
HAL Id: hal-03689563
https://hal.science/hal-03689563

Submitted on 4 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Clinical relevance of biomarkers in cholangiocarcinoma:
critical revision and future directions

Rocio I. R. Macias, Vincenzo Cardinale, Timothy J. Kendall, Matias A. Avila,
Maria Guido, Cédric Coulouarn, Chiara Braconi, Adam E. Frampton, John

Bridgewater, Diletta Overi, et al.

To cite this version:
Rocio I. R. Macias, Vincenzo Cardinale, Timothy J. Kendall, Matias A. Avila, Maria Guido, et al..
Clinical relevance of biomarkers in cholangiocarcinoma: critical revision and future directions. Gut,
2022, 71 (8), pp.1669-1683. �10.1136/gutjnl-2022-327099�. �hal-03689563�

https://hal.science/hal-03689563
https://hal.archives-ouvertes.fr


Accepted manuscript

1 

Title: “Clinical relevance of biomarkers in cholangiocarcinoma: critical revision 

and future directions”

Authors: Rocio IR Macias1,2, Vincenzo Cardinale3, Timothy J Kendall4, Matias A

Avila2,5, Maria Guido6, Cédric Coulouarn7, Chiara Braconi8, Adam E Frampton9, John 

Bridgewater10, Diletta Overi11, Stephen P Pereira12, Marco Rengo13, Jakob N Kather14, 

Angela Lamarca15, Federica Pedica16, Alejandro Forner2,17, Juan W Valle15, Eugenio 

Gaudio11, Domenico Alvaro18, Jesus M Banales2,19,20, Guido Carpino21.

Affiliations: 1Experimental Hepatology and Drug Targeting (HEVEPHARM) group,

University of Salamanca, IBSAL, Salamanca, Spain; 2Center for the Study of Liver and 

Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, 

Spain; 3Department of Medico-Surgical Sciences and Biotechnologies, Sapienza

University of Rome, Rome, Italy; 4University of Edinburgh Centre for Inflammation

Research, Edinburgh, UK; 5Center for Applied Medical Research (CIMA), University of 

Navarra, Pamplona, Spain; 6Department of Medicine - DIMED, University of Padua,

Padua, Italy; 7Inserm, Univ Rennes 1, UMR_S 1242, COSS (Chemistry, Oncogenesis

Stress Signaling), Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France; 

8Institute of Cancer Sciences, University of Glasgow, Glasgow, UK; 9University of Surrey, Surrey, UK; 10Department of Medical 

Oncology, UCL Cancer Institute, London, UK; 11Department of Anatomical, Histological, 

Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy; 

12Institute for Liver and Digestive Health, University College London, London, UK; 

13Department of Radiological Sciences, Oncology and Pathology, Sapienza University of 

Rome, Rome, Italy; 14Department of Medicine III, University Hospital RWTH Aachen,

Aachen, Germany; 15Medical Oncology/Institute of Cancer Sciences, The Christie NHS 

Foundation Trust/University of Manchester, Manchester, United Kingdom; 16Department of 



Accepted manuscript

2 

Pathology, San Raffaele Scientific Institute, Milan, Italy; 17BCLC group, Liver Unit, Hospital 

Clínic Barcelona, IDIBAPS, University of Barcelona, Spain; 18Department of Translational 

and Precision Medicine, Sapienza University of Rome, Rome, Italy; 19Department of Liver 

and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University 

Hospital, University of the Basque Country (UPV/EHU), Ikerbasque, San Sebastian, Spain; 

20Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 

Pamplona; 21Department of Movement, Human and Health Sciences, University of Rome 

“Foro Italico”, Rome, Italy. 

Word Count: 5576 (excluding references) 

Corresponding Author: 

Prof. Guido Carpino, MD, PhD 

Department of Movement, Human and Health Sciences, Division of Health Sciences, 

University of Rome "Foro Italico", Rome, Italy. Piazza Lauro De Bosis 6, 00135-Rome, Italy. 

E-mail: guido.carpino@uniroma1.it

mailto:guido.carpino@uniroma1.it


Accepted manuscript

3 

ABSTRACT 

Cholangiocarcinoma (CCA) is a malignant tumour arising from the biliary system. In Europe, 

this tumour frequently presents as a sporadic cancer in patients without defined risk factors 

and is usually diagnosed at advanced stages with a consequent poor prognosis. Therefore, 

the identification of biomarkers represents an utmost need for patients with CCA. Numerous 

studies proposed a wide spectrum of biomarkers at tissue and molecular levels. 

With the present paper, a multidisciplinary group of experts within the European Network for 

the Study of Cholangiocarcinoma (ENSCCA) discusses the clinical role of tissue biomarkers 

and provide a selection based on their current relevance and potential applications in the 

framework of CCA. Recent advances are proposed by dividing biomarkers based on their 

potential role in diagnosis, prognosis, and therapy response. Limitations of current 

biomarkers are also identified, together with specific promising areas (i.e., artificial 

intelligence, patient-derived organoids, targeted therapy) where research should be focused 

to develop future biomarkers. 

Key words: tissue, prognosis, diagnosis, biliary tract cancer 
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KEY MESSAGES 

• Routine histology is sufficient for a correct diagnosis and, when needed, a specific

immunohistochemical panel leads to a definite diagnosis in most cases.

• Routine histology and several tissue biomarkers were described as useful for patient

prognosis and risk stratification.

• Tissue biomarkers for prognosis needs to be assessed and validated in large

multicentre studies, or in long-term observational or interventional studies.

• Pharmacoresistance is associated to the expression of uptake transporters or export

pumps, and to PD-L1 expression.

• The main targeted therapies are those focused on fibroblast growth factor receptor

(FGFR) 2 fusions and isocitrate dehydrogenase (IDH)-1 and -2 mutations but limited

to a patient sub-cohort.
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1. INTRODUCTION

Cholangiocarcinoma (CCA) is a malignant tumour arising in the biliary tree. The incidence 

of CCA currently accounts for ~15% of primary hepatobiliary cancers and its mortality 

represents ~2% of all cancer-related deaths.[1] Its silent presentation, aggressive nature, 

the lack of knowledge of specific risk factors, and/or suboptimal surveillance programs 

in individuals at high risk, among others, lead to diagnose CCA in advanced stages; 

moreover, refractoriness to chemotherapy results in dismal prognosis.[1,2] 

The identification of biomarkers represents an utmost need; however, the fact that 

CCA is one of the most heterogeneous solid cancers is a major challenge. 

