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Makespan minimization in permutation flow-shop scheduling is a well-known hard combinatorial optimization problem. Among the 120 standard benchmark instances proposed by E. Taillard in 1993, 23 have remained unsolved for almost three decades. In this paper, we present our attempts to solve these instances to optimality using parallel Branch-and-Bound (BB) on the GPU-accelerated Jean Zay supercomputer. We report the exact solution of 11 previously unsolved problem instances and improved upper bounds for 8 instances. The solution of these problems requires both algorithmic improvements and leveraging the computing power of peta-scale high-performance computing platforms. The challenge consists in efficiently performing parallel depth-first traversal of a highly irregular and fine-grained search tree on distributed systems composed of hundreds of massively parallel accelerator devices and multi-core processors. We present and discuss the design and implementation of our permutation-based BB and experimentally evaluate its parallel performance on up to 384 V100 GPUs (2 million CUDA cores) and 3840 CPU cores. The optimality proof for the largest solved instance requires about 64 CPU-years of computation-using 256 GPUs and over 4 million parallel search agents, the traversal of the search tree is completed in 13 hours, exploring 339 × 10 12 nodes.

Introduction

Many combinatorial optimization problems (e.g. scheduling, assignment or routing problems) can be modeled by using permutations to represent candidate solutions. In this work, we focus on the Permutation Flowshop Scheduling Problem (PFSP) with makespan criterion. The goal is to find a scheduling order (a permutation) for processing n jobs on m machines, such that the maximum completion time, C max , is minimized, given the fixed processing times p jk ≥ 0 for job J j on machine M k .

The problem is N P-hard for m ≥ 3 [START_REF] Garey | The Complexity of Flowshop and Jobshop Scheduling[END_REF]) and exact algorithms like Branchand-Bound (BB) can only solve small-sized instances within a reasonable amount of time. BB performs an implicit enumeration of all possible solutions by dynamically constructing and exploring a tree, using four operators: branching, bounding, selection and pruning. For larger problem instances, the exhaustive exploration of the search space becomes practically infeasible on a sequential computer. In this article, we present the design and implementation of PBB@Cluster, a permutation-based BB (PBB) algorithm for heterogeneous clusters composed of multi-core processors and GPU accelerator devices. Scaling PBB@Cluster on hundreds of GPUs of the Jean Zay supercomputer (#64 in the Top500 ranking, Nov. 2020), we report improved solutions and proofs of optimality for dozens of benchmark instances, including the exact solution of 11 hard PFSP benchmark instances that remained open for almost three decades.

Our motivation is twofold. On the one hand, the knowledge of exact optimal solutions for benchmark instances is highly valuable, as they provide a baseline for assessing the quality of metaheuristics and other approximate methods. For the PFSP, the set of 120 benchmark instances proposed by [START_REF] Taillard | Benchmarks for basic scheduling problems[END_REF] is the most frequently used. While instances defined by less than 20 machines are relatively easy to solve [START_REF] Gmys | A computationally efficient Branch-and-Bound algorithm for the permutation flow-shop scheduling problem[END_REF], most of Taillard's instances with m = 20 machines and n ≥ 50 jobs are very hard and optimal solutions for 23 of them remain unknown. On the other hand, the efficient parallel design and implementation of backtracking/BB algorithms is challenging, mainly because the pattern of computation and communication captured by this method (named a "computational dwarf" in [START_REF] Asanovic | A View of the Parallel Computing Landscape[END_REF])) is highly irregular. Moreover, the efficient design of parallel BB is strongly influenced by problem-specific characteristics (search space, goal and granularity) and the targeted compute platform [START_REF] Bader | Parallel Algorithm Design for Branch and Bound, 5-1-5-44[END_REF].

The potential for exploiting parallelism in BB has been recognized as early as 1975 and research activity started to intensify ten years later, as parallel processing capabilities became practically available [START_REF] Pruul | Branch-and-bound and parallel computation: A historical note[END_REF]. Surveys on parallel BB in general and parallel search for discrete optimization can be found in [START_REF] Gendron | Parallel branch-and-bound algorithms: Survey and synthesis[END_REF]Crainic 1994, Grama and[START_REF] Grama | Parallel Search Algorithms for Discrete Optimization Problems[END_REF]. Among the wide range of works in this field, two research directions are particularly relevant for this work, as our approach can be seen as a combination of both: the first deals with fine-grained tree search algorithms on massively parallel processor arrays and GPUs and the second concerns more coarse-grained applications of the BB paradigm on top of distributed memory architectures.

In the early 1990s, the design and implementation of backtracking/BB algorithms on massively parallel single instruction, multiple data (SIMD) supercomputers (MasPar, CM-2, Intel Hypercube, etc.) has attracted much attention [START_REF] Rao | Parallel Depth First Search. Part I. Implementation[END_REF]Kumar 1987, Karypis and[START_REF] Karypis | Unstructured Tree Search on SIMD Parallel Computers[END_REF], with research interests focusing on data-parallel load balancing strategies (Fonlupt et al. 1994, Reinefeld and[START_REF] Reinefeld | Work-load balancing in highly parallel depth-first search[END_REF]. Frequently used test-cases include puzzles (e.g. 15-puzzle) and games (e.g. Othello) which are characterized by regular finegrained evaluation functions and highly irregular search trees. Notably, one can find many similarities between these approaches and backtracking/DFS algorithms for modern GPUs, including the fact that the latter are mainly targeting fine-grained applications [START_REF] Pessoa | A GPU-Based Backtracking Algorithm for Permutation Combinatorial Problems[END_REF][START_REF] Rocki | Parallel Minimax Tree Searching on GPU[END_REF][START_REF] Jenkins | Lessons Learned from Exploring the Backtracking Paradigm on the GPU[END_REF].

Following hardware evolution, with the emergence of cluster and grid computing, research focus shifted towards the design of parallel BB on top of distributed, heterogeneous and volatile platforms, targeting more coarse-grained applications of BB [START_REF] Crainic | Parallel Branch-and-Bound Algorithms[END_REF]. The use of large computational grids has led to breakthroughs such as the exact solution, in 2002, of quadratic assignment problem (QAP) instances which had remained unsolved for over three decades, including the notorious nug30 instance in 7 days, using 650 CPUs on average [START_REF] Anstreicher | Solving large quadratic assignment problems on computational grids[END_REF]. The design of a BB algorithm using a new, stronger lower bound (LB) and its parallel implementation on a large computational grid were vital in bringing about this achievement. About 15 years later, [START_REF] Date | Level 2 Reformulation Linearization TechniqueBased Parallel Algorithms for Solving Large Quadratic Assignment Problems on Graphics Processing Unit Clusters[END_REF] used an even stronger LB to re-solve nug30 on a GPU-powered cluster (Blue Waters@Urbana-Champaign) in 4 days and successfully improve lower bounds of challenging QAP instances with up to 42 facilities. Their approach uses GPUs to accelerate the computation of tight LBs which require solving O(n 4 ) independent linear assignment problems.

For the PFSP, the largest attempt to exactly solve hard problem instances has been carried out by [START_REF] Mezmaz | A grid-enabled branch and bound algorithm for solving challenging combinatorial optimization problems[END_REF], who designed and deployed a grid-enabled PBB algorithm on more than 1000 processors. This effort led to the exact resolution of instance Ta056 in 25 days (22 CPU-years), exploiting 328 processors on average. Attempts of similar scale to solve other open instances from Taillard's benchmark remained unfruitful, indicating that their solution requires algorithmic advances and/or much more processing power.

Following the work of [START_REF] Mezmaz | A grid-enabled branch and bound algorithm for solving challenging combinatorial optimization problems[END_REF], the PFSP has been used as a test-case for several PBB algorithms targeting heterogeneous distributed systems combining multi-core CPUs and GPUs [START_REF] Chakroun | Towards a heterogeneous and adaptive parallel Branch-and-Bound algorithm[END_REF][START_REF] Vu | Parallel Branch-and-Bound in multi-core multi-CPU multi-GPU heterogeneous environments[END_REF], Gmys et al. 2017). However, despite reaching speed-ups between two and three orders of magnitude over sequential execution, no new solutions for the remaining Taillard benchmark instances were reported.

This article shows that previously unsolved PFSP instances can be solved exactly through a combination of both, the efficient exploitation of a peta-scale GPU-accelerated supercomputer and the algorithmic advances presented in [START_REF] Gmys | A computationally efficient Branch-and-Bound algorithm for the permutation flow-shop scheduling problem[END_REF]. A crucial aspect in the design of BB algorithms is the tradeoff between the computational complexity of the lower bound (LB) and the potential of the latter to reduce the size of the explored tree. For the PFSP, the strongest LB is the one proposed by [START_REF] Lageweg | A General Bounding Scheme for the Permutation Flow-Shop Problem[END_REF] and it is used in almost all previous parallel BB approaches. However, we have shown in [START_REF] Gmys | A computationally efficient Branch-and-Bound algorithm for the permutation flow-shop scheduling problem[END_REF]) that using a weaker, easy-to-compute LB from one of the first BB algorithms [START_REF] Ignall | Application of the Branch and Bound Technique to Some Flow-Shop Scheduling Problems[END_REF] allows to solve large PFSP instances more efficiently. Although weakening the LB increases the size of the explored search tree, empirical results indicate that a better overall tradeoff is achieved. Therefore, instead of strengthening the LB, our approach takes a step in the opposite direction, i.e. it uses a weaker, more finegrained LB than previous PBB algorithms for the PFSP. To give an idea of scale, with the LB used in this work, a single node evaluation can be performed in less than 10 -6 seconds, and trees are composed of up to ∼ 10 15 nodes.

