
HAL Id: hal-03689455
https://hal.science/hal-03689455v1

Submitted on 7 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

LSL3D: a run-based Connected Component Labeling
algorithm for 3D volumes

Nathan Maurice, Florian Lemaitre, Julien Sopena, Lionel Lacassagne

To cite this version:
Nathan Maurice, Florian Lemaitre, Julien Sopena, Lionel Lacassagne. LSL3D: a run-based Connected
Component Labeling algorithm for 3D volumes. Binary is the new Black and White workshop @ IEEE
ICIAP 2022, May 2022, Lecce, Italy. �hal-03689455�

https://hal.science/hal-03689455v1
https://hal.archives-ouvertes.fr


LSL3D: a run-based Connected Component
Labeling algorithm for 3D volumes

Nathan Maurice, Florian Lemaitre, Julien Sopena, and Lionel Lacassagne

LIP6, Sorbonne University, CNRS

Abstract. Connect Component Labeling (CCL) has been a fundamental
operation in Computer Vision for decades. Most of the literature deals
with 2D algorithms for applications like video surveillance or autonomous
driving. Nonetheless, the need for 3D algorithms is rising, notably for
medical imaging.
While 2D CCL algorithms already generate large amounts of memory
accesses and comparisons, 3D ones are even worse. This is the curse
of dimensionality. Designing an efficient algorithm should address this
problem. This paper introduces a segment-based algorithm for 3D labeling
that uses a new strategy to accelerate label equivalence processing to
mitigate the impact of higher dimensions. We claim that this new algorithm
outperforms State-of-the-Art algorithms by a factor from ×1.5 up to ×3.1
for usual medical datasets and random images.

1 Introduction

Connected Component Labeling (CCL) has been a fundamental algorithm in
Computer Vision for decades [37] [40][15]. It consists of finding connected components
(sets of adjacent pixels) in a binary image and assigning them a unique identifier
referred to as the label.

CCL is used in a wide array of applications, such as autonomous driving
[41][11], video surveillance [21][38], medical applications [10][35][1][30][22] and
other fields like [34] where a real-time implementation matters.

This article introduces a new 3D labeling algorithm named LSL3D and our
contributions are twofold: 1) a new Finite State Machine (FSM) to efficiently
process segments using Run-Length Encoding (RLE) and 2) a cache mechanism
to re-use partial results and reduce computational complexity.

We claim that our new segment-based algorithm is 1.8× to 2.3× faster than
State-of-The-Art algorithms for existing medical datasets. Moreover, for random
3D images, which are more stressing at low granularities, we claim that LSL3D
is 1.5× to 3.1× faster.

The article is written as follows: Section 2 gives a background on CCL and
details our benchmark protocol. Section 3 reviews existing literature. Then,
Section 4 introduces three strategies for label equivalence management that



2 Nathan Maurice, Florian Lemaitre, Julien Sopena, and Lionel Lacassagne

dataset # subsets size density granularity # runs # CCs
mitochondria 3 1024×768×165 5.9 26.4 197,878 40

OASIS 373 256×256×128 19.8 4.2 236,718 3,200
random 16 256×256× 256 0 - 100 1 -16

Table 1: Average characteristics of 3D datasets.

attenuate the curse of dimensionality. Finally, Section 5 studies the impact of
SIMD on our new CCL algorithms.

2 Classical approaches to connected components labeling
and their evaluation

Fundamentally, CCL algorithms establish equivalences between foreground pixels
if they are connected.

Only a single solution for the labeling of a given image exists. Qualitative
compromises are therefore impossible, and research on CCL algorithms has been
focused on the reduction of their execution time.

In this section, we will first detail the basis of modern algorithms, and the
evaluation protocols: metrics, datasets and benchmark platform.

2.1 Main principles of modern CCL algorithms

Modern algorithms are all derived from historical ones like those from Rosenfeld
[37] or Haralick and Shapiro [15]. They are composed 3 steps:

1. a provisional labeling, that assigns a temporary label to each pixel and builds
label equivalences,

2. label equivalence solving, that computes the Transitive Closure (TC) of the
graph associated to the label equivalence table,

3. final labeling, to replace temporary labels with final labels (usually the smallest
of each component).