Anatomically, CCA is divided into three subtypes: intrahepatic (iCCA), perihilar (pCCA) 

and distal (dCCA), and each anatomical subtype is an independent entity from a biological 

and clinical point of view.[1] 

The present multidisciplinary review is based on a collaboration among members of 

the European Network for the Study of Cholangiocarcinoma (ENSCCA), aimed to evaluate 

tissue biomarkers with clinical relevance for diagnosis, prognosis, and prediction of 

therapy response, thus providing clearer and updated guidance for clinicians. After 

acceptance of the manuscript outline proposal by the coordinators (RIRM, VC, GC), 

each section was distributed among 3-6 experts who worked together on the specific 

topics. A consensus was reached to select biomarkers based on the quality of 

evidence from the studies. The “Research Need and Perspective” sections have the 

scope of identifying specific promising areas on which research could be prospectively 

focused to go beyond current knowledge. Participants contributed with ideas in relation 

to all the topics during the revisions of the manuscript. Relevant articles were 

found by searching PubMed with the term “cholangiocarcinoma” or “bile duct 

cancer” in combination with the following terms: “biomarker”, “histology”, 

“classification”, “cells of origin”, “liquid biopsy”, “diagnosis”, 
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“progression”, “survival”, “chemoresistance”, “radiology”, “organoids”, “artificial intelligence”. 

Although no specific search dates were used, the most recent articles were preferred. 

2. TISSUE BIOMARKERS FOR DIAGNOSIS

Routine histology: diagnostic criteria and pitfalls 

The vast majority of pCCA and dCCA are mucin-secreting adenocarcinomas characterized 

by widely spaced, well-formed irregular glands and small cell clusters, often rich in 

desmoplastic, sclerotic stroma (Figure 1A).[3,4] The main diagnostic issue is the need to 

distinguish well-differentiated p/dCCA from reactive ductal (peribiliary) glands, which is not 

always straightforward on morphology alone; in this case, the clinical history and radiological 

imaging must always be considered. Of note, differentiation between a diagnosis of dCCA 

and pancreatic ductal adenocarcinoma involving extrahepatic bile ducts may be 

impossible by histology and immunohistochemistry (IHC). 

Two main histological subtypes of iCCA are recognized (Figure 1B): the large duct 

type, arising near the hepatic hilus, and the small duct type, which mainly occurs in the 

liver periphery.[4,5] Large duct type iCCA histologically resembles pCCA or dCCA and 

shows extensive portal infiltration, perineural invasion (PNI), mucin production, papillary 

structures, and features of intraductal dysplasia (Figure 1C). In contrast, small duct 

type iCCA is composed of cuboidal cells with uniform round nuclei, arranged in small-

sized tubular or acinar structures, with no mucin production; less differentiated areas 

may show a small, solid cord-like or cribriform pattern.[6,7] Cholangiolo-carcinoma (CLC) 

and iCCA with ductal plate malformation pattern represent peculiar histologic subtypes, 

and could be considered as variants of the small duct type iCCA.[4] 

Molecular tissue biomarkers for diagnosis 



Accepted manuscript

7 

Cytokeratin (CK) 7 and 19 are used in routine practice to establish CCA diagnosis by IHC, 

but both are non-specific markers that can be expressed in some hepatocarcinomas (HCC) 

and other adenocarcinomas[8-10]. Differential diagnosis with HCC is usually easy, unless 

the tumour is poorly differentiated. In this case, a wider IHC panel is recommended,[11] 

which should include markers of hepatocyte differentiation, such as hepatocyte paraffin 1 

(HepPar‐1), arginase‐1, alpha‐fetoprotein, CD10 and polyclonal carcinoembryonic antigen, 

or markers of malignant hepatocytes as glutamine synthetase, glypican 3, or heat shock 

protein 70.[3] 

Epithelial cell adhesion molecule is a surface glycoprotein proposed as a marker for 

distinguishing between iCCA and HCC,[12] but it is also expressed in carcinomas of different 

origins and in poorly differentiated HCC. The high expression of tight junction proteins, such 

as claudins, in biliary tract cancers (BTC) suggests that they can be useful in differentiating 

these tumours from HCC.[13] The expression pattern of claudins varies in normal and in 

different parts of the neoplastic biliary tract, thus, when diagnosed in an advanced clinical 

stage, CCA of extrahepatic and intrahepatic origin and gallbladder cancer can be 

differentiated based on the claudin expression.[14] Unfortunately, claudin expression is 

similar in CCA and pancreatic ductal carcinomas, so it is not useful for this differential 

diagnosis. 

The most important issue on biopsy is the differential diagnosis between iCCA and 

metastatic tumours. Indeed, secondary liver cancers are much more frequent than iCCA. 

The analysis of C‐reactive protein, especially in combination with N-cadherin in whole tissue 

sections, could be useful to distinguish iCCA from intrahepatic metastases of various 

origins.[15] A panel of immuno-stains that may help in leading to a definite diagnosis in most 

cases is furnished in Table 1. 
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Table 1. Immunohistochemical stains for differential diagnosis of iCCA and 

intrahepatic metastases and HCC. 

K7 K19 K20 CDX2 SATB2 TTF1 NAPSIN ARGINASE HepPar-1 pCEA 

iCCA + + -/+ -/+ - - - - -/+ + 

Colo-
rectal 

cancer 
-* - + + + - - - - + 

Gastric 
cancer 

+ + +/- +/- - - - - - + 

Lung 
cancer** 

+ - - - - + + - - + 

HCC -# -^ - - - - - + + +§

* A subset of colo-rectal cancers, namely those originating in the rectum, may be CK7 positive
** Intestinal subtype of lung cancer displays the same immunophenotype of colo-rectal cancer
# K7 can be rarely seen in HCC, particularly poorly differentiated
^ Aberrant expression of K19 may occur in HCC and it is thought to be an adverse prognostic factor 
§ In HCC a canalicular pattern is seen which is considered pathognomic, while in adenocarcinomas 
pCEA shows cytoplasmic/membranous stain.
Abbreviations: CDX2: Caudal Type Homeobox 2; HCC: hepatocellular carcinoma; HepPar-1: 
hepatocyte paraffin 1; K: cytokeratin; iCCA: intrahepatic cholangiocarcinoma; pCEA: polyclonal 
carcinoembryonic antigen; SATB2: Special AT-rich sequence-binding protein 2; TTF1: Thyroid 
transcription factor 1.

Unfortunately, metastatic adenocarcinoma from pancreas, gallbladder, and 

extrahepatic bile ducts may be undistinguishable from iCCA, both at histology and on IHC. 

