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Active Fault Diagnosis based on Adaptive
Degrees of Freedom χ2-statistic method

Quoc-Hung Lu1, Soheib Fergani1, Carine Jauberthie1

Abstract—This paper is concerned with an active fault diag-
nosis method is developed based on an adaptive fault detection
approach using χ2-statistics [1]. The system under consideration
is linear discrete time-variant with sensor faults in the framework
of mixed uncertainties (stochastic noises and bounded uncertainty
for parameter matrices). The proposed method enhances the fault
detection performance and provides the ability of localization and
estimation of the detected fault. It provides also an on-line fault
diagnosis with no delay in time instant with the computation time
depending only on the computer performance.

I. INTRODUCTION

Fault diagnosis is becoming nowadays a functionality of
utmost importance for modern systems. Including the fault
detection as a substantial task, fault diagnosis is characterized
by its ability of fault isolation and identification that allows
the system to react in real time.

The fault diagnosis can be organised in two general cat-
egories: model-based (analytical model based on a deeper
understanding of the system), and non-model based(heuristic
knowledge). In the field of model-based fault diagnosis, two
approaches can be considered: passive and active fault di-
agnosis (AFD). The passive approach has been introduced
very early in 1970’s by [2], [3], [4] and has been extensively
investigated. A general survey on these passive approaches
can be found in [5] and [6] . On the other hand, few works
have focused on the active approach that has been developed
more recently. In [7], an approach using auxiliary signal design
for failure detection has been introduced, and where the key
terminology "active failure detection" (AFD) appears. Also,
([8], [9], [10], [11],...) use the AFD terminology. To the best
of our knowledge until now, [12] is a rather complete and
recent survey dealing with the AFD approach.

A key idea of AFD is to use auxiliary input signals that
are injected into the monitored system in order to improve the
quality of decision making stage of the fault diagnosis. This
technique was investigated in several researches around 1990,
well before the release of the AFD terminology ( more deatails
in [12]). Also, the AFD approach can be classified into groups
based on different relevant features as: the deterministic (norm
bounded)/probabilistic (based on uncertainty description), the
fixed/variable finite time interval or infinite time interval
(based on the length of time interval in which auxiliary signals
are designed). A list up to date and non exhaustive of related
researches can be found in [12], [13].
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The relevant issue of AFD approach is that the injection
of auxiliary signals into the monitored system disturbs the
outputs to be controlled both in the fault-free case as well as
in the faulty case [11]. It should be ensured that auxiliary
signals do not drive the monitored system out of desired
control performance specifications. Therefore, there is a trade-
off between the fault diagnosis quality improvement and a
minimal disturbance of the controlled outputs.

Very recently, authors have introduced Adaptive degrees of
freedom χ2-statistic (ADFC) using the optimal upper bound
kalman filter and the χ2-statistics. It allows to provide a
significantly enhance fault detection for systems subject to
mixed uncertainties (bounded and stochastic), see [1].
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Fig. 1: AFD general block diagram.

In this paper, a novel AFD method based on the Adaptive
degrees of freedom χ2-statistic (ADFC) is presented. The
proposed active strategy uses auxiliary signals to enhance
fault detection performance of the ADFC method (see Fig.
1). Additionally, it provides the ability of the estimation and
localization of the detected fault. It uses the ADFC method
as its main fault detector, called ADFC detector in this
article, and therefore deals with a dynamical system with
mixed uncertainties. More precisely, in this study, a linear
discrete time system concerning both stochastic and bounded
uncertainties in system parameters and sensor fault context are
handled. The main contribution is that the auxiliary signals
are not injected into the monitored system but provided only
to the diagnoser whenever a fault is detected. Thanks to
characteristics of ADFC detector, using these auxiliary signals,
the diagnoser can decide whether the detected signal is a false
alarm or not and hence reduces false alarms. In the case of
positive confirmation, the diagnoser localizes and estimates the
detected fault. Then, the estimated fault is returned backwardly
to the diagnoser to compensate for the actual fault effect to
the next iteration, which also enhances the fault detection.
Furthermore, since auxiliary signals are not injected to the
monitored systems, the undesired system disturbance due to
auxiliary signals is avoided.

