
HAL Id: hal-03689462
https://hal.science/hal-03689462

Submitted on 7 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An efficient run-based Connected Component Labeling
algorithm for processing holes

Florian Lemaitre, Nathan Maurice, Lionel Lacassagne

To cite this version:
Florian Lemaitre, Nathan Maurice, Lionel Lacassagne. An efficient run-based Connected Component
Labeling algorithm for processing holes. Binary is the new Black and White workshop @ IEEE ICIAP
2022, May 2022, Lecce, Italy. �hal-03689462�

https://hal.science/hal-03689462
https://hal.archives-ouvertes.fr


An efficient run-based Connected Component
Labeling algorithm for processing holes

Florian Lemaitre, Nathan Maurice, and Lionel Lacassagne

LIP6, Sorbonne University, CNRS

Abstract. This article introduces a new connected component labeling
and analysis algorithm framework that is able to compute in one pass the
foreground and the background labels as well as the adjacency tree. The
computation of features (bounding boxes, first statistical moments, Euler
number) is done on-the-fly. The transitive closure enables an efficient hole
processing that can be filled while their features are merged with the
surrounding connected component without the need to rescan the image.
A comparison with State-of-the-Art shows that this new algorithm can
do all these computations faster than all existing algorithms processing
foreground and background connected components or holes.

Keywords: Black & white processing, Connected Component Labeling and
Analysis, Euler number, Adjacency tree, Hole processing, Hole filling.

Introduction & State-of-the-Art

Connected Component Labeling (CCL) is a fundamental algorithm in computer
vision. It consists in assigning a unique number to each connected component of
a binary image. Since Rosenfeld [26], many algorithms have been developed to
accelerate its execution time on CPU [3,5, 12], SIMD CPU [14,19], GPU [22] or
FPGA [16].

In the same time, Connected Component Analysis (CCA) that consists in
computing Connected Component (CC) features – like bounding-box to extract
characters for OCR, or the first raw moments (S, Sx, Sy) for motion detection
and tracking – has also risen [1, 13, 17, 18, 28]. Parallelized algorithms have
also been designed [2, 6, 15]. The initial Union-Find algorithm [29] has been
also analysed [30] and improved [7] with Decision Tree [31] and various path
compression/modification algorithms [20,21].

binary image labeled image adjacency tree holes filled

Fig. 1: Example of Black and White labeling with hole filling (FG in black)



2 Florian Lemaitre, Nathan Maurice, and Lionel Lacassagne

Some other features – useful for pattern classification/recognition – are
computed by another set of algorithms: the Euler number with Bit-Quads [8],
the adjacency (also known as homotopy or inclusion) tree [25] and more recently,
foreground (FG) and background (BG) labeling (also known as BW labeling) [10]
and hole filling with also improvements in the last decade [23,32]. Hole filling is
an important part of medical image processing [27, 33]. An example of black and
white labeling with adjacency tree and hole filling is shown in Figure 1.

Our contribution is a fast algorithm framework to process holes in black and
white images. It can compute features of the CCs, the adjacency tree or the euler
number of the image, and can fill holes.

This paper is split into the three following parts: Section 1 provides an
overview of our new CCL algorithm. The specificities of black&white and hole
processing are detailed in Section 2. Section 3 presents a benchmark of existing
algorithms and their analysis.

1 General Overview of our new algorithm

We chose to base our new black and white algorithm on the existing LSL algorithm
[18] and especially its lastest SIMD implementation, the FLSL algorithm [19].
The reason is two-fold: as the LSL is run-based (segment processing), it is able to
compute features very quickly compared to pixel-based algorithms. The second
reason is that FLSL is the fastest CCL algorithm currently available [19]. To be
noted that FLSL does not explicitly support CCA, thus feature computation had
to be back-ported from LSL to this new algorithm.