The differential expression of a panel of 38 markers showed characteristic profiles for iCCA 

that distinguished them from metastatic and pancreatobiliary adenocarcinomas.[16] As 

such, it is likely that up to 10% of patients with liver metastasis from a pancreatic mass 

presenting with jaundice currently managed as metastatic pancreatic adenocarcinoma are 

likely to be dCCA. Ultimately, only routine multi-omic analysis is likely to be able to 

differentiate between these two histo-pathologically similar but prognostically very different 

cancers. 

Over the last decade, non-coding RNAs (ncRNAs) have emerged as possible new 

clinically relevant biomarkers to assist in the diagnosis and also in the prognosis of multiple 



Accepted manuscript

9 
 

cancers.[17,18] Among ncRNAs, microRNAs (miRNAs), long ncRNAs (lncRNAs) and 

circular RNAs (circRNAs) are the most studied in CCA[19,20]. Importantly, ncRNAs have 

been demonstrated to contribute to CCA onset and progression by regulating key signalling 

pathways. In addition, ncRNA deregulation has been shown to reflect CCA pathogenesis. 

Thus, numerous ncRNAs have been proposed as biomarkers for CCA diagnosis and 

prognosis.[21,22] The biochemical nature of ncRNAs constitutes an advantage for 

biomarkers: as nucleic acids, even low copies of ncRNAs can be easily and specifically 

detected, notably by quantitative RT-PCR, in situ hybridization (ISH) or Fluorescent ISH 

(FISH). Further studies would be needed to establish the validity of ncRNAs in clinical 

practice. 

 

Research Need and Perspective I. Liquid biopsy: from tissue analysis to serum 

biomarkers 

The only blood-based biomarker for CCA diagnosis widely used for clinical use is 

carbohydrate antigen 19-9 (CA19-9).[2] However, when used by itself, the sensitivity and 

specificity for diagnosing CCA are variable and, among other issues, depend on the used 

cut-off values.[23-25] In a large European cohort, CA19-9 showed low sensitivity in early 

stages, but increased sensitivity in advanced disease.[26] This finding could be of 

translational relevance for patient stratification and design of clinical trials. However, the 

determination of circulating levels of CA19-9 may be useful for patients’ surveillance and 

follow-up, comprising primary sclerosing cholangitis (PSC), but its considerable limitations 

(e.g. non-specific elevation in other malignancies and even in benign disease associated to 

cholangitis and/or cholestasis) and complete absence in patients with Lewis antigen-

negative blood type have triggered an active search for alternative circulating biomarkers 

(Figure 2). Changes in gut microbiota, bile acid metabolism and cytokines, as well as in 

other metabolites and proteins have been described in patients with CCA and some of them 
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proposed as biomarkers for diagnosis and prognosis.[27-31] Several studies have showed 

in biopsy proven CCA that the sensitivity and specificity of panels of serum metabolites or 

of proteins isolated from serum extracellular vesicles were better than CA19-9 for the early 

diagnosis of iCCA and dCCA, and for a differential diagnosis with HCC or pancreatic 

ductal adenocarcinoma, respectively.[27,30,32] Combination of CA19-9 with these 

innovative biomarkers improved their diagnostic capacity. Despite great efforts, no 

biomarker for CCA based on proteins, gut bacteria or metabolites have reached clinical 

practice yet,[24,30-32] but this could change if positive results are confirmed in ongoing 

validation studies. 

Recent advances have allowed the identification of genomic alterations 

characteristic of each CCA subtype[1]. If translated into the field of diagnosis this 

knowledge would enable the development of a liquid biopsy-based on the analysis of cell-

free circulating tumour DNA (ctDNA). Tumour DNA released from cancer cells into blood 

captures the tumour-specific and often heterogeneous genetic and epigenetic alterations, 

including point mutations, copy number alterations, chromosomal rearrangements, and 

DNA methylation patterns. Its analysis would avoid the limitations of invasive and often 

anatomically difficult conventional biopsies.[33] Although a ctDNA-based liquid biopsy 

may be limited by a low sensitivity in patients with early-stage disease this may be 

overcome in part by using digital PCR or capture-based next-generation sequencing, 

allowing for the simultaneous analysis of multiple disease-related mutations.[33-35] 

Additional potential advantages of a ctDNA-based liquid biopsy would be the 

identification of druggable targets, thus allowing the selection of the most effective 

therapies, and the detection of resistance mechanisms emerging during therapy 

through longitudinal sampling; also, it could allow the identification of mutations not found 

in the tissue biopsy or present in not-biopsied tumours. ctDNA genotyping in blood is 

currently being tested in CCA patients with promising results.[36,37] Although the number 

of published studies is still limited, a high concordance between alterations found in 

ctDNA and tumour tissue DNA has been generally observed.[38,39] 
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Bile is also emerging as a promising liquid biopsy matrix for CCA diagnosis; a 

recent study showed that detection of mutations in bile cell free DNA has a strong 

sensitivity for early malignancy detection within the biliary tract.[40] Identification 

of differentially methylated markers in bile cell free DNA has also been recently 

demonstrated to provide high sensitivity for CCA detection.[41,42] If confirmed, these 

approaches may significantly improve the management of patients with biliary strictures in 

which intraductal biopsy results inconclusive, and further support the biliary fluid as a 

relevant matrix for relatively low invasive liquid biopsy. 

Although more technically challenging, the application of serum cell-free DNA 

methylation assays of genes known to be hypermethylated in tumour tissues can be an 

alternative approach for early cancer detection.[33] Incipient studies suggest that 

such methylation assays may aid in the differential diagnosis of CCA and other 

biliary diseases.[43] Moreover, the possibility of analysing other nucleic acids, such as 

ncRNAs, in serum as biomarkers for CCA diagnosis and prognosis is also being actively 

investigated, indicating a promising diagnostic value of the circulating signatures of these 

molecules as diagnostic tools for CCA.[44-46] 

It is foreseeable that the information emerging from these liquid biopsy assays will 

be complex to integrate into the clinical workflow. To leverage all its potential and 

combine these tests with clinical information and other “omics” data, the implementation 

of artificial intelligence tools and machine learning approaches will be essential as 

demonstrated in other solid tumours.[47-50] 

3. TISSUE BIOMARKERS FOR PROGNOSIS

Routine histology 

Routine histology contains information that may be correlated with a patient’s prognosis and 

may be useful in risk stratification. Large duct type iCCA showed a worse overall 

survival 11 
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(OS) compared to small duct type, and is associated with perineural infiltration, and higher 

pathological tumour stage and CA19-9 levels compared to the other histological 

subtypes.[51-53] CLC areas can be found in both large bile duct and small bile duct 

iCCA;[54] interestingly, iCCA with CLC areas and pure CLC showed a better prognosis 

compared to the other biliary histo-types.[55-57] However, the lack of multicentric studies 

and the need of international consensus on histologic criteria and nomenclature are key 

limitations in these settings. 