The paper is organized as follows: Section I provides an
overview and a general framework for the study.In Section II,



the considered problem is formulated. Section III presents the
main contribution which is the proposed AFD method. Section
IV applies the method to the Bicycle vehicle application.
Section V is the conclusion.

II. PROBLEM FORMULATION

In this section, the problem formulation for the fault diagno-
sis purpose is addressed. Based on that, objectives, scope and
resolution methodology are determined. In general, a standard
fault diagnosis resolution addresses both the fault detection
and isolation (FDI) and the fault estimation (FE).

Let’s start by presenting briefly the notations used in the
whole article (including Algorithms). A real positive semidef-
inite matrix A is denoted by A � 0. For two real square
matrices M,N of the same size, M is an upper bound of
N , denoted N � M , if and only if M − N � 0. For a
non empty set Ω of square matrices, K is an upper bound of
Ω, denoted Ω � K, if and only if M � K, ∀M ∈ Ω. A
real interval matrix [X] of dimension p × q is a matrix with
real interval components [xij ], i = 1 : p, j = 1 : q. Write
X ∈ [X] to indicate a point matrix X = (xij) belonging
element-wise to [X]. Define: X ≡ sup([X]) = (sup([xij ])),
X ≡ inf([X]) = (inf([xij ])), mid([X]) = (X + X)/2,
rad([X]) = (X − X)/2 and width([X]) = X − X . Let
[X] be an n × n real interval matrix, denote: S([X]) ={
X ∈ [X] : X = XT

}
, S+([X]) = {X ∈ S([X]) : X � 0}.

Basic interval operators � ∈ {+,−,×,÷} defined in [14]
can be used to compute directly all operations [u] � [v] and
α � [u], for real intervals [u], [v] and α ∈ R, without any
further approximation algorithm. More general operators are
constructed by meant of inclusion function [14]. In practice,
the package Intlab developed for Matlab is used.

Consider the linear discrete time dynamical system:{
xk = Akxk−1 +Bkuk + wk ,

yk = Ckxk +Dkuk + vk + fk ,
k ∈ N∗, (1)

where xk ∈ Rnx and yk ∈ Rny represent state variables
and measures respectively, uk ∈ Rnu inputs, wk ∈ Rnx state
noises, vk ∈ Rny measurement noises and fk ∈ Rny sensor
faults. Each of the fk’s components corresponds to a sensor
and fk can be composed by multiple faults (some or all sensors
are faulty) or single fault (only one sensor is faulty).

Assumptions (A1): wk, vk are centered Gaussian vectors
with covariance matrices Qk and Rk. Matrices Ak, Bk, Ck,
Dk, Qk, Rk are unknown, deterministic and belonging to a
given bounded interval matrices [A], [B], [C], [D], [Q] and [R]
respectively. The initial state x0 is also Gaussian with mean
µ0 and covariance matrix P0. In addition, x0, {w1, ..., wk}
and {v1, ..., vk} are assumed to be mutually independent.

Assumption (F1). The fault vector is of the form of single
fault, that is fk = b.ej0 ≡ f bk,j0 where b ∈ R and ej0 is
the j0-th column of the corresponding identity matrix, j0 ∈
{1, ..., ny}.

Assumption (F2). For each chain j ∈ {1, ..., ny}, there
exists a value b∗j > 0 so that the detection signal πk satisfies

P
(
πk = 1

∣∣|b| ≥ b∗j ) ≥ p∗j ,

P
(
πk = 0

∣∣|b| < b∗j
)
≥ p̃∗j ,

with acceptable probabilities p∗j , p̃
∗
j , e.g. p∗j = p̃∗j = 0.95.

Remark 1. In the notation f bk,j0 , b means for a dependence
index of fk and not a power. The assumption (F1) is consid-
ered as it is the simplest but indispensable case for a FDI and
FE problem. The assumption (F2) raises naturally for any fault
detection method. As the fault value b has a large magnitude,
the fault is easily detected (πk = 1) and vice versa. Thus,
the thresholds b∗j ’s always exist. The values b∗j , p∗j and p̃∗j are
chosen based on the application and the considered scenario.