Modern algorithms implement some algorithmic optimizations to accelerate
these three steps. Since the bottleneck of these algorithms is usually their control-
flow rather than memory accesses or calculations, datasets have a major impact
on their performance.

2.2 Benchmarking procedure and datasets

To evaluate the algorithms’ performance, two medical datasets have been used
for the benchmarks: mitochondria [31] which includes 3 subsets and OASIS [32]
which includes 373 subsets. Images from mitochondria contain large blobs and
several small CCs. On the other hand, images from OASIS contain a hollow
volume with complex shapes. This translates into a high and low granularity [8]



LSL3D: a 3D run-based labeling algorithm 3

for mitochondria and OASIS , respectively (Table 1).

On top of these medical datasets, we use random images, which have been
generated using MT19937 [33] for reproducible results. The random images have
a density d ∈ [0%; 100%] and a granularity g ∈ [1; 16] where the granularity
describes the detail level of an image (size of individual blocks during generation).
The algorithms have been evaluated on an Intel Xeon Gold 6126 using the
YACCLAB [7] framework.

3 State-of-the-Art of 3D algorithms

Literature on CCL algorithms is extensive and has been centered on 2D images.
CCL on CPUs has been heavily studied and optimized [14][17][6][26]. On GPUs,
after an early era of iterative algorithms [43][3][20], a new generation introduced
by Komura [23] are now direct; a new way to manage equivalences and reduce
memory accesses was introduced by Playne [36] and has become the basis of the
fastest CCL algorithms [19] [2].

CCL algorithms can be classified according to their neighborhood mask and
how they process data: they can be pixel-based, block-based or segment-based.

3.1 Pixel-based algorithms

The extension of the Rosenfeld 2D algorithm to 3D is straightforward: the 9
adjacent pixels from the previous slice are added to the mask, for a total of 13
pixels.

The mask-based approach was improved by Wu [42] (SAUF ). Wu realized
that a decision could be taken without accessing all 4 pixels in the neighborhood
for 2D images. A decision tree was proposed to access as few neighbors as
possible. SAUF was later ported to 3D by Bolelli as SAUF 3D [4]. The decision
tree was further optimized by He et al. with the Label Equivalency Based (LEB)
algorithm for 2D [16] and 3D. [29] images.

In [18], He noticed that the value of the previous pixel could simplify the
following decision with fewer comparisons and introduced a graph of decision
trees. This method was generalized by Grana with the PRED algorithm [12],
which was later extended to 3D volumes by Bolelli with PRED 3D . [4]. The
introduction of Direct Rooted Acyclic Graphs (DRAG) by Bolelli [5] reduced
the code footprint. DRAG were used to revisit existing algorithms, like with
SAUF++ and PRED++ by Bolelli [4]. The same paper extended these new
SAUF++ and PRED++ algorithms for 3D (SAUF++ 3D and PRED++ 3D).

3.2 Block-based algorithms

Grana [13] proposed a block-based approach (foreground pixels in the same 2×2
block are necessarily in the same component). The decision tree for block-based
algorithms was then improved upon by Chabardes [9] with a forest of decision



4 Nathan Maurice, Florian Lemaitre, Julien Sopena, and Lionel Lacassagne

trees, and was later adapted to use a DRAG by Bolelli [5].

The block-based approach was extended to 3D volumes by Sochting [39] with
the Entropy Partition Decision Tree. EPDT algorithms handle pixels by blocks
of either 2× 1× 1 (EDPT_19c and EDPT_22c) or 2× 2 (EDPT_26c).

3.3 Segment-based algorithms

While block-based approaches have been shown to be efficient, pixels can also
be regrouped as segments. For a given line, it iterates over each column and
aggregates consecutive pixels into segments using a Run Length Encoding (interval
encoding indices). Then, it checks for segment adjacency (overlaps between
current segment and segment of the previous line) and performs unions when
needed.