The presence of a desmoplastic and highly cellular stroma is a typical feature in iCCA 

(Figures 1D-E). The original identification of an association between stroma and outcome 

found that patients with resected tumours with more abundant desmoplastic stroma, 

categorised as ‘scirrhous-type’, had a poorer prognosis,[58,59] a finding supported by 

another study describing stromal immaturity as an independent predictor of poor outcome 

in iCCA.[60] However, more recent quantitative assessment of stromal content using 

extracellular matrix staining or stain-free evaluation of collagen fibres suggested that high 

stromal content conferred a survival benefit, although tumours with high collagen cross-

linking were associated with a worse outcome.[61] 

In cancers of the gastro-intestinal tract, mucins are considered prognostic 

markers.[62] Mucin production is observed in all anatomical subtypes of CCA (Figure 1C), 

but not in HCC; mucin-rich iCCA presents at an advanced stage upon diagnosis[63] and 

has a shorter survival time compared to conventional counterparts.[64] In parallel, the 

presence of mucin component in pCCA identifies tumours with greater parenchymal 

invasion, higher CA19-9 levels, and worse prognosis.[65] 

Perineural invasion (Figure 1E) is defined as the invasion of tumour cells through the 

perineurium.[66] PNI has prognostic value in resected dCCA and was defined as a risk factor 

for poor survival by meta-analysis studies.[67] Furthermore, both in pCCA[68,69] and 
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iCCA,[66] PNI was indicated as an independent risk factor associated with worse recurrence 

and survival outcomes after resection.  

Research Need and Perspective II. Artificial intelligence tools: hidden information in 

H&E stain 

Haematoxylin and eosin (H&E)-stained histopathological slides are available for 

most cancer patients. In recent years, advances in artificial intelligence (AI) have made it 

possible to systematically extract subtle features from digitised H&E-stained slides. 

Currently, AI in histopathology relies almost exclusively on deep convolutional neural 

networks, a well-established technology. In principle, these tools can be used to 

automate tedious tasks in routine histopathology, easing the ever-increasing workload of 

pathologists. In addition, AI-based methods can extract hidden information from cellular or 

tissue morphology.[70] This hidden information can be three-fold: i) prognostic, helping 

to define the risk of cancer progression or death; ii) predictive, directly helping to forecast 

response to a given treatment; and iii) AI can infer genetic alterations in tumour tissue from 

histomorphology alone.[71] This could help in the future to pre-select patients for genetic 

testing or, ultimately, could replace genetic tests in certain circumstances.  

From a clinical standpoint, the establishment of these AI-based biomarkers is 

very attractive because they do not require any tumour material additional to routine 

pathology slides. Therefore, AI-based image analysis could, in principle, be an inexpensive 

addition to routine workflows, even running predictive or prognostic models in the 

background while pathologists review the slides.[72] 

In liver tumours, AI methods have been applied to predict prognosis of patients 

directly from routine histopathology images.[73] For example, an image 

segmentation pipeline developed by Liao et al. was used to calculate a risk score 

associated with OS after 

resection in HCC, allowing the stratification of patients into long- or short-term survivors.

[74] 13 
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Similarly, a handcrafted feature from nuclei segmentation in HCC was used to predict early 

recurrence after resection.[75] Several studies have shown that deep learning algorithms 

were able to predict the survival of HCC patients from H&E-stained whole slide images.

[73] Unfortunately, CCA is not yet a common application of these technologies, 

compared to HCC;[73] the reason could be ascribed to the fact that AI-based methods are 

known to be data-hungry, which means that they require a lot of data to yield reliable 

results. Indeed, in gastrointestinal cancer pathology it has been shown that the 

performance of AI systems increases if they are trained on more patients. Many studies 

use a few hundred patients to train AI biomarkers, but the best performing biomarkers 

have been reported from studies that trained on more than 5000 patients.[76] 

Therefore, the main problem is logistical, especially in a rare tumour type such as CCA. 

It is essential that, in addition to high-quality scans of pathological slides, the associated 

clinical and/or genetic data are in a format with a clean data structure. In practice, such 

impediments can slow down the development of clinical AI biomarkers, but multicentre 

academic consortia are a viable solution to these issues. 

Molecular tissue biomarkers for prognosis 

Molecular tissue biomarkers potentially embody prognostic value, allowing prediction of both 

the survival of patients undergoing tumour resection, the response to adjuvant therapies and 

the chance of tumour relapse, thus allowing patient stratification, and guiding therapeutic 

decisions (Figure 3). Patients with iCCA exhibiting genetic alterations on tumour protein 

P53 (TP53) and Kirsten ras oncogene homolog (KRAS) genes from two large international 

cohorts of resected patients were shown to display worse prognosis mainly related to shorter 

OS and higher tumour recurrence, when compared with patients with 

isocitrate dehydrogenase (IDH)-1 and -2 mutations or with the control group.[77,78] 

Recently, the 

presence of G12 KRAS variants, but not non-G12 KRAS variants, in iCCA was associated 

14 
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with worse survival and increased risk of recurrence.[79] Transcriptomic analysis of resected 

iCCA tumours also revealed two distinct subtypes, the “inflammation” and the 

“proliferation” ones, with the latest being linked to the activation of oncogenes and worse 

outcome,[80] while a panel comprised of 36 genes, identified in a mRNA microarray 

conducted with tumour samples from patients with resectable iCCA, was directly 

associated with poor survival.[81] Interestingly, patients with either KRAS/BRAF 

mutations or increased Erb-B2 receptor tyrosine kinase 2 (HER2) levels showed 

worse prognosis. A meta-analysis including IHC-based studies (73, counting 4126 

patients with CCA) allowed the identification of 77 tissue prognostic biomarkers for CCA.

[82] In this setting, fascin, epidermal growth factor receptor (EGFR), Mucin (MUC) 1 , 

MUC4 and p27 were reported to be independent prognostic factors associated with 

worse OS in resected patients. In parallel, 39 transcriptomic prognostic biomarkers 

were reported in a cohort of patients with BTC, with all of them related to T-cell 

activation and immune response.[83] Moreover, the retained expression of BRCA1 

Associated Protein 1 (BAP-1) and Polybromo 1 (PBRM-1) and overexpression of 

S100 Calcium Binding Protein P (S100P) has been related to a poor prognosis in 

iCCA.[84] More recently, a panel based on high expression levels of EGFR, HER4 and 

ephrin receptor A3 (EphA3) was shown to be an independent prognostic predictor for post-

operative CCA recurrence.[85] 

Finally, tumour tissue miRNAs might also help to predict prognosis; in this 

regard, increased levels of miR-21 in iCCA tumour specimens were positively linked to the 

clinical stage at diagnosis, tumour differentiation and with poor OS and progression-free 

survival (PFS)[86,87]. 

