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Motivations

▷ Risk management: Low probability / High impact

credit: edelit credit: latimes

▷ Existing methods (IS,MCMC,IPS) work well but high complexity cost

Focus on new paradigm of data-based generative models trained on

Dataset (historical financial returns)

Black-box model (meteorological model)

+ Fast simulation - Few extreme data
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Generative model
If X denotes the r.v. taking values in some space X ⊆ Rd from which
we have observations (X1, . . . ,Xn, . . . ), the problem is to find a function
G : Rd ′ → X and a latent probability distribution π on Rd ′

such that

X
d
= G (Z ) and Z ∼ π

Existence: see the Kuratowski’s Theorem

Questions: which π ? which d ′ ? how to approximate G ?

Learning G : Generative Adversarial Networks (GANs) [Goodfellow et al., 2014]
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for m = {1, . . . , d} and

σ(x) = max(x , 0): ReLU function
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Extreme-value theory
Let X be a r.v. with a continuous and striclty increasing c.d.f. F , and its
associated quantile function q(u) := inf {x : F (x) ≥ u}

(H1): The distribution is supposed heavy-tailed,i.e. the survival function
F̄ := 1− F is regularly varying with index −1/γ, F̄ ∈ RV−1/γ :

F̄ (x) = x−
1
γ ℓ(x), x > 0,

where

γ > 0 is called the tail-index; thus F is said to belong to the Fréchet
Maximum domain of attraction, F ∈ MDA(Fréchet)

ℓ is a slowly-varying function, ℓ ∈ RV0:

ℓ(λx)

ℓ(x)
→ 1, as x → ∞ for all λ > 0 (2)

⇒ As a consequence [de Haan and Ferreira, 2006, Proposition B.1.9.9]

t 7→ q(1− 1/t) ∈ RVγ , t > 1 (3)
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Problem Statement
Goal: Approximate a quantile function q(1− 1/·) ∈ RVγ , γ > 0, for ex-
treme level u ∈ [0, 1) as u → 1 with a generative one hidden layer neural
network G
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Quantile function of a Burr distribution u 7→ q(u) with parameters γ = {0.5, 1, 2} and ρ = −1

Problem:
▷ The Universal Approximation Theorem [Cybenko, 1989] holds for contin-
uous functions in a compact set

▷ If Z is either bounded or a Gaussian vector: by no means Gθ(Z )
d
= X
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Solution

1. Find a Tail-index function (TIF) f TIF continuous and bounded on
[0, 1] for all heavy-tailed distributions s.t. f TIF(u) → γ as u → 1

f TIF(u) = −
log
(
q(u)

)
log
(
1−u2

2

)
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2. For better approximation, find a Correction TIF (CTIF)

f CTIF(u) = f TIF(u)−
6∑

k=1

κkek(u)
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Tail-index function (TIF)

▷ Consider d ′ = d = 1. Since q(1− 1/·) ∈ RVγ , then

q(u) = (1− u)−γL

(
1

1− u

)
, u ∈ (0, 1), L ∈ RV0.

▷ Taking the log yields

log q(u) = −γ log(1− u)(1 + o(1)), as u → 1,

since log L(v)/ log v → 0 as v → ∞ [Bingham et al., 1987, Proposition 1.3.6].

▷ Noting that log((1− u2)/2) = log(1− u)(1 + o(1)) as u → 1, define

f TIF(u) := −
log
(
q(u)

)
log
(
1−u2

2

)
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Second-order condition

Karamata representation([de Haan and Ferreira, 2006, Definition B 1.6]).
The function L ∈ RV0 if and only if L can be written as

L(x) = c(x) exp

(∫ x

1

ε(t)

t
dt

)
,

where c(x) → c∞ and ε(x) → 0 as x → ∞.

(H2): c(x) = c∞ for all x ≥ 1 and ε(x) = xρℓ(x) with ℓ ∈ RV0 and
ρ < 0 is referred to the second-order parameter

As a consequence:

F satisfies the second-order condition

L is normalized and it ensures its differentiability
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TIF - First derivative

Proposition

Assume (H1) and (H2) hold. Then, f TIF is continuously differentiable
on (0, 1) and

∂uf
TIF(0) = c ′,

∂uf
TIF(u) =

3∑
j=0

cjφj(u)−
ε
(

1
(1−u)

)
(1− u) log(1− u)

(1 + o(1)) + O
(

(1− u)

log(1− u)

)
,

as u → 1, where c ′, c1, . . . , c3 are constants and

φ0(u) =
1

(1− u) (log(1− u))2
and φj(u) =

1

(log(1− u))j
, j = 1, 2, 3
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Correction TIF (CTIF)

f CTIF(u) := f TIF(u)− g(u)
3∑

j=0

cjΦj(u)− γg(u)− ∂uf
TIF(0)h(u),

with, for all u ∈ (0, 1),

g(u) = −4u5 + 5u4,

h(u) = u3 − 2u2 + u,

Φ0(u) = φ1(u),

Φ1(u) = − li(1− u),

Φ2(u) = Φ1(u) + (1− u)φ1(u),

Φ3(u) =
(
Φ1(u) + (1− u)(φ1(u) + φ2(u))

)
/2,

with the logarithmic integral function li(x) :=
∫ x

0
1

log(t) dt.
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CTIF - Second derivative

(H3): ℓ is normalized.

