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ABSTRACT: An analytical model is developed to calculate the dynamic response of a cracked multi-span continuous beam, 
subjected to a multiple-axle vehicle load. In this model, the vehicle load is considered as a series of concentrated moving loads at 
a constant velocity. Meanwhile, the crack is modelled by a spiral spring. Thereafter, the cracked span is considered as a two-span 
beam, connected by the spring at the position of the crack. By using the Euler-Bernoulli beam theory, the relations between the 
two successive spans can be obtained from the boundary conditions at the supports and the position of the crack. This technique 
makes it possible to calculate the eigenmodes of the beam. The response of the beam is finally obtained by the superposition of 
the modes. This model allows us to quickly analyze the influence of the cracks (depth, location) and of the vehicle (loads, velocity) 
on the response. Moreover, this model is validated by finite element modelling and some numerical results are given.

KEYWORDS: Multi-span continuous beam; Cracked structure; Moving loads; Transfer Matrix Method.

1  

The problems of elastic structures subjected to moving loads 
are great interest to industry and civil engineering. Indeed, there 
are many applications in the civil engineering domain, 
especially in bridge evaluation and assessment. Several studies 
have been realised in the last century. Fryba [1] presented an 
analytical solution for the problem of a simply supported beam 
and a continuous beam subject to a moving load. The results 
are obtained by combination of displacement functions. 
Ichikawa et al. [2] used the eigenmodes superposition to find 
the solution of a continuous beam with uniform rectangular 
cross section subjected to a moving load at constant velocity. 
Dugush and Eisenberger [3] described the mode shapes of a 
continuous beam with non-uniform section in terms of infinite 
polynomial series. In another approach, Foda et al. [4] used the 
Green  function to calculate the dynamic response of a simply 
supported beam subjected to a point force. Recently, Hoang et 
al. [5] used the Fourier transform and the properties of the Dirac 
comb to calculate the dynamic response of a periodically 
supported beam.  

The existence of structural damage will alter the response of 
the system to moving loads. When a structure is cracked, its 
local flexibility increases. Consequently, its natural frequencies 
are reduced and its responses are amplified in comparison to an 
uncracked structure under the same force. The dynamic 
behaviours of cracked beams have been the subject of many 
researches [6-9]. In these studies, the crack is modelled by a 
rotational spring, the rigidity of which depends on the relative 
depth of the crack (ratio between the depth of the crack and the 
height of the beam) and possibly on the material constituting 
the beam. Rizos et al. [10] used the strain energy density 
function to calculate the local flexibility. Chondros et al. [11] 
completed a theory of continuous crack beam vibration using 
the crack-disturbance function. By comparison with the 

numerical results of a beam model subjected to the three-point 
bending flexural test, the model of rotational spring at crack 
section is validated for a depth of the crack up to 50 percent of 
the height of the beam. Rizos model will be used in this current 
study due to the results of this comparative study. 

The problem of a damaged beam subjected to a moving force 
was also studied by several approaches. Bilello et al. [12] used 
the mode superposition with the introduction of the transfer 
matrix, which connects simultaneously the displacement, the 
slope, the bending moment and the shear force between two 
beam segments. With approximately the same idea, Lin et al. 
[13] directly computed the response of a cantilever beam using 
the Duhamel integral. In this model, a transfer matrix at the 
crack section is introduced. 

In this paper, we present an analytical method that allows to 
quickly calculate the dynamic response of a continuous beam 
subjected to a system of several concentrated moving loads. 
The beam is divided into several segments which are assumed 
to follow the Euler-Bernoulli beam theory. The deformed state 
of each beam segment is characterized by a vector of 
coefficients. A transfer matrix is introduced to ensure the 
compatibility requirements at the interface of two consecutive 
segments. Hence, the deformed state of a beam segment can be 
described in terms of the deformed state of its neighbours. The 
natural frequencies can be obtained quickly by solving an 
eigenvalue problem. The time-dependent response 
(displacement, strain) of the beam will be obtained by 
superposition of modes. In the real life, beam-shaped structures 
such as bridges are subjected to rolling loads exerted by 
vehicles. This study allows to develop a method to detect and 
localize damage from strain measurements. Nowadays, strain 
measurement by Optical Fiber is one of the most innovative 
Structural Health Monitoring (SHM) techniques, which allows 
to monitor the structure in real-time. Besides, the traditional 
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measurements of acceleration to determine modal parameters 
of the structure (natural frequencies, mode ) and 
assess them in the long term.