The LSL algorithm is a CCL/CCA algorithm based on Union-Find structure
[29] to build the equivalence relationship between parts of the same connected
component. The specificity of LSL is to be run-based: it first computes segments of
same class pixels (either foreground of background), and then unifies intersecting
segments from consecutive lines. This reduces both the number of temporary
labels and the number of “Union” needed to process the image.
BW FLSL needs the following global tables:
– T : Equivalence table (Union-Find structure),
– F : Feature table, encodes the features of each label,
– I: Initial adjacency table, encodes the adjacency tree (explained later).

Figure 2 illustrates the LSL-related table usage on a simple example.
LSL is composed of four steps (Algorithm 1). During the first one, input pixels

are read and grouped into segments of same class (foreground or background).
This step computes the position of the segments (RLC i) using semi-open inter-
vals: RLC i[er ] is the position of the first pixel of the er -th segment, whereas
RLC i[er + 1] is the position of the first pixel after the er -th segment. This step
is taken verbatim from [19].

During the second step, temporary labels are assigned to segments, and
segments from current line are “unified” with segments of the previous line. This
is done by computing the intersection of current segments with the ones above,
and mark them equivalent. The equivalences between labels are recorded in the



An efficient run-based CCL algorithm for processing holes 3

0
0 1 2 3 4 5

3 4 6 8 9
2 10

0
0

6

1 1 1 3 3 52 4 64
0 0 1

0 1 2 3 4 5 6 7 8 9

1 1 1 1 1 1 1ERi

ERi-1
j

Xi

Xi-1

RLCi

RLCi-1
j

0 1 2 3 4 5 6 7 8 9j

0
0 1 2 3e

T 1 2 3

unification

0
0 1 2 3e

T 1 1 1

0 01 2 30
0 1ERAi

ERAi-1
er 0 1 2 3 4 5

Fig. 2: Tables for the LSL (ER is actually not needed anymore).

Algorithm 1: New BW FLSL overview.
This paper contribution is highlighted with gray boxes.

1 ne ← 1 ▷ Reset number of labels
2 I[0]← −1 ▷ Exterior component has no surrounding
3 F [0]← ∅
4 for i = 0 to h− 1 do
5 RLE(i) ▷ Step 1a: Detect segments
6 Unify (i) ▷ Step 1b: Merge labels from adjacent line segments

7 Close () ▷ Step 2: Transitively close the equivalence graph
8 if relabel then
9 for i = 0 to h− 1 do

10 Relabel (i) ▷ Step 3: Write the label image

equivalence table T . In addition, when a label is assigned to a segment, the
features of this segment is computed and merged with the features of this label.

As for the FLSL, this step actually uses a Finite State Machine that works
similarly to a merged sort where the segments of both consecutive lines are
iterated together. The detailed implementation of this FSM can be found in
Algorithm 2.

The third step is the transitive closure of the equivalence graph: it makes each
temporary label point directly to the root. The equivalence trees are flattened.
During this step, features from temporary labels are also merged into their root.
As will be explained later in this paper (Section 2.2), the hole filling and the
Euler number computation are also done during the transitive closure.

The final step is a relabeling step: it produces a labeled image where each
pixel is assigned the final root label of its connected component. It is actually a
line by line RLE decoder. Like for FLSL, this algorithm is accelerated using an
SIMD memset [19]. This step can be skipped if not required, for instance if one
is interested only in the connected component features (CCA) without displaying
the image of labels.



4 Florian Lemaitre, Nathan Maurice, and Lionel Lacassagne

Algorithm 2: New BW unification (BW FLSL step 1b).
Black and White related processing is highlighted with gray boxes.