A Run Based Two Scans strategy (RBTS ) for 2D images was used by He [28]
and later extended to 3D volumes [29]. The segment-based approach has also
been proposed by Lacassagne with the Light Speed Labeling (LSL) [24][25] for
2D labeling. LSL also uses a RLE but adds a line-relative labeling (ER tables)
combined with a table of segments (RLC) to accelerate adjacency detection and
equivalence building.

4 LSL3D & efficient unification strategies for 3D volumes

This section presents, step-by-step, the improvement and the transformation of
the classical 2D LSL algorithm into an optimized 3D version. Step zero is the
extension of the 2D version to 3D, keeping the line-relative labeling (version
named LSL_ER). It can be viewed as a legacy version for comparison [25]. The
first step is the replacement of the ER tables by a Finite State Machine (FSM)
(LSL_FSM). The second improvement is a cache-reuse mechanism to perform
unions/unifications with double-lines (LSL_FSM_DOUBLE).

Our successive LSL implementations have been tested according to the benchmark
in Section 2.2. They are compared to 7 algorithms from the State-of-the-Art:
LEB , RBTS , PRED++ 3D , SAUF++ 3D , EDPT_19c, EDPT_22c and EDPT_26c.
Among the EPDT algorithms, we only present the best one (EDPT_22c). The
results are shown on Figures 2 and 3 and will be evaluated throughout the
following sections.

4.1 Extension of the segment-based unification for 3D volumes

In order to find overlapping segments without iterating several times on the
current line, the first LSL algorithm [25] finds overlaps by accessing the ER
table. In 2D, two ER tables (current and previous line) are necessary at any
given time. On the other hand, due to the raster scan, two planes are required in



LSL3D: a 3D run-based labeling algorithm 5

cols

rows

slices

(a) Classical 3D Unification

cols

rows

slices

(1) (2)

(b) 3 Unification with double lines

Fig. 1: Segment-based unification for 3D volumes.

3D (current and previous plane). This can degrade performance on large images:
for instance, on mitochondria, the ER tables use a total of 3.1 MB of memory
and thus do not fit within the 1.0 MB L2 cache of the Xeon.

The performance of our LSL_ER implementation in 3D can be seen on Figure
2. LSL_ER becomes faster at g > 4 on random images and widens the gap at
higher granularities (up to ×1.3 for g = 16).

For medical images, LSL_ER is overall faster than the state of the art (Figure
3): while RBTS is ×1.1 faster on mitochondria, it is also slower by a factor of
×1.3 on OASIS . Similarly, PRED++ 3D is as fast on OASIS but slower by a
factor of ×1.3 on mitochondria.

The limits of LSL can be explained by the duration of the RLE step, especially
on large images (between 60% and 70% of the execution time on mitochondria).
Not only does it create an array of segments (RLC table) but the initialization
of the ER table is costly as it contains one element per pixel.

4.2 A finite-state machine-based unification

Overlapping segments between lines can also be found without ER using a Finite-
State Machine (FSM). In the 2D unification [27], each state of the 2D FSM
encodes segment configurations between the current and previous lines. Merging
two lines involves iterating over both at the same time: a new label is created
for each isolated segment, whereas the components of two overlapping segments
are merged together.

While the FSM-based implementation of LSL3D is efficient on simple images,
this is not the case for more complex images. Indeed, Figure 2 shows that
LSL_FSM is ×1.3 faster than ER for high-granularity images (g = 16), but slower
by a factor of ×0.61 for g = 1.

The execution time of LSL_FSM follows a similar trend on medical images, as
can be seen on Figure 3: mitochondria the FSM-based algorithm improves the
execution time compared to the ER-based unification by a factor ×1.1. On the
other hand, for OASIS , it is slower by a factor of ×0.95.

The overhead of the unification phase explains the results. Despite a lack of
ER tables and a faster RLE step, the complexity of the 3D FSM (27 states and 55
transitions in 3D, vs. 8 states and 14 transitions for its 2D counterpart) degrades
the accuracy of the branch predictor. This is particularly penalizing on complex



6 Nathan Maurice, Florian Lemaitre, Julien Sopena, and Lionel Lacassagne

images with many segments and a wider diversity of segments configurations
(and thus, with more state transitions being performed).