2

Consider a continuous beam of spans of total length . A 
crack is present on the kth span. The cracked span is divided 
into two separate beams: and , which are connected by a 
rotational spring with given section flexibility. The continuous 
beam can be modelled by a system of separate 
beams. The total length of the beam is ,

where is the length of the ith beam segment. is the 
position of the crack starting from the left support of the kth

span. The beam is subjected to a M-axles vehicle load, which 
enters the beam with a constant velocity v. denotes the 
distance between the ith and the (i+1)th axle and 
is the distance between the first axle and the ith axle ( ). If 
there is only one axle, we take by convention.

Figure 1. A continuous beam with N-span subjected to M 
moving loads.

For the formulation of the problem of forced vibration of a 
cracked continuous beam, the following assumptions are 
suggested:

Each separate beam follows the Euler-Bernoulli beam 
theory and has linear elastic behaviour. The beam has a 
uniform cross section.
The moving mass remains in contact with the beam at all 
times.
Initially, the mass starts from the left end of the continuous 
beam and moves at constant speed.

The dynamic equation of the whole beam in the global 
coordinates system can be expressed as:

(1)

where EI is the flexural stiffness, is the mass density and A is 
the cross-sectional area of the beam, is the external damping
coefficient. Moreover, u is the transverse displacement of the 
beam, is the distribution of the external load of the 
moving loads, x is the global coordinate along the beam (

), from its left end and t is the time (
).

The transverse displacement is blocked at each support point, 
while the bending moment is cancelled at both ends of the 
beam. These boundary conditions can be written as:

The moving load exerted by each axle is considered as a 
concentrated load. Using the Dirac distribution to describe 

each concentrated force, the expression for the load distribution 
is given by:

By separation of the variables, the response of the beam is 
decoupled into two terms: the time dependent term 
and the mode shapes :

(2)

The homogenous differential equation of the beam is:

(3)

Substitute (2) into (3), then arrange the time dependent
functions on the left-hand side and the x dependent functions 
on the right-hand side, we have:

(4)

where is a constant to be determined and the prime operator 
denotes the derivative of the function with respect to x. To 

calculate the natural frequencies, is first set to zero. Equation 
(4) becomes:

(5)

Natural frequencies and mode shapes

From equation (5), the governing equation for the free 
vibrations of the rth beam segment can be written as:

(6)

where is the mode shape of the rth beam segment, which 
has the following form:

(7)

Hereafter, we use the notation
to design the local coordinates of the rth beam segment.

The configuration of the beam

In this section, the transfer matrices are now introduced in 
order to ensure the conditions of continuity at the crack ends 
and at the intermediate support points. The deformed state of a 
beam segment is characterized by the coefficients

. We denote the vector 
which contains the shape coefficients of the mode for the rth

beam segment. At the interface of two consecutive segments 
(i.e. at the crack point and at the intermediate points), the 
transfer matrix connects these two segments so that

.

The crack
We assume that a crack is present on the kth span. This span is 
divided into 2 beam segments of length and . The crack 
section is modelled like a rotational spring, at which the 
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discontinuity of the slope is proportional to the bending 
moment at this section: . Note that

.  This relation can be written as:
(8)

For an orthogonal cross section of width b and height h, from 
the strain energy density function in fracture mechanics, Rizos 
et al. proposed the expression of local flexibility c [13]:

(9)

where is the Poisson's coefficient of the material of the beam, 
EI is its bending stiffness, a is the depth of the uniform lateral 
crack. is the dimensionless local compliance 
function whose expression has the form:

(10)

We obtain finally: .
Across the crack, the transverse displacement, the bending 

moment and the shear force are unchanged. The continuity 
conditions at the crack position are:

(11)

From relations (8) and (11), we deduce:
(12)

where is a matrix which is known as the 
transfer matrix at the section of the crack.

The intermediate supports
As the intermediate supports are assumed to be infinitely rigid, 
the transverse displacements are blocked. Meanwhile, the slope 
of the beam and the bending moment are conserved across the 
support. Let us consider the th support which connects 
the th and the th span. We have the following relations:

(13)

From these above relations, we obtain the transfer matrix at 
the intermediate support such that:

.

The left support of the cracked span
Since the crack is present on the kth span, this span is divided 

into two beam segments: and . The span which lies on the 
left of this cracked span is now called .

The right end of the first beam segment of the crack span is 
no longer blocked, so that the second condition of the system 
(13) is not satisfied. Indeed, the right end of the second beam 
segment ( ) is found at another intermediate support, which
leads to the condition: .

This is equivalent to:

(14)
with: .

By taking into account the relation (12), the equation (14) can 
be rewritten as:

(15)

The other relations remain the same as in the system (13), 
except the second condition. We obtain finally a matrix 
such that:

(16)

The matrix is called the transfer matrix at the left support 
of the cracked span.

