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Comparing Parallel Surrogate-based and Surrogate-free Multi-Objective Optimization of COVID-19 vaccines allocation

The simulation-based and computationally expensive problem tackled in this paper addresses COVID-19 vaccines allocation in Malaysia. The multi-objective formulation considers simultaneously the total number of deaths, peak hospital occupancy and relaxation of mobility restrictions. Evolutionary algorithms have proven their capability to handle multi-to-many objectives but require a high number of computationally expensive simulations. The available techniques to raise the challenge rely on the joint use of surrogate-assisted optimization and parallel computing to deal with computational expensiveness. On the one hand, the simulation software is imitated by a cheap-to-evaluate surrogate model. On the other hand, multiple candidates are simultaneously assessed via multiple processing cores. In this study, we compare the performance of recently proposed surrogate-free and surrogate-based parallel multi-objective algorithms through the application to the COVID-19 vaccine distribution problem.

Introduction

In this paper, we address a multi-objective (MO) COVID-19 vaccines allocation problem. We aim to identify vaccines allocation strategies that minimize the total number of deaths and peak hospital occupancy, while maximizing the extent to which mobility restrictions can be relaxed. The onset of the COVID-19 outbreak has been rapidly followed by the development of dedicated simulation software to predict the trajectory of the disease [START_REF] Chang | Modelling transmission and control of the covid-19 pandemic in australia[END_REF][START_REF] Trauer | Understanding how victoria, australia gained control of its second covid-19 wave[END_REF]. The availability of such tools enables one to inform authorities by formulating and solving optimization problems. In [START_REF] Duque | Timing social distancing to avert unmanageable covid-19 hospital surges[END_REF], a SEIR-model (Susceptible, Exposed, Infectious, Recovered) is deployed to simulate COVID-19 impacts. A single-objective (SO) problem is subsequently derived and handled by grid-search to regulate the alleviation of social restrictions. Multiple SO optimizations are carried out independently by a simplex or a line search algorithm in [START_REF] Matrajt | Optimizing vaccine allocation for covid-19 vaccines: potential role of single-dose vaccination[END_REF][START_REF] Matrajt | Optimizing vaccine allocation at different points in time during an epidemic[END_REF][START_REF] Matrajt | Vaccine optimization for covid-19: Who to vaccinate first?[END_REF] to efficiently allocate doses of vaccines to the age-categories of a population. The number of infections, deaths and hospital admissions are considered as the possible objective. The prioritization rules approved by the government of the studied cohort are integrated as constraints in the linear programming model presented in [START_REF] Buhat | Using constrained optimization for the allocation of covid-19 vaccines in the philippines[END_REF] to minimize mortality. In [START_REF] Han | Time-varying optimization of covid-19 vaccine prioritization in the context of limited vaccination capacity[END_REF], multiple indicators are combined into a scalar-valued objective function. The MO formulation exhibited in [START_REF] Anahideh | Fair and diverse allocation of scarce resources[END_REF] consists in maximizing the geographical diversity and social fairness of the distribution plan. Nevertheless, the MO problem is scalarized into a SO one that is then solved by a simplex algorithm. The approach used by Bubar and colleagues [START_REF] Bubar | Model-informed covid-19 vaccine prioritization strategies by age and serostatus[END_REF] is significantly different to ours, as the authors predefined a set of vaccination strategies and selected the most promising approach among them. In contrast, our continuous optimisation approach automatically designs strategies in a fully flexible way. The optimisation problem solved by McBryde and colleagues [START_REF] Mcbryde | Modelling direct and herd protection effects of vaccination against the sars-cov-2 delta variant in australia[END_REF] is closer to that presented in our work since a similar level of flexibility was allowed to design optimal vaccines allocation plans. However, the authors used a simpler COVID-19 model resulting in significantly shorter simulation times, such that optimisation could be performed using more classical techniques. To the best of our knowledge, it has not been suggested yet to simultaneously minimize the number of deaths, peak hospital occupancy and the degree of mobility restriction through a MOformulated problem. The fact that we consider the level of restrictions as one of the objectives to minimise represents a novelty compared to the previous works.