Summary of contributions

The main result of this work can be summarized as follows: 11 of 23 open PFSP instances from Taillard's benchmark are solved to optimality using a scalable GPU-accelerated PBB algorithm on up to 96 quad-GPU nodes (3840 CPU cores and nearly 2 million CUDA cores) of the Jean Zay supercomputer. Moreover, the best-known solutions for 8 open instances are improved. For the Vallada-Ruiz-Framinan (VRF) benchmark [START_REF] Vallada | New hard benchmark for flowshop scheduling problems minimising makespan[END_REF], 55 of 292 open instances are solved for the first time and 122 best-known upper bounds are improved. Scalability experiments show that PBB@Cluster achieves a parallel efficiency of ∼ 90% on 16, 64 and 128 GPUs for problem instances requiring respectively 1, 4 and 27 hours of processing on a single GPU. The largest solved instance requires over 13 hours of processing on 256 V100 GPUs, i.e. a total of 3400 GPU-hours-which amounts to an estimated equivalent CPU time of 64 years.

Although, to the best of our knowledge, our work is the first to deploy fine-grained BB on a peta-scale system, we should point out that the presented results are not "simply" a matter of brute force. Instead, PBB@Cluster builds upon research efforts that stretch over several years and deal with the following challenges which are mainly due to the highly irregular nature of the algorithm.

• Especially in fine-grained parallel tree search it is essential to define an efficient data structure for the storage and management of the "tsunami" of subproblems, dynamically generated at runtime. Indeed, it is crucial to keep the overhead of search tree management operations low as the computational cost of the latter cannot be neglected when using a very fine-grained LB function. Therefore, PBB@Cluster is based on an innovative data structure, dedicated to permutation problems and called Integer-Vector-Matrix (IVM) [START_REF] Mezmaz | A multi-core parallel branch-and-bound algorithm using factorial number system[END_REF]. The advantage of IVM, compared to a conventional linked-list, lies in its compact and constant memory-footprint, which is well-suited for GPUs [START_REF] Gmys | A GPU-based Branch-and-Bound algorithm using Integer-Vector-Matrix data structure[END_REF]). • Due to its highly irregular nature, scaling parallel BB up to millions of concurrent exploration agents requires efficient load balancing mechanisms-which in turn rely on a suitable definition of work units. We present the design and implementation of a hierarchical load balancing scheme (on the GPU and inter-node levels) with an interval-based encoding of work-units that keeps millions of GPU-based BB explorers busy. The encoding of work units as integer intervals based on the mixed-radix factorial number system (also called factoradic) has been successfully used in multicore [START_REF] Mezmaz | A multi-core parallel branch-and-bound algorithm using factorial number system[END_REF], GPU [START_REF] Gmys | IVM-based parallel branch-and-bound using hierarchical work stealing on multi-GPU systems[END_REF]) and grid-based [START_REF] Mezmaz | A grid-enabled branch and bound algorithm for solving challenging combinatorial optimization problems[END_REF] parallel PBB algorithms. • The algorithm is also irregular on the level of individual exploration-agents. In particular, the node evaluation function is characterized by irregular memory access patterns and diverging control flow. This makes it difficult to take advantage of low-level parallelism and impedes single instruction, multiple thread (SIMT) execution efficiency.

For the PFSP makespan and LB evaluation functions, vectorization approaches have been proposed in [START_REF] Bożejko | Solving the flow shop problem by parallel programming[END_REF][START_REF] Melab | Multi-core versus many-core computing for many-task Branch-and-Bound applied to big optimization problems[END_REF]. Mapping strategies for reducing thread divergence in PBB@GPU were investigated in [START_REF] Gmys | A GPU-based Branch-and-Bound algorithm using Integer-Vector-Matrix data structure[END_REF]. In this work, we revisit the vectorization of the fine-grained LB used in PBB@Cluster to speed up node evaluation and exploit warp-level parallelism. • PBB prunes subproblems whose LB is greater than the best found solution so far.

Therefore, it is important to discover optimal solutions quickly and thereby maximize the pruning rate. Any improvement of the incumbent solution may dramatically accelerate the exploration process and lead to superlinear speedups [START_REF] De Bruin | Asynchronous parallel branch and bound and anomalies[END_REF][START_REF] Gmys | A computationally efficient Branch-and-Bound algorithm for the permutation flow-shop scheduling problem[END_REF]. As depth-first search (DFS) alone fails in general to find highquality solutions, we investigate the hybridization of PBB@Cluster with approximate search methods. The proposed hybridization uses independent CPU-based heuristic searches for the discovery of high-quality solutions in parallel to and in cooperation with the GPU-based exhaustive search. • Communication patterns are irregular as well: several unpredictable events (new best solutions, local work exhaustion, checkpointing, termination detection) trigger communications involving messages of different kinds and sizes. Moreover, a scalable approach requires inter-node communications to be asynchronous on the worker-side, i.e. a primary design goal is to interrupt the GPU-based tree-traversal as little as possible. While the inter-node level of PBB@Cluster is conceptually similar to the coordinator-worker approach in BB@Grid [START_REF] Mezmaz | A grid-enabled branch and bound algorithm for solving challenging combinatorial optimization problems[END_REF]), the latter is designed for mono-core processors and uses C-based socket programming. The use of GPUbased workers and a switch to MPI (Message Passing Interface) motivates us to revisit the design of the coordinator process, redefining work units and enabling asynchronous message passing. • A reliable global checkpointing mechanism is an indispensable component of PBB@Cluster. On the one hand, as the time required for solving a particular instance is unpredictable, node reservations may expire before the exploration is completed.

On the other hand, the mean time between failure (MTBF) on large supercomputers keeps decreasing as we're entering the exascale era [START_REF] Cappello | Fault tolerance in petascale/exascale systems: Current knowledge, challenges and research opportunities[END_REF]. Therefore, a minimum requirement is to be able to re-start the exploration process from the last global checkpoint without impeding correctness.

Outline

We aim at making this article as self-contained as possible and to present not only the outcome of our research, but to expose how design choices result from an interaction between hardware and problem-dependent algorithmic constraints. First, Section 2 defines the PFSP and presents the sequential algorithm design, the IVM data structure and work units. Section 3 presents PBB@GPU, the GPU-based PBB algorithm at the core of worker processes in PBB@Cluster. In Section 4 we describe the design and implementation of PBB@Cluster's coordinator and worker processes. Experimental results are reported in Section 5 and finally, some conclusions are drawn in Section 6. Improved upper bounds and new optimal schedules for benchmark instances are provided in the Online Supplement.

2. Branch-and-Bound for the PFSP

Problem formulation

The flowshop scheduling problem (FSP) can be formulated as follows. Each of n jobs J = {J 1 , J 2 , . . . , J n } has to be processed on m machines M 1 , M 2 , . . . , M m in that order. The processing of job J j on machine M k , takes an uninterrupted time p jk , given by a processing time matrix. Each machine can process at most one job at a time and jobs cannot be processed simultaneously on different machines. A common simplification is to consider only permutation schedules, i.e. to enforce an identical processing order on all machines, which reduces the size of the search space from (n!) m to n!. Considering minimization of the completion time of the last job on the last machine, called makespan, the resulting problem is the permutation flow-shop problem (PFSP) with makespan criterion, denoted F m |prmu|C max . Formally, denoting π = (π(1), . . . , π(n)) ∈ S n a permutation of length n, and C j,k the completion time of job J j on machine M k , the goal is to find an optimal permutation π such that

C max (π ) = min π∈Sn C max (π)
where C max (π) = C π(n),m . For m = 2, the problem can be solved in O(n log n) steps by sorting the jobs according to Johnson's rule [START_REF] Johnson | Optimal two-and three-stage production schedules with setup times included[END_REF]; for m ≥ 3 it is shown to be NP-hard [START_REF] Garey | The Complexity of Flowshop and Jobshop Scheduling[END_REF]). The completion times C π(j),k can be obtained recursively by

C π(j),k = max C π(j),k-1 , C π(j-1),k + p π(j),k (1) 
where p π(0),k = p j,0 = 0 by convention. Thus, for a given schedule π, the makespan C max (π) = C π(n),m can be computed in O(mn) time.

Branch-and-Bound for permutation problems

BB performs an implicit enumeration of the search space by dynamically constructing and exploring a tree, whose root node represents the initial problem, internal nodes represent subproblems (partial solutions) and leaves are feasible solutions (permutations). The algorithm starts by initializing the best solution found so far (also called the incumbent) and the data-structure used for storing the tree such that it contains only the root node.

Figure 1 shows an illustration of the four BB-operators, selection, branching, bounding, and pruning, for a permutation problem of size four. At each iteration, the selection operator returns the next subproblem to explore, starting with the root node. The branching Preprint 00(0), pp. 000-000

Figure 1

Illustration of a simple Branch-and-Bound algorithm for a permutation problem of size four.

operator decomposes the subproblem into smaller disjoint subproblems. The bounding operator computes lower bounds (LB) on the optimal cost of these subproblems, in the sense that no arrangement of unscheduled jobs can yield a smaller makespan than LB.

Using the LB values, the pruning operator discards subproblems from the search that cannot lead to an improvement of the incumbent. All non-pruned subproblems are inserted into the data structure for further exploration. In the following subsections we specify the branching and bounding operators used in this work, as well as the data structure used for storing subproblems. The choice of the sequential algorithm design is based on [START_REF] Gmys | A computationally efficient Branch-and-Bound algorithm for the permutation flow-shop scheduling problem[END_REF]).

Branching rule

Our BB algorithm uses a position-based branching scheme, i.e. a subproblem (partial solution) is branched by selecting one free position and assigning remaining unscheduled jobs to that position. Alternatively one could investigate precedence-based approaches, such as the block-based branching of [START_REF] Grabowski | On Flow Shop Scheduling with Release and Due Dates to Minimize Maximum Lateness[END_REF]) which successively adds precedence constraints and which has been used in efficient local search algorithms for the PFSP [START_REF] Nowicki | A fast tabu search algorithm for the permutation flow-shop problem[END_REF]. However, as the latter requires maintaining critical paths and block decompositions for each tree node, this approach is more challenging to implement, especially on top of GPU accelerators.