1 init:
2 er ← 0 ▷ Index of current line segment (relative label)
3 er ′ ← 0 ▷ Index of previous line segment
4 a← 0 ▷ Label of current segment, the first is necessarily the exterior
5 j0 ← RLC i[er] ▷ Starting position of current segment
6 j1 ← RLC i[er + 1] ▷ End position of current segment
7 c8 ← 0 ▷ c8 = 1 if current segment is 8-adjacent, here, BG is 4-adjacent
8 ▷ virtual segments allowing to avoid testing for the end of previous line
9 S0 ← RLC i−1[ner i−1] S1 ← RLC i−1[ner i−1 + 1] ▷ Save past-the-end

10 if ner i−1 is odd then RLC i−1[ner i−1]← w + 1
11 RLC i−1[ner i−1 + 1]← w + 2
12 goto increment previous
13 new label:
14 T [ne]← ne ▷ On-the-fly initialization of the equivalence table
15 F [ne]← ∅ ▷ On-the-fly initialization of the feature table
16 I[ne]← a ▷ Initial adjacency: a is the label of previous segment
17 a← ne
18 ne ← ne + 1

19 write label:
20 F [a]← F [a] ∪ computeFeatures(i, j0, j1)
21 ERAi[er]← a

22 increment current:
23 er ← er + 1 ▷ Next segment of current line
24 er ′ ← er ′ − 1 ▷ Previous segment of previous line intersects current segment
25 c8 ← c8 ⊕ 1 ▷ Adjust adjacency for current component
26 j0 ← j1
27 j1 ← RLC i[er + 1]
28 if er = ner i then goto end
29 if RLC i−1[er

′] ⩾ j1 + c8 then goto new label
30 prolog:
31 a← Find(T,ERAi−1[er

′])
32 increment previous:
33 er ′ ← er ′ + 2
34 if RLC i−1[er

′] ⩾ j1 + c8 then goto write label
35 unify:
36 e← Find(T,ERAi−1[er

′])
37 ▷ Union of the two root labels e and a
38 if e ̸= a then
39 if e < a then swap e, a
40 T [e]← a

41 goto increment previous
42 end:
43 if ner i is odd and a ̸= 0 then T [a]← 0
44 RLC i−1[ner i−1]← S0 RLC i−1[ner i−1 + 1]← S1 ▷ Restore past-the-end



An efficient run-based CCL algorithm for processing holes 5

Algorithm 3: New BW Transitive closure (BW FLSL step 2).
Black and White related processing is highlighted with gray boxes.

1 for e = 0 to ne − 1 do
2 a← T [e] ▷ ancestor
3 if Hole filling and e = a then ▷ If label is root
4 i← I[e] ▷ label of the surrounding component
5 if T [i] > 0 then a← i ▷ e has a surrounding (is not the exterior)

6 if a < e then
7 r ← T [a]
8 T [e]← r ▷ Transitive Closure: r = T [T [e]]
9 F [r]← F [r] ∪ F [e] ▷ Feature merge

10 else ▷ e is a root
11 I[e]← T [I[e]] ▷ point adjacency to root
12 if Euler number computation then E[e]← 0

13 if Euler number computation then
14 for e = ne − 1 to 0 step −1 do
15 if T [e] = e then
16 i← I[e]
17 E[i]← E[i] + 1− E[e]

Algorithm 4: New BW Relabeling (BW FLSL step 3).
1 j0 ← RLC i[0] ▷ j0 is 0
2 for er = 0 to ner i − 1 step 1 do
3 e← ERAi[er] ▷ provisional label
4 r ← T [e] ▷ final label
5 j1 ← RLC i[er + 1]
6 Yi[j0, j1[← r ▷ Memset
7 j0 ← j1 ▷ Register rotation

The two first steps (RLE encoder and segment unification) are done together
and thus require only a single scan of the image. The transitive closure step does
not scan the image, but requires to scan the equivalence table holding the relation
between temporary labels. The relabeling step, when done, needs a second pass
over the image to produce the image of labels.

2 Specificities of black and white labeling and hole
processing

In the following, both BG and FG connected components are considered. For the
sake of simplicity, a “component” designates a connected component.



6 Florian Lemaitre, Nathan Maurice, and Lionel Lacassagne

2.1 Black and White labeling

Classical LSL does not process background components, but thanks to its segment
design and its semi-open interval encoding, it is easily adaptable. Indeed, the
end of a foreground segment is the beginning of the following background one,
and vice-versa. Thus, no modification to the RLC tables is required. The RLE
encoder remains identical.

