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Active Fault Diagnosis based on Adaptive Degrees of Freedom χ 2 -statistic method

This paper is concerned with an active fault diagnosis method is developed based on an adaptive fault detection approach using χ 2 -statistics [1]. The system under consideration is linear discrete time-variant with sensor faults in the framework of mixed uncertainties (stochastic noises and bounded uncertainty for parameter matrices). The proposed method enhances the fault detection performance and provides the ability of localization and estimation of the detected fault. It provides also an on-line fault diagnosis with no delay in time instant with the computation time depending only on the computer performance.

I. INTRODUCTION

Fault diagnosis is becoming nowadays a functionality of utmost importance for modern systems. Including the fault detection as a substantial task, fault diagnosis is characterized by its ability of fault isolation and identification that allows the system to react in real time.

The fault diagnosis can be organised in two general categories: model-based (analytical model based on a deeper understanding of the system), and non-model based(heuristic knowledge). In the field of model-based fault diagnosis, two approaches can be considered: passive and active fault diagnosis (AFD). The passive approach has been introduced very early in 1970's by [START_REF] Beard | Failure accomodation in linear system through selfreorganization[END_REF], [START_REF] Jones | Failure accomodation in linear system through selfreorganization[END_REF], [START_REF] Mehra | An innovations approach to fault detection and diagnosis in dynamic systems[END_REF] and has been extensively investigated. A general survey on these passive approaches can be found in [START_REF] Chen | Robust Model-Based Fault Diagnosis for Dynamic Systems[END_REF] and [START_REF] Ding | Model-Based Fault Diagnosis Techniques[END_REF] . On the other hand, few works have focused on the active approach that has been developed more recently. In [START_REF] Campbell | Auxiliary Signal design for Failure Detection[END_REF], an approach using auxiliary signal design for failure detection has been introduced, and where the key terminology "active failure detection" (AFD) appears. Also, ( [START_REF] Niemann | Fault tolerant control based on active fault diagnosis[END_REF], [START_REF] Niemann | Active fault diagnosis in closedloop systems[END_REF], [START_REF] Stoustrup | Active fault diagnosis by controller modification[END_REF], [START_REF] Niemann | Active fault detection in MIMO systems[END_REF],...) use the AFD terminology. To the best of our knowledge until now, [START_REF] Puncochar | A survey of active fault diagnosis methods[END_REF] is a rather complete and recent survey dealing with the AFD approach.

A key idea of AFD is to use auxiliary input signals that are injected into the monitored system in order to improve the quality of decision making stage of the fault diagnosis. This technique was investigated in several researches around 1990, well before the release of the AFD terminology ( more deatails in [START_REF] Puncochar | A survey of active fault diagnosis methods[END_REF]). Also, the AFD approach can be classified into groups based on different relevant features as: the deterministic (norm bounded)/probabilistic (based on uncertainty description), the fixed/variable finite time interval or infinite time interval (based on the length of time interval in which auxiliary signals are designed). A list up to date and non exhaustive of related researches can be found in [START_REF] Puncochar | A survey of active fault diagnosis methods[END_REF], [START_REF] Tan | Set-based guaranteed active fault diagnosis for lpv systems with unknown bounded uncertainties[END_REF].

The relevant issue of AFD approach is that the injection of auxiliary signals into the monitored system disturbs the outputs to be controlled both in the fault-free case as well as in the faulty case [START_REF] Niemann | Active fault detection in MIMO systems[END_REF]. It should be ensured that auxiliary signals do not drive the monitored system out of desired control performance specifications. Therefore, there is a tradeoff between the fault diagnosis quality improvement and a minimal disturbance of the controlled outputs.