The transfer matrices
As a reminder, the transfer matrices are used to assure the 

conditions of continuity and the compatibility requirements at 
the crack cross section (the matrix ) and at the intermediate 
supports (the matrices , ). It is important to note that the 
matrices , are singular. This remark can be explained by the 
fact that between the intermediate supports, the beam segment 
is blocked at it ends. Consequently, at least one component of 
the coefficient vector can be expressed in terms of the others. 
The expressions: and allow 
to calculate the mode shape coefficients of a span knowing 
those of the previous span. The full expressions of these 
transfer matrices are presented in the Appendix.

Boundary conditions matrix at the right end of the beam
The beam is simply supported at its right end: . This 

condition imposes the nullity of the displacement and of the
bending moment at this point. Note that the condition

is used to establish the transfer matrices
( ). For this support, there is only one boundary condition 
concerning the nullity of the bending moment:

(17)

The condition (17) can be expressed in the following matrix 
form:

(18)

Where is a matrix which describes the boundary 
condition of the right end of the beam.

Eigenvalues Problem

For all intermediate supports, except the support that lies on 
the left of the cracked span, we always have:

(19)

For the cracked span, we have these relations:

(20)

By arrangement of these matrices, we have:

(21)
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   The matrix product on the left-hand side of equation (21) 
forms a matrix. The resulting matrix is now denoted by

. Equation (21) can be written shorter as:
(22)

with 
Since the beam is simply supported at its two ends, at , 

the bending moment and the transverse displacement are 
always equal to zero. We have:

(23)

Since , we can rewrite the coefficient 
vector as , where is a function 
that expresses in term of : . When the crack 
is present at the first span, we introduce the vector

and the 
transfer matrix at the crack .

(24)

The existence of non-trivial solutions of Equation (22) 
requires:

(25)

The natural frequencies of the continuous beam are solutions 
of Equation (25).

Once the eigenvalues are found, the mode shapes will be 

normalized such that: , where is 
the Kronecker delta. Since the initial continuous beam is 
divided into beam segments, the mode shapes of the beam 
are obtained by summation of the mode shapes over all 
segments:

(26)

where is the mode shape of the rth beam segment for the 
nth mode, the distance from the left end of the 
beam to the right end of the kth beam segment ( by 
convention) and denotes the Heaviside step function:

Forced response of the beam under moving loads

The governing equation of the beam is:

(27)

The solution of Equation (27) can be expressed as a linear 
combination of orthonormal modes , with the 
generalized coordinates of the nth mode:

(28)

The damping coefficient is assumed to be proportional to the 
mass: , where is the modal damping ratio for 
the mode n. Substitute expression (28) into Equation (27) and 
note that , then:

(29)

with . By multiplying both sides of (29) with
and integrating from 0 to L:

(30)

Since the mode shapes are orthonormal, Equation (30) can be 
written as:

(31)

The general solution of Equation (31) is the sum of its 
homogeneous solution and of a particular solution. We first
look for the particular solution.

For a given linear operator (in this problem,
), if is a particular solution of 

the non-homogeneous differential equation: , 
then is also a particular solution of equation

for any . This proposition can be 
shown by the technique of variable changes.
In Equation (31), we only keep one point force of unit 
magnitude . Let us consider the following non-
homogeneous differential equation:

(32)

We assume that a particular solution of this equation has the 
same form as the mode shape :

(33)

where and is the 
coefficient vector of the particular solution of the rth beam 
segment for the nth mode. By using the method of undetermined 
coefficients, can be expressed in terms of 

as the following matrix form:

(34)

with:

For an undamped system (i.e. ), the matrix is 
diagonal. The general coordinates of the continuous beam are 
obtained by summation over its segments:
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 (35) 

in which  is the moment when the 
unit force enters the rth span.  

The right-hand side of Equation (31) is a linear combination 
of values of the reduced force  with the value of the function 

, where  is 
the instant when the ith axle enters on the bridge (

). By superposition of these particular solutions for 
each axle, we finally obtain the form of particular solution for 
a system of M concentrated forces: 

 (36) 

The homogeneous solution of Equation (31) which is 
corresponding to the nth mode is: 

 (37) 

with  the damped angular frequency of the 
system for the nth natural mode. 

Hence, the general solution of a harmonic oscillator subjected 
to a system of M concentrated forces (equation (31)) is: 

 (38) 

The coefficients  and  are determined from the 
conditions of continuity of the generalized coordinates  
and from the generalized velocity  when an axle of the 
vehicle enters a beam segment. 

The force response of the continuous beam is the linear 
combination of the mode shapes with the corresponding 
generalized coordinates for all the natural modes of the 
structure. In fact, we only keep a certain number of the first 
modes so that the total effective modal mass is at least 90% of 
the mass of the structure. 

