=\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\left\{Y_{i} \leq t\right\}$ with

$$
Y_{i}=\frac{1}{n-1} \sum_{j \neq i}^{n} \mathbb{1}\left\{X_{j}^{(1)}<X_{i}^{(1)}, \ldots, X_{j}^{(d)}<X_{i}^{(d)}\right\},
$$

for all data $i \in\{1, \ldots, n\}$
\triangleright graph: $t \mapsto t-\hat{K}_{n}(t)$

Experiments - Real data

Settings.

- Log-returns on selected heavy-tailed financial stock market indexes
- Processing of missing data: compute and synchronize log-returns

ticker	NKX		Europe		Asia		World	
dimension d sample size n	$\|c\|$ 3		2		3		6	
MSLE (0.90)	0.473	$\mathbf{0 . 1 3 3}$	3.860	$\mathbf{0 . 1 3 2}$	2.353	$\mathbf{0 . 6 7 7}$	3.306	$\mathbf{0 . 8 7 4}$
MSLE (0.95)	0.742	$\mathbf{0 . 1 0 3}$	4.925	$\mathbf{0 . 1 7 8}$	1.481	$\mathbf{0 . 5 7 9}$	4.467	$\mathbf{1 . 2 1 9}$
MSLE (0.99)	1.381	$\mathbf{0 . 2 0 0}$	2.792	$\mathbf{0 . 3 2 0}$	1.023	$\mathbf{0 . 5 3 8}$	5.000	$\mathbf{1 . 9 6 0}$
AKE	-	-	16.807	$\mathbf{4 . 6 9 7}$	9.760	$\mathbf{4 . 8 7 2}$	24.781	$\mathbf{3 . 5 3 3}$

Performance comparison between the best GAN (left) and EV-GAN (right)

Experiments - European stock indexes

Marginals fitting at $\xi=0.99$

Conclusion

- EV-GAN: new parametrization of a multivariate generative model dedicated to extreme events with an approximation rate related to the second-order parameter
- Further work: investigate mathematically how dependence structure is preserved, leveraging multivariate extreme-value theory

References I

围 Bingham, N. H., Goldie, C. M., and Teugels, J. L. (1987). Regular variation, volume 27 of Encyclopedia of Mathematics and its Applications.
Cambridge University Press, Cambridge.
居 Cybenko, G. (1989).
Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals, and Systems, 2(4):303-314.
de Haan, L. and Ferreira, A. (2006).
Extreme value theory.
Springer Series in Operations Research and Financial Engineering.
Springer, New York.

- Genest, C. and Rivest, L.-P. (1993).

Statistical inference procedures for bivariate Archimedean copulas. Journal of the American Statistical Association, 88(423):1034-1043.

References II

囯 Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. (2014). Generative adversarial nets.
In Advances in neural information processing systems, pages 2672-2680.