Very recently, authors have introduced Adaptive degrees of freedom χ 2 -statistic (ADFC) using the optimal upper bound kalman filter and the χ 2 -statistics. It allows to provide a significantly enhance fault detection for systems subject to mixed uncertainties (bounded and stochastic), see [START_REF] Lu | A new scheme for fault detection based on optimal upper bounded interval kalman filter[END_REF]. In this paper, a novel AFD method based on the Adaptive degrees of freedom χ 2 -statistic (ADFC) is presented. The proposed active strategy uses auxiliary signals to enhance fault detection performance of the ADFC method (see Fig. 1). Additionally, it provides the ability of the estimation and localization of the detected fault. It uses the ADFC method as its main fault detector, called ADFC detector in this article, and therefore deals with a dynamical system with mixed uncertainties. More precisely, in this study, a linear discrete time system concerning both stochastic and bounded uncertainties in system parameters and sensor fault context are handled. The main contribution is that the auxiliary signals are not injected into the monitored system but provided only to the diagnoser whenever a fault is detected. Thanks to characteristics of ADFC detector, using these auxiliary signals, the diagnoser can decide whether the detected signal is a false alarm or not and hence reduces false alarms. In the case of positive confirmation, the diagnoser localizes and estimates the detected fault. Then, the estimated fault is returned backwardly to the diagnoser to compensate for the actual fault effect to the next iteration, which also enhances the fault detection. Furthermore, since auxiliary signals are not injected to the monitored systems, the undesired system disturbance due to auxiliary signals is avoided.

The paper is organized as follows: Section I provides an overview and a general framework for the study.In Section II, the considered problem is formulated. Section III presents the main contribution which is the proposed AFD method. Section IV applies the method to the Bicycle vehicle application. Section V is the conclusion.

II. PROBLEM FORMULATION

In this section, the problem formulation for the fault diagnosis purpose is addressed. Based on that, objectives, scope and resolution methodology are determined. In general, a standard fault diagnosis resolution addresses both the fault detection and isolation (FDI) and the fault estimation (FE).

Let's start by presenting briefly the notations used in the whole article (including Algorithms). A real positive semidefinite matrix A is denoted by A 0. For two real square matrices M, N of the same size, M is an upper bound of N , denoted N M , if and only if M -N 0. For a non empty set Ω of square matrices, K is an upper bound of

Ω, denoted Ω K, if and only if M K, ∀M ∈ Ω. A real interval matrix [X] of dimension p × q is a matrix with real interval components [x ij ], i = 1 : p, j = 1 : q. Write X ∈ [X] to indicate a point matrix X = (x ij ) belonging element-wise to [X]. Define: X ≡ sup([X]) = (sup([x ij ])), X ≡ inf([X]) = (inf([x ])), mid([X]) = (X + X)/2, rad([X]) = (X -X)/2 and width([X]) = X -X. Let [X] be an n × n real interval matrix, denote: S([X]) = X ∈ [X] : X = X T , S + ([X]) = {X ∈ S([X]) : X 0}.

Basic interval operators

∈ {+, -, ×, ÷} defined in [START_REF] Jaulin | Applied Interval Analysis, with Examples in Parameter and State Estimation, Robust Control and Robotics[END_REF] can be used to compute directly all operations [u] [v] and α [u], for real intervals [u], [v] and α ∈ R, without any further approximation algorithm. More general operators are constructed by meant of inclusion function [START_REF] Jaulin | Applied Interval Analysis, with Examples in Parameter and State Estimation, Robust Control and Robotics[END_REF]. In practice, the package Intlab developed for Matlab is used.

Consider the linear discrete time dynamical system:

x k = A k x k-1 + B k u k + w k , y k = C k x k + D k u k + v k + f k , k ∈ N * , (1) 
where x k ∈ R nx and y k ∈ R ny represent state variables and measures respectively, u k ∈ R nu inputs, w k ∈ R nx state noises, v k ∈ R ny measurement noises and f k ∈ R ny sensor faults. Each of the f k 's components corresponds to a sensor and f k can be composed by multiple faults (some or all sensors are faulty) or single fault (only one sensor is faulty). Assumptions (A1):

w k , v k are centered Gaussian vectors with covariance matrices Q k and R k . Matrices A k , B k , C k , D k , Q k , R k are unknown,

deterministic and belonging to a given bounded interval matrices

[A], [B], [C], [D], [Q] and [R]
respectively. The initial state x 0 is also Gaussian with mean µ 0 and covariance matrix P 0 . In addition, x 0 , {w 1 , ..., w k } and {v 1 , ..., v k } are assumed to be mutually independent.

Assumption (F1). The fault vector is of the form of single fault, that is f k = b.e j0 ≡ f b k,j0 where b ∈ R and e j0 is the j 0 -th column of the corresponding identity matrix, j 0 ∈ {1, ..., n y }.