4.3 Computational reuse of merged lines

The complexity of the FSM has led to performance limitations on complex
images. To overcome these limitations, we have redesigned the FSM to store
and reuse partial results. On top of factorizing calculations, this also simplifies
the FSM (from 27 states and 55 transitions to just 9 states and 18 transitions).

More precisely, as shown on Figure 1, two consecutive iterations on the
same slice process three lines several times: the current line (in red) and two
neighboring lines (in blue) will be re-processed in the following fusion. This
redundancy can be removed by caching partial results (in green) into a double-
line array.

In order to simplify the computational reuse, a 2× 2 mask is used for lines,
as displayed on Figure 1b. Two phases are required: a first step (1) unifies the
current line (red line) and its neighbor (blue line) from the previous slice. It
produces a temporary line (green) that contains overlaps from both lines. Then
a second step (2) unifies the double-line with the one produced in the previous
step. The newly-created double-line is re-used in the next unification to avoid
redundant processing. The former double-line is discarded, and its memory is
recycled for the next iteration.

The performance of LSL_DOUBLE on random images (Figure 2) shows that
LSL_DOUBLE is on average better than LSL_ER and LSL_FSM for all granularities:
It is indeed ×1.3− 1.5 faster than the best algorithm for g = 4 and g = 16 and
only ×0.94 the speed of the best.

Besides these good results, Figure 2 also shows that LSL_DOUBLE is more
resistant to increasing densities (gap between green a purple lines, beyond 25%
density). Indeed, the number of segments at these densities is statistically high,
which slows down segments-based algorithms. In LSL_DOUBLE, the phenomenon
is reduced by the fusion of segments within double-lines: more segments implies
more overlaps, which leads to more fusions and fewer segments in the double-line.
This makes the double-line strategy particularly relevant for complex images. On
mitochondria (Figure 3a), LSL_DOUBLE is as fast as LSL_FSM. However, unlike
LSL_FSM, it is as fast as LSL_ER on OASIS . These results make the double-line
algorithm at least as fast as the best algorithm on both OASIS and mitochondria
(Figure 3).

5 Architecture-specific optimizations of Run-Length
Encoding on 3D images

As seen in the previous section, the double-line unification reduces the execution
time of LSL3D : the unification (which does not need extra ER tables) becomes
highly optimized. The RLE and relabeling steps thus become the main bottlenecks.
(≈ 90% and ≈ 70% of the execution time for mitochondria and OASIS ).



LSL3D: a 3D run-based labeling algorithm 7

LEB_3D
RBTS_3D

SAUFpp_3D
PREDpp_3D

EPDT_3D_22c
LSL_ER

LSL_FSM
LSL_FSM_DOUBLE

0 20 40 60 80 100
Density [%]

0

100

200

300

400

500

600

Ex
ec

ut
io

n 
Ti

m
e 

[m
s]

(a) g = 1, Scalar

0 20 40 60 80 100
Density [%]

0

100

200

300

400

500

600

Ex
ec

ut
io

n 
Ti

m
e 

[m
s]

(b) g = 1, SSE4

0 20 40 60 80 100
Density [%]

0

100

200

300

400

500

600

Ex
ec

ut
io

n 
Ti

m
e 

[m
s]

(c) g = 1, AVX2

0 20 40 60 80 100
Density [%]

0

100

200

300

400

500

600

Ex
ec

ut
io

n 
Ti

m
e 

[m
s]

(d) g = 1, AVX512

0 20 40 60 80 100
Density [%]

0

20

40

60

80

100

120

140

160

Ex
ec

ut
io

n 
Ti

m
e 

[m
s]

(e) g = 4, Scalar

0 20 40 60 80 100
Density [%]

0

20

40

60

80

100

120

140

160

Ex
ec

ut
io

n 
Ti

m
e 

[m
s]

(f) g = 4, SSE4

0 20 40 60 80 100
Density [%]

0

20

40

60

80

100

120

140

160

Ex
ec

ut
io

n 
Ti

m
e 

[m
s]

(g) g = 4, AVX2

0 20 40 60 80 100
Density [%]

0

20

40

60

80

100

120

140

160

Ex
ec

ut
io

n 
Ti

m
e 

[m
s]