The unification step needs a few adjustments. First, it iterates over both odd
(FG) and even (BG) segments instead of just the odd ones. This requires to adapt
the FSM itself. Indeed, the classical FSM needs to handle cases where multiple
segments should be skipped because of the lack of intersection. When processing
both FG and BG segments, this cannot happen anymore as all segments (FG
and BG) are iterated over sequentially. Consequently, we just need to check if
the start of the segment on the previous line (RLC i−1[er

′]) is after the end of
the segment on current line (RLC i[er + 1]). This makes the new FSM actually
simpler than the one used by the FLSL algorithm.

To process both FG and BG components, we need to consider complementary
connectivity: either 8-adjacency for FG and 4-adjacency for BG, or the 4-adjacency
for FG and 8-adjacency for the BG. This is done with the c8 variable (Algorithm 2,
line 7) that defines the current connectivity. It is equals to 1 when processing
8-adjacent component and 0 otherwise. Therefore, changing the background
connectivity from 4 to 8 can be easily done by setting c8 to 1 instead of 0
(Algorithm 2, line 7).

Labels are also assigned to background labels, thus, ERAi does not necessarily
have 0 at even indices. The first encoded segment of a line i is always a BG
segment, but has zero length if the first pixel of the line is FG.

Like the unification, the relabeling also needs to iterate over both FG and
BG segments.

2.2 Holes and adjacency tree computation

Let us introduce some notations about holes. A component C1 is surrounded
by another component C2 – written C1 ⊏ C2 – iif all paths from C1 to the
exterior of the image contain at least one pixel from C2. A hole in a foreground
component W is a background component B that is surrounded by W .

The adjacency tree is encoded in a new table I. For a label e1 associated
to a component C1, e2 = I[e1] is one of the temporary labels of the unique
component C2 that is both adjacent to C1 and surrounding C1 (C1 ⊏ C2). The
label e2 is not necessarily a root label during the execution of the algorithm.
I[e1] equals −1 if e1 = 0, or if e1 is not a root label (T [e1] ̸= e1). In other words,
the table I represents the adjacency tree whose edges are directed according to
the surrounding relation. In the following, we consider for the sake of simplicity
8-adjacency for the FG and 4-adjacency for the BG.

We considered two methods to build the adjacency tree and the surrounding
relation: detecting closing pixels [9], or looking at the adjacency at exterior
pixels [23], and more precisely looking at the initial adjacency.



An efficient run-based CCL algorithm for processing holes 7

We chose to use the initial adjacency method as it saves one extra branch
and one extra Find within the Unification compared to the closing pixel method.
Moreover, the update of I when an adjacency is discarded is actually not neces-
sary as I is accessed only for root labels whose initial adjacencies are kept by
construction. While the adjacency is a local property, the surrounding is not and
thus is defined and correct only when the component has been fully scanned.
Consequently, initial adjacency builds a speculative I that is correct only at the
end of the image scan and that cannot be worked on beforehand.

The initial adjacency method works as follow. Every time a new label is
created, the label directly above the current pixel is recorded in I as its initial
adjacency and speculative surrounding. It is actually simpler to look for the label
on the left that is necessarily from the same component as above.When two root
labels a and b (with a < b) are unified, the initial adjacency I[b] is discarded in
favor of I[a] (and T [b]← a). The order relation on labels implies that top pixels
of a are higher than top pixels of b – or at least at the same height. It means
that the higher initial adjacency and speculative surrounding is kept while the
other is discarded. Once a component has been fully scanned, only the initial
adjacency of the root label remains. The root label being by construction the
label of top most pixels, its initial adjacency is necessarily on the exterior of the
component. The remaining initial adjacency and speculative surrounding is thus
necessarily a true surrounding.

Hole filling is done during the transitive closure (Algorithm 3, lines 3-5). This
is done by merging any component that is neither 0 nor directly surrounded by
0 with their surrounding component. The initial surrounding relation of such
a component is transformed into an equivalence relation (T [e]← I[e]). In fact,
arbitrary connected operators can be implemented using the same principle. One
would only need to change the criteria to merge a component into its surrounding
in order to implement any connected operator.