Assumption (F2). For each chain j ∈ {1, ..., n y }, there exists a value b * j > 0 so that the detection signal π k satisfies

P π k = 1 |b| ≥ b * j ≥ p * j , P π k = 0 |b| < b * j ≥ p * j ,
with acceptable probabilities p * j , p * j , e.g. p * j = p * j = 0.95. Remark 1. In the notation f b k,j0 , b means for a dependence index of f k and not a power. The assumption (F1) is considered as it is the simplest but indispensable case for a FDI and FE problem. The assumption (F2) raises naturally for any fault detection method. As the fault value b has a large magnitude, the fault is easily detected (π k = 1) and vice versa. Thus, the thresholds b * j 's always exist. The values b * j , p * j and p * j are chosen based on the application and the considered scenario.

Problem. Consider the system (1) with assumptions (A1), (F1) and (F2). P1. For a detected fault, determine (isolate) the chain on which it occurs and estimate its value. P2. Detect (diagnosis if possible) incipient faults, i.e. the ones with small magnitudes (|b| < b * j ), in the early stage. The problem P1 focuses on the diagnosis of large faults (|b| ≥ b * j ) which are detected almost always (with high probabilities) and some moderate ones (|b| < b * j ) which are detected occasionally (with small probabilities). The detected signals (π k = 1) include also false alarms. Beside the ability of isolation and estimation of the real faults, a good fault diagnosis scheme solving P1 might help to reduce false alarms.

Incipient faults are naturally harder to detect. The problem P2 can be seen as solved (or partially solved) by a scheme :

1) reducing thresholds b * j 's as small as possible, 2) solving the problem P1 using reduced thresholds b * j 's with good/acceptable performance, 3) reducing false alarms. A perfect solution detecting all incipient faults might be unrealistic.

III. ACTIVE FAULT DIAGNOSIS SCHEME FOR ADAPTIVE

DEGREES OF FREEDOM χ 2 -STATISTIC METHOD In this section, an AFD scheme applied to a discrete dynamical system based on the ADFC method dealing with sensor additive single fault is developed. This scenario corresponds to the type 2 of error (single fault) presented in [START_REF] Lu | A new scheme for fault detection based on optimal upper bounded interval kalman filter[END_REF]. The scheme focuses to handle the problem P1 and but also solves the problem P2.

A. Motivation

The ADFC method is developed based on Theorems 1-2 of [START_REF] Lu | A new scheme for fault detection based on optimal upper bounded interval kalman filter[END_REF] and summarized by Algorithms 1-2 presented below (also introduced in [START_REF] Lu | A new scheme for fault detection based on optimal upper bounded interval kalman filter[END_REF]). The Algorithms concern the system (1) with assumptions (A1). ADFC method is a fault detection method that can detect multiple and single faults. The fault values can be positive or negative. Consequently, it is compatible also to assumptions (F1) and (F2). In the ADFC method, Algorithm 2, namely OUBIKF which means for Optimal Upper Bound Interval Kalman Filter, is used as a residual generator providing

[r k ] = y k -[ŷ k ]. The whole fault detection Algorithm 1 ADFC METHOD TO LINEAR SYSTEM [1] 1: Initialization: [x 0|0 ], P 0|0 , [A], [B], [C], [D], [Q], [R], α, u k , y k , k = 1, 2, ..., N . 2: for k = 1, 2, 3, ...N do 3:
Use Algorithm 2 to obtain: 

[x k|k-1 ], [P k|k-1 ]. 4: [r k ] = y k -[C][x k|k-1 ] -[D]u k 5: [S k ] = [C][P k|k-1 ][C] T + [R] 6: Find a k using Theorem 2 of [1] s.t. : S + ([S k ]) a k I. 7: U k = sup{abs([r k ] T [r k ]/a k )} 8: κ k = ny i=1 width([r k (i)])/n y = mean{width([r k ])} 9: Find δ k s.t.: P(χ 2 (κ k n y ) > δ k ) = α.
Algorithm 2 OUBIKF [1] 1: Initialization: [x 0|0 ], P 0|0 , [A], [B], [C], [D], [Q], [R], u k , y k , k = 1, 2, 3, ..., N . Find n 0 the number of non zero radius of [C]. Find γ such that S + ([R]) γI. 2: for k = 1, 2, 3, ...N do 3: [x k|k-1 ] = [A][x k-1|k-1 ] + [B]u k 4: [P k|k-1 ] = [A]P k-1|k-1 [A] T + [Q] 5: Find α k using Theorem 2 of [1] s.t.: S+([P k|k-1 ]) α k I 6: Choose β k > 0 and σ k > 0 7: S k = mid([C])mid([C]) T + γ α k (1+n0/β k ) I + β k +n0σ k 1+n0/β k Diag rad([C])rad([C]) T 8: K k = mid([C]) T S -1 k 9: [x k|k ] = (I -K k [C])[x k|k-1 ] + K k (y k -[D]u k ) 10: P k|k = (I -K k mid([C]))α k (1 + n 0 /β k ) 11:
end for process of this method is summarized in Algorithm 1 and called in brief the ADFC detector as mentioned so far.