Although liver transplantation is already considered a potentially feasible option for 

highly selected patients with pCCA and iCCA,[88,89] it is to be hoped that ongoing trials 

will help determine if tissue biomarkers are also associated with prognosis after 

transplantation. 
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“Host” response to malignancy: tissue biomarkers for prognosis prediction 

Non-epithelial histological features, partly reflecting a ‘host’ response to malignancy, but 

also of potential importance in carcinogenesis, associated with CCA may offer prognostic 

value. 

Tumour stroma and cancer-associated fibroblasts 

Prominent desmoplastic stroma produced by cancer-associated fibroblasts (CAFs) is a 

characteristic histological feature of CCA. Specific protein constituents of the stroma and 

CAFs have also been examined[90,91]. High levels of periostin assessed semi-

quantitatively were associated with lower OS,[92] although this finding was not supported 

by more recent work in which periostin was quantified using an automated method.[61] The 

data linking osteopontin expression to outcome is also conflicting. Two studies found that 

decreased osteopontin expression in resected tumour was associated with poor 

outcomes,[93,94] although more recent studies described the opposite relationship.[95,96] 

There is also data supporting stromal tenascin expression predicting poor prognosis[93]. 

There is some evidence that the relative composition of CAFs is independently 

predictive of prognosis.[97,98] 

Immune cell populations 

The tumour immune microenvironment plays a role in carcinogenesis and immunotherapies 

modulating this environment are in clinical use. The composition of this ‘host’ 

immune infiltrate has been shown to provide additional prognostic information (Figure 3). 

Patients whose tumours contain a larger number or higher density of infiltrating 

monocytes/macrophages have been shown to have a poorer prognosis;[99-101] however, 

there is conflicting evidence about whether the location of macrophages within the tumour 
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carries prognostic significance.[102,103]. Further, more recent evidence indicates that the 

macrophage phenotype may carry prognostic value.[104] 

Intra- and peritumoral T-lymphocytes are commonly observed in CCA[105] and 

increased cluster of differentiation (CD)8-positive intra-tumoral T-cells counts are associated 

with a better prognosis.[100,106] Intra-epithelial CD4-positive T-cells are also predictive of 

a better outcome.[107] Mature CD83-positive intra-tumoral dendritic cells are positively 

correlated with intra-tumoral T-cells, and higher numbers are independently associated 

with better outcomes.[108] Patients with resected tumours that contained larger 

numbers of neutrophils[109] or higher neutrophil:lymphocyte ratio had a poorer prognosis.

[110] Multiplex immunofluorescence allows the investigation of the spatial arrangement of 

immune cells together with co-expression patterns.[111] The assay optimization has yield 

highly sensitive and reproducible characterization in several tumours, including lung and 

breast cancers.[112] Multiplex immunofluorescence has been also used for immune-

profiling iCCA,[113] but its role as actual biomarker should be further assessed. 

Microvasculature and neoangiogenesis 

Neo-angiogenesis plays an important role in tumour progression,[114] although the 

evidence for the relationship between microvessel density and prognosis in CCA is 

conflicting. Some studies on resected tumours have shown that decreased microvessel 

density is associated with a poorer prognosis,[115,116] while other studies have suggested 

that increased microvessel density is predictive of poorer outcome.[117,118] 

4. TISSUE BIOMARKERS, THERAPY RESPONSE, AND TARGETED THERAPY

Tissue biomarkers and therapy response 

Unfavourable responses to chemotherapy have been observed in the large duct compared 

with the small duct type iCCA and in advanced tumours with an increased DNA repair 
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capacity or with alterations in Transforming Growth Factor β pathway.[119] Reduced levels 

of uptake transporters and increased levels of export pumps in the plasma membrane by 

IHC have been associated with lower response to gemcitabine/cisplatin.[120,121] 

Increased levels of enzymes involved in the inactivation of anticancer agents or reduced 

expression of enzymes needed for the activation of prodrugs in tumours can predict a 

lower response to gemcitabine/cisplatin and, probably, to other drugs.[122] The 

heterogeneity in expression levels of molecular targets can predict the lack of effect of 

some drugs in CCA and this heterogeneity may potentially be used to select the best 

treatment. Resistance is a dynamic process and tumours, in response to the exposure to 

drugs, can change the levels of the proteins involved in resistance;[123,124] therefore, the 

occurrence of mutations that affect the activity of these proteins can also induce cross-

resistance to different drugs.[125] New mutations in tyrosine kinase receptors and other 

targets are considered a mechanism of acquired resistance to targeted agents and are 

responsible for disease progression after an initial response.[123] Reduced expression of 

programmed cell death 1 ligand 1 (PD-L1) has been associated with worse outcome in 

CCA patients treated with monoclonal antibodies targeting programmed cell death protein 

1 (PD-1), nivolumab or pembrolizumab.[126,127] 

Tissue biomarkers and targeted therapy 

The identification of targetable alterations and associated therapies have made precision 

medicine a reality in the management of CCA.[128] The main targeted therapies 

being developed in CCA are those focused on fibroblast growth factor receptor (FGFR) 2 

fusions and IDH-1 and -2 mutations.[129] 

IDH as a biomarker and treatment target 

Around 15% of iCCA are expected to harbour a mutation in IDH1.[128] These mutations are 

predictive markers of benefit from IDH1 inhibitors. Ivosidenib is the most developed IDH 
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inhibitor in CCA.[130] Further assessment in the randomized ClarIDHy phase III clinical trial 

in patients with IDH1 mutant (R132C/L/G/H/S mutation variants) CCA who had progressed 

to prior chemotherapy[131] confirmed that ivosidenib achieved a longer PFS (median 2.7 

months) over placebo (median 1.4 months); HR 0.37 (95% CI 0.25-0.54; p-value <0.001). 

FGFR fusions 

FGFR2 fusions are of special relevance in CCA, with around 15% of iCCA showing these 

aberrations.[128] Multiple selective FGFR tyrosine kinase inhibitors have been developed, 

all these with an adequate safety profile and promising efficacy in phase II studies in patients 

with refractory CCA.[128] These compounds have reported consistently high partial 

response rates (varying between 20.7% and 35.5%) in the presence of FGFR2 fusions, with 

median PFS of around 6 months.[128] Some of these agents are now moving into 

randomized phase III clinical trials in the first-line setting, in which their activity is being 

compared with the current standard of care [pemigatinib-INCB054828 (FIGHT-302; 

NCT03656536), infigratinib-BGJ398 (PROOF; NCT03773302), futibatinib-TAS-120 

(FOENIX-CCA3; NCT04093362)]. 