Euler number is the difference between the number of connected components
and the number of holes [8]. Because we have labeled both BG and FG component,
it is trivial to compute. In fact, thanks to the adjacency tree, we can even compute
the euler number of a component without much effort (Algorithm 3, line 13-17).

2.3 Example

Figure 3 shows how our algorithm builds the equivalence table T and the adjacency
tree I on a simple, yet complete, example. It shows the input image with initial
labels and their speculative surrounding (FG in gray and BG in white), as well
as a graph representing both the equivalence table T and the adjacency tree I.

On the first three lines (i = 0, i = 1 and i = 2), five new labels are created 1 ,
2 , 3 , 4 and 5 . Their initial adjacency is set as their speculative surrounding:
1 ⊏ 0 , 2 ⊏ 1 , 3 ⊏ 1 , 4 ⊏ 2 and 5 ⊏ 3 .



8 Florian Lemaitre, Nathan Maurice, and Lionel Lacassagne

Input image:
0 1 0

2 3
4 5

6 7

i = 0

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

Hole filled:
i = 0

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

Adjacency BG equivalence
Adjacency discarded FG equivalence

i = 0:
i = 1:
i = 2:

1 ⊏ 0 ,
2 ⊏ 1 , 3 ⊏ 1 ,
4 ⊏ 2 , 5 ⊏ 3

0

1

2 3

4 5

i = 3:
6 ⊏ 4 ,
3 ≡ 2 ,
7 ⊏ 5

0

1

2 3

4 5

6 7

i = 4: 5 ≡ 4
0

1

2 3

4 5

6 7

i = 5:
7 ≡ 6 ,
3 ≡ 0

0

1

2 3

4 5

6 7

i = 6: 4 ≡ 1
0

1

2 3

4 5

6 7

Final state
0

1

2 3

4 5

6 7

Hole filled
0

1

2 3

4 5

6 7

Fig. 3: Step by step example of our new BW labeling focusing on equivalence and
adjacency computation.

At i = 3, two new labels are created with the following speculative surround-
ings: 6 ⊏ 4 and 7 ⊏ 5 . In addition, 3 ≡ 2 is detected. Consequently, the
speculative surrounding of 3 is discarded in favor of 2 ⊏ 1 .

At i = 4, as 5 ≡ 4 , the speculative surrounding 5 ⊏ 3 is discarded.
At i = 5, two new equivalences are detected: 2 ≡ 0 and 7 ≡ 6 . Therefore,

the speculative surroundings of 2 and 7 are dropped. The component 0 2 3
has no more surrounding as 0 is the exterior of the image. While the algorithm
is not capable to detect it, we can see that the surrounding 6 ⊏ 4 is no more
speculative and is actually definitive.

At i = 6, the last equivalence 4 ≡ 1 is detected and the speculative
surrounding 4 ⊏ 2 is discarded, and the surrounding 1 ⊏ 0 is kept.

This leads to the final state before transitive closure where all remaining
surroundings ( 6 ⊏ 4 and 1 ⊏ 0 ) are no more speculative and are actually
true surroundings. When holes are filled, the adjacency edge 6 ⊏ 4 is replaced
by an equivalence edge 6 ≡ 4 . Note that our algorithm actually fills hole during
transitive closure and not beforehand.