Problem. Consider the system (1) with assumptions (A1),
(F1) and (F2).
P1. For a detected fault, determine (isolate) the chain on

which it occurs and estimate its value.
P2. Detect (diagnosis if possible) incipient faults, i.e. the ones

with small magnitudes (|b| < b∗j ), in the early stage.
The problem P1 focuses on the diagnosis of large faults

(|b| ≥ b∗j ) which are detected almost always (with high
probabilities) and some moderate ones (|b| < b∗j ) which are
detected occasionally (with small probabilities). The detected
signals (πk = 1) include also false alarms. Beside the ability
of isolation and estimation of the real faults, a good fault
diagnosis scheme solving P1 might help to reduce false alarms.

Incipient faults are naturally harder to detect. The problem
P2 can be seen as solved (or partially solved) by a scheme :

1) reducing thresholds b∗j ’s as small as possible,
2) solving the problem P1 using reduced thresholds b∗j ’s with

good/acceptable performance,
3) reducing false alarms.

A perfect solution detecting all incipient faults might be
unrealistic.

III. ACTIVE FAULT DIAGNOSIS SCHEME FOR ADAPTIVE
DEGREES OF FREEDOM χ2-STATISTIC METHOD

In this section, an AFD scheme applied to a discrete dynam-
ical system based on the ADFC method dealing with sensor
additive single fault is developed. This scenario corresponds to
the type 2 of error (single fault) presented in [1]. The scheme
focuses to handle the problem P1 and but also solves the
problem P2.

A. Motivation

The ADFC method is developed based on Theorems 1-2 of
[1] and summarized by Algorithms 1-2 presented below (also
introduced in [1]). The Algorithms concern the system (1) with
assumptions (A1). ADFC method is a fault detection method
that can detect multiple and single faults. The fault values
can be positive or negative. Consequently, it is compatible
also to assumptions (F1) and (F2). In the ADFC method,
Algorithm 2, namely OUBIKF which means for Optimal
Upper Bound Interval Kalman Filter, is used as a residual
generator providing [rk] = yk−[ŷk]. The whole fault detection



Algorithm 1 ADFC METHOD TO LINEAR SYSTEM [1]

1: Initialization: [x̂0|0],P0|0, [A], [B], [C], [D], [Q], [R], α,
uk, yk, k = 1, 2, ..., N .

2: for k = 1, 2, 3, ...N do
3: Use Algorithm 2 to obtain: [x̂k|k−1], [Pk|k−1].
4: [rk] = yk − [C][x̂k|k−1]− [D]uk
5: [Sk] = [C][Pk|k−1][C]T + [R]
6: Find ak using Theorem 2 of [1] s.t. : S+([Sk]) � akI .
7: Uk = sup{abs([rk]T [rk]/ak)}
8: κk =

∑ny

i=1 width([rk(i)])/ny = mean{width([rk])}
9: Find δk s.t.: P(χ2(κkny) > δk) = α.

10: Detection signal : πk = I(Uk > δk).
11: end for
(∗): I(x) is the indicator function which equal to 1 if the
conditions x are true and vanishes otherwise.

Algorithm 2 OUBIKF [1]

1: Initialization: [x̂0|0], P0|0, [A], [B], [C], [D], [Q], [R],
uk, yk, k = 1, 2, 3, ..., N .
Find n0 the number of non zero radius of [C].
Find γ such that S+([R]) � γI .

2: for k = 1, 2, 3, ...N do
3: [x̂k|k−1] = [A][x̂k−1|k−1] + [B]uk
4: [Pk|k−1] = [A]Pk−1|k−1[A]T + [Q]
5: Find αk using Theorem 2 of [1] s.t.: S+([Pk|k−1]) � αkI
6: Choose βk > 0 and σk > 0
7: Sk = mid([C])mid([C])T + γ

αk(1+n0/βk)I

+ βk+n0σk

1+n0/βk
Diag

{
rad([C])rad([C])T

}
8: Kk = mid([C])TS−1

k

9: [x̂k|k] = (I −Kk[C])[x̂k|k−1] +Kk(yk − [D]uk)
10: Pk|k = (I −Kkmid([C]))αk(1 + n0/βk)
11: end for

process of this method is summarized in Algorithm 1 and
called in brief the ADFC detector as mentioned so far.

