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Abstract. The simulation-based and computationally expensive prob-
lem tackled in this paper addresses COVID-19 vaccines allocation in
Malaysia. The multi-objective formulation considers simultaneously the
total number of deaths, peak hospital occupancy and relaxation of mo-
bility restrictions. Evolutionary algorithms have proven their capability
to handle multi-to-many objectives but require a high number of com-
putationally expensive simulations. The available techniques to raise the
challenge rely on the joint use of surrogate-assisted optimization and par-
allel computing to deal with computational expensiveness. On the one
hand, the simulation software is imitated by a cheap-to-evaluate surro-
gate model. On the other hand, multiple candidates are simultaneously
assessed via multiple processing cores. In this study, we compare the per-
formance of recently proposed surrogate-free and surrogate-based paral-
lel multi-objective algorithms through the application to the COVID-19
vaccine distribution problem.

1 Introduction

In this paper, we address a multi-objective (MO) COVID-19 vaccines alloca-
tion problem. We aim to identify vaccines allocation strategies that minimize
the total number of deaths and peak hospital occupancy, while maximizing the
extent to which mobility restrictions can be relaxed. The onset of the COVID-19
outbreak has been rapidly followed by the development of dedicated simulation
software to predict the trajectory of the disease [1, 2]. The availability of such
tools enables one to inform authorities by formulating and solving optimization
problems. In [3], a SEIR-model (Susceptible, Exposed, Infectious, Recovered)
is deployed to simulate COVID-19 impacts. A single-objective (SO) problem is
subsequently derived and handled by grid-search to regulate the alleviation of
social restrictions. Multiple SO optimizations are carried out independently by
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a simplex or a line search algorithm in [4–6] to efficiently allocate doses of vac-
cines to the age-categories of a population. The number of infections, deaths and
hospital admissions are considered as the possible objective. The prioritization
rules approved by the government of the studied cohort are integrated as con-
straints in the linear programming model presented in [7] to minimize mortality.
In [8], multiple indicators are combined into a scalar-valued objective function.
The MO formulation exhibited in [9] consists in maximizing the geographical
diversity and social fairness of the distribution plan. Nevertheless, the MO prob-
lem is scalarized into a SO one that is then solved by a simplex algorithm. The
approach used by Bubar and colleagues [10] is significantly different to ours,
as the authors predefined a set of vaccination strategies and selected the most
promising approach among them. In contrast, our continuous optimisation ap-
proach automatically designs strategies in a fully flexible way. The optimisation
problem solved by McBryde and colleagues [11] is closer to that presented in
our work since a similar level of flexibility was allowed to design optimal vac-
cines allocation plans. However, the authors used a simpler COVID-19 model
resulting in significantly shorter simulation times, such that optimisation could
be performed using more classical techniques. To the best of our knowledge, it
has not been suggested yet to simultaneously minimize the number of deaths,
peak hospital occupancy and the degree of mobility restriction through a MO-
formulated problem. The fact that we consider the level of restrictions as one of
the objectives to minimise represents a novelty compared to the previous works.

Despite the relative computational expensiveness of infectious disease trans-
mission simulators, surrogate-based optimization has been rarely applied to the
field. In [12], we harnessed surrogate models to determine the allocation of pre-
ventive treatments that minimize the number of deaths caused by tuberculosis
in the Philippines. The identification of the regime for tuberculosis antibiotic
treatments with lowest time and doses is formulated as a SO problem in [13]
and solved by a method relying on a Radial Basis Functions surrogate model.
The work presented in [14] deviates from this present study in that it aims to
conceive a model prescribing the actions to perform according to a given situ-
ation. It is actually more related to artificial neural network hyper-parameters
and architecture search. What is called ”surrogate” in [14] is actually denomi-
nated ”simulator” in simulation-based optimization. In this work, we combine
machine learning and parallel computing to solve the MO vaccine distribution
problem.

This study demonstrates the suitability of parallel surrogate-based multi-
objective optimization algorithms on the real-world problem of COVID-19 vac-
cines allocation. The COVID-19-related problem is detailed in Section 2 and the
MO algorithms are exposed in Section 3. Both surrogate-based and surrogate-
free parallel MO approaches are applied to the real-world challenge in Section 4
and empirical comparisons are realized. Finally, conclusions are drawn in Section
5 and suggestions for future investigations are outlined.
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2 COVID-19 vaccine distribution problem

The vast vaccination programs implemented over the last year or so all around
the world achieved dramatic reductions of COVID-19 hospitalizations and deaths
[15]. However, access to vaccination remains challenging, especially for low- to
middle-income countries that are not able to offer vaccination to all their citizens
[16]. The problem we are concerned with consists in optimizing the age-specific
vaccines allocation plan to limit the impact of the disease in Malaysia under
a capped number of doses. The population is divided into 8 age-categories of
10-years band from 0-9 years old to 70+ years old and the impact is expressed
in terms of total number of deaths and peak hospital occupancy.