(h) g = 4, AVX512

0 20 40 60 80 100
Density [%]

0

10

20

30

40

50

60

Ex
ec

ut
io

n 
Ti

m
e 

[m
s]

(i) g = 16, Scalar

0 20 40 60 80 100
Density [%]

0

10

20

30

40

50

60

Ex
ec

ut
io

n 
Ti

m
e 

[m
s]

(j) g = 16, SSE4

0 20 40 60 80 100
Density [%]

0

10

20

30

40

50

60

Ex
ec

ut
io

n 
Ti

m
e 

[m
s]

(k) g = 16, AVX2

0 20 40 60 80 100
Density [%]

0

10

20

30

40

50

60

Ex
ec

ut
io

n 
Ti

m
e 

[m
s]

(l) g = 16, AVX512

Fig. 2: Execution time of algorithms on random images for different granularities
and densities on Xeon

Fortunately, these steps lend themselves well to instruction level parallelism
with SIMD [27]. Several SIMD implementations of the RLE and relabeling have
been tested: SSE4, AVX2 and AVX512.

As can be seen on Figure 2, the use of SIMD accelerates the execution of all
LSL versions on random images. In fact, SSE4 alone is enough to make LSL_ER
faster than State-of-the-Art algorithms on random images by a factor of ×1.1 to
×2.6 (Figure 2). This is also true for medical images, with a speedup of ×1.4 to
×2.0 compared to the State-of-the-Art algorithm on mitochondria and OASIS
(Figure 3).

The use of more complex instruction sets such as AVX2 or AVX512 do not
provide additional speedups over SSE4 on simple images such as mitochondria
((Figure 3a), but nonetheless improves execution times by 10% on complex
images (OASIS ). For the AVX2 version, the lack of dedicated compress instructions
makes the speedup constrained by look-up table accesses in the RLE step. On the



8 Nathan Maurice, Florian Lemaitre, Julien Sopena, and Lionel Lacassagne

First Scan RLE Unification Transitive Closure Relabeling

LE
B_3

D

RBTS_3
D

SAUFpp
_3

D

PREDpp
_3

D

EPDT_3
D_2

2c

LS
L_

ER

LS
L_

FSM

LS
L_

FSM_D
OUBLE

0

50

100

150

200

250

300

350
Ex

ec
ut

io
n 

[m
s]

206.16

128.60

255.88
211.96

187.53
152.15 132.90 136.61

12.01
11.36 11.29

92.04

89.89

108.63

92.07
94.89

75.33
74.29 74.09

298

218

365

304
282

240
219 222

SCALAR

LS
L_

ER

LS
L_

FSM

LS
L_

FSM_D
OUBLE

47.31 29.91 29.82

11.96
11.24 11.46

0.22
0.23 0.37

51.43
53.21 54.55

111
95 96

SSE

LS
L_

ER

LS
L_

FSM

LS
L_

FSM_D
OUBLE

42.56 27.25 29.44

11.99
11.30 11.24

0.20
0.25 0.37

57.40
58.00 59.21

112
97 100

AVX

LS
L_

ER

LS
L_

FSM

LS
L_

FSM_D
OUBLE

47.21 24.73 27.11

11.87
11.23 11.29

0.24
0.20 0.30

69.10
70.83 60.37

128
107 99

AVX512

(a) mitochondria, Scalar

LE
B_3

D

RBTS_3
D

SAUFpp
_3

D

PREDpp
_3

D

EPDT_3
D_2

2c

LS
L_

ER

LS
L_

FSM

LS
L_

FSM_D
OUBLE

0

5

10

15

20

25

30

35

40

Ex
ec

ut
io

n 
[m

s]