In the example of Figure 1, permutations are built from left to right, meaning that a node of depth d can be represented by a prefix partial schedule σ 1 of d jobs. The forward branching operation consists in generating n -d child subproblems as follows:

Forward-Branch : σ 1 → {σ 1 j, j ∈ J \ σ 1 }.
Backward branching prepends unscheduled jobs to a postfix partial schedule σ 2 , i.e. Backward-Branch : σ 2 → {jσ 2 , j ∈ J \ σ 2 }.

Our PBB algorithm uses a dynamic branching rule [START_REF] Potts | An adaptive branching rule for the permutation flow-shop problem[END_REF], which decides dynamically, for each decomposed node, which of the two branching types is applied. With dynamic branching, subproblems are represented in the form (σ 1 , σ 2 ) and are decomposed as follows

Dyna-Branch : (σ 1 , σ 2 ) → {(σ 1 j, σ 2 ), j ∈ J \ (σ 1 , σ 2 )} if Fwd-Branch {(σ 1 , jσ 2 ), j ∈ J \ (σ 1 , σ 2 )} if Bwd-Branch Figure 2
Illustration of a subproblem decomposition using dynamic branching.

Note that, to guarantee completeness of the search, all children of a subproblem are obtained by the same branching type, either forward or backward (see the Online Supplement for further details, including a proof of exhaustiveness).

To make the branching decision, both sets of children nodes are evaluated and a simple heuristic chooses which of the two sets is retained. In this work, the branching heuristic called MinMin [START_REF] Gmys | A computationally efficient Branch-and-Bound algorithm for the permutation flow-shop scheduling problem[END_REF]) is used. It chooses the set in which the minimal LB (among both sets) is realized less often, or, in case of equality the set where the sum of LBs is higher, and forward if the sums are equal as well. Compared to mono-directional branching, the dynamic branching requires the computation of twice as many LBs per node decomposition, but computational experiments show that the tree size can often be reduced by several orders of magnitude [START_REF] Gmys | A computationally efficient Branch-and-Bound algorithm for the permutation flow-shop scheduling problem[END_REF].

Figure 2 illustrates a node decomposition, involving dynamic branching, bounding and pruning. In the example, the decomposed subproblem is (σ 1 , σ 2 ) = ((J 3 , J 1 ), (J 2 , J 4 )), where jobs {J 5 , J 6 , J 7 } remain to be scheduled and the best makespan found so far is 18. Both children sets are evaluated, yielding LB Fwd = {19, 17, 17} for forward and LB Bwd = {21, 17, 19} for backward. The smallest LB (17) occurs less frequently in LB Bwd , so the MinMin heuristic chooses backward branching and the set of forward nodes is discarded. The computed LBs are reused by the pruning operator, which, in the example, eliminates two subproblems (instead of one in the alternative branch).

Lower Bound

The LB used in this work comes from the pioneering algorithms proposed independently by [START_REF] Lomnicki | A "branch-and-bound" algorithm for the exact solution of the three-machine scheduling problem[END_REF] and [START_REF] Ignall | Application of the Branch and Bound Technique to Some Flow-Shop Scheduling Problems[END_REF]. The so-called one-machine bound (LB1), was initially developed for BB algorithms using only forward branching, but it can be extended to the bi-directional subproblem representation [START_REF] Potts | An adaptive branching rule for the permutation flow-shop problem[END_REF].

The computation of LB1 for a subproblem (σ 1 , σ 2 ) can be divided into four steps, illustrated in Figure 3. We denote |σ 1 | = d 1 and |σ 2 | = d 2 the number of jobs scheduled in the prefix and suffix partial schedules respectively.

1. For the front, compute C σ 1 (d 1 ),k , the completion time of the last job in σ 1 on each machine, i.e. the earliest possible starting time for unscheduled jobs, given σ 1 . 2. For the unscheduled jobs, compute p(k) = j∈J\(σ 1 ,σ 2 ) p j,k , the total remaining processing time on each machine. 3. For the back, compute Cσ 2 (d 2 ),k , the minimum time required between starting the first job in σ 2 on machine M k and the end of operations on the last machine. These values are obtained by scheduling σ 2 in reverse order in front, using Equation ( 1) and the reversibility property of the PFSP [START_REF] Potts | An adaptive branching rule for the permutation flow-shop problem[END_REF].
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J 4 J 3 J 3 J 3 J 4 J 4 J 5 J 5 2 3 5 6 7 11 J 5 8 6 9 M1 M2 M3 M1 M2 M3 3 4 8 10 11 6 M1 M2 M3 J 1 J 1 J 1 J 2 J 2 J 2 J 6 J 6 J 6 J 7 J 7 J 7 M1: 8+8+11 = 27 M2:10+6+ 7 = 23 M3:11+9+ 6 = 26 LB=27 max Front Unscheduled Back 6 Figure 3
Lower bound computation for a subproblem (σ1 = (J1, J2), σ2 = (J6, J7)) with 3 unscheduled jobs (J3, J4, J5). No arrangement of the unscheduled jobs can give a better makespan than LB = max{8 + 8 + 11, 10 + 6 + 7, 11 + 9 + 6} = 27.

4. Finally, LB1 is obtained by

LB1(σ 1 , σ 2 ) = max k=1,...,m C σ 1 (d 1 ),k + p(k) + Cσ 2 (d 2 ),k .
Clearly, LB1 has the same time complexity as a makespan evaluation, i.e. O(mn). However, reusing the quantities computed for (σ 1 , σ 2 ), it is possible to deduce LB1 for a child subproblem in O(m) steps. Therefore, the computation of LB1 for all 2 × (n -d 1 -d 2 ) children of (σ 1 , σ 2 ) also requires O(mn) steps. Moreover, this incremental evaluation of the children requires only O(1) additional memory per child.

LB1 is dominated by the two-machine bound LB2, proposed by [START_REF] Lageweg | A General Bounding Scheme for the Permutation Flow-Shop Problem[END_REF], which relies on the exact resolution, for different machine-pairs, of two-machine problems using Johnson's rule. In addition to the front/back computations, the different variants of LB2 require between m and m(m-1) /2 evaluations of (pre-sorted) two-machine Johnson schedules for each child node. Therefore, LB2 requires between O(mn 2 ) and O(m 2 n 2 ) time for the evaluation of all child nodes in a decomposition step. In [START_REF] Gmys | A computationally efficient Branch-and-Bound algorithm for the permutation flow-shop scheduling problem[END_REF] we found that, in combination with dynamic branching and especially for large problem instances, LB1 provides a better tradeoff between sharpness and computational effort. To give an approximate measure of comparison, using dynamic branching and LB1, Taillard's Ta56 instance can be solved in 33 hours on a dual-socket Intel Xeon node (∼ 600 CPUhours)-with LB2 and the same branching scheme, the required CPU-time is 22 years (300× more) [START_REF] Mezmaz | A grid-enabled branch and bound algorithm for solving challenging combinatorial optimization problems[END_REF]).

Search strategy and data structure

The next node to be decomposed is chosen according to a predefined selection strategy. In this work, we consider only depth-first search (DFS), because memory requirements of bestfirst and breadth-first search grow exponentially with the problem size 1 . The data structure used for storing generated subproblems is closely related to the choice of the search strategy.

In this work, we use the Integer-Vector-Matrix (IVM) data structure proposed in [START_REF] Mezmaz | A multi-core parallel branch-and-bound algorithm using factorial number system[END_REF]. It is dedicated to permutation problems and provides a memory-efficient alternative to stacks, which are conventionally used for DFS. The working of the IVM data structure is best introduced with an example. Figure 4 illustrates a pool of subproblems that could be obtained when solving a permutation problem of size n = 5 with a DFS-PBB algorithm using bi-directional branching. On the left-hand side, Figure 4 shows a tree-based representation of this pool. The parentchild relationship between subproblems is represented by dashed gray arrows. The jobs before the first "/" symbol represent σ 1 , the ones behind the second "/" symbol σ 2 and jobs between the two "/" symbols represent the set of unscheduled jobs in arbitrary order.

On the right-hand side, IVM indicates the next subproblem to be solved. The integer I of IVM gives the level of this subproblem, using 0-based counting (at level 0 one job is scheduled). In this example, the level of the next subproblem is 2. The vector V contains, for each level up to I, the position of the selected subproblem among its sibling nodes in the tree. In the example, jobs 3, 2 and 4 have been scheduled at levels 0, 1 and 2 respectively. The matrix M contains the jobs to be scheduled at each level: all the n jobs for the first row, the n -1 remaining jobs for the second row, and so on. The data structure is completed with a binary array of length n that indicates the branching type for each level. In the example, job 3 is scheduled at the beginning, jobs 2 and 4 are scheduled at the end. Thus, the IVM structure indicates that 3/15/42 is the next subproblem to be decomposed.

The IVM-based BB operators work as follows:

• To branch a selected subproblem, the remaining unscheduled jobs are copied to the next row of M and the current level I is incremented. The branching vector is set according to the branching decisions. • To prune a subproblem, the corresponding cell in M should be ignored by the selection operator. To flag a cell of M as "pruned" its content is multiplied by -1. These flags are removed as jobs are copied to the next row. • To select the next subproblem, the values of I and V are modified such that they point to the deepest leftmost non-pruned cell in M : the vector V is incremented at position I until a non-pruned cell is found or the end of the row is reached. If the end of the row is reached (i. e. V [I] = n -I), then the algorithm backtracks to the previous level by decrementing I and again incrementing V .

Work units

Throughout the depth-first exploration, the vector V behaves like a counter. In the example of Figure 4, V successively takes the values 00000, 00010, 00100, . . ., 43200, 43210 (skipping some values due to pruning). These 120 values correspond to the lexicographic numbering [, [9, 15[, [16, 24[ (equivalently, in factoradic notation : [0000, 1100[, [1110, 2110[, [2200, 3210[).

of the 5! solutions in the factorial number system [START_REF] Knuth | The Art of Computer Programming[END_REF]. In this mixed-radix number system, the weight of the position k = 0, 1, . . . , is equal to k! and the digits allowed for the k th position are 0, 1, . . . , k.