The simulation is realized in three phases by the AuTuMN software publicly
available in https://github.com/monash-emu/AuTuMN/. The simulator is cali-
brated during the first phase with data accumulated from the beginning of the
epidemic to the 1st of April 2021. The second phase starts at this latter date
and lasts three months during which a daily limited number of doses is shared
out among the population. Relaxation of mobility restrictions marks the kickoff
of the third phase in the course of which a new distribution plan is applied in-
volving the same number of daily available doses as in phase 2.

Decision variables xi ∈ [0, 1] for 1 ⩽ i ⩽ 8 and for 9 ⩽ i ⩽ 16 represent the
proportions of the available doses allocated to the 8 age-categories for phase 2 and
phase 3 respectively. Variable x17 ∈ [0, 1] expresses the degree of relaxation of
mobility restrictions where x17 = 0 leaves the restrictions unchanged and x17 =
1 means a return back to the pre-covid era. The following convex constraints
convey the limitation of the number of doses during phases 2 and 3:

8∑
i=1

xi ⩽ 1 and

16∑
i=9

xi ⩽ 1 (1)

The three-objective optimization problem consists in finding x∗ such that

x∗ = argmin
x∈[0,1]17 s.t. (1)

(g1(x), g2(x), 1− x17) (2)

where g1(x) is the simulated total number of deaths and g2(x) the simulated
maximum number of occupied hospital beds during the period.

3 Parallel Multi-Objective Evolutionary Algorithms

3.1 Variation Operators of Evolutionary Algorithms

Evolutionary Algorithms (EAs) are harnessed to deal with the COVID-19-related
problem exhibited previously. In EAs, a population of solutions is evolved through
cycles of parents selection, reproduction, children evaluation and replacement.
EAs are chosen because they have proven their effectiveness on numerous multi-
objective real-world problems [17] where the objective functions are black-box
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as it is the case in our scenario. The constraint being convex and analytically
verifiable, it is thus possible to design specific reproduction operators that di-
rectly generate feasible candidates. Assuming that every feasible solution can be
reached, this technique has shown to be a reliable one [18].

The specific cross-over operator, called distrib-X, considers the two phases
and the degree of relaxation independently. For two parents x and y, the last
decision variable for the two children z and t is set such that z17 = x17 and
t17 = y17. Regarding the second phase, let I and J be a random partition of
{1, . . . , 8}. For the age categories in I, z receives the proportion of vaccines from
x (zi = xi for i ∈ I). The remaining proportion of available doses at this step
is r = 1 −

∑
i∈I xi. For the age categories in J , the remaining proportion of

doses is shared out according to the proportion allocated to the corresponding
age categories in y. In other terms, for j ∈ J , zj =

r.yj∑
j∈J yj

. A similar treatment

is applied to the variables associated to the third phase. The second child t
is generated with an analogous procedure, where the roles of the parents are
reversed.

The specific mutation operator, denoted distrib-M, disturbs a decision vari-
able randomly chosen with uniform probability for {1, . . . , 8}, {9, . . . , 16} and
{17}. The last decision variable is mutated by polynomial mutation [17]. For the
remaining ones, two age categories of the same phase are randomly selected and
a random amount of doses are transferred from the first category to the second
one. Both distrib-X and distrib-M are inspired by [12].

The intermediate and the 2-points cross-over operators [17] are also consid-
ered for the sake of comparison. The intermediate strategy combines parents by
random weighting average, while the 2-points operator distributes portions of
parents to the children. The portions are defined by two points with the first
one separating phase 2 and phase 3 and the second one located between phase
3 and the relaxation decision variable x17.

3.2 Parallel Multi-objective Evolutionary Algorithms

The major challenge in multi-objective optimization is to balance convergence
and diversity in the objective space. Convergence is related to the closeness
to the Pareto Front (PF) [17]. The PF is the set of the overall best solutions
represented in the objective space and the Non-Dominated Fronts (NDFs) are
approximations of the PF. Diversity is indicated by an extended coverage of the
objective space by the NDFs. Hereafter, we present four algorithms to set this
trade-off.