As a consequence:

ℓ is differentiable on (0, 1)

L and q are twice differentiable on (0, 1)

Proposition (part 1)

(i) If (H1) holds, then

lim
u→0

f CTIF(u) = lim
u→1

f CTIF(u) = 0.

(ii) If, moreover, (H2) holds with ρ < −1, then f CTIF ∈ C1 ([0, 1]) and

lim
u→0

∂uf
CTIF(u) = lim

u→1
∂uf

CTIF(u) = 0.
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CTIF - second derivative

Proposition (part 2)

(iii) If, moreover, (H3) holds, then f CTIF ∈ C2 ([0, 1)) and

∂2
uuf

CTIF(u) = c̄1 −
(1 + ρ)ε

(
1

(1−u)

)
(1− u)2 log(1− u)

(1 + o(1)) +O
(

1

log(1− u)

)
,

as u → 1 and

lim
u→0

∂2
uuf

CTIF(u) = c̄2

(iv) If, moreover, ρ < −2, then f CTIF ∈ C2 ([0, 1]) and

lim
u→1

∂2
uuf

CTIF(u) = c̄1
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Approximation error

Triangular function. Built with 3 translated ReLU σ(x) := max(0, x)

σ̂(t) := σ(t + 1)− 2σ(t) + σ(t − 1)
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t↦ σ̂̂t)

Piecewise linear approximation. For all M ∈ N0, let δ = 1/M,
tj = j/M for j = 0, . . . ,M. If f ∈ C2([0, 1]), then

sup
t∈[0,1]

∣∣∣∣∣∣f (t)−
M∑
j=0

f (tj)σ̂

(
t − tj
δ

)∣∣∣∣∣∣ ≤ cM−2

⇒ Similarly with J = 3(M + 1) ReLU σ

γ = 0.5, ρ = −3 13 / 20



Main result

Theorem

Assume (H1), (H2) and (H3) hold. For all m = {1, . . . , d}, if ρ(m) < −2
then there exists a space GJ of one hidden layer generators

G
(m)
ψ (z) =

J∑
j=1

a
(m)
j σ

(
d ′∑
i=1

w
(i)
j z(i) + bj

)
+

6∑
k=1

κ
(m)
k ek

(
z(m)

)
with J ≥ 6 neurons such that

inf
G∈GJ

sup
m=1,...,d

sup
z∈[0,1]d′

∣∣∣f TIF,(m)(z(m))− G
(m)
ψ (z)

∣∣∣ = O
(
J−2

)
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Experiments

Evaluation.

Marginals:

▷ criteria: Mean squared logarithmic error (MSLE) at prob. level (ξ)
▷ graph: − log(1− u) 7→ log q(u)

Dependence:

▷ criteria: Absolute Kendall error (AKE) using the Kendall’s function

K (t) = P (F (x) ≤ t),

which can be estimated [Genest and Rivest, 1993] by
K̂n(t) =

1
n

∑n
i=1 1 {Yi ≤ t} with

Yi =
1

n − 1

n∑
j ̸=i

1

{
X

(1)
j < X

(1)
i , . . . ,X

(d)
j < X

(d)
i

}
,

for all data i ∈ {1, . . . , n}
▷ graph: t 7→ t − K̂n(t)
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Experiments - Real data

Settings.

Log-returns on selected heavy-tailed financial stock market indexes

Processing of missing data: compute and synchronize log-returns

ticker NKX Europe Asia World

dimension d 1 2 3 6
sample size n 3173 2504 1378 548

MSLE(0.90) 0.473 0.133 3.860 0.132 2.353 0.677 3.306 0.874
MSLE(0.95) 0.742 0.103 4.925 0.178 1.481 0.579 4.467 1.219
MSLE(0.99) 1.381 0.200 2.792 0.320 1.023 0.538 5.000 1.960

AKE − − 16.807 4.697 9.760 4.872 24.781 3.533

Performance comparison between the best GAN (left) and EV-GAN (right)
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Experiments - European stock indexes

5.0 5.5 6.0 6.5 7.0 7.5
−3.2

−3.0

−2.8

−2.6

−2.4

−2.2

−2.0 Orig. data (slope=0.256)
EV-GAN (slope=0.263)
GAN (slope=0.086)

AEX

5.0 5.5 6.0 6.5 7.0 7.5
−3.2

−3.0

−2.8

−2.6

−2.4

−2.2

−2.0 Orig. data (slope=0.251)
EV-GAN (slope=0.280)
GAN (slope=0.060)

CAC

0.0 0.2 0.4 0.6 0.8 1.0
−0.200

−0.175

−0.150

−0.125

−0.100

−0.075

−0.050

−0.025

0.000

Orig. data
EV-GAN
GAN

Marginals fitting at ξ = 0.99

Dependence fitting

17 / 20



Conclusion

EV-GAN: new parametrization of a multivariate generative model
dedicated to extreme events with an approximation rate related to
the second-order parameter

Further work: investigate mathematically how dependence structure
is preserved, leveraging multivariate extreme-value theory
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