27.45
32.29

29.76
24.29

28.33

10.57 9.62 9.85

10.25 13.18
9.94

0.11
0.10

0.16

5.56

8.15

5.71

5.55

7.54

9.69
9.24

9.43

33

40

35

30

36

31
32

29

SCALAR

LS
L_

ER

LS
L_

FSM

LS
L_

FSM_D
OUBLE

4.96 2.88 2.87

10.18 13.09
9.92

0.10 0.11

0.20

5.83 5.75
5.91

21 22
19

SSE

LS
L_

ER

LS
L_

FSM

LS
L_

FSM_D
OUBLE

3.77 2.76 2.84

10.16 13.06
9.84

0.09
0.11

0.23

5.78
4.81

4.88

20 21
18

AVX

LS
L_

ER

LS
L_

FSM

LS
L_

FSM_D
OUBLE

3.95 2.54 2.61

10.14 13.09
9.86

0.11
0.10

0.16

4.37
4.34

4.33

19
20

17

AVX512

(b) OASIS , Scalar

Fig. 3: Execution time on mitochondria and OASIS on Intel Xeon

other hand, the AVX512 compress instructions on the Xeon are only available for
32-bits elements. A conversion of elements to 16-bits for processing the segments
(RLC table encodes segments using 16-bits numbers) is thus required and adds
an overhead.

The combination of SIMD with the double-line mechanism gives an even
greater acceleration: on random images, LSL_DOUBLE+AVX512 is on average ×1.5
to ×3.0 faster than the best algorithm from the State-of-the-Art, whereas it is
faster by a factor ×1.7 and ×2.2 on natural images.

The speedup of the best LSL3D version compared to the best State-of-the-
Art can be found on Table 2.



LSL3D: a 3D run-based labeling algorithm 9

dataset mitochondria oasis random g=1 random g=4 random g=16
speedup × 2.3 × 1.8 × 1.5 × 2.2 × 3.1

Table 2: Best speedups of LSL3D versus best State-of-the-Art algorithms

6 Conclusion and future work

This article introduces a new algorithm, LSL3D , that combines a unification
approach based on a finite state machine to improve its efficiency on simple
images and a double-line mechanism and computational reuse for complex ones.
On top of a scalar extension, we use SIMD (SSE4, AVX2, AVX512) instructions to
accelerate the RLE compression and decompression steps.

Evaluation of performances on medical datasets and random images shows
that LSL3D outperforms State-of-the-Art algorithms by a factor ×1.5 up to a
factor × 3.1, on an Intel Xeon.

Future works will address the parallelization of this algorithm for multi-core
CPUs and GPUs.

References

1. Abuzaghleh, O., Barkana, B. D., and Faezipour, M. Noninvasive real-
time automated skin lesion analysis system for melanoma early detection and
prevention. IEEE journal of translational engineering in health and medicine 3
(2015), 1–12.

2. Allegretti, S., Bolelli, F., and Grana, C. Optimized Block-Based
Algorithms to Label Connected Components on GPUs. IEEE Transactions on
Parallel and Distributed Systems 31, 2 (Feb. 2020), 423–438.

3. Barnat, J., Bauch, P., Brim, L., and Ceška, M. Computing strongly
connected components in parallel on CUDA. In 2011 IEEE International Parallel
Distributed Processing Symposium (2011), pp. 544–555.

4. Bolelli, F., Allegretti, S., and Grana, C. One DAG to rule them all. IEEE
Transactions on Pattern Analysis and Machine Intelligence (Jan. 2021).

5. Bolelli, F., Baraldi, L., Cancilla, M., and Grana, C. Connected
Components Labeling on DRAGs. In 2018 24th International Conference on
Pattern Recognition (ICPR) (Beijing, Aug. 2018), IEEE, pp. 121–126.

6. Bolelli, F., Cancilla, M., Baraldi, L., and Grana, C. Toward reliable
experiments on the performance of connected components labeling algorithms.
Journal of Real-Time Image Processing (JRTIP) (2018), 1–16.

7. Bolelli, F., Cancilla, M., Baraldi, L., and Grana, C. Toward reliable
experiments on the performance of Connected Components Labeling algorithms.
Journal of Real-Time Image Processing 17, 2 (Apr. 2020), 229–244.

8. Breen, E. J., and Jones, R. Attribute Openings, Thinnings, and
Granulometries. Computer Vision and Image Understanding 64, 3 (Nov. 1996),
377–389.

9. Chabardès, T., Dokládal, P., and Bilodeau, M. A labeling algorithm based
on a forest of decision trees. Journal of Real-Time Image Processing 17, 5 (Oct.
2020), 1527–1545.