Further second generation IDH inhibitors are being developed, which would address 

IDH2 mutations that occur less frequently but have an identical pathogenicity 

(https://www.cancer.gov/publications/dictionaries/cancer-drug/def/idh1-idh2-dual-inhibitor-

hmpl-306). 

Other predictive markers for selection of targeted therapies  

Other molecular alterations seem to be linked to activity of specific targeted therapies, but 

their presence is rare (<5%) in CCA.  

The human epidermal growth factor receptor (HER) family includes four members: 

EGFR or HER1, HER2, HER3, and HER4.[132] Relevance of involvement of this pathway 
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in cancer progression has been shown previously.[133] Some trials in CCA with HER 

overexpression have shown disappointing activity,[134-136] with some ongoing clinical trials 

aiming to clarify their role (NCT02892123). A recent study indicates that pertuzumab 

plus trastuzumab has promising, durable activity in patients with HER2-positive metastatic 

BTC, with good tolerability relative to traditional cytotoxic treatments.[137] 

Ring finger protein 43 (RNF43) mutations are rarely present in CCA, but they may 

allow targeted approaches with porcupine inhibitors,[129,138] with some ongoing trials in 

this setting (NCT03447470, NCT04907851). 

CCA rarely presents with fusions of the neurotrophic tyrosine receptor kinase 

(NTRK) gene,[139] but when these are present, tropomyosin receptor kinase inhibitors are 

known to achieve high rates of objective response (57%-75%) in previously treated 

advanced solid tumours, as a tumour-agnostic approach.[140,141] 

BRAF mutations have been described in a small proportion of CCA.[142] For 

patients harbouring BRAF V600E mutations, dual inhibition of BRAF and MEK with 

dabrafenib and trametinib have achieved high partial response rates (42%-36%) and a 

median PFS of 9.2 months.[143] 

Microsatellite instability (MSI) is also rare in CCA.[1] Pembrolizumab has become 

available for MSI-high advanced cancers;[144,145] although preliminary data were 

encouraging, the efficacy of pembrolizumab in patients with MSI-high CCA remains to be 

defined.[1,146] 

Targeted therapies without predictive biomarkers 

Unfortunately, not all targeted therapies have an identified predictive biomarker to allow 

patient selection and, despite this, seem to be still effective for “all-comers”. The phase II 

REACHIN study[147] recruited 66 patients diagnosed with BTC who were randomized to 

the multi-tyrosine kinase inhibitor, regorafenib, or placebo after standard chemotherapy. 
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This study showed a benefit in terms of PFS (HR 0.49 (95% CI 0.29-0.81; p-value 0.005); 

despite an absence of objective responses or OS benefit. 

Research Need and Perspective III. Organoids: “mini-tumours” for drug selection? 

Organoids are defined as three-dimensional structures derived from primary cells that self-

organize through cell-to-cell and cell-to-matrix interactions and recapitulate aspects of the 

native tissue architecture and function in vitro.[148,149] Increasing evidence supported the 

feasibility of deriving cancer organoids from fresh tumour tissue to establish the so-called 

“mini-tumours” that can be grown in plastic and contribute to the advancement in tumour 

biology and precision medicine[150]. There is growing evidence demonstrating the feasibility 

of CCA organoids in either resectable[151-153] or advanced disease.[154] Organoids 

recapitulate the morphology and genomics of the source tissue; these features are 

maintained over culture[154,155] and thus enable the use of organoids as disease models 

that better represent the multicellular interaction occurring within the tumour (Figure 4).[156] 

More interestingly, patient-derived organoids established as part of patients’ based co-

clinical trials mimic drug response in gastrointestinal cancer with a positive predictive value 

of 70% and a negative predictive value of 100%.[155] As organoids are constituted mainly 

by epithelial cells, their predictive value as a pure culturing line is enriched in the testing of 

epithelial-directed drugs such as conventional chemotherapy compounds or targeted 

drugs.[151,154] These interesting results have encouraged the use of organoids as 

“real life” predictive tools to aid drug selection for patient management and have 

prompted the initiation of clinical trials. One example is the SCORE trial (NCT04279509) 

where the choice of chemotherapy drugs for patients with refractory solid cancers is 

based on the response score assessed on an organoid-based semi-high throughput 

platform. However, the evolution of therapeutic approaches and the introduction of 

immuno-oncology require an 

evolution of these ex-vivo predictive models towards the incorporation of 

tumour 21 
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microenvironment components. Co-culture between organoids from mismatch repair 

(MMR)-deficient human cancers and autologous peripheral blood lymphocytes could be 

used to enrich tumour-reactive T cells, which could then recognize and kill MMR deficient 

organoids.[157] The role of myeloid-derived suppressive cells (MDSC) in modulating 

response to PD-1 inhibitors was assessed in co-cultures amongst murine pancreatic cancer 

organoids, cytotoxic T cells and MDSC, showing the usefulness of these models in 

investigating mechanisms of resistance to immunotherapy.[158] However, unanswered 

questions remain before these models can be used in clinical practice to implement 

precision medicine. To date, there are still scarce reports of human CCA development and, 

in contrast with other tumour types, the efficiency rate of organoid establishment in 

sequential series of patients are still lacking in CCA. The impact of CCA subtyping on the 

success rate of organoids has not been explored. In addition, feasibility data are missing 

regarding the possibility of establishing co-cultures between CCA organoids and autologous 

immune cells based on their life span. 

5. RADIOLOGY

Radiology in diagnosis and staging 

Although the gold standard of diagnosis and grading for CCA is still pathological 

examination, radiology (Figure 5) has a pivotal role in the management of CCA in terms of 

diagnosis, staging, follow-up, and response to therapy.[159,160] Some radiological findings 

at computed tomography (CT) and magnetic resonance imaging (MRI), such as capsular 

retraction and the presence of a homogeneous mass with rim-like enhancement and 

progressive contrast uptake, are highly indicative of a CCA diagnosis. In addition, CCA does 

not exhibit, in general, the radiological hallmarks of HCC by MRI/CT, allowing the differential 

diagnosis with HCC, particularly in the setting of chronic liver diseases.[161,162] Also, 

radiology is key for evaluating resectability.[159,163] 
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In the last decade, major efforts have been implemented in correlating some 

specific imaging findings with pathology traits. Differences in CT enhancement pattern 

among the morphologic subtypes of CCA were noted, since mass-forming tumours 

are usually hyperenhanced at the periphery, with central hypoenhancing, while 

periductal-infiltrating tumours appear hyperenhanced, and intraductal tumours, 

hypoenhanced at arterial phase.[164] When correlated with MRI findings, large duct 

type iCCA generally showed concentric filling at venous phase, whereas small duct type 

iCCA and CLC showed washout in various patterns.[63] Finally, there is scarce 

information regarding the radiological appearance of combined HCC-CCA; its 

radiological pattern most commonly overlaps with those of iCCA,[165] and the imaging 

features that are preponderantly HCC or iCCA appear to correspond to the predominant 

histopathology components.[166] Figures 6A-B show the workflow diagrams combining 

imaging modalities and tissue biomarkers to reach a final diagnosis of iCCA or p/dCCA 

when an intrahepatic mass or biliary stricture is detected, respectively. 