Let k ≥ 1, y k = y 0 k + f k where y 0 k is the fault-free measurement. In the faulty case, f k = b.e j0 with b = 0 and j 0 ∈ {1, ..., n y }. Also, one gets • fk = b 3 e j where j = j 0 ? Assuming that the ADFC detector has a good enough performance, for (Q1), detection signal π k equals 0 with the use of ỹk . Then consider (Q2). In the first case, the fault value has been augmented its magnitude by an additive term of the same sign, so the ADFC detector gives π k = 1 with high probability. In the second case, regarding assumption (F2), one gets with high probability that

[r k ] = [r 0 k ] + f k and [x k|k ] = [x 0 k|k ] + K k f k .
π k = 0 if |b 2 + b| < b * j0 and π k = 1 if |b 2 + b| ≥ b * j0 .
For the last case, it is worthy to note that:

• add a term b 3 to the j-th element of y k is equivalent to add b 3 to the j-th element of [r k ],

• the statistic used in ADFC detector is

U k = sup{abs([r k ] T [r k ]/a k )}.
Since j = j 0 , by assumption, the j-th element of [r k ], says [r k (j)], is fault-free. Therefore, [r k (j)] is centered nearby 0. With the additive term b 3 , whatever it is negative or positive, [r k (j)] deviates more from 0 while its width remains unchanged provided that |b 3 | is not too small. This implies that U k takes a greater value while the threshold δ k determined by

P[χ 2 (κ k n y ) > δ k ] = α is unchanged since κ k
, n y and α are unchanged (Algorithm 1). Thus, π k = 1 also in the last case of (Q2).

B. Methodology and Scheme

In the considered framework, a sensor fault is characterized by a fault value b and the chain j on which it occurs. Denote a detection signal associated to an occurred fault f b k,j using the ADFC detector by π k (f b j ). In addition, since the ADFC detector performs also with the multi faults case, we also use the notation π k (f b j + f b j ), j = j , to designate the detection signal associated to faults occurring on two different chains.

Let ∆ ∈ 0 , min j=1:ny {b * j } and M ∈ N * so that M.∆ is superior to maximum fault magnitude we want to estimate. Generate auxiliary signals, denoted fictive faults, as follows: f q∆ k,j = q.∆.e j , q = -M : M , j = 1 : n y .

If a fault occurs on a chain j 0 ∈ {1, ..., n y }, which means f b k,j0 = b.e j0 = 0, and assuming that 0 < |b| ≤ M.∆, there exists a q * ∈ {-M, ..., M } so that

q * ∆ < b ≤ (q * + 1)∆ . This implies that 0 ≤ |b -(q * + i)∆| ≤ ∆, i ∈ {0, 1}. Therefore, for I = -b * j0 /∆ + 1, ..., b * j0 /∆ , π k f b j0 + f bi j0 = 0, b i = -(q * + i)∆, i ∈ I, (2) 
with high probability regarding discussions of (Q1) and (Q2). Also, we have with high probability:

π k f b j0 + f bi j0 = 1 , b i = -(q * + i)∆ , i / ∈ I, π k f b j0 + f q∆ j = 1 , q ∈ {-M : M } , j = j 0 .
Remark 2. The so called "with high probability" mentioned above depends on the probabilities p * j , p * j of assumptions (F2) and the performance of the ADFC detector represented by DR, FAR or EFF indexes defined in [START_REF] Lu | A new scheme for fault detection based on optimal upper bounded interval kalman filter[END_REF] and recalled in Section IV.