Despite the relative computational expensiveness of infectious disease transmission simulators, surrogate-based optimization has been rarely applied to the field. In [START_REF] Briffoteaux | Parallel surrogate-assisted optimization: Batched bayesian neural network-assisted ga versus q-ego[END_REF], we harnessed surrogate models to determine the allocation of preventive treatments that minimize the number of deaths caused by tuberculosis in the Philippines. The identification of the regime for tuberculosis antibiotic treatments with lowest time and doses is formulated as a SO problem in [START_REF] Cicchese | Applying optimization algorithms to tuberculosis antibiotic treatment regimens[END_REF] and solved by a method relying on a Radial Basis Functions surrogate model. The work presented in [START_REF] Miikkulainen | From prediction to prescription: Evolutionary optimization of nonpharmaceutical interventions in the covid-19 pandemic[END_REF] deviates from this present study in that it aims to conceive a model prescribing the actions to perform according to a given situation. It is actually more related to artificial neural network hyper-parameters and architecture search. What is called "surrogate" in [START_REF] Miikkulainen | From prediction to prescription: Evolutionary optimization of nonpharmaceutical interventions in the covid-19 pandemic[END_REF] is actually denominated "simulator" in simulation-based optimization. In this work, we combine machine learning and parallel computing to solve the MO vaccine distribution problem.

This study demonstrates the suitability of parallel surrogate-based multiobjective optimization algorithms on the real-world problem of COVID-19 vaccines allocation. The COVID-19-related problem is detailed in Section 2 and the MO algorithms are exposed in Section 3. Both surrogate-based and surrogatefree parallel MO approaches are applied to the real-world challenge in Section 4 and empirical comparisons are realized. Finally, conclusions are drawn in Section 5 and suggestions for future investigations are outlined.

COVID-19 vaccine distribution problem

The vast vaccination programs implemented over the last year or so all around the world achieved dramatic reductions of COVID-19 hospitalizations and deaths [START_REF] Vilches | Covid-19 hospitalizations and deaths averted under an accelerated vaccination program in northeastern and southern regions of the usa[END_REF]. However, access to vaccination remains challenging, especially for low-to middle-income countries that are not able to offer vaccination to all their citizens [START_REF] Sheel | Brand inequity in access to covid-19 vaccines[END_REF]. The problem we are concerned with consists in optimizing the age-specific vaccines allocation plan to limit the impact of the disease in Malaysia under a capped number of doses. The population is divided into 8 age-categories of 10-years band from 0-9 years old to 70+ years old and the impact is expressed in terms of total number of deaths and peak hospital occupancy.

The simulation is realized in three phases by the AuTuMN software publicly available in https://github.com/monash-emu/AuTuMN/. The simulator is calibrated during the first phase with data accumulated from the beginning of the epidemic to the 1st of April 2021. The second phase starts at this latter date and lasts three months during which a daily limited number of doses is shared out among the population. Relaxation of mobility restrictions marks the kickoff of the third phase in the course of which a new distribution plan is applied involving the same number of daily available doses as in phase 2.

Decision variables x i ∈ [0, 1] for 1 ⩽ i ⩽ 8 and for 9 ⩽ i ⩽ 16 represent the proportions of the available doses allocated to the 8 age-categories for phase 2 and phase 3 respectively. Variable x 17 ∈ [0, 1] expresses the degree of relaxation of mobility restrictions where x 17 = 0 leaves the restrictions unchanged and x 17 = 1 means a return back to the pre-covid era. The following convex constraints convey the limitation of the number of doses during phases 2 and 3:

8 i=1 x i ⩽ 1 and 16 i=9 x i ⩽ 1 (1)
The three-objective optimization problem consists in finding x * such that

x * = arg min x∈[0,1] 17 s.t. (1) (g 1 (x), g 2 (x), 1 -x 17 ) (2) 
where g 1 (x) is the simulated total number of deaths and g 2 (x) the simulated maximum number of occupied hospital beds during the period.