Let k ≥ 1, yk = y0
k + fk where y0

k is the fault-free
measurement. In the faulty case, fk = b.ej0 with b 6= 0
and j0 ∈ {1, ..., ny}. Also, one gets [rk] = [r0

k] + fk and
[x̂k|k] = [x̂0

k|k] + Kkfk. The developed AFD scheme is
motivated by following questions:

(Q1) Given that the ADFC detector has detected the existence
of a fault fk = b.ej0 , what happens if one can add (by
chance!) a quantity f̃k = −b.ej0 to the measurement yk
to obtain ỹk then rerun the ADFC detector with ỹk ?

(Q2) In the same way, what happens if one adds each of
following quantities to yk and rerun the ADFC detector:
• f̃k = b1ej0 where b1.b > 0,
• f̃k = b2ej0 where b2.b < 0,
• f̃k = b3ej where j 6= j0 ?

Assuming that the ADFC detector has a good enough
performance, for (Q1), detection signal πk equals 0 with the
use of ỹk. Then consider (Q2). In the first case, the fault value
has been augmented its magnitude by an additive term of the
same sign, so the ADFC detector gives πk = 1 with high

probability. In the second case, regarding assumption (F2),
one gets with high probability that πk = 0 if |b2 + b| < b∗j0
and πk = 1 if |b2 + b| ≥ b∗j0 . For the last case, it is worthy to
note that:
• add a term b3 to the j-th element of yk is equivalent to

add b3 to the j-th element of [rk],
• the statistic used in ADFC detector is Uk =

sup{abs([rk]T [rk]/ak)}.
Since j 6= j0, by assumption, the j-th element of [rk], says
[rk(j)], is fault-free. Therefore, [rk(j)] is centered nearby
0. With the additive term b3, whatever it is negative or
positive, [rk(j)] deviates more from 0 while its width remains
unchanged provided that |b3| is not too small. This implies that
Uk takes a greater value while the threshold δk determined by
P[χ2(κkny) > δk] = α is unchanged since κk, ny and α are
unchanged (Algorithm 1). Thus, πk = 1 also in the last case
of (Q2).

B. Methodology and Scheme

In the considered framework, a sensor fault is characterized
by a fault value b and the chain j on which it occurs. Denote
a detection signal associated to an occurred fault f bk,j using
the ADFC detector by πk(f bj ). In addition, since the ADFC
detector performs also with the multi faults case, we also use
the notation πk(f bj + f b

′
j′ ), j 6= j′, to designate the detection

signal associated to faults occurring on two different chains.
Let ∆ ∈

[
0 , minj=1:ny{b∗j}

]
and M ∈ N∗ so that M.∆

is superior to maximum fault magnitude we want to estimate.
Generate auxiliary signals, denoted fictive faults, as follows:

f̃q∆k,j = q.∆.ej , q = −M : M , j = 1 : ny.

If a fault occurs on a chain j0 ∈ {1, ..., ny}, which means
f bk,j0 = b.ej0 6= 0, and assuming that 0 < |b| ≤ M.∆, there
exists a q∗ ∈ {−M, ...,M} so that

q∗∆ < b ≤ (q∗ + 1)∆ .

This implies that 0 ≤ |b− (q∗ + i)∆| ≤ ∆, i ∈ {0, 1}.
Therefore, for I =

{
−
⌊
b∗j0/∆

⌋
+ 1, ...,

⌊
b∗j0/∆

⌋}
,

πk

(
f bj0 + f̃ bij0

)
= 0, bi = −(q∗ + i)∆, i ∈ I, (2)

with high probability regarding discussions of (Q1) and (Q2).
Also, we have with high probability:

πk

(
f bj0 + f̃ bij0

)
= 1 , bi = −(q∗ + i)∆ , i /∈ I,

πk

(
f bj0 + f̃q∆j

)
= 1 , q ∈ {−M : M} , j 6= j0.

Remark 2. The so called "with high probability" mentioned
above depends on the probabilities p∗j , p̃∗j of assumptions (F2)
and the performance of the ADFC detector represented by DR,
FAR or EFF indexes defined in [1] and recalled in Section IV.