The first algorithm considered in the comparison is the Non-dominated Sort-
ing Genetic Algorithm (NSGA-II) [19]. Firstly, to promote convergence, solu-
tions pertaining to better NDFs are better ranked. Secondly, to favor diversity,
solutions composing the same NDF are distinguished by setting the promise as
high as the crowding distance is high. The proposed sorting is employed at the
selection and the replacement steps of the EA.

The second algorithm reproduced for the experiments is the Reference Vec-
tor guided Evolutionary Algorithm (RVEA) proposed in [20] to handle many-
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objective problems. A set of reference vectors is introduced in order to decom-
pose the objective space and to enhance diversity. New candidates are attached
to their closest reference vector, thus forming sub-populations among which only
one candidate is kept at the replacement step. The new angle penalized distance
chooses adaptively the candidate to be conserved by favoring convergence at the
beginning of the search and diversity at latter stages. It is worth noting that the
population size may change during the search in RVEA due to the possibility
of empty sub-populations. In cases of degenerated or disconnected PF a high
number of sub-populations become empty and the NDF obtained at the end of
the search may not be dense enough. In the RVEA* variant, an additional ref-
erence vectors set is used to replace the reference vectors that would correspond
to empty sub-populations.

In surrogate-based optimization, the additional trade-off between exploita-
tion and exploration is to be specified. Minimizing the predicted objective vec-
tors (POVs) produced by the surrogate boosts exploitation of known promising
regions of the search space. Conversely, maximizing the predictive uncertainty
enhances exploration of unknown regions.

The third algorithm is the surrogate-based Adaptive Bayesian Multi-Objective
Evolutionary Algorithm (AB-MOEA) [21]. The first step of a cycle in AB-MOEA
consists in generating new candidates by minimizing the POVs thanks to RVEA.
During the second step, the new candidates are re-evaluated by an adaptive func-
tion that favors convergence at the beginning and reinforces exploitation as the
execution progresses by minimizing the predictive uncertainty delivered by the
surrogate. At the third step, q candidates are retained based on an adaptive
sampling criterion similar to the reference vector guided replacement of RVEA
to promote diversity.

The fourth algorithm is the Surrogate-Assisted Evolutionary Algorithm for
Medium Scale Expensive problems (SAEA-ME) [22]. In SAEA-ME, NSGA-II is
used to optimize a six-objective acquisition function where the three first ob-
jectives are the POVs and the last three objectives are the POVs minus the
predictive variances. From the set of proposed candidates, the q ones showing
the best hyper-volume improvement considering both the POVs alone and the
POVs minus two variances are retained for parallel simulations. SAEA-ME per-
forms well on problems with more than 10 decision variables. The dimensionality
reduction feature proposed in [22] is not considered here as it consumes compu-
tational budget and can be applied to any method.

AMulti-Task Gaussian Process (MTGP) surrogate model [23] is implemented
via the GPyTorch library [24] and incorporated into both AB-MOEA and SAEA-
ME. Using a MTGP to model multiple objectives has been realized in [25] to
control quality in sheet metal forming. In a traditional regression GP [26], a
kernel function is specified to model the covariance between the inputs, thus
allowing the model to learn the input-output mapping and to return predictions
and predictive uncertainties. In the MTGP, inter-task dependencies are also
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taken into account in the hope of improving over the case where the tasks are
decoupled.

In the present investigation, the tasks are the three objectives and five kernel
functions are considered for comparison. The widely used Radial Basis Func-
tions kernel, denoted rbf and described in [26], provides very smooth predictors.
According to [27], the Matern kernel with hyper-parameter ν = 1.5 or 2.5, called
matern1.5 and 2.5 respectively, is to be preferred to model many physical phe-
nomena. The higher predictive capacity Spectral Mixture kernel proposed in [28]
is also raised with 2 and 4 components, denominated sm2 and sm4 respectively.

4 Experiments

The computational budget is set to two hours on 18 computing cores, thus allow-
ing 18 simulations to be realized in parallel. The simulation duration varies from
one solution to another from 13 to 142 seconds on one computing core. The four
competing algorithms are implemented using our pySBO Python tool publicly
available at: https://github.com/GuillaumeBriffoteaux/pySBO. Ten repeti-
tions of the searches are carried out to ensure statistical robustness of the com-
parisons. The reference point for hyper-volume calculation is set to an upper
bound for each objective (32.106; 32.106; 1.5).