For a problem of size n, each valid value of V corresponds uniquely to an integer in the interval [0, n![ (half-open interval including 0, excluding n!). Converting the position-vector V to its decimal form allows to interpret the search as an exploration, from left to right, of the integer interval [0, n![. Moreover, an initialization procedure allows to start the search at any position a ∈ [0, n![, and by comparing the position-vector V a to an end-vector V b , the search can be restricted to arbitrary intervals 

Parallel models for Branch-and-Bound

The most frequently used models for the parallelization of PBB are: (1) parallel tree exploration, (2) parallel evaluation of bounds and (3) parallelization of the bounding function [START_REF] Gendron | Parallel branch-and-bound algorithms: Survey and synthesis[END_REF].

Model (1) consists in exploring disjoint parts of the search space in parallel using multiple independent BB processes. For large trees this model yields a practically unlimited degree of parallelism (DOP). It requires efficient dynamic load balancing mechanisms to deal with the irregularity of the search tree, sharing of the best-found solution and a mechanism for (distributed) termination detection. Model (1) can be implemented either synchronously or asynchronously. In model (2), the children nodes generated at a given iteration are evaluated in parallel. The DOP is variable throughout the search as it depends on the depth of the decomposed subproblem. Model (3) strongly depends on the bounding function and may be nested within models (1) and (2).

In this work, model ( 1) is used hierarchically: on the first level the search space is distributed among asynchronous worker processes hosted on different compute nodes; on the second level, each worker process consists of several GPU-based, synchronous PBB sub-workers. On both levels, the tree is dynamically balanced among workers, best-found solutions are shared and termination conditions are handled. On the GPU-level, each independent PBB explorer is mapped onto a CUDA warp (currently 32 threads) and warplevel parallelism is exploited through a combination of models ( 2) and (3).

GPU-based Branch-and-Bound algorithm(PBB@GPU)

In PBB@GPU all four BB operators, including work stealing, are performed on the GPU. This differs from other approaches that can be found in the literature, notably the offloading of (costly) node evaluations to GPUs [START_REF] Vu | Parallel Branch-and-Bound in multi-core multi-CPU multi-GPU heterogeneous environments[END_REF]Derbel 2016, Chakroun et al. 2013), and the generation of an initial Active Set of internal nodes on the host, which are then used as roots for concurrent GPU-based searches [START_REF] Rocki | Parallel Minimax Tree Searching on GPU[END_REF]Suda 2010, Carneiro et al. 2011).

In the following, we outline PBB@GPU. We put the focus on the LB computation and dynamic branching, as more detailed descriptions of selection and work stealing kernels can be found in [START_REF] Gmys | A GPU-based Branch-and-Bound algorithm using Integer-Vector-Matrix data structure[END_REF]) and [START_REF] Gmys | IVM-based parallel branch-and-bound using hierarchical work stealing on multi-GPU systems[END_REF]).

Outline of PBB@GPU

The IVM data structure allows to bypass a major roadbloack for GPU-based tree search : the lack or poor performance of dynamic data structures (linked-lists, stacks, priority queues, etc.) on GPUs. IVM has a small and constant memory footprint: thousands of IVMs can be allocated in device memory. Moreover, the encoding of work units as factoradic intervals allows to implement low-overhead data-parallel work-stealing mechanisms on the GPU.

Figure 6 shows a flowchart outlining the PBB@GPU algorithm. After reading problemspecific input data, K IVM structures are allocated in GPU memory and constant data (matrix of processing times, n, m, . . .) is copied to the device. Then, a collection of (at most K) intervals is initialized on the host-for instance with a single interval {[0, n![} or an initial partitioning of the search space {[ j×n! K , (j+1)×n! K [, j = 0, 1, . . . , K -1}. If created in decimal form, the intervals are converted to factoradics in order be used as initial position-and end-vectors on the device. After this operation, PBB@GPU enters the main exploration-loop, which consists of three CUDA kernels and a few auxiliary operations.

The first kernel performs the node selection as described in Section 2.5 concurrently on all IVMs. This kernel also decodes the IVMs, producing one subproblem of the form [π, d 1 , d 2 ] per IVM, where π is a schedule with fixed jobs at positions 1, . . . , d 1 and d 2 , . . . , n.

The second kernel performs the decomposition step, including dynamic branching and bounding, as shown in Figure 2. IVM structures are modified in parallel to apply pruning decisions.

If an improving solution is found, then a device flag newBest is set. Moreover, a global device counter 0 ≤nbActive≤ K keeps track of the number of IVMs with non-empty intervals. Both are copied to the host at each iteration. If the newBest flag is set, then the candidate solution(s) is (are) copied to the host and the best solution is updated. If the current activity level is equal to zero, then PBB@GPU returns the optimal solution and exploration statistics, before shutting down. If the current activity level is below 0.8 × K, i.e. if more than 20% of IVMs are inactive, then a work stealing phase is triggered. The goal of this trigger-mechanism is to keep the load balancing overhead low. In Figure 6, some details, such as kernel configurations, have been spared out. Some details regarding the efficient implementation of these kernels are provided in the following subsections.

Selection kernel

The main performance issue for this kernel is branch divergence, as the amount of operations to perform varies strongly between different IVMs. Mapping each IVM to exactly one thread causes control flow divergence for threads within the same warp, leading to serialized execution of divergent branches. Experiments have shown that it is preferable to map IVMs to full warps [START_REF] Gmys | A GPU-based Branch-and-Bound algorithm using Integer-Vector-Matrix data structure[END_REF])-even if that means that all threads except the warp-leader (lane 0) are mostly inactive. The selection kernel is thus launched with K × warpSize threads, grouped in blocks of 4 warps. Besides reducing thread divergence, this makes more per-block shared memory available per IVM, allowing to bring parts of the data structure closer to the ALUs. The 32 (warpSize) available threads per IVM are used for loading data to shared memory. Moreover, despite the sequential nature of the selection operator, some sub-operations (e.g. generating a new line in the IVM matrix) benefit from warp-level parallelism.

Bounding kernel

Previous GPU-accelerated BB algorithms for the PFSP use the heavier LB2 bound (cf. Section 2), which consumes about 99% of the computation time in sequential implementations. In that situation, it is natural to focus performance optimization efforts on the bounding kernel. For instance, to deal with the variable amount of children nodes per IVM, the LB2based algorithm proposed in [START_REF] Gmys | A GPU-based Branch-and-Bound algorithm using Integer-Vector-Matrix data structure[END_REF]) introduces an auxiliary mapping kernel, which uses a parallel prefix sum computation to build a compact thread-data mapping. However, this approach is not suitable for the more fine-grained LB1 evaluation. Indeed, the the computational cost of the incremental LB1 evaluation is too low to justify regularizing the workload with complex overhead operations. As for the selection kernel, using a compact one-thread-per-IVM mapping results in low warp execution efficiency and requires a very large number of IVMs (K) to reach acceptable device occupancy levels.

Therefore, the bounding kernel uses a warp-centric approach, like the selection kernel, with exactly one warp per subproblem. The implementation uses the CUDA Cooperative Groups API, warp-level primitives and explicit warp-synchronization ( syncwarp()) (since CUDA 9). For each parent subproblem (σ 1 , σ 2 ) of depth d 1 + d 2 = d there are n -d unscheduled jobs and thus 2 × (n -d) child subproblems to evaluate. As explained in Section 2, the evaluation of children nodes involves: (1) the computation of partial costs for Illustration of a parallel makespan evaluation for a four-job (partial) schedule and m = 6 machines.

the parent subproblem and (2) the incremental evaluation of LB1 for each child subproblem. Despite the data dependencies in Equation 1, step (1) can be parallelized as proposed by [START_REF] Bożejko | Solving the flow shop problem by parallel programming[END_REF] for MMX vector instructions.

Step ( 2) is embarrassingly parallel. Figure 7 illustrates the warp-parallel evaluation of a prefix schedule of length d 1 = 4 on m = 6 machines. Each circle represents one max-add operation (as in Equation 1), and the shades of (and labels inside) the circles indicate the lane (thread index within the warp) performing the operation. Operations connected by dashed diagonal lines are done in parallel. The horizontal and vertical arrows represent data dependencies of two types: a thin dashed arrow indicates that the lane already holds the required value from the previous iteration; a solid arrow indicates that the required value is transferred from a neighboring lane using a warp-level shfl up (blue, vertical) or shfl down (red, horizontal) operation. These built-in warp-synchronous functions allow to bypass shared memory and perform the (partial) makespan evaluation using only per-thread registers. The solid arrows on the right represent the storage of per-machine completion times in a (shared or global memory) array of length m.

In the example shown in Figure 7, the 6 × 4 = 24 operations are performed in 4 + 6 -1 = 9 iterations, so the theoretical speedup in this case is 24 9 = 2.7×. For a detailed theoretical speedup analysis we refer the reader to [START_REF] Bożejko | Solving the flow shop problem by parallel programming[END_REF]. The decomposition of a node (σ 1 , σ 2 ), as illustrated in Figure 2, is performed at the warp-level as follows:

1. Evaluate C σ 1 (d 1 ),: as illustrated in Figure 7.

2. Evaluate Cσ 2 (d 2 ),: as illustrated in Figure 7. The remaining processing time per machine is obtained by subtracting from the permachine total and integrated into steps 1 and 2. The parent subproblem [π, d 1 , d 2 ] and m-element arrays representing the front, back and remaining times (see Figure 3) are placed in shared memory. The processing time matrix is placed in constant memory.

Work Stealing kernels

As mentioned, a work stealing (WS) operation consists in taking the right half from a non-empty interval and assigning it to an idle worker. To perform this operation on the GPU, device functions for elementary operations (+, -, ÷ by scalar) on factoradic numbers are implemented. The more challenging part is to build a mapping of empty IVMs onto exploring IVMs, such that (1) no WS victim is selected twice, (2) larger intervals are preferred and (3) the mapping is build in parallel on the device.