Radiology in prognosis assessment 

Radiology may also offer some relevant information regarding the biological tumour 

behaviour, closely associated with outcome. Moreover, some imaging features may 

correlate with some specific molecular profile. For instance, the degree of diffusion 

restriction on diffusion-weighted imaging (DWI) has been independently associated with 

OS in mass-forming iCCA,[167] and the tumour apparent diffusion coefficient 

(ADC) quantification has reasonable accuracy for predicting iCCA grade.[168] 

Furthermore, Ki-67 expression in extrahepatic CCA was predicted through intravoxel 

incoherent motion (IVIM) combined with DWI, which could reflect the proliferative 

activity of CCA.[169] Also, the pattern of arterial contrast uptake has been correlated with 

clinical outcome. In that regard, 

resected mass-forming iCCA with diffuse arterial hyperenhancement showed better 
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prognosis in terms of tumour recurrence and OS than did those with peripheral 

rim enhancement or diffuse hypoenhancement.[170] Finally, the presence of necrosis, 

satellite nodules and vascular encasement were associated with increased 

risk of recurrence/death.[171] 

Research Need and Perspective IV. Radiomics and radiogenomics 

The advent of radiomic, AI and machine learning, together with the increasing awareness of 

CCA heterogeneity at morphology and molecular levels, are revitalising the study of 

radiological correlates. Radiomics extracts quantitative radiologic data from medical images 

and explores the correlation with clinical outcomes. Radiogenomics aims to identify 

relationships between quantitative image data with genome and molecular measurements 

in order to construct association maps to be correlated with outcome.[172] Radiomic and 

radiogenomic studies in CCA are scarce and most of them include a relatively small number 

of patients and lack external validation. Table S1 summarizes the most relevant studies 

conducted on CCA. Examples of the applicability of AI on imaging are the capability of 

identifying EGFR and vascular endothelial growth factor expression levels through the 

identification of certain texture parameters by CT.[173] Also, the MRI texture signature, 

including three wavelets and one 3D feature, has a favourable ability to 

discriminate inflamed from non-inflamed immunophenotyping based on the density of CD8

+ T cells and in predicting OS.[174] Similarly, a machine learning approach by MRI could 

serve as a non-invasive biomarker in predicting PD-1/ PD-L1 expression and prognosis of 

iCCA patients, which may guide clinical decision-making in selecting iCCA patients who 

may potentially benefit from PD-1/PD-L1 blockage.[175] On the same line, reasonable 

accuracy has been demonstrated in predicting tumour grade and higher AJCC (American 

Joint Committee on Cancer) stage in iCCA using certain qualitative and quantitative 

imaging traits.[176] 
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These promising data from radiomics and radiogenomics are still preliminary and 

future studies based on large and multicentre prospective studies are needed. 

6. CONCLUSIONS AND CLINICAL REMARKS

CCA is characterised by heterogeneity at many levels. In the last ten years different clinical-

pathological entities comprised within the CCA spectrum have been identified. To be used 

in clinical practice, surrogate biomarkers should reflect disease pathobiology and be 

associated with important outcomes. In a heterogeneous malignancy such as CCA, 

biomarker discovery is complex. For this reason, as multidisciplinary international 

investigators, we have focused the attention at the tissue level, the closest observation 

possible into the complex pathobiology of CCA. Beyond classical serological biomarkers, 

clinicians may find clinically relevant information for diagnosis, prognosis and therapy 

response by using tissue biomarkers (Table 2). 

Remarkably, the performance of tests as relevant surrogate biomarkers for diagnosis 

or for prediction of solid outcomes in CCA needs to be assessed and validated in large 

multicentre studies, or in long-term observational or interventional studies, respectively. A 

coordinated multicentre and multidisciplinary effort seems the sole strategy for the discovery 

of clinically relevant biomarkers in CCA. 
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Table 2. Usefulness of biomarkers in diagnosis, prognosis and therapy response 

in CCA 

D
ia

g
n

o
s

is
 

Clinical relevance Current limitations 

Routine 

Histology 

Routine histology is key but needs IHC 

support 

Differential diagnosis: 

• iCCA vs metastasis from

PDAC & BTC 

• dCCA vs PDAC
Molecular tissue 

biomarkers  

An IHC panel (Table 1) leads to a definite 

diagnosis in most cases 

Radiology 

CT/MRI relevant features: 

• capsular retraction

• homogeneous mass with:

o rim-like enhancement

o progressive contrast uptake

• no hallmarks of HCC

Resectability evaluation

Differential diagnosis: 

• iCCA vs combined HCC-

CCA

P
ro

g
n

o
s
is

 

Clinical relevance Current limitations 

Routine 

Histology 

i/p/dCCA 

• mucin presence

• perineural invasion

iCCA

• histologic subtyping (small/large/CLC)

• stroma maturity

Histologic criteria and 

nomenclature are not fully 

standardized 

Molecular tissue 

biomarkers 

Most relevant biomarkers: 

• TP53/KRAS/BRAF mutation

• HER2 expression levels

• mucins (MUC1, MUC4)

• immune cell populations

See Figure 3 for complete list.