The developed AFD scheme is explained via the diagram in
Fig.2 and Algorithm 3. Regarding Fig.2, the ADFC detector
includes OUBIKF as its residual generator and the fault
detection part of AFD block. It provides only detection signal



πk at each iteration. From the figure, we note that when a
fault occurs at a time instant k, it follows the feedback [x̂k|k]
and affects the residual at next iterations. Thus πk+1 reflects
not only the existence of fk+1 but also the effect of previous
fault fk. The AFD scheme consists in using fictive faults as
auxiliary inputs and providing them only to the AFD block
and not to the monitored system. Thanks to these auxiliary
inputs, the ADFC detector produces the signature matrix

Sk =

(
πk

(
f bj0 + f̃q∆j

)
j,q

)
≡
(
πqk,j

)
,

where j = 1 : ny , q = −M : M are row and column indexes
respectively. Then the AFD block is equipped with a fault
diagnosis part decoding Sk to decide whether πk equals 0 or 1,
fk is 0 or takes which estimated value. After that, the estimated
fault f̂k is sent backwardly to OUBIKF in order to compensate
for the fault effect to [x̂k|k] and to the fault diagnosis at the
next iteration. Without this fault feedback process, the fault
diagnosis has a poor performance.
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Fig. 2: Active Fault Diagnosis diagram using ADFC detector.

The fault diagnosis part of the AFD block is a signature
matrix decoder. Its function is specified in Algorithm 3.

When Sk has no zero element, all yielded detection signals
are 1, in particular,

πk

(
f bj0 + f̃ bij0

)
= 1 , bi = −(q∗ + i)∆ , i ∈ I,

which contradicts (2). In other words, it is almost the case
that πk(f bj0) = 1 for all b nearby and including 0. Therefore,
the detected signal πk = 1 (line 3 of Algorithm 3) initially
dispatched is a false alarm with high probability.

When Sk has at least one zero element, the error chain is
estimated as the one on which Sk has the maximum number of
zero elements, denoted by ĵ0. That is because a single fault at
a chain j0 may affect the behavior of residual [rk] on another
chain j 6= j0, however its effects on the chain j0 is the stronger.
Then, the fault is estimated as the additive inverse of the mean
of all fictive faults f̃q∆

k,ĵ0
with which πk

(
f bj0 + f̃q∆

ĵ0

)
= 0.

Denote the estimated fault as f̂k = b̂.êj0 and the diagnosed
detection signal as π̂k. The diagnosis is called r-accurate if

ĵ0 ≡ j0 and |b̂− b| ≤ r , (3)

Algorithm 3 AFD SCHEME FOR ADFC METHOD
1: Initialization:

∆, M , B∗ = {b∗j , j = 1 : ny}, λ,
[x̂0|0],P0|0, [A], [B], [C], [D], [Q], [R], α, {uk, yk}k=1:N

2: for k = 1, 2, 3, ...N do
3: Use Algorithm 1 to get detection signal: πk
4: if πk = 1 then
5: q = −M : M ; j = 1 : ny ; ỹqk,j = yk + q.∆.ej ;
6: Rerun Algorithm 1 with {ỹqk,j} to obtain Sk = (πqk,j).
7: if Sk has no zero element then
8: πk = 0
9: else

10: ĵ0 = argmaxj=1:ny

∑M
q=−M πqk,j

11: Find I0 ⊆ {−M : M} s.t. πq
k,̂j0

= 0,∀q ∈ I0
12: b̂ = −mean {I0} .∆ ; f̂k = b̂.êj0 ;

13: if |b̂| ≤ λ.min{B∗} then
14: πk = 0
15: else
16: f̂k = sign(b̂).max{|b̂|,mean(B∗)}.êj0
17: [x̂k|k] = [x̂k|k]−K.f̂k
18: end if
19: end if
20: end if.
21: end for
Note: The parameters in the second line of the initialization
are required only for ADFC detector (Algorithm 1).

where r > 0 is a predetermined radius. This condition is also
called the r-accuracy.