The developed AFD scheme is explained via the diagram in Fig. 2 and Algorithm 3. Regarding Fig. 2, the ADFC detector includes OUBIKF as its residual generator and the fault detection part of AFD block. It provides only detection signal π k at each iteration. From the figure, we note that when a fault occurs at a time instant k, it follows the feedback [x k|k ] and affects the residual at next iterations. Thus π k+1 reflects not only the existence of f k+1 but also the effect of previous fault f k . The AFD scheme consists in using fictive faults as auxiliary inputs and providing them only to the AFD block and not to the monitored system. Thanks to these auxiliary inputs, the ADFC detector produces the signature matrix

S k = π k f b j0 + f q∆ j j,q ≡ π q k,j ,
where j = 1 : n y , q = -M : M are row and column indexes respectively. Then the AFD block is equipped with a fault diagnosis part decoding S k to decide whether π k equals 0 or 1, f k is 0 or takes which estimated value. After that, the estimated fault fk is sent backwardly to OUBIKF in order to compensate for the fault effect to [x k|k ] and to the fault diagnosis at the next iteration. Without this fault feedback process, the fault diagnosis has a poor performance. The fault diagnosis part of the AFD block is a signature matrix decoder. Its function is specified in Algorithm 3.

[C] [B]

When S k has no zero element, all yielded detection signals are 1, in particular, [START_REF] Beard | Failure accomodation in linear system through selfreorganization[END_REF]. In other words, it is almost the case that π k (f b j0 ) = 1 for all b nearby and including 0. Therefore, the detected signal π k = 1 (line 3 of Algorithm 3) initially dispatched is a false alarm with high probability.

π f b j0 + f bi j0 1 , b i = -(q * + i)∆ , i ∈ I, which contradicts
When S k has at least one zero element, the error chain is estimated as the one on which S k has the maximum number of zero elements, denoted by ĵ0 . That is because a single fault at a chain j 0 may affect the behavior of residual [r k ] on another chain j = j 0 , however its effects on the chain j 0 is the stronger. Then, the fault is estimated as the additive inverse of the mean of all fictive faults f q∆ 

Algorithm 3 AFD SCHEME FOR ADFC METHOD

1: Initialization: ∆, M , B * = {b * j , j = 1 : n y }, λ, [x 0|0 ], P 0|0 , [A], [B], [C], [D], [Q], [R], α, {u k , y k } k=1:N 2: for k = 1, 2, 3, ...N do 3:
Use Algorithm 1 to get detection signal: π k 4:

if π k = 1 then 5: q = -M : M ; j = 1 : n y ; ỹq k,j = y k + q.∆.e j ;

6:

Rerun Algorithm 1 with {ỹ q k,j } to obtain S k = (π q k,j ).

7:

if S k has no zero element then end if. 21: end for Note: The parameters in the second line of the initialization are required only for ADFC detector (Algorithm 1).

where r > 0 is a predetermined radius. This condition is also called the r-accuracy.

Next, in order to eliminate more false alarms and reinforce the estimation accuracy, a regularization is performed. Regarding the assumption (F2), ideally, a fault value b ≥ b * j0 is detected and hence b must be at least close to min{b * j , j = 1 : n y }. So, if the estimated value b is such that

| b| ≤ λ. min{b * j , j = 1 : n y }, λ ∈ [0, 1],
we consider that it is not consistent with assumption (F2) and hence b is replaced by 0 and πk = 0 is dispatched. In the case

λ. min{b * j , j = 1 : n y } < | b| ≤ mean{b * j , j = 1 : n y },
we consider that there is something intervening and lessening the estimated value b. So b is replaced by mean{b * j , j = 1 : n y } and πk = 1 is dispatched. The value mean{b * j , j = 1 : n y } is chosen as the replacing value because the actual faulty chain j 0 is not known, otherwise b * j0 could be used. Finally, the estimated fault is fed backwardly to ADFC detector by subtracting the amount K fk to [x k|k ].