In the victim selection step, the K IVM are seen as vertices of a hypercube, in which all empty IVMs successively poll their neighbors to acquire new work units. For illustrative purposes, let's suppose that K = 2 14 = 16384. The indices of the K IVMs can be written as (α 7 . . . α 1 ) in base 4. Connecting all IVMs whose base-4 indices differ in exactly one digit, a 4-ary 7-cube is obtained, where each IVM has 7 × (4 -1) = 21 neighbors. The victim selection is carried out in 21 iterations during which each empty IVM tries to select (α 7 . . . (α i -j) (mod 4) . . . α 1 ), i = 1, . . . , 7, j = 1, 2, 3 as a work stealing victim. A non-empty IVM can be selected if and only if (1) it is not yet selected and (2) its interval is larger than (a) the average interval-length and (b) a minimum length, fixed arbitrarily to (8!). Prior to the victim selection phase, a helper kernel computes the average intervallength.

4. Distributed GPU-based algorithm (PBB@cluster) 4.1. PBB@Cluster : Coordinator process For the inter-node level of PBB@Cluster, we revisit the PBB@Grid framework of [START_REF] Mezmaz | A grid-enabled branch and bound algorithm for solving challenging combinatorial optimization problems[END_REF] to enable the use of GPU-based (or multi-core) worker processes, instead of single-threaded workers. Our algorithm is implemented with MPI and uses a static number of worker processes (n p )-contrary to PBB@Grid, which uses socket programming for inter-node communication and shell-scripts to discover available resources and launch worker processes via ssh.

PBB@Cluster is based on an asynchronous coordinator-worker model with workerinitiated communications. At each point in time, the coordinator keeps a list of unassigned work units and an active list, containing copies of the work units explored by different workers. As each worker is composed of multiple sub-workers, a cluster-level work unit is defined as a collection of intervals contained in [0, n![. More precisely, we define a work unit W i as a finite union of K i non-overlapping intervals

W i = K i j=0 [a j , b j [ , where ∀j : [a j , b j [⊆ [0, n![ and [a j , b j [∩[a k , b k [= ∅ , j = k (2)
In this definition, index i is the identifier of the work unit, and K i < K max i the number of intervals, limited by a maximum capacity K max i . The coordinator maintains (1) a list of unassigned work units W unassigned and (2) a list of active work units W = {W c 1 , W c 2 , . . .}, where W c i designates the coordinator's copy of a work unit W i . A pseudo-code of the PBB@Cluster coordinator is shown in Algorithm 1. After broadcasting an initial solution (computed or read from a file), the coordinator fills W unassigned with the initial work, e.g. the complete interval [0, n![, an initial decomposition, or a list of intervals read from a file (Line 3). Then, the coordinator starts listening for incoming messages (Line 6). Under certain conditions, that will be detailed later, workers send checkpoint messages to the coordinator, containing

• the number of nodes decomposed since the last checkpoint,

• K max i the maximal number of intervals the worker can handle and • a work unit W i containing K i intervals and tagged with a unique identifier i. After receiving a checkpoint message, the coordinator intersects the received work unit W i with the copy W c i . If the result of the intersection is empty, a new work unit of at most K max i intervals is generated by taking intervals from W unassigned or by splitting a work unit from W. The work unit resulting from the intersection and/or splitting operations (W tmp in Algorithm 1) replaces the previous copy W c i in W. These operations are shown as the workerCheckpoint operation in Algorithm 1 (Lines 10 and 32). Work unit intersection and splitting procedures are described below.

If W tmp differs from the received work unit W i , then W tmp is sent back to the worker to replace W i . If W tmp is identical to the received W i , then there is no need to send any work back and the coordinator replies only by sending the best-found global upper bound (Line 16). The remaining tasks of the coordinator, shown in Lines 18 to 29, deal with termination detection, management of the global best solution and global checkpointing. The sending/receiving of work units and the intersection procedure are the most timeconsuming operations of the coordinator.

Work unit communication.

We should note that the MPI Recv and MPI Send calls are not time-consuming per se, but the associated data marshalling is costly. A worker Preprint 00(0), pp. 000-000 checkpoint message is of type MPI PACKED and consists of a metadata header and a list of K i (for ex. ≤ 16384) intervals. As these intervals are represented by a couple of integers of the order ∼ n!, the GNU Multiple Precision Arithmetic Library (GMP) is used. While the coordinator might as well work with factoradic numbers (i.e. integer arrays of length n), it is more convenient and faster to perform arithmetic operations (subtraction, division, addition, comparison) in decimal form. However, due to the lack of native MPI support for GMP integers, packing intervals to the communication buffer requires converting them to raw binary format and back to mpz t at the receiving end. We observed that these conversions cause significant overhead. 3.

[a 1 , b 1 [∩[a 2 , b 2 [= [max(a 1 , a 2 ), min(b 1 , b 2 )[ (3)
The intersection of two work units W 1 and W 2 requires pairwise intersection of the intervals contained in both sets, as shown in Equation 4.

K 1 i=1 [a 1 i , b 1 i [ ∩ K 2 j=1 [a 2 j , b 2 j [ = K 1 i=1 K 2 j=1 [max(a 1 i , a 2 j ), min(b 1 i , b 2 j )[ (4) 
For arbitrary sets of intervals, K 1 × K 2 elementary intersections are required to compute the intersection of two interval-lists. However, using the fact that each interval in W 1 intersects with at most one interval in W 2 , and sorting intervals in increasing order, the operation in Equation 4 can be carried out in O(K 1 + K 2 ) time. The computational cost of work unit intersections can be further reduced by taking advantage of the following observation. If a copy W c i hasn't been stolen from since the last worker-checkpoint, then the intersection operation becomes trivially W c i ∩ W i = W i . Thus, the coordinator maintains a flag for each work unit in W to indicate whether it has been modified since the last worker checkpoint.

4.1.3. Work unit division. When no more unassigned works are available, the coordinator generates a new work unit by splitting the largest work unit from W. For that purpose, the coordinator keeps track of the sizes of work units, defined as

W i = K i j=1 (b i j -a i j ).
Let W c v be the work unit selected for splitting and K max i the maximum number of intervals the requesting worker i can handle. The new work unit is generated by taking the right halves of the first

K new = min(K max i , K v ) intervals from W c v .
The new work unit of the requesting worker i is

W new = Knew j=1 [ a j v + b j v 2 , b j v [
and the victim's copy of the work unit becomes

W c v = Knew j=1 [a j v , a j v + b j v 2 [ ∪ Kv j=Knew+1 [a j v , b j v [ 8 PBB GPU-Worker Process.
As mentioned above, after this operation, the victim's work unit is flagged as "modified" to make sure that the impacted worker performs a full intersection at the next checkpoint and updates its work unit.

4.1.4. Global checkpointing. Periodically, the coordinator saves the complete lists of unassigned and active work units, W unassigned and W, to a file. For a problem instance with n = 100 jobs, the size of a work unit of K i = 16384 intervals is approximately 16384 × 2 × log 2 (100!) 8 B = 2.1 MB so with n p = 256 workers the size of the checkpoint file grows to ∼ 500 MB. In addition, the global checkpoint must contain the best found solution. When restarting PBB@Cluster from a global checkpoint, the coordinator reads the file and places the work units in W unassigned .

PBB@Cluster : Worker process

Figure 8 shows a flowchart of a worker process, composed of a PBB@GPU thread (controlling the GPU), a dedicated communication thread and multiple metaheuristic threads. The worker process is implemented using POSIX threads (pthreads) and the different worker components communicate through shared memory using mutexes and condition variables.

For the sake of readability, details regarding synchronization and mutual exclusion primitives are spared out in Figure 8. Like PBB@GPU, the worker process starts by allocating and initializing data structures on the CPU and GPU. The initial best-found solution is received from the coordinator.

PBB@GPU thread

The left part of Figure 8 corresponds to the PBB@GPU algorithm presented in Section 3, including a few modifications. Instead of stopping when Preprint 00(0), pp. 000-000 all work units are empty, a checkpoint communication is initiated to acquire new work. Moreover, communications with the coordinator are triggered when:

• an improved local best solution is discovered. The latter is sent to the coordinator as it might improve the global best. • a fixed amount of GPU-based load balancing operations was performed. This threshold is set to 1 /5 of the sub-workers. The coordinator's copy of the work unit should be updated to avoid redundant exploration. • a fixed amount of time has elapsed since the last worker-checkpoint. The purpose of this time-limit is to ensure that the global state of the search, kept by the coordinator, is updated regularly. We set this value to 30 seconds. As shown in Figure 8, the PBB@GPU thread offloads all communications to a dedicated thread (described below). The PBB@GPU and communication threads basically interact in a producer-consumer pattern with single-item buffers. If the communicator thread is not ready (buffers are full), then the worker checks for global termination and pending updates before resuming to exploration work. Indeed, if no more local work is available, the worker thread quickly returns to the point where it checks the readiness of the communicator thread, busy-waiting for the buffer to become free. Otherwise, appropriate flags are set for the communicator thread, intervals are copied from the GPU to a send-buffer, and the worker returns to the PBB@GPU main-loop. The objective of this approach is that checkpoint operations or sending a new solution do not prevent the worker from making progress in the interval exploration.

