Improving ViBe-based Background Subtraction Techniques Using RGBD Information - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

Improving ViBe-based Background Subtraction Techniques Using RGBD Information

Résumé

In this paper, we propose a framework for improving Background Subtraction techniques. This framework is based on two types of data, RGB and Depth. Our study stands for obtaining preliminary results of the background segmentation using Depth and RGB channels independently, then using an algorithm to fuse them to create the final results. The experiments on the SBM-RGBD dataset using four methods: ViBe, LOBSTER, SuBSENSE, and PAWCS proved that the proposed framework achieves an impressive performance compared to the original RGB-based techniques from the state-of-the-art.
Fichier non déposé

Dates et versions

hal-03689564 , version 1 (07-06-2022)

Identifiants

Citer

Ihssane Houhou, Athmane Zitouni, Yassine Ruichek, Salah Eddine Bekhouche, Abdelmalik Taleb-Ahmed. Improving ViBe-based Background Subtraction Techniques Using RGBD Information. 2022 7th International Conference on Image and Signal Processing and their Applications (ISPA), May 2022, Mostaganem, Algeria. pp.1-6, ⟨10.1109/ISPA54004.2022.9786278⟩. ⟨hal-03689564⟩
23 Consultations
0 Téléchargements

Altmetric

Partager

More