10 Nathan Maurice, Florian Lemaitre, Julien Sopena, and Lionel Lacassagne

10. Chen, W., Giger, M. L., and Bick, U. A fuzzy c-means (FCM)-based approach
for computerized segmentation of breast lesions in dynamic contrast-enhanced mr
images. Academic radiology 13, 1 (2006), 63–72.

11. Farhat, W., Faiedh, H., Souani, C., and Besbes, K. Real-time embedded
system for traffic sign recognition based on ZedBoard. Journal of Real-Time Image
Processing 16, 5 (2019), 1813–1823.

12. Grana, C., Baraldi, L., and Bolelli, F. Optimized Connected Components
Labeling with Pixel Prediction. In Advanced Concepts for Intelligent Vision
Systems, J. Blanc-Talon, C. Distante, W. Philips, D. Popescu, and P. Scheunders,
Eds., vol. 10016. Springer International Publishing, Cham, 2016, pp. 431–440.

13. Grana, C., Borghesani, D., and Cucchiara, R. Optimized Block-Based
Connected Components Labeling With Decision Trees. Transactions on Image
Processing 19, 6 (June 2010), 1596–1609.

14. Gupta, S., Palsetia, D., Patwary, M. A., Agrawal, A., and Choudhary,
A. A new parallel algorithm for two-pass connected component labeling. In
Parallel & Distributed Processing Symposium Workshops (IPDPSW) (2014), IEEE,
pp. 1355–1362.

15. Haralick, R. Some neighborhood operations. In Real-Time Parallel Computing
Image Analysis (1981), Plenum Press, pp. 11–35.

16. He, L., Chao, Y., and Suzuki, K. A Linear-Time Two-Scan Labeling Algorithm.
In 2007 IEEE International Conference on Image Processing (San Antonio, TX,
USA, 2007), IEEE, pp. V – 241–V – 244.

17. He, L., Ren, X., Gao, Q., Zhao, X., Yao, B., and Chao, Y. The connected-
component labeling problem: a review of state-of-the-art algorithms. Pattern
Recognition 70 (2017), 25–43.

18. He, L., Zhao, X., Chao, Y., and Suzuki, K. Configuration-Transition-Based
Connected-Component Labeling. IEEE Transactions on Image Processing 23, 2
(Feb. 2014), 943–951.

19. Hennequin, A., Lacassagne, L., Cabaret, L., and Meunier, Q. A new
direct connected component labeling and analysis algorithms for GPUs. In 2018
Conference on Design and Architectures for Signal and Image Processing (DASIP)
(2018), IEEE, pp. 76–81.

20. Hwu, W. W., Ed. GPU Computing Gems. Morgan Kaufman, 2001, ch. 35:
Connected Component Labeling in CUDA.

21. Joshi, K. A., and Thakore, D. G. A survey on moving object detection and
tracking in video surveillance system. International Journal of Soft Computing and
Engineering 2, 3 (2012), 44–48.

22. Khan, N., Ahmed, I., Kiran, M., Rehman, H., Din, S., Paul, A., and
Reddy, A. G. Automatic segmentation of liver & lesion detection using h-minima
transform and connecting component labeling. Multimedia Tools and Applications
79, 13 (2020), 8459–8481.

23. Komura, Y. GPU-based cluster-labeling algorithm without the use of
conventional iteration: application to swendsen-wang multi-cluster spin flip
algorithm. Computer Physics Communications (2015), 54–58.

24. Lacassagne, L., and Zavidovique, A. B. Light speed labeling for RISC
architectures. In IEEE International Conference on Image Analysis and Processing
(ICIP) (2009).

25. Lacassagne, L., and Zavidovique, B. Light speed labeling: Efficient connected
component labeling on RISC architectures. Journal of Real-Time Image Processing
6, 2 (June 2011), 117–135.



LSL3D: a 3D run-based labeling algorithm 11

26. Lemaitre, F., Hennequin, A., and Lacassagne, L. How to speed connected
component labeling up with SIMD RLE algorithms. In ACM Workshop on
Programming Models for SIMD/Vector Processing (2020), pp. 1–8.