Communication thread

There are several reasons motivating the use of a dedicated communication thread:

• As mentioned in the previous section, the communicator handles intervals in decimal form, i.e. GMP integers, and interval-lists should be sorted to simplify the intersection operation. Using a separate communication thread, the burden of pre-and post-processing work unit communications is taken off the critical work path. • It is one way to actually progress the message passing asynchronously (Vaidyanathan et al. 2015, Hoefler and[START_REF] Hoefler | Message progression in parallel computing -to thread or not to thread?[END_REF]. • Although quite few best solutions are discovered throughout the search, new best solutions can be found by the PBB@GPU thread or by heuristic search threads. Offloading all communication to a single dedicated thread allows to use the MPI THREAD SERIALIZED thread-level instead of MPI THREAD MULTIPLE. • Each message to the coordinator should be matched by an answer. In particular, if no more work is available, sending multiple subsequent work requests would cause multiple answers by the coordinator, overwriting each other. In our opinion, from a programming point of view, assuring this constraint with conventional non-blocking routines (e.g. MPI Isend and MPI IProbe) is at least as difficult as correctly synchronizing pthreads. The main disadvantage is that one less CPU thread is available for computations-however, on most current systems this should be negligible. The flowchart of the communication thread is shown in the middle of Figure 8. In its default state, the communication thread waits on a condition variable to be triggered. If triggered, it then either sends the local best solution or the interval-list (after converting it from factoradic to decimal and sorting it). Then, the communicator thread waits for an answer from the coordinator.

If a WORK message is received, then the interval-list is converted to the factoradic form and the availability of an update is signaled to the work-thread. As shown in the left part of Figure 8, the work-thread checks at each iteration whether an update is available. To ensure that the buffer can be safely reused, the communication thread blocks until the work-thread has copied the intervals to the device. Upon reception of a BEST message, which is the default answer from the coordinator, the thread attempts to update the local best solution. From coordinator to worker, BEST messages contain only the best makespan-not the corresponding schedule which is not needed by workers. The third possible message type is a termination message: it causes the communication thread to set the shared termination flag and join with the other worker-threads. Before shutting down, each worker sends a last message to the worker, containing the local best solution.

Heuristic threads

The PBB@Cluster design presented up to this point leaves the computing power of additional CPU cores unused. For instance, each GPU-accelerated compute node on Jean Zay is composed of two 20-core CPUs and 4 GPUs, meaning that 32 additional CPU cores per node can be exploited. Preliminary experiments show that CPU-based BB-threads running on those cores only reach a fraction of the processing speed provided by the GPUs. PBB@Cluster therefore uses remaining CPU cores to run heuristic search algorithms. The exact BB search and heuristic searches cooperate in the following way. Periodically, the PBB@GPU thread promotes the current subproblems of all IVMs to solutions (by arbitrarily fixing the unscheduled jobs), evaluates them and adds the best resulting schedules to a fixed-size solution pool (containing up to twice as many solutions as the number of heuristic threads). These solutions are used as starting points for local searches that are allowed a fixed amount of time.

In principle, any kind of heuristic search can be used. However, two aspects are particularly important. Firstly, the heuristic searches should either be stochastic or strongly dependent on the starting solution. Otherwise, the multi-start parallel searches will find identical solutions. Secondly, for solving very hard instances, the local searches should have the ability to find very high-quality solutions if a long enough running time is allowedrather than the ability to find good solutions very quickly. Investigating the performance of different heuristic methods in this hybridization approach goes beyond the scope of this paper.

In our attempts to solve hard problem instances, we mainly use an iterated local search (ILS) algorithm [START_REF] Ruiz | A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem[END_REF] using the k-insert recursive neighborhood proposed in [START_REF] Deroussi | New effective neighborhoods for the permutation flow shop problem[END_REF]. We also use a best-upper-bound-first BB search (truncated with stack-size-and time-limits), that prunes on LB1 and generates upper bounds from partial solutions by fixing unscheduled jobs in the order of appearance in the IVM-matrix. The behavior of this approach is biased by arranging jobs the first-row of the matrix according to the starting solution. Moreover, for each visited subproblem of a predefined depth, the beam-search algorithm recently proposed by [START_REF] Libralesso | Iterative beam search algorithms for the permutation flowshop[END_REF]) is applied on partial solutions, leaving prefix and postfix partial schedules unchanged.

Both approaches have shown good results, but no clear pattern emerged regarding the better heuristic search to use. Moreover, different methods for extracting solutions from the BB search should be investigated and the running time allowed for a heuristic search is fixed at 5 minutes. The hybridization of PBB@Cluster with approximate methods is still an experimental feature that requires more attention-we should note, however, that the hybridization allowed to solve instances whose resolution couldn't be achieved by the PBB algorithm alone. The search is initialized with "initial-UB" (≤ C max ) and explores a tree of "tree-size" nodes (the set of nodes {node|LB(node) < initial-UB}.

Experimental evaluation

Section 5.1 provides details regarding the experimental environment. In Subsection 5.2 we experimentally evaluate the performance of the single-GPU implementation on different GPUs. In Subsection 5.3 we study the scalability of PBB@cluster on up to 384 GPUs. In Subsection 5.4 we report on the attempted resolution of the remaining open Taillard instances and discuss the results. Additional experimental results, as well as new best known solutions and proofs of optimality are given in the Online Supplement.

Experimental platform

Large-scale experiments are carried out on the GPU-accelerated partition of the Jean Zay supercomputer hosted at IDRIS2 . The system has two partitions (accelerated and nonaccelerated), ranked #64 and #108 respectively in the Top500 (November 2020). Accelerated nodes are equipped with two Intel Xeon Gold 6248 (Cascade Lake) processors and four Nvidia V100 SMX2 (32 GB) GPUs. Each V100 GPU has 80 streaming multiprocessors (SMs) for a total of 5120 FP32 Cuda cores clocked at 1.53 GHz (Boost Clock rate). Jean Zay is a HPE SGI 8600 System with Intel Omni-Path 100 GB/s interconnect. The OS is a Red Hat 8.1 Linux distribution and the job scheduler Slurm 18.08.8. For our experiments, we are limited to 384 GPUs (or 96 nodes) with a maximum duration of 20 hours for a single job. For development, testing and medium-scale experiments we also use the GPU-equipped clusters of Grid'5000, a large-scale and flexible testbed for experiment-driven research3 .

Evaluation of single-GPU performance

In this first experiment, the performance of PBB@GPU is evaluated and compared to an equivalent CPU-based PBB@multi-core implementation. PBB is initialized with an initial upper bound (UB) smaller than the known optimum : this ensures that the size of search trees is fixed, and small enough to be explored in 10-60 minutes on a single CPU-core. The selected instances, defined by m = 20 machines and n = 20, 50, 100 and 200 jobs, initial UBs and the corresponding tree sizes are shown in Table 1. The evaluation is performed with four different GPUs available in the Grid'5000 testbed: two gaming devices, GTX1080Ti and RTX2080Ti, based on the Pascal and Turing microarchitectures respectively; and two data-center GPUs (previously Tesla), the Pascal P100 and Volta V100 (PCIe versions). For all four, version 10.1 of the CUDA toolkit is used.

Figure 9 shows the relative speed-up of multi-core and GPU-based PBB compared to a sequential execution using a single CPU-core. The parallel multi-core version runs on a dual-socket NUMA system composed of two Intel Gold 6126 CPUs (2x12 cores) and Figure 9

Performance of PBB@GPU compared to sequential and multi-core CPU implementations, using the benchmark instances shown in Table 1.

uses all 48 logical cores (hyperthreading enabled). The implementation uses pthread-based work stealing for load balancing between asynchronous exploration threads. In preliminary experiments, we determined that K = 16384 is a suitable value for the number of IVMs per GPU. One can see in Figure 9 that the multi-core B&B reaches speed-ups approximately equal to the number of physical CPU cores. The dual-socket 24-core system performs better than PBB@GPU only for the small 20 × 20 instance and the weakest of the four GPUs. In all other cases, PBB@GPU clearly outperforms PBB@multi-core, reaching speed-ups between 41× (20 × 20 instance using a P100 device) and 325× (200 × 20 instance on a V100 device) over sequential CPU execution. In other words, for instances of size 100 × 20 or 200 × 20, over 1000 CPU cores are needed to equal the processing power provided by a single quad-GPU node of Jean Zay.

One can notice a significant performance gap between the Pascal P100 and Volta V100 GPUs, and also between the Pascal-and Turing-based GeForce devices. To better understand the reasons for this improvement, PBB@GPU executions on the four different devices are profiled using the nvprof profiling tool: results are available in the Online Supplement.

Scalability experiments on Jean Zay

To perform a meaningful scalability analysis, we need to choose problem instances which are small enough to be solved within a reasonable amount of time on a single device and large enough to justify the use of multiple GPUs (single-GPU execution time between 1 hour and 1 day). Moreover, the selected benchmark instances should be associated with different total workloads (tree sizes), but the granularity of the workload should be the same (i.e. the number of jobs and machines defining the instances should be identical). Taillard's benchmark instances (except Ta056 ) are either too small or too large, so we selected three instances from the VRF benchmark, defined by n = 30 jobs and m = 15 machines (30 15 2, 30 15 5 and 30 15 9 ).

To avoid speedup anomalies, we initialize PBB@Cluster with optimal solutions determined in preliminary runs. The sizes of explored critical trees (decomposed nodes) and corresponding single-GPU walltimes are shown in Table 2. To simplify the presentation of results, we refer to these instances as small, medium and large. The critical tree of the small instance is composed of 122 billion nodes and its exploration requires 54 minutes of processing on a single V100, which corresponds to an average processing speed of 37.6 × 10 6 nodes per second (NN/s). The large instance is 30 times larger, requiring over 27 hours Evaluation of scalability on Jean Zay.

of processing at approximately the same speed. For each of the three instances, runs are performed with 1, 2, 4, . . . , 2 k quad-GPU nodes until the observed parallel efficiency drops below 70%. Four MPI processes are mapped to each node and worker processes map to GPU devices via MPI Rank (mod 4) and the cudaSetDevice API function. As the coordinator process occupies one slot on node 0, the corresponding number of GPUs is respectively 3, 7, . . . , 2 k+2 -1.

For the three instances and an increasing number of GPUs, Figure 10a shows the elapsed walltime (t wall ) with solid lines and the total active time of the coordinator (t coord ) with dotted lines. The coordinator is considered "active" when it is not waiting on MPI Probe, i.e. t coord includes the time process 0 spends receiving messages, converting intervals and processing worker requests. The linear scaling curve with respect to a single-GPU execution (no coordinator) is represented by black solid lines. However, as Figure 10a is drawn in log-log-scale, deviations from the ideal linear case are hard to see. Therefore, Figure 10b shows the corresponding parallel efficiency.