The surrogate-free approaches NSGA-II, RVEA and RVEA* are equipped
with either the distrib-X, the 2-points or the intermediate cross-over operator.
For NSGA-II, the population size ps is set to 108 or 162, thus avoiding the idling
of the computing cores. For RVEA and RVEA*, we choose ps = 105 or 171
to comply with the constraint imposed by the reference vectors initialization
and to keep values close to those imposed for NSGA-II. Ten initial populations
composed of 171 simulated solutions are generated to start the algorithms. Each
initial population is made at 85% of solutions randomly sampled within the
feasible search space and at 15% of candidates picked out on the boundary.
When ps < 171, only the best ps candidates according to the non-dominated
sorting defined in [19] are retained. For RVEA and RVEA*, a scaled version of
the problem, where the first two objectives are divided by 1000, is also considered
to demonstrate the effect of the objectives scales on the behavior of the methods.

The surrogate-based approaches AB-MOEA and SAEA-ME only integrate
the distrib-X operator and use all the 171 initial samples as initial database. For
RVEA in AB-MOEA, ps = 105 and the number of generations is fixed to 20 as
recommended in [21], while ps = 76 for NSGA-II in SAEA-ME according to the
guidance provided in [22] and the population evolved for 100 generations.

Table 1 shows the ranking of the algorithms according to the final hyper-
volumes averaged over the ten repetitions. It can be observed in Table 1 that
all the surrogate-based strategies outperform all those without surrogate. In
particular, SAEA-ME with the matern1.5 kernel is the best approach. The
MTGP equipped with the matern1.5 covariance function is preferred in both
the SAEA-ME and AB-MOEA frameworks. Regarding the surrogate-free meth-
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ods, NSGA-II with the distrib-X cross-over mechanism and ps = 108 yields the
best averaged hyper-volume. It is worth noticing that the distrib-X operator,
specifically designed for the problem at hand, is to put forward as it surpasses
both the intermediate and the 2-points strategies in all contexts. Among the
RVEAs, the best variant is RVEA* with ps = 105 and the distrib-X cross-over
thus indicating a possibly degenerated or disconnected PF. Indeed, the PF is
certainly degenerated as indicates Figure 1 where are plotted the objective vec-
tors from the ten final NDFs obtained by SAEA-ME with the matern1.5 kernel.
When analyzing the influence of objectives scales over the efficiency of RVEA
and RVEA*, the conclusions drawn in [20] are confirmed as both algorithms
are more appropriate when objectives have similar scales. Indeed, the three ob-
jectives lie in [1655; 13, 762], [843; 10, 962] and [0; 1], respectively. The previous
ranges are approximated a posteriori based on 250,664 simulations performed in
RVEA and RVEA* on the original problem. The necessity to adequately scale
the objectives brings a disadvantage to RVEAs as the scaling weights are tedious
to define especially in the context of black-box expensive simulations. Another
drawback is the constraints on the population size preventing to totally impede
the idling of computing cores in all scenarios.

Fig. 1. Best NDFs from the 10 repetitions for SAEA-ME with matern1.5 kernel.

Figure 2 monitors the averaged hyper-volume as the search proceeds for the
best strategy per category according to Table 1. The hyper-volume improves
sharply at the very beginning of the search for the surrogate-based methods and
reaches convergence rapidly (around 300 to 500 simulations). NSGA-II converges
much slower but seems not to have converged at the end of the execution. By
the right extremities of the curves, it could be expected that the hyper-volume
returned by NSGA-II exceeds the one from AB-MOEA for larger numbers of sim-
ulations. However, reiterating the experiments for a time budget of four hours has
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Algorithm Cross-over Population GP kernel Objectives Averaged final
operator size scaling Hyper-volume

(×1010 + 1.535× 1015)

SAEA-ME distribX 76 matern1.5 - 80.1800
SAEA-ME distribX 76 matern2.5 - 80.1610
SAEA-ME distribX 76 rbf - 79.9541
SAEA-ME distribX 76 sm2 - 79.6701
AB-MOEA distribX 105 matern1.5 - 79.6200
AB-MOEA distribX 105 matern2.5 - 79.5879
SAEA-ME distribX 76 sm4 - 79.5789
AB-MOEA distribX 105 sm4 - 79.4861
AB-MOEA distribX 105 sm2 - 79.4841
AB-MOEA distribX 105 rbf - 79.4304
NSGA-II distribX 108 - - 79.3337
NSGA-II distribX 162 - - 79.1876
RVEA* distribX 105 - yes 77.2805
RVEA* distribX 171 - yes 77.2514
RVEA distribX 171 - yes 77.1287
RVEA distribX 105 - yes 77.0117