Next, in order to eliminate more false alarms and reinforce
the estimation accuracy, a regularization is performed. Re-
garding the assumption (F2), ideally, a fault value b ≥ b∗j0
is detected and hence b̂ must be at least close to min{b∗j , j =

1 : ny}. So, if the estimated value b̂ is such that

|b̂| ≤ λ.min{b∗j , j = 1 : ny}, λ ∈ [0, 1],

we consider that it is not consistent with assumption (F2) and
hence b̂ is replaced by 0 and π̂k = 0 is dispatched. In the case

λ.min{b∗j , j = 1 : ny} < |b̂| ≤ mean{b∗j , j = 1 : ny},

we consider that there is something intervening and lessening
the estimated value b̂. So b̂ is replaced by mean{b∗j , j = 1 :
ny} and π̂k = 1 is dispatched. The value mean{b∗j , j = 1 :
ny} is chosen as the replacing value because the actual faulty
chain j0 is not known, otherwise b∗j0 could be used. Finally,
the estimated fault is fed backwardly to ADFC detector by
subtracting the amount Kf̂k to [x̂k|k].

IV. APPLICATION

In this section, the proposed method is applied in simulation
to the Bicycle vehicle model ([15]) which was also used as the



simulation application in [1], that is:[
β̇(t)

ψ̈(t)

]
=

[ −Cf−Cr

mv 1 + µ
−lrCr−lfCf

mv2

−lrCr−lfCf

Iz

−l2fCf−l2rCr

Izv

] [
β(t)

ψ̇(t)

]

+

[
Cf

mv 0 0 0
lfCf

Iz
1
Iz

SrRtr
2Iz

−SrRtr
2Iz

]
δ

Mdz

Tbrl
Tbrr


where β(t) is the sideslip angle and ψ(t) is the vehicle yaw
which form the model state variables. This is a nonlinear
continuous-time model which has been discretized/linearized
and thus given under the form (1), where the state is xk =
(xk(1), xk(2))T = (β(k), ψ(k))T .

In the present simulation, the parameters σk = 1 and βk =
10−6 are applied inside the Algorithm 2. Other parameter
settings and simulation procedure applied here are similar to
those used in [1] without adjustment step.

To evaluate the fault detection performance, indicators in-
troduced in [1] are used. Assume that system (1) is applied
for N iterations among which faults occur in a region R with
length l (0 ≤ l ≤ N). The region R may be a range or union
of ranges but is called hereafter an error range for simplicity.
Briefly,

+ Detection Rate: DR =
∑
k∈R I(πk = 1)/l × 100%,

+ False Alarm Rate: FAR =
∑
k 6∈R

I(πk=1)
N−l × 100%,

+ Efficiency: EFF = DR− FAR.
Fistly, we verify the ADFC detector properties as mentioned

in Section III-A and determine thresholds b∗j ’s of assumption
(F2). In order to increase the detection rate, the parameter
κ̃k = λkmean{width([rk])} is applied in Algorithm 1 with
λk = a

−1/2
k is a scale parameter (ak is determined in

Algorithm 1). The results after 100 times of simulations are
shown in the following table.

b DR (%)
Chain 1 Chain 2 Chain 3 Chain 4

-40 100 100 100 98.2
-35 100 100 100 97.9
-30 100 100 100 97.1
-25 100 99.5 100 96.7
-20 99.7 98.6 100 96.5
-15 92.8 89.6 64.9 35.1
-10 48.3 38.7 22.2 16.2
-5 15.4 10.9 10.1 6.8
0 6.9 3.8 9.3 7.5 (FAR(%))
5 14.4 10.9 14.5 11.3

10 49.1 40.8 15.0 8.5
15 94.3 91.5 67.2 38.3
20 99.5 98.4 100 96.4
25 100 99.7 100 97.0
30 100 99.9 100 97.3
35 100 100 100 97.9
40 100 99.9 100 98

TABLE I: Detection rate of ADFC detector applied for Bicycle
vehicle model.

It is shown that the ADFC method functions with either
positive or negative fault values, the thresholds mentioned in
assumptions (F2) are determined as b∗1 = b∗2 = b∗3 = b∗4 = 20
with probabilities beyond 0.96. Note that in the case of b =

0, there is in fact no fault, thus the corresponding detection
rates shown in the table are actually false alarm rate (FAR(%))
which notation is noted right next to them.

Secondly, we continue the simulation to illustrate the AFD
scheme performance. Other parameters chosen for Scheme 3
are: ∆ = 5, M = 12, λ = 0.5 and α = 0.03.