IV. APPLICATION

In this section, the proposed method is applied in simulation to the Bicycle vehicle model ( [START_REF] Fergani | Robust multivariable control for vehicle dynamics[END_REF]) which was also used as the simulation application in [START_REF] Lu | A new scheme for fault detection based on optimal upper bounded interval kalman filter[END_REF], that is:

β(t) ψ(t) = -C f mv 1 + µ -lrCr-l f C f mv 2 -lrCr-l f C f Iz -l 2 f C f -l 2 r Cr Izv β(t) ψ(t) + C f mv 0 0 0 l f C f Iz 1 Iz SrRtr 2Iz -SrRtr 2Iz     δ M dz T b rl T brr    
where β(t) is the sideslip angle and ψ(t) is the vehicle yaw which form the model state variables. This is a nonlinear continuous-time model which has been discretized/linearized and thus given under the form [START_REF] Lu | A new scheme for fault detection based on optimal upper bounded interval kalman filter[END_REF], where the state is

x k = (x k (1), x k (2)) T = (β(k), ψ(k)) T .
In the present simulation, the parameters σ k = 1 and β k = 10 -6 are applied inside the Algorithm 2. Other parameter settings and simulation procedure applied here are similar to those used in [START_REF] Lu | A new scheme for fault detection based on optimal upper bounded interval kalman filter[END_REF] without adjustment step.

To evaluate the fault detection performance, indicators introduced in [START_REF] Lu | A new scheme for fault detection based on optimal upper bounded interval kalman filter[END_REF] are used. Assume that system (1) is applied for N iterations among which faults occur in a region R with length l (0 ≤ l ≤ N ). The region R may be a range or union of ranges but is called hereafter an error range for simplicity. Secondly, we continue the simulation to illustrate the AFD scheme performance. Other parameters chosen for Scheme 3 are: ∆ = 5, M = 12, λ = 0.5 and α = 0.03.

Recall that the AFD scheme is dedicated to diagnose faults whose magnitudes beyond thresholds b * j 's. Thus, a fault value b = -25 is fixed. Then, four different faults f k = -25e j , j = 1 : 4, are tested. In each case, an error range of length 50 (time instants) are randomly chosen in which the fault occurs. Then the ADFC detector (Algorithm 1) is performed without and with AFD scheme. Thanks to that we can answer to several questions:

(1) Does the AFD scheme enhance the fault detection of ADFC detector and help to reduce false alarms? (2) How well is the fault diagnosis provided by the AFD scheme ?

The first question is answered positively thanks to Fig. 3 and Tables II-III. Fig. 3 visualizes the reduction of false alarms while Tables II-III show corresponding values of evaluation indexes DR, FAR, EFF. In more details, Tables II-III show that the faults are totally detected in the error range (DR = 100%) by the ADFC detector. In addition, applying the AFD scheme, the false alarm rate (FAR) is reduced from about 8.6% to about 1% and hence the efficiency (EFF) indexes increase to 99%. To deal with the second question above, we measure the diagnosis performance by the accuracy rate A r defined by

A r = k∈Rj I(| bk -b k | ≤ r)I( ĵ = j) |R j | × 100% , (4) 
where r > 0 is a predetermined radius, R is the error range corresponding to the fault chain j, |R j | is the length of R j , bk and ĵ are estimates of actual values b k and j, k is the time instant. So, A r is the percentage of fault estimates in R j satisfying (3). The simulation results related to the question (2) are given by Table IV. From the last row of the table, it is shown that all estimated chains are correct and all estimated fault values bk are away from the actual faults b k at most a radius of r = ∆ = 5. The second row of the Apart from the questions discussed above, the fact that AFD scheme using estimated fault to feed backwardly into [x k|k ] increases the estimation performance of the OUBIKF as the results shown in Fig. 4. In two figures in the left, the estimate intervals between two vertical black lines (the error range) deviate from the real states, even no longer contain these states and, in addition, the widths of these estimate intervals increase. In two figures in the right, the estimate intervals still track the real states well with reasonable widths. 

V. CONCLUSION

In this paper, an AFD scheme is developed for ADFC method. It can be see as a diagnoser using auxiliary signals that allows to improve greatly the ADFC detector performance as well as FDI and FE of the proposed strategy.