3 Parallel Multi-Objective Evolutionary Algorithms

Variation Operators of Evolutionary Algorithms

Evolutionary Algorithms (EAs) are harnessed to deal with the COVID-19-related problem exhibited previously. In EAs, a population of solutions is evolved through cycles of parents selection, reproduction, children evaluation and replacement. EAs are chosen because they have proven their effectiveness on numerous multiobjective real-world problems [START_REF] Talbi | Metaheuristics: From Design to Implementation[END_REF] where the objective functions are black-box as it is the case in our scenario. The constraint being convex and analytically verifiable, it is thus possible to design specific reproduction operators that directly generate feasible candidates. Assuming that every feasible solution can be reached, this technique has shown to be a reliable one [START_REF] Michalewicz | Evolutionary algorithms for constrained engineering problems[END_REF]. The specific cross-over operator, called distrib-X, considers the two phases and the degree of relaxation independently. For two parents x and y, the last decision variable for the two children z and t is set such that z 17 = x 17 and t 17 = y 17 . Regarding the second phase, let I and J be a random partition of {1, . . . , 8}. For the age categories in I, z receives the proportion of vaccines from x (z i = x i for i ∈ I). The remaining proportion of available doses at this step is r = 1 -i∈I x i . For the age categories in J, the remaining proportion of doses is shared out according to the proportion allocated to the corresponding age categories in y. In other terms, for j ∈ J, z j = r.yj j∈J yj . A similar treatment is applied to the variables associated to the third phase. The second child t is generated with an analogous procedure, where the roles of the parents are reversed.

The specific mutation operator, denoted distrib-M, disturbs a decision variable randomly chosen with uniform probability for {1, . . . , 8}, {9, . . . , 16} and {17}. The last decision variable is mutated by polynomial mutation [START_REF] Talbi | Metaheuristics: From Design to Implementation[END_REF]. For the remaining ones, two age categories of the same phase are randomly selected and a random amount of doses are transferred from the first category to the second one. Both distrib-X and distrib-M are inspired by [START_REF] Briffoteaux | Parallel surrogate-assisted optimization: Batched bayesian neural network-assisted ga versus q-ego[END_REF].

The intermediate and the 2-points cross-over operators [START_REF] Talbi | Metaheuristics: From Design to Implementation[END_REF] are also considered for the sake of comparison. The intermediate strategy combines parents by random weighting average, while the 2-points operator distributes portions of parents to the children. The portions are defined by two points with the first one separating phase 2 and phase 3 and the second one located between phase 3 and the relaxation decision variable x 17 .

Parallel Multi-objective Evolutionary Algorithms

The major challenge in multi-objective optimization is to balance convergence and diversity in the objective space. Convergence is related to the closeness to the Pareto Front (PF) [START_REF] Talbi | Metaheuristics: From Design to Implementation[END_REF]. The PF is the set of the overall best solutions represented in the objective space and the Non-Dominated Fronts (NDFs) are approximations of the PF. Diversity is indicated by an extended coverage of the objective space by the NDFs. Hereafter, we present four algorithms to set this trade-off.

The first algorithm considered in the comparison is the Non-dominated Sorting Genetic Algorithm (NSGA-II) [START_REF] Deb | A fast and elitist multiobjective genetic algorithm: Nsga-ii[END_REF]. Firstly, to promote convergence, solutions pertaining to better NDFs are better ranked. Secondly, to favor diversity, solutions composing the same NDF are distinguished by setting the promise as high as the crowding distance is high. The proposed sorting is employed at the selection and the replacement steps of the EA.

The second algorithm reproduced for the experiments is the Reference Vector guided Evolutionary Algorithm (RVEA) proposed in [START_REF] Cheng | A reference vector guided evolutionary algorithm for many-objective optimization[END_REF] to handle many-objective problems. A set of reference vectors is introduced in order to decompose the objective space and to enhance diversity. New candidates are attached to their closest reference vector, thus forming sub-populations among which only one candidate is kept at the replacement step. The new angle penalized distance chooses adaptively the candidate to be conserved by favoring convergence at the beginning of the search and diversity at latter stages. It is worth noting that the population size may change during the search in RVEA due to the possibility of empty sub-populations. In cases of degenerated or disconnected PF a high number of sub-populations become empty and the NDF obtained at the end of the search may not be dense enough. In the RVEA* variant, an additional reference vectors set is used to replace the reference vectors that would correspond to empty sub-populations.

In surrogate-based optimization, the additional trade-off between exploitation and exploration is to be specified. Minimizing the predicted objective vectors (POVs) produced by the surrogate boosts exploitation of known promising regions of the search space. Conversely, maximizing the predictive uncertainty enhances exploration of unknown regions.

The third algorithm is the surrogate-based Adaptive Bayesian Multi-Objective Evolutionary Algorithm (AB-MOEA) [START_REF] Wang | An adaptive bayesian approach to surrogate-assisted evolutionary multi-objective optimization[END_REF]. The first step of a cycle in AB-MOEA consists in generating new candidates by minimizing the POVs thanks to RVEA. During the second step, the new candidates are re-evaluated by an adaptive function that favors convergence at the beginning and reinforces exploitation as the execution progresses by minimizing the predictive uncertainty delivered by the surrogate. At the third step, q candidates are retained based on an adaptive sampling criterion similar to the reference vector guided replacement of RVEA to promote diversity.