Recall that the AFD scheme is dedicated to diagnose faults
whose magnitudes beyond thresholds b∗j ’s. Thus, a fault value
b = −25 is fixed. Then, four different faults fk = −25ej,
j = 1 : 4, are tested. In each case, an error range of length 50
(time instants) are randomly chosen in which the fault occurs.
Then the ADFC detector (Algorithm 1) is performed without
and with AFD scheme. Thanks to that we can answer to several
questions:

(1) Does the AFD scheme enhance the fault detection of
ADFC detector and help to reduce false alarms?

(2) How well is the fault diagnosis provided by the AFD
scheme ?

The first question is answered positively thanks to Fig.3 and
Tables II-III. Fig.3 visualizes the reduction of false alarms
while Tables II-III show corresponding values of evaluation
indexes DR, FAR, EFF. In more details, Tables II-III show that
the faults are totally detected in the error range (DR = 100%)
by the ADFC detector. In addition, applying the AFD scheme,
the false alarm rate (FAR) is reduced from about 8.6% to about
1% and hence the efficiency (EFF) indexes increase to 99%.

Fig. 3: Detection signals without (left) and with (right) AFD
technique

Chain DR (%) FAR (%) EFF (%)
1 100 8.6 91.4
2 100 8.6 91.4
3 100 8.7 91.3
4 100 8.7 91.3

TABLE II: Detection performance without AFD technique

Chain DR (%) FAR (%) EFF (%)
1 100 0.7 99.3
2 100 1.0 99.0
3 100 1.0 99.0
4 100 1.0 99.0

TABLE III: Detection performance with AFD technique

To deal with the second question above, we measure the
diagnosis performance by the accuracy rate Ar defined by

Ar =
∑
k∈Rj

I(|b̂k − bk| ≤ r)I(ĵ = j)

|Rj |
× 100% , (4)



where r > 0 is a predetermined radius, Rj is the error range
corresponding to the fault chain j, |Rj | is the length of Rj ,
b̂k and ĵ are estimates of actual values bk and j, k is the
time instant. So, Ar is the percentage of fault estimates in Rj
satisfying (3).

The simulation results related to the question (2) are given
by Table IV. From the last row of the table, it is shown that
all estimated chains are correct and all estimated fault values
b̂k are away from the actual faults bk at most a radius of
r = ∆ = 5. The second row of the Table provides the accuracy
percentage corresponding to the radius r = ∆/2.

Chain 1 2 3 4

Ar (%) r = 5/2 86 100 78 98
r = 5 100 100 100 100

TABLE IV: The Ar(%) accuracy rate

Apart from the questions discussed above, the fact that AFD
scheme using estimated fault to feed backwardly into [x̂k|k]
increases the estimation performance of the OUBIKF as the
results shown in Fig.4. In two figures in the left, the estimate
intervals between two vertical black lines (the error range)
deviate from the real states, even no longer contain these states
and, in addition, the widths of these estimate intervals increase.
In two figures in the right, the estimate intervals still track the
real states well with reasonable widths.

Fig. 4: Active fault diagnosis - State estimates without (left)
and with (right) fault estimation feedback.

V. CONCLUSION

In this paper, an AFD scheme is developed for ADFC
method. It can be see as a diagnoser using auxiliary signals
that allows to improve greatly the ADFC detector performance
as well as FDI and FE of the proposed strategy.

The most relevant characteristic of the scheme is that
auxiliary signals are not injected into the monitored system
but provided only to the diagnoser. This is also the key
difference of the scheme with other AFD methods. This helps
to avoid additional disturbances due to auxiliary signals on the
monitored system. In addition, auxiliary signals are designed
off-line and only injected into the diagnoser once a detected
signal (πk = 1) is dispatched at a time instant k. Then, the
generated signature matrix is analyzed to provide decisions

about the fault candidate without delay of any finite time
(instant) interval in which the diagnoser waits reactions of
the monitored system being injected. This implies that the
developed scheme can provide an on-line fault diagnosis with
no delay in time instant and with computation time depending
only on the computer performance.

Another important characteristic of the scheme is the com-
pensation for the actual fault effect to the diagnosis at the
next iteration by using the estimated fault as a feedback to the
diagnoser. It is important for the developed scheme because
without it, the diagnosis performance of the scheme degrades
severely. It may be also a good additional strategy for several
existing AFD and state estimation methods.
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