The most relevant characteristic of the scheme is that auxiliary signals are not injected into the monitored system but provided only to the diagnoser. This is also the key difference of the scheme with other AFD methods. This helps to avoid additional disturbances due to auxiliary signals on the monitored system. In addition, auxiliary signals are designed off-line and only injected into the diagnoser once a detected signal (π k = 1) is dispatched at a time instant k. Then, the generated signature matrix is analyzed to provide decisions about the fault candidate without delay of any finite time (instant) interval in which the diagnoser waits reactions of the monitored system being injected. This implies that the developed scheme can provide an on-line fault diagnosis with no delay in time instant and with computation time depending only on the computer performance.

Another important characteristic of the scheme is the compensation for the actual fault effect to the diagnosis at the next iteration by using the estimated fault as a feedback to the diagnoser. It is important for the developed scheme because without it, the diagnosis performance of the scheme degrades severely. It may be also a good additional strategy for several existing AFD and state estimation methods.
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 1 Fig. 1: AFD general block diagram.
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 10 Detection signal : π k = I(U k > δ k ). 11: end for ( * ) : I(x) is the indicator function which equal to 1 if the conditions x are true and vanishes otherwise.

  The developed AFD scheme is motivated by following questions: (Q1) Given that the ADFC detector has detected the existence of a fault f k = b.e j0 , what happens if one can add (by chance!) a quantity fk = -b.e j0 to the measurement y k to obtain ỹk then rerun the ADFC detector with ỹk ? (Q2) In the same way, what happens if one adds each of following quantities to y k and rerun the ADFC detector: • fk = b 1 e j0 where b 1 .b > 0, • fk = b 2 e j0 where b 2 .b < 0,

Fig. 2 :

 2 Fig. 2: Active Fault Diagnosis diagram using ADFC detector.

  k, ĵ0 with which π k f b j0 + f q∆ ĵ0 = 0. Denote the estimated fault as fk = b.e ĵ0 and the diagnosed detection signal as πk . The diagnosis is called r-accurate if ĵ0 ≡ j 0 and | b -b| ≤ r ,

Find I 0

 0 ⊆ {-M : M } s.t. π q k, ĵ0 = 0, ∀q ∈ I 0 12: b = -mean {I 0 } .∆ ; fk = b.e ĵ0 ; 13: if | b| ≤ λ. min{B * } then = sign( b). max{| b|, mean(B * )}.e ĵ0 17: [x k|k ] = [x k|k ] -K. fk 18:

  Briefly, + Detection Rate: DR = k∈R I(π k = 1)/l × 100%, + False Alarm Rate: FAR = k ∈R I(π k =1) N -l × 100%, + Efficiency: EFF = DR -FAR. Fistly, we verify the ADFC detector properties as mentioned in Section III-A and determine thresholds b * j 's of assumption (F2). In order to increase the detection rate, the parameter κk = λ k mean{width([r k ])} is applied in Algorithm 1 with λ k = a -1/2 k is a scale parameter (a k is determined in Algorithm 1). The results after 100 times of simulations are shown in the following table.

Fig. 3 :

 3 Fig. 3: Detection signals without (left) and with (right) AFD technique Chain DR (%) FAR (%) EFF (%) 1 100 8.6 91.4 2 100 8.6 91.4 3 100 8.7 91.3 4 100 8.7 91.3

Fig. 4 :

 4 Fig. 4: Active fault diagnosis -State estimates without (left) and with (right) fault estimation feedback.

TABLE I :

 I Detection rate of ADFC detector applied for Bicycle vehicle model. Note that in the case of b = 0, there is in fact no fault, thus the corresponding detection rates shown in the table are actually false alarm rate (FAR(%)) which notation is noted right next to them.

	It is shown that the ADFC method functions with either
	positive or negative fault values, the thresholds mentioned in
	assumptions (F2) are determined as b * 1 = b * 2 = b * 3 = b * 4 = 20
	with probabilities beyond 0.96.

TABLE II :

 II Detection performance without AFD technique

	Chain	DR (%) FAR (%)	EFF (%)
	1	100	0.7	99.3
	2	100	1.0	99.0
	3	100	1.0	99.0
	4	100	1.0	99.0

TABLE III :

 III Detection performance with AFD technique

  Table provides the accuracy percentage corresponding to the radius r = ∆/2.

	Chain	1	2	3	4
	Ar (%)	r = 5/2 r = 5	86 100	100 100 100 100 78 98

TABLE IV :

 IV The A r (%) accuracy rate
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