The fourth algorithm is the Surrogate-Assisted Evolutionary Algorithm for Medium Scale Expensive problems (SAEA-ME) [START_REF] Ruan | Surrogate assisted evolutionary algorithm for medium scale multi-objective optimisation problems[END_REF]. In SAEA-ME, NSGA-II is used to optimize a six-objective acquisition function where the three first objectives are the POVs and the last three objectives are the POVs minus the predictive variances. From the set of proposed candidates, the q ones showing the best hyper-volume improvement considering both the POVs alone and the POVs minus two variances are retained for parallel simulations. SAEA-ME performs well on problems with more than 10 decision variables. The dimensionality reduction feature proposed in [START_REF] Ruan | Surrogate assisted evolutionary algorithm for medium scale multi-objective optimisation problems[END_REF] is not considered here as it consumes computational budget and can be applied to any method.

A Multi-Task Gaussian Process (MTGP) surrogate model [START_REF] Bonilla | Multi-task gaussian process prediction[END_REF] is implemented via the GPyTorch library [START_REF] Gardner | Gpytorch: Blackbox matrix-matrix gaussian process inference with gpu acceleration[END_REF] and incorporated into both AB-MOEA and SAEA-ME. Using a MTGP to model multiple objectives has been realized in [START_REF] Xia | A multi-objective optimization method based on gaussian process simultaneous modeling for quality control in sheet metal forming[END_REF] to control quality in sheet metal forming. In a traditional regression GP [START_REF] Rasmussen | Gaussian processes for machine learning[END_REF], a kernel function is specified to model the covariance between the inputs, thus allowing the model to learn the input-output mapping and to return predictions and predictive uncertainties. In the MTGP, inter-task dependencies are also taken into account in the hope of improving over the case where the tasks are decoupled.

In the present investigation, the tasks are the three objectives and five kernel functions are considered for comparison. The widely used Radial Basis Functions kernel, denoted rbf and described in [START_REF] Rasmussen | Gaussian processes for machine learning[END_REF], provides very smooth predictors. According to [START_REF] Stein | Interpolation of Spatial Data: Some Theory for Kriging[END_REF], the Matern kernel with hyper-parameter ν = 1.5 or 2.5, called matern1.5 and 2.5 respectively, is to be preferred to model many physical phenomena. The higher predictive capacity Spectral Mixture kernel proposed in [START_REF] Gordon | Gaussian process kernels for pattern discovery and extrapolation[END_REF] is also raised with 2 and 4 components, denominated sm2 and sm4 respectively.

Experiments

The computational budget is set to two hours on 18 computing cores, thus allowing 18 simulations to be realized in parallel. The simulation duration varies from one solution to another from 13 to 142 seconds on one computing core. The four competing algorithms are implemented using our pySBO Python tool publicly available at: https://github.com/GuillaumeBriffoteaux/pySBO. Ten repetitions of the searches are carried out to ensure statistical robustness of the comparisons. The reference point for hyper-volume calculation is set to an upper bound for each objective (32.10 6 ; 32.10 6 ; 1.5).

The surrogate-free approaches NSGA-II, RVEA and RVEA* are equipped with either the distrib-X, the 2-points or the intermediate cross-over operator. For NSGA-II, the population size p s is set to 108 or 162, thus avoiding the idling of the computing cores. For RVEA and RVEA*, we choose p s = 105 or 171 to comply with the constraint imposed by the reference vectors initialization and to keep values close to those imposed for NSGA-II. Ten initial populations composed of 171 simulated solutions are generated to start the algorithms. Each initial population is made at 85% of solutions randomly sampled within the feasible search space and at 15% of candidates picked out on the boundary. When p s < 171, only the best p s candidates according to the non-dominated sorting defined in [START_REF] Deb | A fast and elitist multiobjective genetic algorithm: Nsga-ii[END_REF] are retained. For RVEA and RVEA*, a scaled version of the problem, where the first two objectives are divided by 1000, is also considered to demonstrate the effect of the objectives scales on the behavior of the methods.