No international consensus 

on molecular tissue 

biomarkers for patients’ 

stratification 

Radiology 

• arterial contrast uptake

• others

Monocentric studies & no 

definite correlation with tissue 

biomarkers 

T
h

e
ra

p
y

 r
e

s
p

o
n

s
e
 &

 

ta
rg

e
te

d
 t

h
e
ra

p
y
 

Clinical relevance Current limitations 

Therapy 

response 

Chemoresistance is associated to: 

• large-duct type iCCA

•  expression of uptake transporters

•  expression of export pumps

•  PD-L1 expression

No marker is currently 

recommended in clinical 

practice 

Targeted 

Therapy 

• FGFR2 fusions

• IDH1/2 mutations

• others in <5% CCA

Restricted to a small 

percentage of patients 

Abbreviations: BTC, biliary tract cancer; CCA, cholangiocarcinoma; CLC, cholangiolo-

carcinoma; CT, computed tomography; dCCA, distal cholangiocarcinoma; FGFR2, fibroblast 

growth factor 
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receptor; HCC, hepatocellular carcinoma; HCC-CCA, hepatocellular cholangiocarcinoma; 

HER2, Erb-B2 receptor tyrosine kinase 2; iCCA, intrahepatic cholangiocarcinoma; IDH1/2, 

isocitrate dehydrogenase 1/2; IHC, immunohistochemistry; MRI magnetic resonance imaging; 

pCCA, perihilar cholangiocarcinoma; PDAC, pancreatic ductal adenocarcinoma; PD-L1, 

programmed cell death protein ligand 1; TP53/KRAS/BRAF, tumour protein P53/Kirsten ras 

oncogene homolog/B-type Raf proto-oncogene. 
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FIGURE LEGENDS. 

Figure 1. Anatomical classification and histological features of cholangiocarcinoma. 

A. According to its anatomical location, cholangiocarcinoma (CCA) can be classified into 

intrahepatic (iCCA), perihilar (pCCA) and distal (dCCA). Haematoxylin and eosin (H&E) 

stain; scale bar: 200 µm. B. Different iCCA histological subtypes can be identified, including 

large bile duct type (which histologically resembles pCCA and dCCA) and small bile duct 

type. Cholangiolo-carcinoma (CLC) represents a peculiar variant of the small bile duct type 

iCCA. This classification is based on the anatomical organization of the intrahepatic biliary 

tree and recapitulates the level or size of the displayed bile duct. Immunohistochemistry for 

cytokeratin 7; scale bar: 100 µm. C-D. CCA histological heterogeneity comprises variable 

expression of mucins (periodic acid-Schiff – PAS stain, panel C) and fibrous stroma 

component (Sirius red – SR stain, panel D). E. Specific histological features have been 

associated with a dismal prognosis in CCA, such as large bile duct type and immature 

stroma in iCCA, and mucin production and perineural infiltration in all CCA subtypes. H&E 

and PAS stain (mucin). 

Figure 2. Liquid biopsy and tissue biomarkers. 

Liquid biopsy and conventional tissue biopsy both allow the study of specific biomarkers 

correlated with CCA diagnosis, prognosis and response to therapy. Abbreviations: ctDNA: 

circulating tumour DNA; dPCR: digital polymerase chain reaction; ERCP, endoscopic 

retrograde cholangiopancreatography; (F)ISH: (fluorescence) in situ hybridization; IF: 

immunofluorescence; IHC: immunohistochemistry; ncRNA: non-coding RNA; NGS: next-

generation sequencing. 

Figure 3. Tissue and molecular biomarkers in cholangiocarcinoma. 
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List of molecular biomarkers associated with cholangiocarcinoma (CCA) and their role in 

influencing overall survival (OS) and recurrence-free survival (RFS), categorized according 

to their functions. * long non-coding RNAs. Abbreviations: ADAM-17; A-disintegrin and 

metalloproteinase 17; AKT, protein kinase B; BRAF, B-type Raf proto-oncogene; CAPN4, 

calpain small subunit 1; CD, cluster of differentiation; CEACAM6, carcinoembryonic 

antigen-related cell adhesion molecule 6; c-MET, tyrosine-protein kinase Met or 

hepatocyte growth factor receptor; CTGF, connective tissue growth factor; CTLA4, 

cytotoxic T-lymphocyte antigen-4; DKK1, dickkopf-related protein 1; EGFR, epidermal 

growth factor receptor; FBXW7, F-box and WD repeat domain-containing 7; FOXC2, 

forkhead box protein C2; HDAC1, histone deacetylase 1; HDGF, hepatoma-derived 

growth factor; HMGA2, high-mobility group AT-hook 2; IHC, immunohistochemistry; 

KRAS, Kirsten ras oncogene homolog; KRT903; keratin 903; mTOR, mammalian target 

of rapamycin; MUC, mucin; NLR, neutrophil-to-lymphocyte ratio; PCR: polymerase chain 

reaction; PTEN, tensin homolog deleted on chromosome 10; PTP4A3, protein tyrosine 

phosphatase 4A3; PTPN14, protein tyrosine phosphatase non-receptor type 14; SKP2, 

S-phase kinase-associated protein 2; Sox, SRY-related HMG-box; STAT3; signal 

transducer and activator of transcription 3; TP53, tumour protein P53; VEGF-C, 

vascular endothelial growth factor C; WES, whole-exome sequencing; YAP, yes-

associated protein; YBOX-1, Y Box Binding Protein 1.  

Figure 4. Patient-derived organoids for personalized approaches. 

The development of patient-derived organoids from tumour samples allows the building of 

a platform for disease modelling studies, and for drug screening analyses in a personalized 

medicine approach to patient care. 

Figure 5. Radiological features of cholangiocarcinoma. 
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A. Mass forming intrahepatic cholangiocarcinoma (iCCA) arising from small bile ducts. The 

mass forming tumour can be assessed in T2 weighted images (i), diffusion-weighted 

images (ii), portal venous phase (iii), and hepatospecific phase (iv). The mass is limited to 

the left lobe and a typical capsular retraction can be observed (arrow) in all 

sequences. B. Periductal infiltrating perihilar cholangiocarcinoma (pCCA). The tumour (*) 

can be assessed in diffusion-weighted images (i), T2 weighted images (ii), 

cholangiopancreato magnetic resonance (CPMR) (iii) and portal venous phase computed 

tomography (CT) (iv). Dilated distal bile ducts (arrow) can be observed on both CT and 

magnetic resonance imaging (MRI). 

Figure 6. Clinical workflow diagrams for the diagnosis of cholangiocarcinoma. 

A. Workflow diagram for the final diagnosis of intrahepatic cholangiocarcinoma (iCCA) 

combining imaging modalities and tissue biomarkers when an intrahepatic mass is detected. 

B. Workflow diagram for the diagnosis of perihilar/distal cholangiocarcinoma (p/dCCA) 

combining imaging modalities and tissue biomarkers when a biliary stricture is detected. 

ERCP, endoscopic retrograde cholangiopancreatography; EUS, endoscopic ultrasound 

guided fine needle aspiration (FNA)/biopsy (FNB), FISH: fluorescence in situ hybridization; 

IHC: immunohistochemistry; MDCT, multidetector computed tomography; MRCP, magnetic 

resonance cholangiopancreatography; MRI, magnetic resonance imaging; US, 

ultrasonography. 