Parallel efficiency of at least 90% is achieved with up to 16, 32, 64 GPUs for the small, medium and large instances respectively; with 32, 64 and 128 GPUs, PBB@Cluster runs with efficiencies of 84, 89 and 89% respectively. For a larger number of GPUs the parallel efficiency drops off sharply, due to saturation of the coordinator process. Indeed, one can notice in Figure 10a that for ≥ 32, ≥ 64 and ≥ 128 GPUs, t coord is close to t wall , meaning that the coordinator is active nearly 100% of the time and becomes a sequential bottleneck. However, with 384 GPUs PBB@Cluster still reaches a speedup of 215× for the large instance, reducing the execution time from over 27 hours (single GPU) to about 7 1 /2 minutes. The results of this experiment indicate that for larger instances (> 30 hours on a single device), PBB@Cluster can efficiently exploit several hundreds of GPUs, involving over millions of independent tree exploration agents (K = 16384 per GPU). Exact solution of Ta056 was first reported in [START_REF] Mezmaz | A grid-enabled branch and bound algorithm for solving challenging combinatorial optimization problems[END_REF]. Details on re-solving Ta056 are provided in the Online Supplement.

Resolution of open PFSP instances

The largest previously solved PFSP instance is the 50 × 20 instance Ta056, whose exact solution was first obtained by a 25-day run of PBB@Grid [START_REF] Mezmaz | A grid-enabled branch and bound algorithm for solving challenging combinatorial optimization problems[END_REF]), exploiting on average 328 CPUs. Over the last 5 years, we have re-solved Ta056 several times on different platforms and with different PBB algorithms, including PBB@Cluster. Experimental results obtained with Ta056 can be found in the Online Supplement.

In this subsection, we give feedback on our attempts to solve instances from the Taillard benchmark for which optimal solutions are unknown. There are 9 such instances in the 50-job/20-machine class, 9 in the 100 × 20 group and 5 in the 200 × 20 group. For the sake of clarity in the following presentation of results, let us briefly recall the possible outcomes of a PBB execution: (a) A solution π with a better cost than the initial UB is found, but the algorithm does not terminate ⇒ no proof of optimality, improved UB (b) A solution π with a better cost than the initial UB is found and the algorithm terminates ⇒ proof of optimality and improved UB (c) The algorithm terminates but the initial UB is not improved ⇒ the optimal solution is larger or equal to the initial UB (d) The algorithm does not terminate and the initial UB is not improved ⇒ no information 5.4.1. 50-job, 20-machine instances (Ta051-Ta060) Table 3 summarizes the execution statistics for the 9 unsolved instances of the 50×20 class-4 of them are solved to optimality for the first time. In all cases, the algorithm is initialized with the best-known solution from the literature. Clearly, even when optimal makespans for instances in this class are available, their optimality is very hard to prove. Taking for example Ta058, proving that no better solution than 3691 exists requires over 13 hours of processing on 256 GPUs, and 339 × 10 12 node decompositions. Based on the CPU-GPU comparison shown in Figure 9, this corresponds to 64 CPU-years of sequential processing! For instances Ta057 and Ta053, the best-known UB is also proven optimal.

In order to confirm the existence of a schedule with these optimal makespans, we solve Ta057 a second time, finding the same optimal solution when initialized at C max + 1. For schedule for Ta083 is found and proven optimal in 24 minutes using 64 GPUs. The explored search tree is composed of 2.2 × 10 12 nodes, which is much smaller than the trees explored for the 50 × 20 instances. Interestingly, once the optimal solution of Ta083 is found, the search terminates almost instantly-indeed, initialized with the optimum 6252, the search completes within a few seconds by a sequential PBB algorithm.

The second approach provides improved solutions for all remaining instances of this group. However, the exact PBB search alone is not able to find these solutions and bestfound solutions strongly depend on the quality of the supporting heuristic. Optimality proofs are produced for two instances, Ta084 and Ta090, and in both cases the optimal makespan is equal to the best-known lower bound! The solution statistics shown in Table 4 correspond only to the run that resulted in the solution of the instance. For Ta084 and Ta090, several PBB@Cluster executions were performed prior to that final run (decreasing the initial upper bound and restarted from previous checkpoints)-unfortunately, exploration statistics were lost when restarting the algorithm from a global checkpoint.

The fact that the search completes relatively quickly (for the solved instances) once an optimum is found, suggests that some of the remaining instances of the 100 × 20 class may be solved exactly-if heuristic searches are capable of finding an optimal solution. Indeed, contrary to the 50 × 20 class, the hardness of the three solved 100 × 20 instances stems from the difficulty of finding an optimal solution, while the optimality of the latter is relatively easy to prove.

For the six remaining instances, the exploration could not be completed despite using 2-10k GPUh of computation per instance. Although the required remaining time is by nature unpredictable, we use the total remaining work and LB-UB gaps as indicators for the hardness of an instance, and concentrate efforts on seemingly easier instances. For all unsolved instances, improved upper and lower bounds on the optimal makespan are reported in Table 4. One can see that for these instances, the previously best-known LBs are not optimal (all best-known LBs are improved, on average by 0.32%). Taking for example Ta081, we have 6135 ≤ C max ≤ 6173, which narrows down the previous LB-UB interval 6106-6202. On average, best-known UBs for the remaining 100 × 20 instances are improved by -0.50%. Permutation schedules for all improved UBs are provided in the Online Supplement.

It should be noted that for the 100 × 20 class, ARPD values (with respect to previous best-known UBs) of best-performing metaheuristics reported in the literature are in the order of +0.5% [START_REF] Dubois-Lacoste | An iterated greedy algorithm with optimization of partial solutions for the makespan permutation flowshop problem[END_REF][START_REF] Kizilay | A variable block insertion heuristic for solving permutation flow shop scheduling problem with makespan criterion[END_REF]. Our results show that, taking into account the improved UBs, actual optimality gaps of these methods are closer to +1.0%. In the 200 × 20 class of Taillard's benchmark, 5 instances remain open, prior to this work. Four of them are solved exactly and the UB of the remaining instance is improved by 0.38%. All four exact solutions are obtained by successively running PBB@Cluster with increasing initial UBs. The exploration statistics shown in Table 5 correspond only to the last run which results in the instance's solution. The largest of these instances, Ta101, is solved in 18 minutes using 32 GPUs. Compared to the 50-job instances, most 200×20 instances are thus relatively "easy" to solve (although 18 minutes on 32 V100 GPU still correspond to an estimated computing time of 130 CPU-days!). For two of the four solved instances the previously best-known LB is optimal (Ta107, Ta108 ). Instance Ta102 is much harder to solve. The range of possibly optimal makespan values is narrowed down to 11154-11160 (from 11143-11203), but The "old LB-UB" columns refer to the best-known lower (resp. upper) bounds in the literature, summarized on E. Taillard's website [START_REF] Taillard | Summary of best known lower and upper bounds of Taillard's instances[END_REF]. multiple attempts consuming several thousands of GPU-hours were unsuccessful in further increasing (resp. decreasing) the lower (resp. upper) bound.

VRF instances

We also run PBB@Cluster on unsolved VRF instances [START_REF] Vallada | New hard benchmark for flowshop scheduling problems minimising makespan[END_REF]. Due to the large number of open instances in the VRF benchmark (271/480), no attempts are made to solve instances with m = 60 machines and the allocated computational budget per instance is smaller than for the Taillard benchmark. Overall, 55 instances are solved exactly for the first time and 122 best-known solutions [START_REF] Vallada | New hard benchmark for flowshop scheduling problems minimising makespan[END_REF][START_REF] Libralesso | Iterative beam search algorithms for the permutation flowshop[END_REF][START_REF] Kizilay | A variable block insertion heuristic for solving permutation flow shop scheduling problem with makespan criterion[END_REF][START_REF] Gmys | A computationally efficient Branch-and-Bound algorithm for the permutation flow-shop scheduling problem[END_REF]) are improved. The largest exactly solved instance is VRF30 20 1 (53.4 × 10 12 decomposed nodes, 200 GPUh)-the previously best-known solution is optimal. Updated lists of best-known solutions and corresponding schedules are provided at [START_REF] Gmys | Permutation Flow-shop : best-known makespans and schedules for Taillard and VRF benchmarks[END_REF]. Figure 11 summarizes, for each of the 48 instance classes, the number of known exact solutions and (in parentheses) the number of optimal solutions provided in this paper. One can see that the unsolved instances with m = 20 machines are centered around n = 40-100, which is consistent with the results obtained for Taillard's benchmark. All instances with m ≥ 40 machines remain open, although some of the best-known solutions are improved.

Conclusions and future work

We have presented a Branch-and-Bound (BB) algorithm for exactly solving permutationbased combinatorial optimization problems on GPU-accelerated supercomputers (PBB@Cluster). The permutation flow-shop scheduling problem (PFSP) with makespan minimization is used as a test-case. Using PBB@Cluster we solved 11 of the 23 open Taillard benchmark instances (1993) to optimality for the first time. Moreover, best-known upper bounds are improved for 8 remaining instances. Instance Ta056 is solved to optimality in less than 3 minutes on the Jean Zay supercomputer, which is a four-orders-of-magnitude improvement over the first exact solution in 2006, which required 25 days of computation, using a grid-enabled BB algorithm [START_REF] Mezmaz | A grid-enabled branch and bound algorithm for solving challenging combinatorial optimization problems[END_REF].

Computational experiments demonstrate the efficiency of our approach. Using a single V100 GPU, we observe speed-ups of 325× compared to a single-threaded CPU-based implementation. The scalability of PBB@Cluster, using millions of GPU-based concurrent tree searches on up to 384 V100 GPUs (2 million CUDA cores) has been evaluated. An instance requiring 27 hours on a single GPU, is solved in 14 minutes on 128 GPUs, i.e. with 90% parallel efficiency. The largest instance solved to optimality (Ta058 ) requires an equivalent computing power of 64 CPU-years-on 256 GPUs it is solved in 13 hours, exploring a tree composed of 340 × 10 12 nodes.