The surrogate-based approaches AB-MOEA and SAEA-ME only integrate the distrib-X operator and use all the 171 initial samples as initial database. For RVEA in AB-MOEA, p s = 105 and the number of generations is fixed to 20 as recommended in [START_REF] Wang | An adaptive bayesian approach to surrogate-assisted evolutionary multi-objective optimization[END_REF], while p s = 76 for NSGA-II in SAEA-ME according to the guidance provided in [START_REF] Ruan | Surrogate assisted evolutionary algorithm for medium scale multi-objective optimisation problems[END_REF] and the population evolved for 100 generations.

Table 1 shows the ranking of the algorithms according to the final hypervolumes averaged over the ten repetitions. It can be observed in Table 1 that all the surrogate-based strategies outperform all those without surrogate. In particular, SAEA-ME with the matern1.5 kernel is the best approach. The MTGP equipped with the matern1.5 covariance function is preferred in both the SAEA-ME and AB-MOEA frameworks. Regarding the surrogate-free meth-ods, NSGA-II with the distrib-X cross-over mechanism and p s = 108 yields the best averaged hyper-volume. It is worth noticing that the distrib-X operator, specifically designed for the problem at hand, is to put forward as it surpasses both the intermediate and the 2-points strategies in all contexts. Among the RVEAs, the best variant is RVEA* with p s = 105 and the distrib-X cross-over thus indicating a possibly degenerated or disconnected PF. Indeed, the PF is certainly degenerated as indicates Figure 1 where are plotted the objective vectors from the ten final NDFs obtained by SAEA-ME with the matern1.5 kernel. When analyzing the influence of objectives scales over the efficiency of RVEA and RVEA*, the conclusions drawn in [START_REF] Cheng | A reference vector guided evolutionary algorithm for many-objective optimization[END_REF] are confirmed as both algorithms are more appropriate when objectives have similar scales. Indeed, the three objectives lie in [1655; 13, 762], [843; 10, 962] and [0; 1], respectively. The previous ranges are approximated a posteriori based on 250,664 simulations performed in RVEA and RVEA* on the original problem. The necessity to adequately scale the objectives brings a disadvantage to RVEAs as the scaling weights are tedious to define especially in the context of black-box expensive simulations. Another drawback is the constraints on the population size preventing to totally impede the idling of computing cores in all scenarios. Figure 2 monitors the averaged hyper-volume as the search proceeds for the best strategy per category according to 1. The hyper-volume improves sharply at the very beginning of the search for the surrogate-based methods and reaches convergence rapidly (around 300 to 500 simulations). NSGA-II converges slower but seems not to have converged at the end of the execution. By the right extremities of the curves, it could be expected that the hyper-volume returned by NSGA-II exceeds the one from AB-MOEA for larger numbers of simulations. However, reiterating the experiments for a time budget of four hours has not allowed to verify this expectation. Figure 2 specifies that the impact of objectives scaling on RVEAs appears from around 300 simulations. In the setting of a capped computational budget, it is important to strongly favor convergence and exploitation at the onset of the search. SAEA-ME and AB-MOEA realizes this by minimizing the POVs at the top beginning of the execution. The difference between the two approaches lies in the incorporation of the predictive uncertainty. In SAEA-ME, a degree of exploration is maintained by maximization of the predictive variance. Conversely, minimization of the predictive uncertainty is involved at latter stages in AB-MOEA. In spite of the convergence-oriented strategy adopted by RVEAs at the early stages of the search, the embedded mechanism set up to handle many objectives is quite heavy and reveals to be unsuitable when the computational budget is restricted. Indeed, in [START_REF] Cheng | A reference vector guided evolutionary algorithm for many-objective optimization[END_REF] the algorithms are run from 500 to 1,000 generations while 10 to 20 generations are allowed by our computational budget.