3 Benchmark & Performance Analysis

We measured the performance of our algorithms using a protocol similar to [4]. All
the algorithms are sequential and no multithreading is used. We tested randomly
generated 2048×2048 images with varying density and granularity on a Skylake



An efficient run-based CCL algorithm for processing holes 9

Gold 6126 Xeon @2.60GHz. We focus our analysis on g = 1 as it is the worst case
for run-based algorithms like FLSL. Grana’s [3], Diaz’ [24] and Lemaitre’s [19]
CCL algorithms have been ran and measured on this machine. The feature
computation with FLSL has been back-ported from classical LSL and was not
part of its paper. The other ones have been estimated from their paper. To have
comparable results across machines, we give all the results in cycles per pixel
(cpp) that is the execution time multiplied by the clock frequency and divided by
the number of pixels. In addition, we tested multiple variants of our algorithm
that computes a subset of Euler number, hole filling, feature computation and
relabel in order to compare to existing algorithms that do not compute all of
them. Especially, the Euler number computation has been implemented for the
sole purpose of comparing our new algorithm with the State-of-the-Art. For CCA
algorithms, the seven standard features are computed: the surface, the bounding
box (xmin , xmax , ymin , ymax ) and the first statistical raw moments (Sx, Sy).

min max
BW + Adjacency (BWA) 0.36 12.7

+Euler number (E) + 0 + 0.29

+Hole Filling (H) + 0 + 0.50

+Feature Computation (F) + 0 + 8.59

+Relabeling (R) + 0.59 + 3.66

Table 1: Processing time in cpp of the core part of our new BW FLSL as well as
the extra processing time for extra computation. Minimal and maximal times
are given for 2048×2048 random images. Min time reached for d = 0% and max
time reached for g = 1 and d≃ 40%.

Table 1 shows the minimal and maximal processing time of our new labeling
algorithm. The first line corresponds to a base processing: foreground and back-
ground CC labeling and computing their adjacency tree (BWA). The next lines
provide the extra times for extra computations like Euler number (E) or hole
filling (H), feature computation (F) and relabeling (R). The extra times are the
best (min) and worst (max) case we measured for doing these extra computations.
One can then estimate the total processing time for a given combination of {E,
H, F, R} just by adding the associated extra times.

On this table, we can observe that the minimal extra time for all computations
but relabeling is 0. This is a property of run-based algorithms: those computation
times depend on the number of segments – which is 1 per line for empty images.

In the worst case, Feature computation adds a large extra time because the
seven features need to be written for each and every labels which highly increases
the number of memory accesses. The minimal extra processing time for relabeling
is non-zero as a second scan of the image is required to produce the output
image of labels. Therefore, its computation should be avoided if not required.
But thanks to the SIMD RLE decoder, this processing remains fast in the worst
case. One can also notice that Euler number computation and hole filling are
inexpensive using our approach.



10 Florian Lemaitre, Nathan Maurice, and Lionel Lacassagne

algorithm compute min avg max
He bit-quad E 2.87 14.0 23.7

He BW (with R) BWER 16.5 51.0 79.6

Diaz (with R) BWAR 18.4 36.8 59.0

Spaghetti(FG) + Spaghetti(BG) (with R) BWR 5.76 32.7 51.2

FLSL(FG+R) + FLSL(BG+R) (with R) BWR 2.34 17.0 24.4

FLSL(FG+F) + FLSL(BG+F) (with F) BWF 1.68 20.5 30.3

FLSL(BG) + FLSL(FG+F) (with F) WFH 1.89 19.8 33.7

BW FLSL+ER BWAER 0.98 10.0 14.6

BW FLSL+F BWAF 0.38 13.0 20.0

BW FLSL+FH BWAFH 0.38 14.0 20.7
B : Black labeling (BG) A: Adjacency tree F: Feature Computation R: Relabel
W: White labeling (FG) E: Euler number H: Hole filling

Table 2: Performance comparison between State-of-the-Art algorithms and this
work (BW FLSL). The “compute” column shows what is computed. Processing
time in cycle/pixel for 2048×2048 random images at g = 1.

In Table 2, each State-of-the-Art algorithm are compared to one configuration
of our new algorithm that computes at least as much. Our base algorithm BW
FLSL+ER that computes the adjacency tree, the Euler number relabels the
output image is faster than any black and white CCL algorithm. In average it
is 5.1× faster than He BW [11] and 3.6× faster than Diaz [24]. It is even faster
than He bit-quad [32] whose sole purpose is to compute the Euler number of
the image. This speed difference comes mainly from the efficient use of runs, the
use of SIMD, and the low overhead computation of the adjacency tree. Even
though a single execution of FLSL is faster than BW FLSL, FLSL process only
a FG components. Thus, two executions of FLSL (and Spaghetti) are needed to
compute any hole related property.