NSGA-II intermediate 108 - - 76.9946
NSGA-II intermediate 162 - - 76.8320
NSGA-II 2-points 162 - - 75.6959
NSGA-II 2-points 108 - - 75.5889
RVEA distribX 105 - - 75.5184
RVEA* intermediate 171 - yes 75.3816
RVEA* intermediate 105 - yes 75.2841
RVEA intermediate 171 - yes 75.2006
RVEA intermediate 105 - yes 75.1562
RVEA* distribX 105 - - 75.1555
RVEA* distribX 171 - - 75.1372
RVEA distribX 171 - - 75.0563
RVEA* 2-points 171 - yes 74.9803
RVEA 2-points 171 - yes 74.9195
RVEA 2-points 105 - yes 74.7692
RVEA* 2-points 105 - yes 74.7535
RVEA* intermediate 105 - - 74.5607
RVEA intermediate 105 - - 74.5585
RVEA intermediate 171 - - 74.4959
RVEA* intermediate 171 - - 74.4266
RVEA 2-points 171 - - 74.3694
RVEA 2-points 105 - - 74.3518
RVEA* 2-points 171 - - 74.3264
RVEA* 2-points 105 - - 74.2507

Table 1. Ranking of the surrogate-based and surrogate-free approaches according to
the averaged final hyper-volumes over the 10 repetitions.
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not allowed to verify this expectation. Figure 2 specifies that the impact of objec-
tives scaling on RVEAs appears from around 300 simulations. In the setting of a
capped computational budget, it is important to strongly favor convergence and
exploitation at the onset of the search. SAEA-ME and AB-MOEA realizes this
by minimizing the POVs at the top beginning of the execution. The difference
between the two approaches lies in the incorporation of the predictive uncer-
tainty. In SAEA-ME, a degree of exploration is maintained by maximization of
the predictive variance. Conversely, minimization of the predictive uncertainty
is involved at latter stages in AB-MOEA. In spite of the convergence-oriented
strategy adopted by RVEAs at the early stages of the search, the embedded
mechanism set up to handle many objectives is quite heavy and reveals to be
unsuitable when the computational budget is restricted. Indeed, in [20] the al-
gorithms are run from 500 to 1,000 generations while 10 to 20 generations are
allowed by our computational budget.

Reducing the solving time of moderately expensive optimization problems
where the simulation lasts less than five minutes may enable to manage opti-
mization under uncertainty. As the calibration of the simulation tool is uncertain,
multiple configurations of its parameters can be considered, resulting in multiple
optimization exercises to be executed and thus enabling to gain insight about
the variability of the results.

Fig. 2. Averaged hyper-volume according to the number of simulations.

The optimal allocation plan implies providing 70% of the doses to the 10-19
years old age-group and 30% to the 20-29 age-group during phase 2 according to
Figure 3. In phase 3, 70% of the doses are assigned to 20-29 years old individuals
and 15% to both the 40-49 and 10-19 age-categories. This plan prioritizes the
vaccination of younger adults as they are the most transmitting cohort because
of their high contact rate in the population [29]. Nevertheless, the present re-
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sults have to be considered with caution. Since our experiments date back to the
beginning of 2021, few feedback about vaccination efficiency was available. It is
assumed here that the vaccine reduces transmission although it might not be
the case for the Omicron variant of concern that started to break through the
world at the end of 2021. Our results are similar to those presented in [30, 31] for
influenza. From Figure 4 where the total number of deaths and the maximum
number of occupied hospital beds are displayed with respect to the relaxation
variable x17, the alleviation of the physical distancing reveals to trigger an aug-
mentation of the hospital occupancy and deaths.

Fig. 3. Vaccines distribution according to age-categories. Averaged solutions from the
best final NDFs returned by the 10 repetitions for SAEA-ME with matern1.5 kernel.

Fig. 4. Total number of deaths and maximum number of occupied hospital beds ac-
cording to relaxation of the physical distancing x17. Best NDFs from the 10 repetitions
for SAEA-ME with matern1.5 kernel.
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5 Conclusion

This paper demonstrates the suitability of parallel surrogate-based multi-objective
optimization algorithms to handle the moderately computationally expensive
COVID-19 vaccines allocation problem for Malaysia. In particular, SAEA-ME
provides reliable results in a fast way. As future works, we suggest to benefit from
the computational cost reduction of black-box simulation-based problem solving
to take the uncertainty around the calibration of the simulator into account.
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