Reducing the solving time of moderately expensive optimization problems where the simulation lasts less than five minutes may enable to manage optimization under uncertainty. As the calibration of the simulation tool is uncertain, multiple configurations of its parameters can be considered, resulting in multiple optimization exercises to be executed and thus enabling to gain insight about the variability of the results. The optimal allocation plan implies providing 70% of the doses to the 10-19 years old age-group and 30% to the 20-29 age-group during phase 2 according to Figure 3. In phase 3, 70% of the doses are assigned to 20-29 years old individuals and 15% to both the 40-49 and 10-19 age-categories. This plan prioritizes the vaccination of younger adults as they are the most transmitting cohort because of their high contact rate in the population [START_REF] Prem | Projecting social contact matrices in 152 countries using contact surveys and demographic data[END_REF]. Nevertheless, the present re-sults have to be considered with caution. Since our experiments date back to the beginning of 2021, few feedback about vaccination efficiency was available. It is assumed here that the vaccine reduces transmission although it might not be the case for the Omicron variant of concern that started to break through the world at the end of 2021. Our results are similar to those presented in [START_REF] Weycker | Population-wide benefits of routine vaccination of children against influenza[END_REF][START_REF] Medlock | Optimizing influenza vaccine distribution[END_REF] for influenza. From Figure 4 where the total number of deaths and the maximum number of occupied hospital beds are displayed with respect to the relaxation variable x 17 , the alleviation of the physical distancing reveals to trigger an augmentation of the hospital occupancy and deaths. 

Conclusion

This paper demonstrates the suitability of parallel surrogate-based multi-objective optimization algorithms to handle the moderately computationally expensive COVID-19 vaccines allocation problem for Malaysia. In particular, SAEA-ME provides reliable results in a fast way. As future works, we suggest to benefit from the computational cost reduction of black-box simulation-based problem solving to take the uncertainty around the calibration of the simulator into account.
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 1 Fig. 1. Best NDFs from the 10 repetitions for SAEA-ME with matern1.5 kernel.
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 2 Fig. 2. Averaged hyper-volume according to the number of simulations.
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 3 Fig. 3. Vaccines distribution according to age-categories. Averaged solutions from the best final NDFs returned by the 10 repetitions for SAEA-ME with matern1.5 kernel.
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 4 Fig. 4. Total number of deaths and maximum number of occupied hospital beds according to relaxation of the physical distancing x17. Best NDFs from the 10 repetitions for SAEA-ME with matern1.5 kernel.
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 1 Ranking of the surrogate-based and surrogate-free approaches according to the averaged final hyper-volumes over the 10 repetitions.

	Algorithm Cross-over Population GP kernel Objectives	Averaged final
		operator	size		scaling	Hyper-volume
						(×10 10 + 1.535 × 10 15 )
	SAEA-ME distribX	76	matern1.5	-	80.1800
	SAEA-ME	distribX	76	matern2.5	-	80.1610
	SAEA-ME	distribX	76	rbf	-	79.9541
	SAEA-ME	distribX	76	sm2	-	79.6701
	AB-MOEA	distribX	105	matern1.5	-	79.6200
	AB-MOEA	distribX	105	matern2.5	-	79.5879
	SAEA-ME	distribX	76	sm4	-	79.5789
	AB-MOEA	distribX	105	sm4	-	79.4861
	AB-MOEA	distribX	105	sm2	-	79.4841
	AB-MOEA	distribX	105	rbf	-	79.4304
	NSGA-II	distribX	108	-	-	79.3337
	NSGA-II	distribX	162	-	-	79.1876
	RVEA*	distribX	105	-	yes	77.2805
	RVEA*	distribX	171	-	yes	77.2514
	RVEA	distribX	171	-	yes	77.1287
	RVEA	distribX	105	-	yes	77.0117
	NSGA-II intermediate	108	-	-	76.9946
	NSGA-II intermediate	162	-	-	76.8320
	NSGA-II	2-points	162	-	-	75.6959
	NSGA-II	2-points	108	-	-	75.5889
	RVEA	distribX	105	-	-	75.5184
	RVEA* intermediate	171	-	yes	75.3816
	RVEA* intermediate	105	-	yes	75.2841
	RVEA	intermediate	171	-	yes	75.2006
	RVEA	intermediate	105	-	yes	75.1562
	RVEA*	distribX	105	-	-	75.1555
	RVEA*	distribX	171	-	-	75.1372
	RVEA	distribX	171	-	-	75.0563
	RVEA*	2-points	171	-	yes	74.9803
	RVEA	2-points	171	-	yes	74.9195
	RVEA	2-points	105	-	yes	74.7692
	RVEA*	2-points	105	-	yes	74.7535
	RVEA* intermediate	105	-	-	74.5607
	RVEA	intermediate	105	-	-	74.5585
	RVEA	intermediate	171	-	-	74.4959
	RVEA* intermediate	171	-	-	74.4266
	RVEA	2-points	171	-	-	74.3694
	RVEA	2-points	105	-	-	74.3518
	RVEA*	2-points	171	-	-	74.3264
	RVEA*	2-points	105	-	-	74.2507