Therefore, BW FLSL is from 3.3× up to 5.9× faster than Spaghetti and from
1.4× up to 1.7× faster than FLSL to have both black and white labels or holes
filled. In addition, BW FLSL computes the adjacency tree with no extra cost.

4 Conclusion

In this article, we have introduced a new connected component labeling and
analysis algorithm that is able to do in one single pass of the image, both the
Euler number computation but also a double foreground and background labeling
with the adjacency tree computation. The modified transitive closure algorithm
enables an efficient hole processing: holes can be filled and the surrounding
connected components are updated on-the-fly whereas features are computed to
take this change into account.
As far as we know our new algorithm outperforms all published algorithms for
BW labeling and hole processing. In addition, it is easily tunable: its structure
can be adapted to other connected operators like filtering out components based
on their statistical features.



An efficient run-based CCL algorithm for processing holes 11

References

1. Bailey, D., Johnston, C.: Single pass connected component analysis. In: Image and
Vision New Zeland (IVNZ). pp. 282–287 (2007)

2. Bailey, D.G., Klaiber, M.J.: Zig-zag based single-pass connected components analysis.
Journal of Imaging 5,45, 1–26 (2019)

3. Bolelli, F., Allegretti, S., Baraldi, L., Grana, C.: Spaghetti labeling: Directed acyclic
graphs for block-based connected components labeling. Transactions on Image
Processing PP, 1–14 (2019)

4. Bolelli, F., Cancilla, M., Baraldi, L., Grana, C.: Toward reliable experiments on the
performance of connected components labeling algorithms. Journal of Real-Time
Image Processing (JRTIP) pp. 1–16 (2018)

5. Cabaret, L., Lacassagne, L.: What is the world’s fastest connected component
labeling algorithm ? In: IEEE International Workshop on Signal Processing Systems
(SiPS). pp. 97–102 (2014)

6. Cabaret, L., Lacassagne, L., Etiemble, D.: Parallel Light Speed Labeling for con-
nected component analysis on multi-core processors. Journal of Real-Time Image
Processing (JRTIP) 15(1), 173–196 (2018)

7. Galil, Z., Italiano, G.: Data structures and algorithms for disjoint set union problems.
ACM Computing Survey 23,3, 319–344 (1991)

8. Gray, S.B.: Local properties of binary images in two dimensions. Transactions on
Computers 20, 5, 551–561 (1971)

9. He, L., Chao, Y.: A very fast algorithm for simultaneously performing connected-
component labeling and euler number computing. Transaction on Image Processing
24,9, 2725–2735 (2017)

10. He, L., Chao, Y., Suzuki, K.: A new algorithm for labeling connected-components
and calculating the euler number, connected-component number, and hole number.
In: International Conference on Pattern Recognition (ICPR). pp. 3099–3102 (2012)

11. He, L., Chao, Y., Suzuki, K.: An algorithm for connected-component labeling, hole
labeling and euler number computing. Journal of Computer Science and Technology
28,3, 468–478 (2013)

12. He, L., Ren, X., Gao, Q., Zhao, X., Yao, B., Chao, Y.: The connected-component
labeling problem: a review of state-of-the-art algorithms. Pattern Recognition 70,
25–43 (2017)

13. He, L., Ren, X., Zhao, X., Yao, B., Kasuya, H., Chao, Y.: An efficient two-scan
algorithm for computing basic shape features of objects in a binary image. Journal
of Real-Time Image Processing 16, 1277–1287 (2019)

14. Hennequin, A., Masliah, I., Lacassagne, L.: Designing efficient SIMD algorithms for
direct connected component labeling. In: ACM Workshop on Programming Models
for SIMD/Vector Processing (PPoPP). pp. 1–8 (2019)