27. Lemaitre, F., Hennequin, A., and Lacassagne, L. How to speed Connected
Component Labeling up with SIMD RLE algorithms. In Proceedings of the 2020
Sixth Workshop on Programming Models for SIMD/Vector Processing (San Diego
CA USA, Feb. 2020), ACM, pp. 1–8.

28. Lifeng He, Yuyan Chao, and Suzuki, K. A Run-Based Two-Scan Labeling
Algorithm. IEEE Transactions on Image Processing 17, 5 (May 2008), 749–756.

29. Lifeng He, Yuyan Chao, and Suzuki, K. Two Efficient Label-Equivalence-
Based Connected-Component Labeling Algorithms for 3-D Binary Images. IEEE
Transactions on Image Processing 20, 8 (Aug. 2011), 2122–2134.

30. Litjens, G., Sánchez, C. I., Timofeeva, N., Hermsen, M., Nagtegaal, I.,
Kovacs, I., Hulsbergen-Van De Kaa, C., Bult, P., Van Ginneken, B., and
Van Der Laak, J. Deep learning as a tool for increased accuracy and efficiency
of histopathological diagnosis. Scientific reports 6 (2016).

31. Lucchi, A., Li, Y., and Fua, P. Learning for Structured Prediction Using
Approximate Subgradient Descent with Working Sets. In 2013 IEEE Conference
on Computer Vision and Pattern Recognition (Portland, OR, USA, June 2013),
IEEE, pp. 1987–1994.

32. Marcus, D. S., Fotenos, A. F., Csernansky, J. G., Morris, J. C., and
Buckner, R. L. Open Access Series of Imaging Studies: Longitudinal MRI Data
in Nondemented and Demented Older Adults. Journal of Cognitive Neuroscience
22, 12 (Dec. 2010), 2677–2684.

33. Matsumoto, M., and Nishimura, T. Mersenne twister web page:
http://www.math.sci.hiroshima-u.ac.jp/ m-mat/MT/emt.html.

34. Millet, M., Rambaux, N., Petreto, A., Lemaitre, F., and Lacassagne,
L. A new processing chain for detection and tracking of meteors from space. In
International Meteor Conference (Sept. 2021).

35. Nazlibilek, S., Karacor, D., Ercan, T., Sazli, M. H., Kalender, O., and
Ege, Y. Automatic segmentation, counting, size determination and classification
of white blood cells. Measurement 55 (2014), 58–65.

36. Playne, D. P., and Hawick, K. A new algorithm for parallel connected-
component labelling on GPUs. IEEE Transactions on Parallel and Distributed
Systems 29, 6 (2018), 1217–1230.

37. Rosenfeld, A., and Platz, J. Sequential operator in digital pictures processing.
Journal of ACM 13,4 (1966), 471–494.

38. Salau, J., and Krieter, J. Analysing the space-usage-pattern of a cow herd
using video surveillance and automated motion detection. Biosystems Engineering
197 (2020), 122–134.

39. Sochting, M., Allegretti, S., Bolelli, F., and Grana, C. A Heuristic-
Based Decision Tree for Connected Components Labeling of 3D Volumes. In
International Conference on Pattern Recognition (2021), p. 8.

40. Veillon, F. One pass computation of morphological and geometrical properties
of objects in digital pictures. Signal Processing 1,3 (1979), 175–179.

41. Weng, H.-M., and Chiu, C.-T. Resource efficient hardware implementation
for real-time traffic sign recognition. In 2018 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP) (2018), IEEE, pp. 1120–1124.

42. Wu, K., Otoo, E., and Shoshani, A. Optimizing connected component labeling
algorithms. In Medical Imaging (San Diego, CA, Apr. 2005), J. M. Fitzpatrick and
J. M. Reinhardt, Eds., p. 1965.



12 Nathan Maurice, Florian Lemaitre, Julien Sopena, and Lionel Lacassagne

43. Ziegler, G., and Rasmusson, A. Efficient volume segmentation on the GPU.
In GPU Technology Conference (2010), Nvidia, Ed., pp. 1–44.