Although, to the best of our knowledge, this is the first deployment of fine-grained BB on a peta-scale supercomputing system, these results could not be obtained by sheer bruteforce. Rather, they were made possible though a combination of recent algorithmic progress in the design of sequential BB for the PFSP [START_REF] Gmys | A computationally efficient Branch-and-Bound algorithm for the permutation flow-shop scheduling problem[END_REF]) and a thoroughly revisited parallel BB, specifically designed for GPUs and GPU-accelerated clusters. In this paper we addressed in a comprehensive way several challenging and performance-critical issues that arise at different levels of the algorithm-to-platform mapping, most of them related to the algorithm's highly irregular nature.

As shown in [START_REF] Gmys | Heterogeneous cluster computing for many-task exact optimization -Application to permutation problems[END_REF], the proposed approach can by applied to other permutationbased optimization problems, provided that the lower bounding operation can be carried out efficiently on the GPU. However, an extension to other solution encodings is not straightforward as it would require revisiting the data structures used for managing the pool of subproblems and the definition of work units.

In the short term future, we plan to investigate the hybridization of exact PBB and approximate search methods, which has shown promising results. We will also investigate the use of high-productivity PGAS-based parallel computing environments, such as Chapel, that could greatly simplify the implementation of PBB@Cluster and parallel tree-search algorithms in general.

The source code for PBB@Cluster is available at https://github.com/jangmys/pbb
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 4 Figure 4Tree and IVM-based representation of the search state, solving a permutation problem of size 5.

Figure 5

 5 Figure 5Illustration of the search space encoded as the integer-interval [0, 4![, for a permutation problem of size n = 4. In this example, the search space is partitioned into three work units : [0,9[, [9, 15[, [16, 24[ (equivalently, in factoradic notation : [0000, 1100[, [1110, 2110[, [2200, 3210[). 

  [a, b[⊆ [0, n![. In PBB, work units are intervals, that can be either represented in factoradic form [V a , V b [⊆ [(0, 0, ..., 0), (n -1, n -2, ..., 2, 1, 0)[ or, equivalently, in decimal form [a, b[⊆ [0, n![. Figure 5 illustrates, for a problem of size n = 4, the partition of the search space [0, 4![ into three work units. A parallel PBB algorithm is obtained as follows. The search space [0, n![ is partitioned into K distinct subintervals {[a i , b i [⊂ [0, n![, i = 1, . . . , K} to be explored by K workers. As the distribution of work in [0, n![ is highly irregular, a work stealing approach is used (Mezmaz et al. 2014). When a worker i finishes the exploration of its interval [a i , b i [ (i.e. when a i = b i ), it chooses a victim worker j and "steals" the right half [ a j +b j 2 , b j [. The work stealing victim j continues to explore the interval [a j , a j +b j 2 [.

Figure 6

 6 Figure 6Outline of GPU-based PBB algorithm (PBB@GPU).

Figure 7

 7 Figure 7Illustration of a parallel makespan evaluation for a four-job (partial) schedule and m = 6 machines.

  3. Compute n -d Forward -LBs in m n-d 32 steps. 4. Compute n -d Backward -LBs in m n-d 32 steps. 5. Choose branching direction (warp-parallel min-reduce and warp-vote functions). 6. Apply pruning decisions for n -d subproblems in parallel.

  4.1.2. Work unit intersection. The intersection of two intervals [a 1 , b 1 [ and [a 2 , b 2 [ is done by considering the maximum between both start points and the minimum between both end points, as shown in Equation

  Figure 11Summary of optimally solved VRF instances. Note. In parentheses: number of optimal solutions reported in this work. Thick dashed cell borders indicate that the best-known solution for at least one instance in the class is improved. White: all 10 instances in the class are solved; Gray: some instances remain open; Hatched red: optimal solutions for all 10 instances remain unknown.

Table 1

 1 Instances used for single-GPU performance evaluation.Instance initial-UB n × m tree-sizeInstance initial-UB n × m tree-size

	Ta021	2297	20 × 20 495 G	Ta081	6115	100 × 20 282 G
	Ta056	3666	50 × 20 1444 G	Ta101	11156	200 × 20 371 G

Table 2

 2 Summary of 30 × 15 VRF instances used for scalability experiments on Jean Zay.For each instance the table gives the optimal makespan (C max ), size of the critical tree (NN), exploration time on one V100 device (T1-GPU) and the corresponding processing speed (in decomposed nodes/second).

					shorthand name name C max	NN		T 1-GPU (hh:mm) NN/s		
						small	30 15 2 2317 122 G		0:54		37.6 M		
					medium	30 15 5 2421 564 G		4:22		35.8 M		
						large	30 15 9 2259 3660 G		27:23		37.1 M		
	time (minutes)	1 16 256 4,096							Inst. |tcoord|twall -----------------small | | medium| | large | |	Parallel Efficiency	1 0.6 0.7 0.8 0.9 0.5		0.96 0.99 medium small large	0.99 0.95	0.98 0.93	0.96 0.84	0.94 0.64 0.89	0.67 0.89	0.73	0.56
		1	2	4	8	16	#GPUs 32	64	128	256	512	0.4	1	2	4	8	16	#GPUs 32	64	128	256	512
		(a) Elapsed walltime and coordinator time						(b) Parallel efficiency	
	Figure 10																			

Table 3

 3 Summary of solution attempts for benchmark instances Ta051-Ta060 (50 × 20).

				-solved-		
	Instance #GPUs t elapsed GPUh NN ∼CPU-time known UB	C max
	Ta058	256	13h17 3399 339T	64 y	3691	3691
	Ta053	128	7h59	1022 95T	19 y	3640	3640
	Ta052	384	1h54 729.6 68T	14 y	3704	3699
	Ta057	384	1h11 454.4 42T	8.5 y	3704	3704
				-remain open-		
		Best found		Comment	
	Ta051		3846	equal to UB from (Ravetti et al. 2012)	
	Ta054		3719	equal to UB from (Pan et al. 2008), (Kizilay et al. 2019)
	Ta055		3610	equal to UB from (Deroussi et al. 2006)	
	Ta059		3741	equal to UB from (Pan et al. 2008)	
	Ta060	3755	improved upper bound		

Table 5

 5 Summary of solution attempts for benchmark instances.

				-solved-		
	Instance	#GPUs	t elapsed	GPUh	NN	∼CPU-time old LB-UB C max
	Ta101	32	0h18	9.6	225G	130 d	11152-11195 11158
	Ta107	32	0h06	3	41G	41 d	11337-11360 11337
	Ta109	32	100s	1	10G	4 d	11145-11192 11146
	Ta108	32	28s	<1	2G	80 h	11301-11334 11301
				-remain open-		
		old LB-UB new LB-UB		∆LB		∆ UB
	Ta102 11143-11203 11154-11160		+0.10%		-0.38%
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For example, solving Ta058 (n = 50), the critical tree (composed of nodes with LBs smaller than the optimal cost) contains 339 × 10 12 nodes, so there exists at least one level with more than 6.7 × 10 12 open subproblems. Assuming that each subproblem is stored as a sequence of n = 50 32-bit integers, breadth-first exploration would require at least 6.7 × 10 12 × 50 × 4 B = 1.4 PB of memory.
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Table 4

Summary of solution attempts for benchmark instances Ta081-Ta090 (100 × 20).

- The "old LB-UB" columns refer to the best-known lower (resp. upper) bounds in the literature, summarized on E. Taillard's website [START_REF] Taillard | Summary of best known lower and upper bounds of Taillard's instances[END_REF].

Ta058 and Ta053, additional explorations with the support of heuristic searches are performed until an optimal schedule is discovered. For Ta052, PBB@Cluster finds an improved schedule and proves its optimality in less than 2 hours, using 384 GPUs. Optimal permutations for these instances are provided in the Online Supplement.

Instances Ta051, Ta054, Ta055, Ta59 and Ta060 remain open, despite using 3-5000 GPUh per instance in solution attempts. The initial UB provided for instance Ta060 is improved by one unit to 3755. For the remaining instances, PBB@Cluster is restarted with a larger initial UB and stopped when it finds the best-known UB. Enabling heuristic searches in PBB@Cluster, these solutions are found relatively quickly (usually within less than 1 hour). We can thus confirm the existence of the best-known solutions reported in the literature. For the sake of completeness, corresponding permutation schedules are provided at [START_REF] Gmys | Permutation Flow-shop : best-known makespans and schedules for Taillard and VRF benchmarks[END_REF]. Considering these observations, it seems likely that the best-known UBs for the open 50 × 20 instances are optimal, but proofs of optimality are very hard to obtain. 5.4.2. 100-job, 20-machine instances (Ta081-Ta090) For the 100-job instances Ta081 -Ta090, prior to this work the exact solution was only known for Ta082. We add three instances to this list : Ta083, Ta084 and Ta090. Solution statistics and improved upper bounds are summarized in Table 4. After initial, inconclusive solution attemptswithout using heuristic search threads-we try to tackle instances in this group in two ways:

1. Using the best-known lower bound (as reported on E. Taillard's website [START_REF] Taillard | Summary of best known lower and upper bounds of Taillard's instances[END_REF]) as initial UB, PBB@Cluster proves that no better solution exists, i.e. returns without discovering a better schedule. Then, the initial UB is incremented by +1 and the search is restarted. Iterating over runs with an increasing initial UB, the best known lower bound is improved. This process is stopped when the algorithm finds and proves the optimality of a solution or when a fixed amount of time is elapsed. 2. The exploration is initialized with the best-known UB and heuristic searches are used to discover better solutions. The first approach leads to the resolution of Ta083, for which the previously best-known LB (6252) is optimal. Starting from one unit above the best-known LB (6253), an optimal