3  

In this section, a two-spans of equal length, continuous Euler-
Bernoulli beam is studied. The total length of the beam is 

. The cross section is square of length . 
The constitutive material is steel, which has the modulus of 
elasticity , the Poisson's ratio  and the 
density . The beam is subjected to a 2-axle 
vehicle whose loads are  and . The 
distance between these loads is  (Figure 2). At , 
the vehicle enters the beam with constant speed . 
A crack with variable depth is present at the midpoint of the 
first span. Moreover, different values of modal damping ratio 
will be considered. 

 
Figure 2. Two-axle vehicle passing a continuous beam with 3 
supports at constant speed. 

In order to validate the presented method, some results from the 
analytical model are presented and will be compared with the 
numerical results of the same problem, modelled in an Open 
Source FEM software, the code_Aster. The FEM model has 
100 linear beam elements, which follows the Euler-Bernoulli 
beam theory. The transient response is calculated on a 
generalized basis, using Newmark  scheme for temporal 
integration with  and . The maximum 
frequency taken into account is up to 100 Hz. In case of cracked 
beam, a discrete element that having the same rigidity in 
bending as the crack is introduced. 
The present analytical model takes the first 12 frequencies, so 
that the cumulative effective mass factor is 90,4%. Figure 3 
shows the deflection at midspan of each span of the beam in 
comparison with the results from the FEM model (blue and red 
lines), when the damping ratio is 2%. The deflection obtained 
by this model is coherent with the numerical results.

 

 

Figure 3. Deflection at midspan with . 

 
Now, we create a crack at the midpoint of the first span. The 

depth of this crack is equal to half the height of the beam (ratio 
). Figure 4 shows the deflection at mid-span of 

the two spans, in case of an undamaged beam (violet and green 
lines) and a damaged beam (blue and red lines). We can see that 
the crack has more influence on the deflection of the first span 
than of the second one. However, this difference is relatively 
small. At the midpoint of the first span, the difference is about 
5%. 

 

 

Figure 4. Deflection at midspan with . 

 
In case of an undamaged beam, the speed of the vehicle also 

has an important influence on the amplitude of the response. 
Figure 5 presents the dependence of the Dynamics 
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Amplification Factor (DAF) on the dimensionless velocity of 
the vehicle, which is defined as , where 

 is the first critical velocity. Remind that 
, the ratio of the two largest 

responses in case of damaged and undamaged structure. We 
can see that the amplification is greater on the second span than 
on the first span. At certain speeds, this amplification vanishes. 
Moreover, the difference of DAF at peaks compared to the 
undamped cases is proportional to the damped ratio of the 
system. 

 
(a) 

 
(b) 

 
Figure 5. Dynamics amplification factor at different levels of 
damping 

In order to see how the location and the depth of the crack 
influence the natural frequencies, we carry out some parametric 
studies. The fundamental frequency of the uncracked beam is 

. Figure 6 shows the variations in the fundamental 
frequency (  depending on the location 
of the crack with different crack depth . This relative 
difference (in percent) is greatest when the crack is near the 
midpoint of each span. When the crack is at the level of the 
support, the fundamental frequency does not change. 

Figure 7 shows the dependence of the fundamental frequency 
on the crack depth for the case where the position of the crack 
has the largest influence on the frequency variation, according 
to Figure 6 ( ). When the crack depth is 50 % of the 

 

 

Figure 6. Change of frequency as a function of crack location 
 

Figure 7. Change of frequency as a function of dimensionless 
crack depth 

 
 

4  

A direct analytical method to derive the eigenmodes for 
cracked and uncracked beams under point moving loads was 
presented in this work. The final results are obtained by mode 
decomposition. The mode shapes and the generalized 
coordinates are expressed explicitly by analytical functions. 
This model allows us to quickly calculate the response of a 
continuous Euler-Bernoulli beam with the presence of damage. 
Hence, we can perform parametric studies with several 

how these factors influence the final results. This is useful to 
highlighting some critical features of the beam and quickly 
investigating a beam-shaped system.  
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Appendix 

Transfer matrix at the crack 

 

Where: 

 

Transfer matrix at the intermediate support 
At the intermediate support (except the left support of the 

cracked span), the transfer matrix is an  matrix whose 
components are product of two vectors: 

 

Where s, h are the vectors which contain the sinusoidal and 
hyperbolic in terms of the th span: 

 

The vectors  contain the information of the 
th span: 

 

 

in which: 

 

 
And  are the vectors which contain real coefficients: 

 

 
Transfer matrix at the left support of the cracked span 

The transfer matrix at the left support of the cracked span  
has the same structure as the transfer matrix at intermediate 
support , but its components change. 

 
The vectors s, h now contain the sinusoidal and hyperbolic in 
terms of the th span: 

 
 
The vectors keep the same structures, which contain 
the information of the crack span: 

 

with 
and  are the columns of the transfer 
matrix at the crack . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