15. Hennequin, A., Meunier, Q.L., Lacassagne, L., Cabaret, L.: A new direct connected
component labeling and analysis algorithm for GPUs. In: IEEE International
Conference on Design and Architectures for Signal and Image Processing (DASIP).
pp. 1–6 (2018)

16. Klaiber, M., Bailey, D., Simon, S.: A single cycle parallel multi-slice connected
components analysis hardware architecture. Journal of Real-Time Image Processing
(2016)

17. Lacassagne, L., Zavidovique, A.B.: Light Speed Labeling for RISC architectures. In:
IEEE International Conference on Image Analysis and Processing (ICIP) (2009)



12 Florian Lemaitre, Nathan Maurice, and Lionel Lacassagne

18. Lacassagne, L., Zavidovique, B.: Light Speed Labeling: Efficient connected com-
ponent labeling on RISC architectures. Journal of Real-Time Image Processing
(JRTIP) 6(2), 117–135 (2011)

19. Lemaitre, F., Hennequin, A., Lacassagne, L.: How to speed connected component
labeling up with simd rle algorithms. In: ACM Workshop on Programming Models
for SIMD/Vector Processing (PPoPP) - to appear. pp. 1–8 (2020)

20. Manne, F., Patwary, M.: A scalable parallel union-find algorithm for distributed
memory computers. In: Springer, L.. (ed.) Parallel Processing and Applied Mathe-
matics. pp. 186–195 (2009)

21. Patwary, M., Blair, J., Manne, F.: Experiments on union-find algorithms for the
disjoint-set data structure. In: Springer, L.. (ed.) International symposium on
experimental algorithms (SEA). pp. 411–423 (2010)

22. Playne, D.P., Hawick, K.: A new algorithm for parallel connected-component
labelling on GPUs. IEEE Transactions on Parallel and Distributed Systems (2018)

23. del Rio, F.D., Molina-Abril, H., Real, P.: Computing the component-labeling and
the adjacency tree of a binary digital image in near logarithmic-time. In: Workshop
on Computation Topology in Image Context(CITIC). pp. 82–95. Springer (2019)

24. del Rio, F.D., Sanchez-Cuevas, P., Molina-Abril, H., Real, P.: Parallel connected-
component-labeling based on homotopy trees. Pattern Recognition Letters 131,
71–78 (2020)

25. Rosenfeld, A.: Digital topology. The American Mathematical Monthly 28, 8, 621–
360 (1979)

26. Rosenfeld, A., Platz, J.: Sequential operator in digital pictures processing. Journal
of ACM 13,4, 471–494 (1966)

27. Somasundaram, K., Kalaiselvi, T.: A method for filling holes in objects of med-
ical images using region labeling and run length encoding schemes. In: National
conference on image processing (NCIMP). pp. 110–115 (2010)

28. Tang, J.W., Shaikh-Husin, N., Sheikh, U.U., Marsono, M.N.: A linked list run-
length-based single-pass connected component analysis for real-time embedded
hardware. Journal of Real-Time Image Processing (2016)

29. Tarjan, R.: Efficiency of good but not linear set union algorithm. Journal of ACM
22,2, 215–225 (1975)

30. Tarjan, R., Leeuwen, J.: Worst-case analysis of set union algorithms. Journal of
ACM 31, 245–281 (1984)

31. Wu, K., Otoo, E., Suzuki, K.: Optimizing two-pass connected-component labeling
algorithms. Pattern Analysis and Applications 12, 117–135 (2009)

32. Yao, B., He, L., Kang, S., Chao, Y., Zhao, X.: Bit-quad-based euler number
computing. Transaction on Information and Systems E100-D,9, 2197–2204 (2017)

33. Zhao, H., Chen, Z.X.: A simple hole filling algorithm for binary cell images. In:
Applied Mechanics and Materials. vol. 433, pp. 1715–1719. Trans Tech Publ (2013)


	An efficient run-based Connected Component Labeling algorithm for processing holes

